51 research outputs found

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Nonorthogonal Multiple Access for 5G and Beyond

    Get PDF
    This work was supported in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/N029720/1 and Grant EP/N029720/2. The work of L. Hanzo was supported by the ERC Advanced Fellow Grant Beam-me-up

    Adaptive modulation, coding and power allocation in cognitive radio networks

    Get PDF

    Distributed space time block coding and application in cooperative cognitive relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for cooperative relay networks is considered in this thesis. Rayleigh frequency flat and selective fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing (OFDM) type transmission approach are employed to mitigate synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. A novel detection scheme is then proposed for decode-and-forward and amplify-and-forward networks with closed-loop extended orthogonal coding and closed-loop quasi-orthogonal coding which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approach and its ability to mitigate synchronization errors

    Algorithms for 5G physical layer

    Get PDF
    There is a great activity in the research community towards the investigations of the various aspects of 5G at different protocol layers and parts of the network. Among all, physical layer design plays a very important role to satisfy high demands in terms of data rates, latency, reliability and number of connected devices for 5G deployment. This thesis addresses he latest developments in the physical layer algorithms regarding the channel coding, signal detection, frame synchronization and multiple access technique in the light of 5G use cases. These developments are governed by the requirements of the different use case scenarios that are envisioned to be the driving force in 5G. All chapters from chapter 2 to 5 are developed around the need of physical layer algorithms dedicated to 5G use cases. In brief, this thesis focuses on design, analysis, simulation and he advancement of physical layer aspects such as 1. Reliability based decoding of short length Linear Block Codes (LBCs) with very good properties in terms of minimum hamming istance for very small latency requiring applications. In this context, we enlarge the grid of possible candidates by considering, in particular, short length LBCs (especially extended CH codes) with soft-decision decoding; 2. Efficient synchronization of preamble/postamble in a short bursty frame using modified Massey correlator; 3. Detection of Primary User activity using semiblind spectrum sensing algorithms and analysis of such algorithms under practical imperfections; 4. Design of optimal spreading matrix for a Low Density Spreading (LDS) technique in the context of non-orthogonal multiple access. In such spreading matrix, small number of elements in a spreading sequences are non zero allowing each user to spread its data over small number of chips (tones), thus simplifying the decoding procedure using Message Passing Algorithm (MPA)
    • …
    corecore