51 research outputs found

    Geometric data understanding : deriving case specific features

    Get PDF
    There exists a tradition using precise geometric modeling, where uncertainties in data can be considered noise. Another tradition relies on statistical nature of vast quantity of data, where geometric regularity is intrinsic to data and statistical models usually grasp this level only indirectly. This work focuses on point cloud data of natural resources and the silhouette recognition from video input as two real world examples of problems having geometric content which is intangible at the raw data presentation. This content could be discovered and modeled to some degree by such machine learning (ML) approaches like deep learning, but either a direct coverage of geometry in samples or addition of special geometry invariant layer is necessary. Geometric content is central when there is a need for direct observations of spatial variables, or one needs to gain a mapping to a geometrically consistent data representation, where e.g. outliers or noise can be easily discerned. In this thesis we consider transformation of original input data to a geometric feature space in two example problems. The first example is curvature of surfaces, which has met renewed interest since the introduction of ubiquitous point cloud data and the maturation of the discrete differential geometry. Curvature spectra can characterize a spatial sample rather well, and provide useful features for ML purposes. The second example involves projective methods used to video stereo-signal analysis in swimming analytics. The aim is to find meaningful local geometric representations for feature generation, which also facilitate additional analysis based on geometric understanding of the model. The features are associated directly to some geometric quantity, and this makes it easier to express the geometric constraints in a natural way, as shown in the thesis. Also, the visualization and further feature generation is much easier. Third, the approach provides sound baseline methods to more traditional ML approaches, e.g. neural network methods. Fourth, most of the ML methods can utilize the geometric features presented in this work as additional features.Geometriassa käytetään perinteisesti tarkkoja malleja, jolloin datassa esiintyvät epätarkkuudet edustavat melua. Toisessa perinteessä nojataan suuren datamäärän tilastolliseen luonteeseen, jolloin geometrinen säännönmukaisuus on datan sisäsyntyinen ominaisuus, joka hahmotetaan tilastollisilla malleilla ainoastaan epäsuorasti. Tämä työ keskittyy kahteen esimerkkiin: luonnonvaroja kuvaaviin pistepilviin ja videohahmontunnistukseen. Nämä ovat todellisia ongelmia, joissa geometrinen sisältö on tavoittamattomissa raakadatan tasolla. Tämä sisältö voitaisiin jossain määrin löytää ja mallintaa koneoppimisen keinoin, esim. syväoppimisen avulla, mutta joko geometria pitää kattaa suoraan näytteistämällä tai tarvitaan neuronien lisäkerros geometrisia invariansseja varten. Geometrinen sisältö on keskeinen, kun tarvitaan suoraa avaruudellisten suureiden havainnointia, tai kun tarvitaan kuvaus geometrisesti yhtenäiseen dataesitykseen, jossa poikkeavat näytteet tai melu voidaan helposti erottaa. Tässä työssä tarkastellaan datan muuntamista geometriseen piirreavaruuteen kahden esimerkkiohjelman suhteen. Ensimmäinen esimerkki on pintakaarevuus, joka on uudelleen virinneen kiinnostuksen kohde kaikkialle saatavissa olevan datan ja diskreetin geometrian kypsymisen takia. Kaarevuusspektrit voivat luonnehtia avaruudellista kohdetta melko hyvin ja tarjota koneoppimisessa hyödyllisiä piirteitä. Toinen esimerkki koskee projektiivisia menetelmiä käytettäessä stereovideosignaalia uinnin analytiikkaan. Tavoite on löytää merkityksellisiä paikallisen geometrian esityksiä, jotka samalla mahdollistavat muun geometrian ymmärrykseen perustuvan analyysin. Piirteet liittyvät suoraan johonkin geometriseen suureeseen, ja tämä helpottaa luonnollisella tavalla geometristen rajoitteiden käsittelyä, kuten väitöstyössä osoitetaan. Myös visualisointi ja lisäpiirteiden luonti muuttuu helpommaksi. Kolmanneksi, lähestymistapa suo selkeän vertailumenetelmän perinteisemmille koneoppimisen lähestymistavoille, esim. hermoverkkomenetelmille. Neljänneksi, useimmat koneoppimismenetelmät voivat hyödyntää tässä työssä esitettyjä geometrisia piirteitä lisäämällä ne muiden piirteiden joukkoon

    Modeling, Estimation, and Pattern Analysis of Random Texture on 3-D Surfaces

    Get PDF
    To recover 3-D structure from a shaded and textural surface image involving textures, neither the Shape-from-shading nor the Shape-from-texture analysis is enough, because both radiance and texture information coexist within the scene surface. A new 3-D texture model is developed by considering the scene image as the superposition of a smooth shaded image and a random texture image. To describe the random part, the orthographical projection is adapted to take care of the non-isotropic distribution function of the intensity due to the slant and tilt of a 3-D textures surface, and the Fractional Differencing Periodic (FDP) model is chosen to describe the random texture, because this model is able to simultaneously represent the coarseness and the pattern of the 3-D texture surface, and enough flexible to synthesize both long-term and short-term correlation structures of random texture. Since the object is described by the model involving several free parameters and the values of these parameters are determined directly from its projected image, it is possible to extract 3-D information and texture pattern directly from the image without any preprocessing. Thus, the cumulative error obtained from each pre-processing can be minimized. For estimating the parameters, a hybrid method which uses both the least square and the maximum likelihood estimates is applied and the estimation of parameters and the synthesis are done in frequency domain. Among the texture pattern features which can be obtained from a single surface image, Fractal scaling parameter plays a major role for classifying and/or segmenting the different texture patterns tilted and slanted due to the 3-dimensional rotation, because of its rotational and scaling invariant properties. Also, since the Fractal scaling factor represents the coarseness of the surface, each texture pattern has its own Fractal scale value, and particularly at the boundary between the different textures, it has relatively higher value to the one within a same texture. Based on these facts, a new classification method and a segmentation scheme for the 3-D rotated texture patterns are develope

    Characterization of components of water supply systems from GPR images and tools of intelligent data analysis

    Full text link
    [EN] Over time, due to multiple operational and maintenance activities, the networks of water supply systems (WSSs) undergo interventions, modifications or even are closed. In many cases, these activities are not properly registered. Knowledge of the paths and characteristics (status and age, etc.) of the WSS pipes is obviously necessary for efficient and dynamic management of such systems. This problem is greatly augmented by considering the detection and control of leaks. Access to reliable leakage information is a complex task. In many cases, leaks are detected when the damage is already considerable, which brings high social and economic costs. In this sense, non-destructive methods (e.g., ground penetrating radar - GPR) may be a constructive response to these problems, since they allow, as evidenced in this thesis, to ascertain paths of pipes, identify component characteristics, and detect primordial water leaks. Selection of GPR in this work is justified by its characteristics as non-destructive technique that allows studying both metallic and non-metallic objects. Although the capture of information with GPR is usually successful, such aspects as the capture settings, the large volume of generated information, and the use and interpretation of such information require high level of skill and experience. This dissertation may be seen as a step forward towards the development of tools able to tackle the problem of lack of knowledge on the WSS buried assets. The main objective of this doctoral work is thus to generate tools and assess their feasibility of application to the characterization of components of WSSs from GPR images. In this work we have carried out laboratory tests specifically designed to propose, develop and evaluate methods for the characterization of the WSS buried components. Additionally, we have conducted field tests, which have enabled us to determine the feasibility of implementing such methodologies under uncontrolled conditions. The methodologies developed are based on techniques of intelligent data analysis. The basic principle of this work has involved the processing of data obtained through the GPR to look for useful information about WSS components, with special emphasis on the pipes. After performing numerous activities, one can conclude that, using GPR images, it is feasible to obtain more information than the typical identification of hyperbolae currently performed. In addition, this information can be observed directly, e.g. more simply, using the methodologies proposed in this doctoral work. These methodologies also prove that it is feasible to identify patterns (especially with the preprocessing algorithm termed Agent race) that provide fairly good approximation of the location of leaks in WSSs. Also, in the case of pipes, one can obtain such other characteristics as diameter and material. The main outcomes of this thesis consist in a series of tools we have developed to locate, identify and visualize WSS components from GPR images. Most interestingly, the data are synthesized and reduced so that the characteristics of the different components of the images recorded in GPR are preserved. The ultimate goal is that the developed tools facilitate decision-making in the technical management of WSSs, and that such tools can even be operated by personnel with limited experience in handling non-destructive methodologies, specifically GPR.[ES] Con el paso del tiempo, y debido a múltiples actividades operacionales y de mantenimiento, las redes de los sistemas de abastecimiento de agua (SAAs) sufren intervenciones, modificaciones o incluso, son clausuradas, sin que, en muchos casos, estas actividades sean correctamente registradas. El conocimiento de los trazados y características (estado y edad, entre otros) de las tuberías en los SAAs es obviamente necesario para una gestión eficiente y dinámica de tales sistemas. A esta problemática se suma la detección y el control de las fugas de agua. El acceso a información fiable sobre las fugas es una tarea compleja. En muchos casos, las fugas son detectadas cuando los daños en la red son ya considerables, lo que trae consigo altos costes sociales y económicos. En este sentido, los métodos no destructivos (por ejemplo, ground penetrating radar - GPR), pueden ser una respuesta a estas problemáticas, ya que permiten, como se pone de manifiesto en esta tesis, localizar los trazados de las tuberías, identificar características de los componentes y detectar las fugas de agua cuando aún no son significativas. La selección del GPR, en este trabajo se justifica por sus características como técnica no destructiva, que permite estudiar tanto objetos metálicos como no metálicos. Aunque la captura de información con GPR suele ser exitosa, la configuración de la captura, el gran volumen de información, y el uso y la interpretación de la información requieren de alto nivel de habilidad y experiencia por parte del personal. Esta tesis doctoral se plantea como un avance hacia el desarrollo de herramientas que permitan responder a la problemática del desconocimiento de los activos enterrados de los SAAs. El objetivo principal de este trabajo doctoral es, pues, generar herramientas y evaluar la viabilidad de su aplicación en la caracterización de componentes de un SAA, a partir de imágenes GPR. En este trabajo hemos realizado ensayos de laboratorio específicamente diseñados para plantear, elaborar y evaluar metodologías para la caracterización de los componentes enterrados de los SAAs. Adicionalmente, hemos realizado ensayos de campo, que han permitido determinar la viabilidad de aplicación de tales metodologías bajo condiciones no controladas. Las metodologías elaboradas están basadas en técnicas de análisis inteligentes de datos. El principio básico de este trabajo ha consistido en el tratamiento adecuado de los datos obtenidos mediante el GPR, a fin de buscar información de utilidad para los SAAs respecto a sus componentes, con especial énfasis en las tuberías. Tras la realización de múltiples actividades, se puede concluir que es viable obtener más información de las imágenes de GPR que la que actualmente se obtiene con la típica identificación de hipérbolas. Esta información, además, puede ser observada directamente, de manera más sencilla, mediante las metodologías planteadas en este trabajo doctoral. Con estas metodologías se ha probado que también es viable la identificación de patrones (especialmente el pre-procesado con el algoritmo Agent race) que proporcionan aproximación bastante acertada de la localización de las fugas de agua en los SAAs. También, en el caso de las tuberías, se puede obtener otro tipo de características tales como el diámetro y el material. Como resultado de esta tesis se han desarrollado una serie de herramientas que permiten visualizar, identificar y localizar componentes de los SAAs a partir de imágenes de GPR. El resultado más interesante es que los resultados obtenidos son sintetizados y reducidos de manera que preservan las características de los diferentes componentes registrados en las imágenes de GPR. El objetivo último es que las herramientas desarrolladas faciliten la toma de decisiones en la gestión técnica de los SAAs y que tales herramientas puedan ser operadas incluso por personal con una experiencia limitada en el manejo[CA] Amb el temps, a causa de les múltiples activitats d'operació i manteniment, les xarxes de sistemes d'abastament d'aigua (SAAs) se sotmeten a intervencions, modificacions o fins i tot estan tancades. En molts casos, aquestes activitats no estan degudament registrats. El coneixement dels camins i característiques (estat i edat, etc.) de les canonades d'aigua i sanejament fa evident la necessitat d'una gestió eficient i dinàmica d'aquests sistemes. Aquest problema es veu augmentat en gran mesura tenint en compte la detecció i control de fuites. L'accés a informació fiable sobre les fuites és una tasca complexa. En molts casos, les fugues es detecten quan el dany ja és considerable, el que porta costos socials i econòmics. En aquest sentit, els mètodes no destructius (per exemple, ground penetrating radar - GPR) poden ser una resposta constructiva a aquests problemes, ja que permeten, com s'evidencia en aquesta tesi, per determinar rutes de canonades, identificar les característiques dels components, i detectar les fuites d'aigua quan encara no són significatives. La selecció del GPR en aquest treball es justifica per les seves característiques com a tècnica no destructiva que permet estudiar tant objectes metàl·lics i no metàl·lics. Tot i que la captura d'informació amb GPR sol ser reeixida, aspectes com ara la configuració de captura, el gran volum d'informació que es genera, i l'ús i la interpretació d'aquesta informació requereix alt nivell d'habilitat i experiència. Aquesta tesi pot ser vista com un pas endavant cap al desenvolupament d'eines capaces d'abordar el problema de la manca de coneixement sobre els actius d'aigua i sanejament enterrat. L'objectiu principal d'aquest treball doctoral és, doncs, generar eines i avaluar la seva factibilitat d'aplicació a la caracterització dels components de los SAAs, a partir d'imatges GPR. En aquest treball s'han dut a terme proves de laboratori específicament dissenyats per proposar, desenvolupar i avaluar mètodes per a la caracterització dels components d'aigua i sanejament soterrat. A més, hem dut a terme proves de camp, que ens han permès determinar la viabilitat de la implementació d'aquestes metodologies en condicions no controlades. Les metodologies desenvolupades es basen en tècniques d'anàlisi intel·ligent de dades. El principi bàsic d'aquest treball ha consistit en el tractament de dades obtingudes a través del GPR per buscar informació útil sobre els components d'SAA, amb especial èmfasi en la canonades. Després de realitzar nombroses activitats, es pot concloure que, amb l'ús d'imatges de GPR, és factible obtenir més informació que la identificació típica d'hipèrboles realitzat actualment. A més, aquesta informació pot ser observada directament, per exemple, més simplement, utilitzant les metodologies proposades en aquest treball doctoral. Aquestes metodologies també demostren que és factible per identificar patrons (especialment el pre-processat amb l'algoritme Agent race) que proporcionen bastant bona aproximació de la localització de fuites en SAAs. També, en el cas de tubs, es pot obtenir altres característiques com ara el diàmetre i el material. Els principals resultats d'aquesta tesi consisteixen en una sèrie d'eines que hem desenvolupat per localitzar, identificar i visualitzar els components dels SAAS a partir d'imatges GPR. El resultat més interessant és que els resultats obtinguts són sintetitzats i reduïts de manera que preserven les característiques dels diferents components registrats en les imatges de GPR. L'objectiu final és que les eines desenvolupades faciliten la presa de decisions en la gestió tècnica de SAA, i que tals eines poden fins i tot ser operades per personal amb poca experiència en el maneig de metodologies no destructives, específicament GPR.Ayala Cabrera, D. (2015). Characterization of components of water supply systems from GPR images and tools of intelligent data analysis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59235TESISPremios Extraordinarios de tesis doctorale

    Quantitative susceptibility mapping and susceptibility-based distortion correction of echo planar images

    Get PDF
    Thesis (Ph. D. in Medical Engineering)--Harvard-MIT Program in Health Sciences and Technology, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 143-153).The field of medical image analysis continues to expand as magnetic resonance imaging (MRI) technology advances through increases in field strength and the development of new image acquisition and reconstruction methods. The advent of echo planar imaging (EPI) has allowed volumetric data sets to be obtained in a few seconds, making it possible to image dynamic physiological processes in the brain. In order to extract meaningful information from functional and diffusion data, clinicians and neuroscientists typically combine EPI data with high resolution structural images. Image registration is the process of determining the correct correspondence. Registration of EPI and structural images is difficult due to distortions in EPI data. These distortions are caused by magnetic field perturbations that arise from changes in magnetic susceptibility throughout the object of interest. Distortion is typically corrected by acquiring an additional scan called a fieldmap. A fieldmap provides a direct measure of the magnetic perturbations, allowing distortions to be easily computed and corrected. Fieldmaps, however, require additional scan time, may not be reliable in the presence of significant motion or respiration effects, and are often omitted from clinical protocols. In this thesis, we develop a novel method for correcting distortions in EPI data and registering the EPI to structural MRI. A synthetic fieldmap is computed from a tissue/air segmentation of a structural image using a perturbation method and subsequently used to unwarp the EPI data. Shim and other missing parameters are estimated by registration. We obtain results that are similar to those obtained using fieldmnaps, however, neither fieldmaps nor knowledge of shim coefficients is required. In addition, we describe a method for atlas-based segmentation of structural images for calculation of synthetic fieldmaps. CT data sets are used to construct a probabilistic atlas of the head and corresponding MRI is used to train a classifier that segments soft tissue, air, and bone. Synthetic fieldmap results agree well with acquired fieldmaps: 90% of voxel shifts show subvoxel disagreement with those computed from acquired fieldmaps. In addition, synthetic fieldmaps show statistically significant improvement following inclusion of the atlas. In the second part of this thesis, we focus on the inverse problem of reconstructing quantitative magnetic susceptibility maps from acquired fieldmaps. Iron deposits change the susceptibility of tissue, resulting in magnetic perturbations that are detectable with high resolution fieldmaps. Excessive iron deposition in specific regions of the brain is associated with neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In addition, iron is known to accumulate at varying rates throughout the brain in normal aging. Developing a non-invasive method to calculate iron concentration may provide insight into the role of iron in the pathophysiology of neurodegenerative disease. Calculating susceptibility maps from measured fieldmaps is difficult, however, since iron-related field inhomogeneity may be obscured by larger field perturbations, or 'biasfields', arising from adjacent tissue/air boundaries. In addition, the inverse problem is ill-posed, and fieldmap measurements are only valid in limited anatomical regions. In this dissertation, we develop a novel atlas-based susceptibility mapping (ASM) technique that requires only a single fieldmap acquisition and successfully inverts a spatial formulation of the forward field model. We derive an inhomogeneous wave equation that relates the Laplacian of the observed field to the D'Alembertian of susceptibility, and eliminates confounding biasfields. The tissue/air atlas we constructed for susceptibility-based distortion correction is applied to resolve ambiquity in the forward model arising from the ill-posed inversion. We include fourier-based modeling of external susceptibility sources and the associated biasfield in a variational approach, allowing for simultaneous susceptibility estimation and biasfield elimination. Results show qualitative improvement over two methods commonly used to infer underlying susceptibility values and quantitative susceptibility estimates show stronger correlation with postmortem iron concentrations than competing methods.by Clare Poynton.Ph.D.in Medical Engineerin

    Compaction of C-band synthetic aperture radar based sea ice information for navigation in the Baltic Sea

    Get PDF
    In this work operational sea ice synthetic aperture radar (SAR) data products were improved and developed. A SAR instrument is transmitting electromagnetic radiation at certain wavelengths and measures the radiation which is scattered back towards the instrument from the target, in our case sea and sea ice. The measured backscattering is converted to an image describing the target area through complex signal processing. The images, however, differ from optical images, i.e. photographs, and their visual interpretation is not straightforward. The main idea in this work has been to deliver the essential SAR-based sea ice information to end-users (typically on ships) in a compact and user-friendly format. The operational systems at Finnish Institute of Marine Research (FIMR) are currently based on the data received from a Canadian SAR-satellite, Radarsat-1. The operational sea ice classification, developed by the author with colleagues, has been further developed. One problem with the SAR data is typically that the backscattering varies depending on the incidence angle. The incidence angle is the angle in which the transmitted electromagnetic wave meets the target surface and it varies within each SAR image and between different SAR images depending on the measuring geometry. To improve this situation, an incidence angle correction algorithm to normalize the backscattering over the SAR incidence angle range for Baltic Sea ice has been developed as part of this work. The algorithm is based on SAR backscattering statistics over the Baltic Sea. To locate different sea ice areas in SAR images, a SAR segmentation algorithm based on pulse-coupled neural networks has been developed and tested. The parameters have been tuned suitable for the operational data in use at FIMR. The sea ice classification is based on this segmentation and the classification is segment-wise rather than pixel-wise. To improve SAR-based distinguishing between sea ice and open water an open water detection algorithm based on segmentation and local autocorrelation has been developed. Also ice type classification based on higher-order statistics and independent component analysis have been studied to get an improved SAR-based ice type classification. A compression algorithm for compressing sea ice SAR data for visual use has been developed. This algorithm is based on the wavelet decomposition, zero-tree structure and arithmetic coding. Also some properties of the human visual system were utilized. This algorithm was developed to produce smaller compressed SAR images, with a reasonable visual quality. The transmission of the compressed images to ships with low-speed data connections in reasonable time is then possible. One of the navigationally most important sea ice parameters is the ice thickness. SAR-based ice thickness estimation has been developed and evaluated as part of this work. This ice thickness estimation method uses the ice thickness history derived from digitized ice charts, made daily at the Finnish Ice Service, as its input, and updates this chart based on the novel SAR data. The result is an ice thickness chart representing the ice situation at the SAR acquisition time in higher resolution than in the manually made ice thickness charts. For the evaluation of the results a helicopter-borne ice thickness measuring instrument, based on electromagnetic induction and laser altimeter, was used.reviewe

    Establishing a Comprehensive Wind Energy Program

    Get PDF
    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated
    corecore