248 research outputs found

    Virtual environment UAV swarm management using GPU calculated digital pheromones

    Get PDF
    Our future military force will be complex: a highly integrated mix of manned and unmanned units. These unmanned units could function individually or within a swarm. The readiness of future warfighters to work alongside and utilize these new forces depends on the creation of usable interfaces and training simulators. The difficulty is that current unmanned aerial vehicle (UAV) control interfaces require too much operator attention and common swarm control methods require expensive computational power. This dissertation discusses how to improve upon current user interfaces and how to improve the performance of a common swarm control method, the digital pheromone field. This method uses digital pheromones to bias the movements of individual units within a swarm toward areas that are attractive and away from areas that are dangerous or unattractive. A more efficient method for performing pheromone field calculations is introduced, one that harnesses the power of the GPU (graphics processing unit) in today\u27s graphics cards by reshaping the ADAPTIV swarm control algorithm into a form acceptable to the GPU\u27s pipeline. The GPU ADAPTIV implementation is tested in scenarios that involve up to 50,000 virtual UAVs. When compared to its counterpart CPU implementation, the GPU version performed over 30 times faster than the CPU version. This gain translates directly into lower costs for training the future warfighter today and fielding the swarms of tomorrow. Finally, this dissertation presents a vision for combining these new interface ideas and performance enhancements into an effective swarm control interface and training simulator

    Modeling and Simulation of Vehicle Performance in a UAV Swarm Using Horizon Simulation Framework

    Get PDF
    A UAV swarm is simulated using Horizon Simulation Framework. The asset utilized for the swarm agent is a simplified model of the MQ-1 Predator, a large fixed-wing aircraft. The simulated swarm utilizes a decentralized cooperative control approach to command the assets through the use of digital pheromones and a pheromone map. Each vehicle operates at steady-state flight conditions of 36 m/s with an altitude of 1,800 m, and utilize an LQR set-point controller to maneuver through the pheromone map. All pheromone and aircraft related models are written in Python to expand the HSF scripting capability and include airborne scenarios. The simulation study focuses in the variation of three parameters in the repelling pheromone model. The first two are the update and deposit parameters with values of 2, 10, and 18. The third is the threshold parameter with values of 1e-02, 1e-10, and 1e-18. The lower parameter values provide more time-on-target while the higher parameters allow the swarm to search the surrounding area by only visiting the grid-space once

    Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search

    Get PDF
    Due to growing endurance, safety and non-invasivity, small drones can be increasingly experimented in unstructured environments. Their moderate computing power can be assimilated into swarm coordination algorithms, performing tasks in a scalable manner. For this purpose, it is challenging to investigate the use of biologically-inspired mechanisms. In this paper the focus is on the coordination aspects between small drones required to perform target search. We show how this objective can be better achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone senses a potential target, by releasing digital pheromone on its location. Multiple pheromone deposits are aggregated, increasing in intensity, but also diffused, to be propagated to neighborhood, and lastly evaporated, decreasing intensity in time. As a consequence, pheromone intensity creates a spatiotemporal attractive potential field coordinating a swarm of drones to visit a potential target. Flocking occurs when drones are spatially organized into groups, whose members have approximately the same heading, and attempt to remain in range between them, for each group. It is an emergent effect of individual rules based on alignment, separation and cohesion. In this paper, we present a novel and fully decentralized model for target search, and experiment it empirically using a multi-agent simulation platform. The different combination strategies are reviewed, describing their performance on a number of synthetic and real-world scenarios

    Platform Development for the Implementation and Testing of New Swarming Strategies

    Get PDF
    Gemstone Team SWARM-AISwarm robotics--the use of multiple autonomous robots in coordination to accomplish a task--is useful for mapping, light package transport, and search and rescue operations, among other applications. Researchers and industry professionals have developed robotic swarm mechanisms to accomplish these tasks. Some of those mechanisms or “strategies” have been tested on hardware; however, the technical requirements involved in fielding a drone swarm can be prohibitive to physical testing. Team SWARM-AI has developed a platform that provides a starting point for testing new swarming strategies. This platform allows the user to select vehicles of their choosing- either air, land, or water based, or some combination thereof- as well as define their own swarming method. Using a novel decentralized approach to ground control software, this platform provides a user interface and a system of computational “units” to coordinate drone swarms with a centralized, decentralized, or combination architecture. Additionally, the platform propagates user input from the master unit to the rest of the swarm and allows each unit to request sensor data from other units. The user is free to edit the processes by which each drone interacts with the environment and the rest of the swarm, giving them freedom to test their swarming strategy. The software system is then tested with a swarm of quadcopters using Software in the Loop (SITL) testing

    Description and composition of bio-inspired design patterns: a complete overview

    Get PDF
    In the last decade, bio-inspired self-organising mechanisms have been applied to different domains, achieving results beyond traditional approaches. However, researchers usually use these mechanisms in an ad-hoc manner. In this way, their interpretation, definition, boundary (i.e. when one mechanism stops, and when another starts), and implementation typically vary in the existing literature, thus preventing these mechanisms from being applied clearly and systematically to solve recurrent problems. To ease engineering of artificial bio-inspired systems, this paper describes a catalogue of bio-inspired mechanisms in terms of modular and reusable design patterns organised into different layers. This catalogue uniformly frames and classifies a variety of different patterns. Additionally, this paper places the design patterns inside existing self-organising methodologies and hints for selecting and using a design patter

    Connectivity-Aware Pheromone Mobility Model for Autonomous UAV Networks

    Full text link
    UAV networks consisting of reduced size, weight, and power (low SWaP) fixed-wing UAVs are used for civilian and military applications such as search and rescue, surveillance, and tracking. To carry out these operations efficiently, there is a need to develop scalable, decentralized autonomous UAV network architectures with high network connectivity. However, the area coverage and the network connectivity requirements exhibit a fundamental trade-off. In this paper, a connectivity-aware pheromone mobility (CAP) model is designed for search and rescue operations, which is capable of maintaining connectivity among UAVs in the network. We use stigmergy-based digital pheromone maps along with distance-based local connectivity information to autonomously coordinate the UAV movements, in order to improve its map coverage efficiency while maintaining high network connectivity

    Improving particle swarm optimization path planning through inclusion of flight mechanics

    Get PDF
    Military engagements are continuing the movement toward automated and unmanned vehicles for a variety of simple and complex tasks. This allows humans to stay away from dangerous situations and use their skills for more difficult tasks. One important piece of this strategy is the use of automated path planners for unmanned aerial vehicles (UAVs). Current UAV operation requires multiple individuals to control a single plane, tying up important human resources. Often paths are planned by creating waypoints for a vehicle to fly through, with the intention of doing reconnaissance while avoiding as much danger to the plane as possible. Path planners often plan routes without taking into consideration the UAV\u27s ability to perform the maneuvers required to fly the specified waypoints, instead relying upon them to fly as close as possible. This thesis presents a path planner solution incorporating vehicle mechanics to insure feasible flight paths. This path planner uses Particle Swarm Optimization (PSO) and digital pheromones to generate multiple three-dimensional flight paths for the operator to choose from. B-spline curves are generated using universal interpolation with each path waypoint representing a control point. The b-spline curve represents the flight path of the UAV. Each point along the curve is evaluated for fuel efficiency, threat avoidance, reconnaissance, terrain avoidance, and vehicle mechanics. Optimization of the flight path occurs based on operator defined performance characteristics, such as maximum threat avoidance or minimum vehicle dynamics cost. These performance characteristics can be defined for each unique aircraft, allowing the same formulation to be used for any aircraft. The vehicle mechanics conditions considered are pull-out, glide, climb, and steady, level, co-ordinate turns. Calculating the flight mechanics requires knowing the velocity and angle of the plane, calculated using the derivative of the point on the curve. The flight mechanics of the path allows the path planner to determine whether the path exceeds the maximum load factor (G-force), minimum velocity (stall velocity), or the minimum turning radius. Comparing the results between PSO Path Planner with flight mechanics and PSO Path Planner without flight mechanics over five scenarios indicates an increase in the feasibility of the returned paths. Visualizing the flight paths was improved by changing the original waypoint based visualization to a b-spline curve representation. Using b-spline curves allows for an accurate representation of the actual UAV flight path especially when considering turns. Operators no longer must create a mental representation of the flight path to match the waypoints

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Energy-Efficient Swarm Behavior for Indoor UAV Ad-Hoc Network Deployment

    Get PDF
    Building an ad-hoc network in emergency situations can be crucial as a primary tool or even when used prior to subsequent operations. The use of mini and micro Unmanned Aerial Vehicles (UAVs) is increasing because of the wide range of possibilities they offer. Moreover, they have been proven to bring sustainability to many applications, such as agriculture, deforestation and wildlife conservation, among others. Therefore, creating a UAV network for an unknown environment is an important task and an active research field. In this article, a mobility model for the creation of ad-hoc networks using UAVs will be presented. This model will be based on pheromones for robust navigation. We will focus mainly on developing energy-efficient behavior, which is essential for this type of vehicle. Although there are in the literature several models of mobility for ad-hoc network creation, we find that either they are not adapted to the specific energy requirements of UAVs or the proposed motion models are unrealistic or not sufficiently robust for final implantation. We will present and analyze the operation of a distributed swarm behavior able to create an ad-hoc network. Then, an analytical model of the swarm energy consumption will be proposed. This model will provide a mechanism to effectively predict the energy consumption needed for the deployment of the network prior to its implementation. Determining the use of the mobility behavior is a requirement to establish and maintain a communication channel for the required time. Finally, this analytical model will be experimentally validated and compared to the Random Waypoint (RWP) mobility strategy.This work was partially supported by the Ministerio de Economía y Competitividad (Spain), project TIN2013-40982-R, the FEDER funds and the “Red de Investigación en el uso del aprendizaje colaborativo para la adquisición de competencias básicas. El caso Erasmus+ EUROBOTIQUE”, Red ICE3701, curso 2016–2017

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation
    corecore