7,327 research outputs found

    Efficient cooperative spectrum sensing for three-hop cognitive wireless relay networks

    Get PDF
    This paper is concerned with cooperative spectrum sensing (CSS) mechanisms in three-hop cognitive wireless relay networks (CWRNs). The data transmission from a source to a destination is realised with the aid of two layers of cognitive radio (CR) users which are in the transmission coverage of two primary users. In this paper, we first propose a new CSS scheme for a layer of CR users to improve the spectrum sensing performance by exploiting both local decisions at the CR users and global decisions at the fusion centre. Particularly, we derive the probabilities of missed detection and false alarm for a practical scenario where all sensing, reporting, and backward channels suffer from Rayleigh fading. The derived expressions not only show that our proposed CSS achieves a better sensing performance than the conventional scheme but also characterise the effects of the fading channels on the sensing reliability. Furthermore, we propose a CSS scheme for two CR layers in a three-hop CWRN using binary XOR operator to help reduce one phase of sensing for a higher system throughput

    SPECTRUM SHARING IN COGNITIVE RADIO NETWORKS WITH QUALITY OF SERVICE AWARENESS

    Get PDF
    The goal of this thesis is to study performance of cognitive radio networks in terms of total spectrum utilization and throughput of secondary networks under perfect and imperfect sensing for Additive White Gaussian Noise (AWGN) and fading channels. The effect of imperfect sensing was studied by applying non-collaborative and collaborative sensing techniques using energy detecting and square law combining techniques, respectively. Spectrum allocation for heterogeneous networks in cognitive radio networks was discussed and a new sharing algorithm that guarantee Quality of Service (QoS) for different secondary users’ applications was proposed. The throughput degradation of secondary users due to the activities of the primary users was explored by varying the arrival rate of the primary users in a given spectrum band. Computer simulation showed that increasing the primary user’s activity will increase the total spectrum utilization but decreases the secondary users’ throughput simultaneously. The effect of the received Signal to Noise Ratio (SNR) of the primary user on the cognitive radio network performance is studied in which, a high SNR of primary users led to a higher throughput of secondary network in AWGN channels compared to Nakagami fading channels. The effect of applying cooperative sensing is also presented in this thesis. As we increased the number of cooperating sensors, the network throughput increased which proves the advantage of applying cooperative sensing. A spectrum allocation algorithm for heterogeneous network model is developed to study the QoS assurance of secondary users in cognitive radio networks. The system performance of the heterogeneous network was investigated in terms of the total spectrum utilization. It is found that, higher number of secondary users, better channel’s condition and low required QoS of applications would increase the spectrum utilization significantly. vii In this thesis, the proposed allocation algorithm was applied to the heterogeneous cognitive radio model and its performance was compared to the First Come First Served (FCFS) algorithm in both AWGN and fading channels. The proposed algorithm provided a higher average SNR and spectrum utilization than FCFS algorithm and guaranteed the QoS requirement for applications of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total applications’ data rate increases significantly. The proposed algorithm guaranteed the QoS requirement for each application of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total data rate increases significantly

    A hybrid double-threshold based cooperative spectrum sensing over fading channels

    Get PDF
    This paper investigates double-threshold based energy detector for cooperative spectrum sensing mechanisms in cognitive wireless radio networks. We first propose a hybrid double-threshold based energy detector (HDTED) to improve the sensing performance at secondary users (SUs) by exploiting both the local binary/energy decisions and global binary decisions feedback from the fusion centre (FC). Significantly, we derive closed-form expressions and bounds for the probabilities of missed detection and false alarm considering a practical scenario where all channel links suffer from Rayleigh fading and background noise. The derived expressions not only show the improved performance achieved with the HDTED scheme but also enable us to analyse the impacts of the number of the SUs and the fading channels on the cooperative spectrum sensing performance. Furthermore, based on the derived bounds, we propose an optimal SU selection algorithm for forwarding the local decisions to the FC, which helps reduce the number of forwarding bits for a lower-complexity signaling. Finally, numerical results are provided to demonstrate the validity of the analytical findings

    A hybrid double-threshold based cooperative spectrum sensing over fading channels

    Get PDF
    This paper investigates double-threshold based energy detector for cooperative spectrum sensing mechanisms in cognitive wireless radio networks. We first propose a hybrid double-threshold based energy detector (HDTED) to improve the sensing performance at secondary users (SUs) by exploiting both the local binary/energy decisions and global binary decisions feedback from the fusion centre (FC). Significantly, we derive closed-form expressions and bounds for the probabilities of missed detection and false alarm considering a practical scenario where all channel links suffer from Rayleigh fading and background noise. The derived expressions not only show the improved performance achieved with the HDTED scheme but also enable us to analyse the impacts of the number of the SUs and the fading channels on the cooperative spectrum sensing performance. Furthermore, based on the derived bounds, we propose an optimal SU selection algorithm for forwarding the local decisions to the FC, which helps reduce the number of forwarding bits for a lower-complexity signaling. Finally, numerical results are provided to demonstrate the validity of the analytical findings

    Sensing Task Allocation for Heterogeneous Channels in Cooperative Spectrum Sensing

    Get PDF
    In the traditional centralized cooperative spectrum sensing, all secondary users sense the same channel. But, for a given channel, there exists detection performance diversity among all the users, due to the different signal-fading process. Involving the user with poor performance in cooperative sensing will not only deteriorate the detection correctness but also waste the sensing time. In the heterogeneous channels, the problem is even severe. A novel idea is to allocate the secondary users to sense different channels. We analyze the allocation problem before formulate it to be an optimization problem, which is a NP-hard problem. Then we propose the declined complexity algorithm in equal secondary user case and the two-hierarchy approach algorithm in unequal case. With the simulation, we verify the near optimality of the proposed algorithms and the advantage of the task allocation

    Machine Learning-Based Cooperative Spectrum Sensing in A Generalized α-Îș-ÎŒ Fading Channel

    Get PDF
    An improvement in spectrum usage is possible with the help of a cognitive radio network, which allows secondary users’ access to the unused licensed frequency band of a primary user. Thus, spectrum sensing is a fundamental concept in cognitive radio networks. In recent years, Cooperative spectrum sensing using machine learning has garnered a great deal of attention as a technique of enhancing sensing capability. In this study, K-means clustering is taken into consideration for the purpose of analyzing the effectiveness of cooperative spectrum sensing in a generalized α-Îș-ÎŒ fading channel. The proposed approach is examined using receiver operating characteristic curves to determine its performance. The effectiveness of the proposed strategy is contrasted with that of the existing detection techniques such as Cooperating spectrum sensing based on energy detection and OR-fusion-based cooperative spectrum sensing for fading channels Îș-ÎŒ, α-Îș-ÎŒ. As demonstrated by results, the proposed method outshines an existing method in terms of comparison parameters, as determined by simulation results in the MATLAB version
    • 

    corecore