1,061 research outputs found

    Human Gait Database for Normal Walk Collected by Smart Phone Accelerometer

    Full text link
    The goal of this study is to introduce a comprehensive gait database of 93 human subjects who walked between two endpoints during two different sessions and record their gait data using two smartphones, one was attached to the right thigh and another one on the left side of the waist. This data is collected with the intention to be utilized by a deep learning-based method which requires enough time points. The metadata including age, gender, smoking, daily exercise time, height, and weight of an individual is recorded. this data set is publicly available

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    Securing Cyber-Physical Social Interactions on Wrist-worn Devices

    Get PDF
    Since ancient Greece, handshaking has been commonly practiced between two people as a friendly gesture to express trust and respect, or form a mutual agreement. In this article, we show that such physical contact can be used to bootstrap secure cyber contact between the smart devices worn by users. The key observation is that during handshaking, although belonged to two different users, the two hands involved in the shaking events are often rigidly connected, and therefore exhibit very similar motion patterns. We propose a novel key generation system, which harvests motion data during user handshaking from the wrist-worn smart devices such as smartwatches or fitness bands, and exploits the matching motion patterns to generate symmetric keys on both parties. The generated keys can be then used to establish a secure communication channel for exchanging data between devices. This provides a much more natural and user-friendly alternative for many applications, e.g., exchanging/sharing contact details, friending on social networks, or even making payments, since it doesn’t involve extra bespoke hardware, nor require the users to perform pre-defined gestures. We implement the proposed key generation system on off-the-shelf smartwatches, and extensive evaluation shows that it can reliably generate 128-bit symmetric keys just after around 1s of handshaking (with success rate >99%), and is resilient to different types of attacks including impersonate mimicking attacks, impersonate passive attacks, or eavesdropping attacks. Specifically, for real-time impersonate mimicking attacks, in our experiments, the Equal Error Rate (EER) is only 1.6% on average. We also show that the proposed key generation system can be extremely lightweight and is able to run in-situ on the resource-constrained smartwatches without incurring excessive resource consumption
    • …
    corecore