2 research outputs found

    Performance of Scheduling Policies in Adversarial Networks with Non-synchronized Clocks

    Get PDF
    In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, pp. 144–155, 2005) by considering the possibility that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT). Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is bounded. In this model we show the universal stability of two families of policies related to SIS and LIS respectively (the priority of a packet in these policies depends on the arrival time and a function of the path traversed). The bounds we obtain in this case depend on the maximum difference between clocks. This is a necessary requirement, since we also show that LIS is not universally stable in systems without bounded clock difference. We then present a new policy that we call Longest in Queues (LIQ), which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation results that compare the behavior of some of these policies in a network with stochastic injection of packets

    The robustness of stability under link and node failures

    Get PDF
    AbstractIn the area of communication systems, stability refers to the property of keeping the amount of traffic in the system always bounded over time. Different communication system models have been proposed in order to capture the unpredictable behavior of some users and applications. Among those proposed models the adversarial queueing theory (aqt) model turned out to be the most adequate to analyze an unpredictable network. Until now, most of the research done in this field did not consider the possibility of the adversary producing failures on the network structure. The adversarial models proposed in this work incorporate the possibility of dealing with node and link failures provoked by the adversary. Such failures produce temporal disruptions of the connectivity of the system and increase the collisions of packets in the intermediate hosts of the network, and thus the average traffic load. Under such a scenario, the network is required to be equipped with some mechanism for dealing with those collisions.In addition to proposing adversarial models for faulty systems we study the relation between the robustness of the stability of the system and the management of the queues affected by the failures. When the adversary produces link or node failures the queues associated to the corresponding links can be affected in many different ways depending on whether they can receive or serve packets, or rather that they cannot. In most of the cases, protocols and networks containing very simple topologies, which were known to be universally stable in the aqt model, turn out to be unstable under some of the newly proposed adversarial models. This shows that universal stability of networks is not a robust property in the presence of failures
    corecore