63 research outputs found

    Performance of an adaptive homodyne receiver in the presence of multipath, Rayleigh-fading and time-varying quadrature errors

    Get PDF
    In this paper, we carry out a detailed performance analysis of the blind source separation based I/Q corrector operating at the baseband. Performance of the digital I/Q corrector is evaluated not only under time-varying phase and gain errors but also in the presence of multipath and Rayleigh fading channels. Performance under low-SNR and different modulation formats and constellation sizes is also evaluated. What is more, BER improvement after correction is illustrated. The results indicate that the adaptive algorithm offers adequate performance for most communication applications hence, reducing the matching requirements of the analog front-end enabling higher levels of integration

    On various low-hardware-complexity LMS algorithms for adaptive I/Q correction in quadrature receivers

    Get PDF
    In this paper, the performance and convergence time comparisons of various low-complexity LMS algorithms used for the coefficient update of adaptive I/Q corrector for quadrature receivers are presented. We choose the optimum LMS algorithm suitable for low complexity, high performance and high order QAM and PSK constellations. What is more, influence of the finite bit precision on VLSI implementation of such algorithms is explored through extensive simulations and optimum wordlengths established

    Living and dealing with RF impairments in communication transceivers

    Get PDF
    This paper provides an overview of the sources and effects of the RF impairments limiting and rendering the performance of the future wireless communication transceivers costly as well as hindering their wide-spread use in commercial products. As transmission bandwidths and carrier frequencies increase effect of these impairments worsen. This paper studies and presents analytical evaluations of the performance degradation due to the RF impairments in terms of bit-error-rate and image rejection ratio. The paper also give highlights of the various aspects of the research carried out in mitigating the effects of these impairments primarily in the digital signal processing domain at the baseband as well as providing low-complexity hardware implementations of such algorithms incorporating a number of power and area saving techniques

    Measurement, Modeling, and OFDM Synchronization for the Wideband Mobile-to-Mobile Channel

    Get PDF
    Wideband measurements of the mobile-to-mobile channel, especially of the harshest channels, are necessary for proper design and certification testing of mobile-to-mobile communications systems. A complete measurement implies that the Doppler and delay characteristics are measured jointly. However, such measurements have not previously been published. The main objective of the proposed research is to develop channel models for specific scenarios from data obtained in a wideband mobile-to-mobile measurement campaign in the 5.9 GHz frequency band. For this purpose we developed a channel sounding system including a novel combined waveform. In order to quantify and qualify either the recorded channel or the proposed generated channel, we developed a simulation test-bed that includes all the characteristics of the proposed digital short range communications (DSRC) standard. The resulting channel models needed to comply with the specifications required by hardware channel emulators or software channel simulators. From the obtained models, we selected one to be included in the IEEE 802.11p standard certification test. To further aid in the development of software radio based receivers, we also developed an orthogonal frequency division multiplexing (OFDM) synchronization algorithm to analyze and compensate synchronization errors produced by inaccessible system clocks.Ph.D.Committee Chair: Ingram, Mary Ann; Committee Member: Lanterman, Aaron; Committee Member: Li, Ye; Committee Member: Pratt, Thomas G.; Committee Member: Rogers, Peter H

    Modulated Backscatter for Low-Power High-Bandwidth Communication

    Get PDF
    <p>This thesis re-examines the physical layer of a communication link in order to increase the energy efficiency of a remote device or sensor. Backscatter modulation allows a remote device to wirelessly telemeter information without operating a traditional transceiver. Instead, a backscatter device leverages a carrier transmitted by an access point or base station.</p><p>A low-power multi-state vector backscatter modulation technique is presented where quadrature amplitude modulation (QAM) signalling is generated without running a traditional transceiver. Backscatter QAM allows for significant power savings compared to traditional wireless communication schemes. For example, a device presented in this thesis that implements 16-QAM backscatter modulation is capable of streaming data at 96 Mbps with a radio communication efficiency of 15.5 pJ/bit. This is over 100x lower energy per bit than WiFi (IEEE 802.11).</p><p>This work could lead to a new class of high-bandwidth sensors or implantables with power consumption far lower than traditional radios.</p>Dissertatio
    • …
    corecore