35,673 research outputs found

    ALT-C 2010 - Conference Proceedings

    Get PDF

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    The Group Methodology of Using Cloud Technologies in the Training of Future Computer Science Teachers

    Get PDF
    The development of cloud computing resources and their implementation in university education require an increase in the ICT-competence of future computer science teachers. The article considers the use of project method as an effective tool of encouraging students’ cooperation while solving practical problems and as a means of developing their essential professional skills. The following pedagogical approaches and techniques were used: partnership of group members, development of group work skills, heterogeneous grouping, combined use of individual and peer assessment, teacher’s monitoring of the students’ work, focus on the task and group work skills, chance for every member to be a leader, essential feedback. The authors suggest using private and public cloud technologies to support the implementation of group methodology in the teaching process. One of such technologies is academic cloud based on the Apache CloudStack platform. This cloud environment is deployed in Physics and Mathematics Department of Ternopil V. Hnatiuk National Pedagogical University. The suggested method has been verified experimentally by using Wilcoxon signed-rank test
    corecore