1,215 research outputs found

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earthโ€™s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earthโ€™s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earthโ€™s surface in a certain scan time (properly called โ€™temporal resolutionโ€™), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour lโ€™Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Quasi-4-dimension ionospheric modeling and its application in PPP

    Get PDF
    The version of record of this article, first published in Satellite Navigation, is available online at Publisherโ€™s website: http://dx.doi.org/10.1186/s43020-022-00085-zIonospheric delay modeling is not only important for GNSS based space weather study and monitoring, but also an efficient tool to overcome the long convergence time of PPP. In this study, a novel model, denoted as Q4DIM (Quasi-4-dimension ionospheric modeling) is proposed for wide-area high precision ionospheric delay correction. In Q4DIM, the LOS (line of sight) ionospheric delay from a GNSS station network is divided into different clusters according to not only latitude and longitude, but also elevation and azimuth. Both GIM (global ionosphere map) and SID (slant ionospheric delay) that traditionally used for wide-area and regional ionospheric delay modeling, respectively, can be regarded as special case of Q4DIM by defining proper grids in latitude, longitude, elevation and azimuth. Thus, Q4DIM presents a resilient model that is capable for both wide-area coverage and high precision. Then four different sets of clusters are defined to illustrate the properties of Q4DIM based on 200 EPN stations. The results suggested that Q4DIM is compatible with the widely acknowledged GIM products. Moreover, it is proved that by inducting the elevation and azimuth angle dependent residuals, the precision of the 2-dimensional GIM-like model, i.e., Q4DIM-2D, is improved from around 1.5 TECU to better than 0.5 TECU. In addition, by treating Q4DIM as a 4-dimensional matrix in latitude, longitude, elevation and azimuth, its sparsity is less than 5%, thus guarantees its feasibility in a bandwidth-sensitive applications, e.g., satellite-based PPP-RTK service. Finally, the advantage of Q4DIM in single frequency PPP over the 2-dimensional models is demonstrated with one monthโ€™s data from 30 EPN stations.Peer ReviewedPostprint (published version

    ์„ผํ‹ฐ๋ฏธํ„ฐ ๊ธ‰ ๊ด‘์—ญ ๋ณด๊ฐ•ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์˜ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ๊ธฐ์ฐฝ๋ˆ.Recently, the demand for high-precision navigation systems for centimeter-level service has been growing rapidly for various Global Navigation Satellite System (GNSS) applications. The network Real-Time Kinematic (RTK) is one of the candidate solution to provide high-accuracy position to user in real-time. However, the network RTK requires a lot of reference stations for nationwide service. Furthermore, it requires high-speed data-link for broadcasting their scalar-type corrections. This dissertation proposed a new concept of satellite augmentation system called Compact Wide-Area RTK, which provides centimeter-level positioning service on national or continental scales to overcoming the limitation of the legacy network RTK methods. Using the wide-area network of multiple reference stations whose distance is 200~1,000 km, the proposed system generates three types of carrier-phase-based corrections: satellite orbit corrections, satellite code/phase clock (CPC) corrections, tropospheric corrections. Through the strategy of separating the scalar-type corrections of network RTK into vector forms of each error component, it is enable to expand network RTK coverage to continental scale using a similar number of reference stations as legacy meter-level Satellite-Based Augmentation System (SBAS). Furthermore, it is possible to broadcast their corrections over a wide-area using geosynchronous (GEO) satellite with extremely low-speed datalink of 250 bps likewise of legacy SBAS. To sum up, the proposed system can improve position accuracy by centimeter-level while maintaining the hardware infrastructure of the meter-level legacy SBAS. This study mainly discussed on the overall system architecture and core algorithms for generating satellite CPC corrections and tropospheric corrections. This study proposed a new Three-Carrier Ambiguity Resolution (TCAR) algorithm using ionosphere-free combinations to correctly solve the integer ambiguity in wide-area without any ionospheric corrections. The satellite CPC corrections are calculated based on multiple stations for superior and robust performance under communication delay and outage. The proposed algorithm dramatically reduced the latency compensation errors and message amounts with compare to conventional RTK protocols. The tropospheric corrections of the compact wide-area RTK system are computed using GPS-estimated precise tropospheric delay and weather data based model together. The proposed algorithm adopts spherical harmonics function to significantly reduce the message amounts and required number of GPS reference stations than the network RTK and Precise Point Positioning-RTK (PPP-RTK), while accurately modeling the spatial characteristic of tropospheric delay with weather data together. In order to evaluate the user domain performance of the compact wide-area RTK system, this study conducted the feasibility test on mid-west and south USA using actual GPS measurements. As a result, the 95% horizontal position error is about 1.9 cm and the 95% vertical position error is 7.0 cm after the integer ambiguity is correctly fixed using GPS-only signals. The user ambiguity resolution takes about 2 minutes, and success-fix rate is about 100 % when stable tropospheric condition. In conclusion, the compact wide-area RTK system can provide centimeter-level positioning service to wide-area coverage with extremely low-speed data link via GEO satellite. We hope that this new system will consider as candidate solution for nationwide centimeter-level service such as satellite augmentation system of the Korea Positioning System (KPS).์ตœ๊ทผ ์ž์œจ์ฃผํ–‰์ž๋™์ฐจ, ๋ฌด์ธ ๋“œ๋ก  ๋ฐฐ์†ก, ์ถฉ๋Œ ํšŒํ”ผ, ๋ฌด์ธํŠธ๋ž™ํ„ฐ๋ฅผ ์ด์šฉํ•œ ์Šค๋งˆํŠธ ๋ฌด์ธ ๊ฒฝ์ž‘ ๋“ฑ ์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ(GNSS, Global Navigation Satellite System)์„ ์‚ฌ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์‘์šฉ๋ถ„์•ผ์—์„œ ์ˆ˜ cm ์ˆ˜์ค€์˜ ์ •๋ฐ€ ์œ„์น˜ ์ •๋ณด์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” 1 m ๊ธ‰์˜ ์ •ํ™•ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ ๋†’์€ ์œ„์น˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ธฐ์กด์˜ ์ •์ง€๊ถค๋„์œ„์„ฑ ๊ธฐ๋ฐ˜ ๊ด‘์—ญ ๋ณด๊ฐ•ํ•ญ๋ฒ• ์‹œ์Šคํ…œ(SBAS, Satellite-Based Augmentation System)์˜ ๊ธฐ์ค€๊ตญ ์ธํ”„๋ผ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ์ˆ˜ cm ์ˆ˜์ค€์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜์˜ ์ดˆ์ •๋ฐ€ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹ค์‹œ๊ฐ„ ์ •๋ฐ€ ์ธก์œ„(RTK, Real-Time Kinematic)๋Š” ๋ฐ˜์†กํŒŒ ์œ„์ƒ ์ธก์ •์น˜์— ํฌํ•จ๋œ ๋ฏธ์ง€์ •์ˆ˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•˜์—ฌ ์ˆ˜ cm ์ˆ˜์ค€์˜ ์ •๋ฐ€ ํ•ญ๋ฒ• ์„œ๋น„์Šค๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์•ฝ 50~70 km ๊ฐ„๊ฒฉ์œผ๋กœ ๋ถ„ํฌ๋œ ๋‹ค์ˆ˜์˜ ๊ธฐ์ค€๊ตญ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” Network RTK ๊ธฐ๋ฒ•์€ ๋™์  ์‚ฌ์šฉ์ž์˜ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ์œ„์น˜ ๊ฒฐ์ •์ด ๊ฐ€๋Šฅํ•œ ์ธํ”„๋ผ๋กœ์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์Šค์นผ๋ผ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑ๋œ Network RTK ๋ณด์ •์ •๋ณด๋Š” ๊ฐ ๊ธฐ์ค€๊ตญ ๋ณ„๋กœ ๊ด€์ธก๋œ ์œ„์„ฑ ์ˆ˜์— ๋”ฐ๋ผ ์ƒ์„ฑ์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณด์ • ๋ฐ์ดํ„ฐ ๋Ÿ‰์ด ์ƒ๋‹นํžˆ ๋ฐฉ๋Œ€ํ•˜๋‹ค. ๋ฉ”์‹œ์ง€ ์ „์†ก์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ๋Ÿ‰์ด ๋งŽ์„์ˆ˜๋ก ๊ณ ์†์˜ ํ†ต์‹  ํ™˜๊ฒฝ์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ๋ฉ”์‹œ์ง€ ์‹œ๊ฐ„ ์ง€์—ฐ์ด๋‚˜ ํ†ต์‹  ๋‹จ์ ˆ์— ๋งค์šฐ ์ทจ์•ฝํ•œ ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์Šค์นผ๋ผ ํ˜•ํƒœ์˜ ๋ณด์ •์ •๋ณด๋Š” ์‚ฌ์šฉ์ž์™€ ๊ธฐ์ค€๊ตญ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฉ€์–ด์งˆ์ˆ˜๋ก ๋ณด์ • ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ฅ™ ํ˜น์€ ๋‚˜๋ผ ๊ทœ๋ชจ์˜ ๊ด‘์—ญ์—์„œ ์„œ๋น„์Šคํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ˆ˜์‹ญ~์ˆ˜๋ฐฑ ๊ฐœ ์ด์ƒ์˜ ๊ธฐ์ค€๊ตญ ์ธํ”„๋ผ ๊ตฌ์ถ•์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, SBAS๊ฐ€ ํ•œ๋ฐ˜๋„ ์ง€์—ญ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•ด 5~7๊ฐœ์˜ ๊ธฐ์ค€๊ตญ์ด ํ•„์š”ํ•œ ๋ฐ˜๋ฉด Network RTK๋Š” 90~100๊ฐœ์˜ ๊ธฐ์ค€๊ตญ์ด ํ•„์š”ํ•˜๋‹ค. ์ฆ‰ Network RTK๋Š” ์‹œ์Šคํ…œ ๊ตฌ์ถ• ๋ฐ ์œ ์ง€ ๋น„์šฉ์ด SBAS ๋Œ€๋น„ ์•ฝ 15๋ฐฐ ์ •๋„ ๋งŽ์ด ๋“ค๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด Network RTK์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋Œ€๋ฅ™ ๊ธ‰ ๊ด‘๋ฒ”์œ„ํ•œ ์˜์—ญ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ cm๊ธ‰ ์ดˆ์ •๋ฐ€ ์œ„์น˜๊ฒฐ์ • ์„œ๋น„์Šค ์ œ๊ณต์ด ๊ฐ€๋Šฅํ•œ Compact Wide-Area RTK ๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ๊ด‘์—ญ๋ณด๊ฐ•ํ•ญ๋ฒ•์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. Compact Wide-Area RTK๋Š” ์•ฝ 200~1,000 km ๊ฐ„๊ฒฉ์œผ๋กœ ๋„“๊ฒŒ ๋ถ„ํฌ๋œ ๊ธฐ์ค€๊ตญ ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜์˜ ์ •๋ฐ€ํ•œ ์œ„์„ฑ ๊ถค๋„ ๋ณด์ •์ •๋ณด, ์œ„์„ฑ Code/Phase ์‹œ๊ณ„ ๋ณด์ •์ •๋ณด, ๋Œ€๋ฅ˜์ธต ๋ณด์ •์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋‹ค. ๊ธฐ์กด ์Šค์นผ๋ผ ํ˜•ํƒœ์˜ Network RTK ๋ณด์ •์ •๋ณด ๋Œ€์‹  ์˜ค์ฐจ ์š”์†Œ ๋ณ„ ๋ฒกํ„ฐ ํ˜•ํƒœ์˜ ์ •๋ฐ€ ๋ณด์ •์ •๋ณด๋ฅผ ์ƒ์„ฑํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋Ÿ‰์„ ํš๊ธฐ์ ์œผ๋กœ ์ ˆ๊ฐํ•˜๊ณ  ์„œ๋น„์Šค ์˜์—ญ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ SBAS์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ 250 bps์˜ ์ €์† ํ†ต์‹  ๋งํฌ๋ฅผ ๊ฐ€์ง„ ์ •์ง€๊ถค๋„์œ„์„ฑ์„ ํ†ตํ•ด ๊ด‘์—ญ์œผ๋กœ ๋ณด์ •์ •๋ณด ๋ฐฉ์†ก์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 3๊ฐ€์ง€ ๋ณด์ •์ •๋ณด ์ค‘ ์œ„์„ฑ Code/Phase ์‹œ๊ณ„ ๋ณด์ •์ •๋ณด์™€ ๋Œ€๋ฅ˜์ธต ๋ณด์ •์ •๋ณด ์ƒ์„ฑ์„ ์œ„ํ•œ ํ•ต์‹ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ์ค‘์ ์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜์˜ ์ •๋ฐ€ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ์„ ์œ„ํ•ด์„œ๋Š” ๋จผ์ € ๋ฏธ์ง€์ •์ˆ˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ผ์ค‘ ์ฃผํŒŒ์ˆ˜ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ์ธก์ •์น˜์˜ ๋ฌด-์ „๋ฆฌ์ธต ์กฐํ•ฉ์„ ํ™œ์šฉํ•˜์—ฌ ์ „๋ฆฌ์ธต ๋ณด์ •์ •๋ณด ์—†์ด๋„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฏธ์ง€์ •์ˆ˜ ๊ฒฐ์ • ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์œ„์„ฑ Code/Phase ์‹œ๊ณ„ ๋ณด์ •์ •๋ณด๋Š” ํ†ต์‹  ์ง€์—ฐ ๋ฐ ๊ณ ์žฅ ์‹œ ์šฐ์ˆ˜ํ•˜๊ณ  ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ์œ„ํ•ด ๋‹ค์ค‘ ๊ธฐ์ค€๊ตญ์˜ ๋ชจ๋“  ์ธก์ •์น˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”์ •๋œ๋‹ค. ์ด ๋•Œ ๊ฐ ๊ธฐ์ค€๊ตญ ๋ณ„ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฏธ์ง€์ •์ˆ˜ ๋•Œ๋ฌธ์— ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋Š” ์•ž์„œ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •๋œ ๊ธฐ์ค€๊ตญ ๊ฐ„ ์ด์ค‘์ฐจ๋ถ„ ๋œ ๋ฏธ์ง€์ •์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์ค€์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ํ•ด๊ฒฐ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ƒ์„ฑ๋œ ์œ„์„ฑ Code/Phase ๋ณด์ •์ •๋ณด ๋ฉ”์‹œ์ง€์˜ ํฌ๊ธฐ, ๋ณ€ํ™”์œจ, ์žก์Œ ์ˆ˜์ค€์ด ํฌ๊ฒŒ ๊ฐœ์„ ๋˜์—ˆ๊ณ , ํ†ต์‹  ์ง€์—ฐ ์‹œ ์˜ค์ฐจ ๋ณด์ƒ ์„ฑ๋Šฅ์ด ๊ธฐ์กด RTK ํ”„๋กœํ† ์ฝœ ๋ณด๋‹ค 99% ํ–ฅ์ƒ ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋Œ€๋ฅ˜์ธต ๋ณด์ •์ •๋ณด๋Š” ์ ์€ ์ˆ˜์˜ ๊ธฐ์ค€๊ตญ ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ์ •ํ™•ํ•˜๊ฒŒ ๋Œ€๋ฅ˜์ธต์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด ์ž๋™ ๊ธฐ์ƒ๊ด€์ธก์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘ํ•œ ๊ธฐ์ƒ ์ •๋ณด๋ฅผ ์ถ”๊ฐ€๋กœ ํ™œ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” GNSS ๊ธฐ์ค€๊ตญ ๋„คํŠธ์›Œํฌ๋กœ๋ถ€ํ„ฐ ์ •๋ฐ€ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜ ์ˆ˜์ง ๋Œ€๋ฅ˜์ธต ์ง€์—ฐ๊ณผ ๊ธฐ์ƒ์ •๋ณด ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ๋ง ๋œ ์ˆ˜์ง ๋Œ€๋ฅ˜์ธต ์ง€์—ฐ์„ ํ•จ๊ป˜ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ตฌ๋ฉด์กฐํ™”ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Network RTK ๋ฐ PPP-RTK ๋ณด๋‹ค ํ•„์š”ํ•œ ๋ฉ”์‹œ์ง€ ์–‘๊ณผ ๊ธฐ์ค€๊ตญ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ๋„ RMS 2 cm ์ˆ˜์ค€์œผ๋กœ ์ •ํ™•ํ•œ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ Compact Wide-Area RTK ์‹œ์Šคํ…œ์˜ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ฏธ๊ตญ ๋™๋ถ€ ์ง€์—ญ 6๊ฐœ ๊ธฐ์ค€๊ตญ์˜ ์‹ค์ธก GPS ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ…Œ์ŠคํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์€ ๋ฏธ์ง€์ •์ˆ˜ ๊ฒฐ์ • ์ดํ›„ ์‚ฌ์šฉ์ž์˜ 95% ์ˆ˜ํ‰ ์œ„์น˜ ์˜ค์ฐจ 1.9 cm, 95% ์ˆ˜์ง ์œ„์น˜ ์˜ค์ฐจ 7.0 cm ๋กœ ์œ„์น˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž ๋ฏธ์ง€์ •์ˆ˜ ๊ฒฐ์ • ์„ฑ๋Šฅ์€ ๋Œ€๋ฅ˜์ธต ์•ˆ์ • ์ƒํƒœ์—์„œ ์•ฝ 2๋ถ„ ๋‚ด๋กœ 100% ์˜ ์„ฑ๊ณต๋ฅ ์„ ๊ฐ€์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์ด ํ–ฅํ›„ ํ•œ๊ตญํ˜• ์œ„์„ฑํ•ญ๋ฒ• ์‹œ์Šคํ…œ(KPS, Korean Positioning System)์˜ ์ „๊ตญ ๋‹จ์œ„ ์„ผํ‹ฐ๋ฏธํ„ฐ ๊ธ‰ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ™œ์šฉ๋˜๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.CHAPTER 1. Introduction 1 1.1 Motivation and Purpose 1 1.2 Former Research 4 1.3 Outline of the Dissertation 7 1.4 Contributions 8 CHAPTER 2. Overview of GNSS Augmentation System 11 2.1 GNSS Measurements 11 2.2 GNSS Error Sources 14 2.2.1 Traditional GNSS Error Sources 14 2.2.2 Special GNSS Error Sources 21 2.2.3 Summary 28 2.3 GNSS Augmentation System 29 2.3.1 Satellite-Based Augmentation System (SBAS) 29 2.3.2 Real-Time Kinematic (RTK) 32 2.3.3 Precise Point Positioning (PPP) 36 2.3.4 Summary 40 CHAPTER 3. Compact Wide-Area RTK System Architecture 43 3.1 Compact Wide-Area RTK Architecture 43 3.1.1 WARTK Reference Station (WRS) 48 3.1.2 WARTK Processing Facility (WPF) 51 3.1.3 WARTK User 58 3.2 Ambiguity Resolution and Validation Algorithms of Compact Wide-Area RTK System 59 3.2.1 Basic Theory of Ambiguity Resolution and Validation 60 3.2.2 A New Ambiguity Resolution Algorithms for Multi-Frequency Signals 65 3.2.3 Extra-Wide-Lane (EWL) Ambiguity Resolution 69 3.2.4 Wide-Lane (WL) Ambiguity Resolution 71 3.2.5 Narrow-Lane (NL) Ambiguity Resolution 78 3.3 Compact Wide-Area RTK Corrections 83 3.3.1 Satellite Orbit Corrections 86 3.3.2 Satellite Code/Phase Clock (CPC) Corrections 88 3.3.3 Tropospheric Corrections 89 3.3.4 Message Design for GEO Broadcasting 90 CHAPTER 4. Code/Phase Clock (CPC) Correction Generation Algorithm 93 4.1 Former Research of RTK Correction Protocol 93 4.1.1 Observation Based RTK Data Protocol 93 4.1.2 Correction Based RTK Data Protocol 95 4.1.3 Compact RTK Protocol 96 4.2 Satellite CPC Correction Generation Algorithm 100 4.2.1 Temporal Decorrelation Error Reduced Methods 102 4.2.2 Ambiguity Level Adjustment 105 4.2.3 Receiver Clock Synchronization 107 4.2.4 Averaging Filter of Satellite CPC Correction 108 4.2.5 Ambiguity Re-Initialization and Message Generation 109 4.3 Correction Performance Analysis Results 111 4.3.1 Feasibility Test Environments 111 4.3.2 Comparison of RTK Correction Protocol 113 4.3.3 Latency Compensation Performance Analysis 116 4.3.4 Message Data Bandwidth Analysis 119 CHAPTER 5. Tropospheric Correction Generation Algorithm 123 5.1 Former Research of Tropospheric Correction 123 5.1.1 Tropospheric Corrections for SBAS 124 5.1.2 Tropospheric Corrections of Network RTK 126 5.1.3 Tropospheric Corrections of PPP-RTK 130 5.2 Tropospheric Correction Generation Algorithm 136 5.2.1 ZWD Estimation Using Carrier-Phase Observations 138 5.2.2 ZWD Measurements Using Weather Data 142 5.2.3 Correction Generation Using Spherical Harmonics 149 5.2.4 Correction Applying Method for User 157 5.3 Correction Performance Analysis Results 159 5.3.1 Feasibility Test Environments 159 5.3.2 Zenith Correction Domain Analysis 161 5.3.3 Message Data Bandwidth Analysis 168 CHAPTER 6. Compact Wide-Area RTK User Test Results 169 6.1 Compact Wide-Area RTK User Process 169 6.2 User Performance Test Results 173 6.2.1 Feasibility Test Environments 173 6.2.2 User Range Domain Analysis 176 6.2.3 User Ambiguity Domain Analysis 182 6.2.4 User Position Domain Analysis 184 CHAPTER 7. Conclusions 189 Bibliography 193 ์ดˆ ๋ก 207Docto

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    GNSS Precise Point Positioning Using Low-Cost GNSS Receivers

    Get PDF
    There are positioning techniques available such as Real-Time Kinematic (RTK) which allow user to obtain few cm-level positioning, but require infrastructure cost, i.e., setting up local or regional networks of base stations to provide corrections. Precise Point Positioning (PPP) using dual-frequency receivers is a popular standalone technique to process GNSS data by applying precise satellite orbit and clock correction along with other corrections to produce cm to dm-level positioning. At the time of writing, almost all low-cost and ultra-low-cost (few $10s) GNSS units are single-frequency chips. Single-frequency PPP poses challenges in terms of effectively mitigating ionospheric delay and the multipath, as there is no second frequency to remove the ionospheric delay. The quality of measurements also deteriorates drastically from geodetic-grade to ultra-low-cost hardware. Given these challenges, this study attempts to improve the performance of single-frequency PPP using geodetic-grade hardware, and to capture the potential positioning performance of this new generation of low-cost and ultra-low-cost GNSS chips. Raw measurement analysis and post-fit residuals show that measurements from cellphones are more prone to multipath compared to signals from geodetic-grade and low-cost receivers. Horizontal accuracy of a few-centimetres is demonstrated with geodetic-grade hardware. Whereas accuracy of few-decimetres is observed from low-cost and ultra-low-cost GNSS hardware. With multi-constellation processing, improvements in accuracy and reductions in convergence time over initial 60 minutes period, are also demonstrated with three different set of GNSS hardware. Horizontal and vertical rms of 37 cm and 51 cm, respectively, is achieved using a cellphone

    A Decentralized Processing Schema for Efficient and Robust Real-time Multi-GNSS Satellite Clock Estimation

    Get PDF
    Real-time multi-GNSS precise point positioning (PPP) requires the support of high-rate satellite clock corrections. Due to the large number of ambiguity parameters, it is difficult to update clocks at high frequency in real-time for a large reference network. With the increasing number of satellites of multi-GNSS constellations and the number of stations, real-time high-rate clock estimation becomes a big challenge. In this contribution, we propose a decentralized clock estimation (DECE) strategy, in which both undifferenced (UD) and epoch-differenced (ED) mode are implemented but run separately in different computers, and their output clocks are combined in another process to generate a unique product. While redundant UD and/or ED processing lines can be run in offsite computers to improve the robustness, processing lines for different networks can also be included to improve the clock quality. The new strategy is realized based on the Position and Navigation Data Analyst (PANDA) software package and is experimentally validated with about 110 real-time stations for clock estimation by comparison of the estimated clocks and the PPP performance applying estimated clocks. The results of the real-time PPP experiment using 12 global stations show that with the greatly improved computational efficiency, 3.14 cm in horizontal and 5.51 cm in vertical can be achieved using the estimated DECE clock
    • โ€ฆ
    corecore