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a b s t r a c t

In the area of communication systems, stability refers to the property of keeping the amount
of traffic in the system always bounded over time. Different communication systemmodels
have been proposed in order to capture the unpredictable behavior of some users and
applications. Among those proposed models the adversarial queueing theory (aqt) model
turned out to be the most adequate to analyze an unpredictable network. Until now,
most of the research done in this field did not consider the possibility of the adversary
producing failures on the network structure. The adversarial models proposed in this work
incorporate the possibility of dealingwith node and link failures provoked by the adversary.
Such failures produce temporal disruptions of the connectivity of the system and increase
the collisions of packets in the intermediate hosts of the network, and thus the average
traffic load. Under such a scenario, the network is required to be equipped with some
mechanism for dealing with those collisions.

In addition to proposing adversarial models for faulty systems we study the relation
between the robustness of the stability of the system and the management of the queues
affected by the failures. When the adversary produces link or node failures the queues
associated to the corresponding links can be affected in many different ways depending
on whether they can receive or serve packets, or rather that they cannot. In most of the
cases, protocols and networks containing very simple topologies, which were known to
be universally stable in the aqt model, turn out to be unstable under some of the newly
proposed adversarialmodels. This shows that universal stability of networks is not a robust
property in the presence of failures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

As the world becomes more dependent on communications and computer networks, there is a growing concern about
the effects of network failures. Failures can occur as the result of natural disasters, as the result of human action or by
unintentional errors in software or control systems. However, failures do not only happen in relation to catastrophic or
accidental situations. In a more natural way, disruptions also appear in wireless mobile networks, where some connections
between nodes may fail or change quickly and unpredictably due to mobility, network components’ configuration or
topology variations. In fact, our work is inspired by the growing importance of this type of network and the necessity of
theoretical frameworks for modelling their traffic flow and disruptions.
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We must be realistic and accept that our communication and computer networks nowadays are so widely extended,
complex and heterogeneous, and they carry so much traffic, that suffering from overloading and failures is unavoidable.
To address these issues, we need first to understand the types of failures that a system can suffer and the immediate
consequences of those failures. Thus, appropriate models to study real network systems which suffer from failures are
needed. Those models could help in detecting, understanding, and overcoming the conditions leading to these mentioned
negative effects, as well as helping in their further prevention. All these goals are strongly concerned with network
survivability, which is the ability of a network to maintain or restore an acceptable level of performance during network
attacks or failures, and to mitigate or prevent service outages.

In this work we consider systems in which nodes and links may fail, and we study the impact of the organization and
accessibility of the intermediate packet-storage devices at the network (i.e., the intermediate queues at the hosts) on the
stability of the system. We use adversarial models in which the traffic and the failures are assumed to be produced in an
unpredictable (and rather malicious) way. The theoretical study of stability via adversarial models has been a hot research
topic in the last decade. Stability refers to the fact that the number of packets in the system remains bounded as the system
dynamically evolves in time. This bound,which can be a function of the systemparameters such as number of nodes or edges
or the diameter, is not dependent on time. In this context, stability and universal stability (a stronger notion of this term)
are key features to be preserved. Universal stability of networks has been shown to be a robust property as it is preserved
under many variations of the aqtmodel [3,12,2,10]. And, except for the lis protocol, the universally stable protocols remain
stable under those variations of the aqt model [2,10]. We are interested in studying the influence of queue management
during failures on the robustness of stability in faulty scenarios.

Stability in the adversarial queueing theory model

Stability is studied in relation to the three main components (N , A, P ) forming a communication system: the network
N , the traffic pattern defined by the adversary A, and the scheduling protocol P . Networks are modeled by directed graphs
in which nodes represent the hosts and edges represent the links between those hosts. The protocol (or queueing policy)
determines the order in which the packets requiring to cross a link are scheduled to be forwarded. The adversary controls
the traffic pattern.

The Adversarial Queueing Theory (aqt) model proposed by Borodin et al. [11,4] has become in recent times an important
model to study stability issues, since it can describe the behavior of both connectionless and short-term connection
networks, aswell as connection-oriented networks. The aqtmodel considers the time evolution of a packet-routing network
as a game between the adversary and the queue policy of the system. The system is considered to be synchronous.

At each time step the adversary may inject a set of packets to some of the nodes. For each injected packet, the adversary
specifies the route that it must traverse (static routing), after which the packet will disappear from the system. If more than
one packet wishes to cross an edge e at the same time step, then the queueing policy chooses one of those packets to send
across e. The remaining packets must wait in the queue. This game then advances to the next time step. The goal of the
adversary is to try to prevent the protocol from guaranteeing load and delay bounds. On the contrary, the main goal of the
model is to study conditions for stability of the network under different protocols.

In order not to trivially overload the system and in order to be able to guarantee delay bounds, it is necessary to restrict
the traffic arriving to the network. The constraints on the traffic pattern must ensure that, over long periods of time, the
maximum traffic injected in a link is roughly the amount of traffic that the link can forward. Two parameters (r, b) constrain
an adversary in the aqt model, where b ≥ 0 is the burstiness and 0 < r < 1 is the injection rate. An adversary like this is
henceforth referred to as an (r, b)-adversary. Let Ne(I) be the number of packets injected by the adversary in a time interval
I that have paths requiring a particular edge e. Then, an (r, b)-adversary in the aqt model must obey the following (leaky-
bucket) constraint that restricts its injection power:

Ne(I) ≤ ⌈r|I|⌉ + b. (1)

An important term related to stability is that of universal stability, which is an extension of the stability property to
systems with any configuration. It can be studied from the point of view of the network or from the point of view of the
protocol. In broad terms, a network is said to beuniversally stable if the number of packets in the system is boundedwhatever
adversary is considered and whatever protocol is used for scheduling packets at the edges. Analogously, a protocol is said
to be universally stable if the number of packets in the system is bounded whatever adversary is considered and whatever
network topology is implemented underneath.

A considerable number of results concerning stability in the aqtmodel are available nowadays (see, e.g., [11,4,14,19,3,9,
17,20–22], just to mention a few).

Greedy protocols

We consider a situation in which there is a queue associated to each link of the network. The role of such queues is to
store those packets that require to cross the link but cannot be immediately forwarded because the link is busy or temporally
unavailable. As is usual in the literature, we only consider greedy protocolswhich apply, in a work-conserving manner, their
queueing policies according to some local or global criteria. In general, a protocol is greedy if whenever there is at least one
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Fig. 1. Forbidden subdigraphs for detecting universally stability: (a) digraphU1; (b) digraphU2; (c) shape of a digraph in E(U1); (d,e) shapes of two digraphs
in E(U2), where (e) corresponds to a two cycle extension combined with an arc extension. The dashed arcs represent paths with a certain length specified
by their labels, where k, l ≥ 0 and m, n ≥ 1.

packet waiting in the queue, the queue serves a packet. The main queueing protocols considered in the study of stability are
fifo, lifo, sis, lis, ntg, ftg, nfs and ffs. In this work, we will also consider the protocol liq.

The protocol lifo (last-in-first-out) gives priority to the packet which joins the queue last; in fifo (first-in-first-out),
highest priority is given to the packet that arrives first in the queue. The protocol which gives priority to the packet last
introduced into the system is sis (shortest-in-system), while in lis (longest-in-system) every queue gives priority to the packet
that has been in the system the longest time. The protocol ntg (nearest-to-go) assigns highest priority to the packet that
is closest to its destination and ftg (farthest-to-go) assigns it to the packet that is farthest away from its destination. nfs
(nearest-from-source) and ffs (farthest-from-source) consider the same policies but taking the distance to the source node
of the packets as reference point. liq (longest-in-queue) is a variation of lis that gives priority to the packet that in total has
been waiting in queues for the longest time. As usual we assume that any arising ties are broken by the adversary.

The universal stability of most of these protocols in the aqtmodel was already studied in the work of Andrews et al. [4],
where ftg,nfs, sis and liswere shown to be universally stable, while fifo, lifo,ntg and ffswere shownnot to be universally
stable. Recently, liq has been shown to be universally stable in thenscaqtmodel [13] (and thus also in the aqtmodel), which
is a generalization of the aqtmodel in which the condition of system synchronism is relaxed.

Networks

Rings and directed acyclic graphs (which include lines, forks and crossings) are known to be universally stable in the aqt
model [11,4]. In fact, the property of universal stability of networks in the aqt model was fully characterized in [3]. That
characterization was described in terms of the existence of certain forbidden subtopologies, i.e., forbidden subdigraphs, in
the network. More precisely (see Theorem 8 in [3]), a digraph is known to be universally stable in the aqt model if, and
only if, it does not contain as subgraphs any of the digraphs in E(U1) ∪ E(U2), where U1 and U2 are the digraphs depicted
in Fig. 1, and E(G) denotes the family of digraphs formed by G and all the digraphs obtained from G by successive arc or
2-cycle subdivisions. Also in [3], it was shown that the universal stability of a given digraph in the aqtmodel can be decided
in polynomial time. The same property characterizes the set of networks stable under a protocol, for protocols, ntg [3] and
ffs [1]. A different characterization for fifo can be found in [22].

Related work

Initially, all the studies about the stability of networks and protocols focused on static systems. Later, different particu-
larities related to dynamic networks started to be introduced. Although failures were not initially considered as such, some
adversarial models were proposed that deal with variations of the capabilities of the edge for transmitting a packet.

In [12], links in packet routing networks can have capacities or speed/slowdowns (not both) that can change dynamically.
However, since only finite slowdowns and positive capacities are considered in [12], the effect of failures is not really
simulated, but roughly approximated. With such a model, the set of networks that are universally stable when considering
dynamic capacities or slowdowns coincides with the networks that are universally stable in the aqt model. From the point
of view of protocols, lis is shown not to be universally stable, in contrast to its behavior under aqt. The capacities of the links
in the network are also dynamic in [15,16,10], however all those models also limit significantly the change in the capacities
and thus they do not study real faulty scenarios either. Moreover, the results obtained show that the set of universally
stable networks remains the same as in the aqtmodel under these models. The configuration and evolution of the systems
considered in all thoseworks are also very different from those suffered by the systemswe present here: in [12,15,16,10] the
packets are always flowing, since the effect of a real failure (i.e., null link capacity or infinite slowdown) is never considered;
thus packets are only buffered for congestion reasons, but never due to failures. Instead we consider that, when a failure
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occurs, the packet using the failed link/node can not flow and must be retransmitted later.1 Then, one needs to study how
to store and manage those affected packets while the failure lasts. In our opinion, this is a more realistic way of tackling the
problem.

In [8,7], other models were considered for studying distributed balancing algorithms for dynamically changing input
streams and flow routing in dynamically changing networks. In thosemodels, the injected packets are defined by specifying
only source and destination (no path is pre-specified), and only the single receiver case is considered. The adversary is thus
restricted to guarantee that a static multi-commodity flow problem has a solution. The proposed load balancing algorithms
are shown to keep the system stable when the adversary injection rate is one. The main difference in the twomodels is that
in [8] the adversary has to provide a solution to the associated multi-commodity flow problem, while in [7] the injection
pattern must obey a condition that guarantees the existence of the solution. Our models and the models proposed in [8,7]
have the common characteristic that, for every interval I , the adversary cannot inject to any edge e (or to any set S of nodes
for the model in [7]) more packets than the number of packets that e can absorb (or the edges with only one extreme in S).
However, the focus of [8,7] is on the balancing proposals and they do not deal with failures either.

Another interesting approach in the literature considers input/output blocking in the nodes [5,6]. Although this model
does not consider failures on the network structure, the addition of input–output constraints that this model has on the
arrival of packets seem to have some behavioral similarities with some of the models considered here. This might be the
case for the models with failures at the links that block the reception of packets (i.e., namely the edge-nR and edge-nR-B
models). From the point of view of networks, the results in [5,6] show that networks containing very simple topologies (such
as the one we reach in this work) can become unstable. However, from a protocol point of view, the results obtained in both
works are completely opposed, for example sis is unstable while lis is universally stable.

The first work where failures were considered as such was [2], where two aqt-based models allowing faults (namely
the failure model and the reliable model) were proposed to consider dynamic networks in which links can stop transmission.
Both models consider only the possibility of link failures. For any edge e and any interval I , the adversary must obey the
constraint

Ne(I) + αFe(I) ≤ r|I| + b,

where Fe(I) is the number of steps during a time interval I in which the edge e is down. The failure model considers α = 1,
while the reliable model considers any α such that r < α ≤ 1. In both models, the adversary is not able to fail an edge
permanently. Concerning the universal stability of networks, both models are equivalent to the aqt model. Concerning the
universal stability of protocols, ftg, nfs, and sis are universally stable but fifo, lifo, ntg and ffs are not as in the aqtmodel.
However, the lis protocol is universally stable in the aqt model, but it is not in either the failure or the reliable model. This
first work settled the basis for the work we present here.

It is worth mentioning that none of these existing models for dealing with dynamic networks consider the possibility of
changing the capabilities of the nodes of the topology, but only of the links. Also the failure and reliable models in [2] only
considered link failures. Here we also consider node failures.

Our contributions

Themain contribution of this paper is twofold: first, an important effort has beenmadeonproperly defining newconcepts
and techniques, and unifying existing ones, in a rigorous and formal way; second, an exhaustive study and analysis has been
made of the effect of edge or/and node failures on the stability of networks and protocols in relation to theway those failures
are administrated. Moreover, to the best of our knowledge, node failures were never studied before when studying stability
in the context of adversarial systems.

Our focus on the rigorous definition and standardization of some concepts and techniques came after some years of
study on stability of adversarial systems, when we observed that the generated literature had some clear gaps in unifying
the definition of some basic concepts and describing properly the techniques used. An important part of this work aims at
overcoming this problem and fixing that notation for the future. Concerning our contributions on this methodological side,
it is worth mentioning the introduction of the notion of system simulation, and its usage in comparing the global behaviour
of models. This technique, which was first used in [2], allows us to perform a systematic and incremental study of faulty
adversarialmodels. For the first time in this topic of research,we provide in thiswork a formal definition for such a technique
and for several other concepts which were often used in the literature but never formalized. Our definitions are general
enough to adapt naturally when different models are considered. That required a clear definition of what a model is, an
effort that was never made until now and that resulted in a slight mess in the existing literature.

On the other side, the exhaustive study and analysis performed of the effect of failures on the stability of the system
provide us with interesting information on the most convenient way of dealing with failures depending on the topology of
the network, and the protocols of the system.

1 Observe that, when retransmissions are considered, the packets affected by a failure compete again with other packets when the failed link/node is
restored.



C. Àlvarez et al. / Theoretical Computer Science 412 (2011) 6855–6878 6859

In this work we deal with communication networks in which links, nodes, or both may fail. We propose adversarial
models regulating the network behavior and restricting the traffic patterns occurring in this type of faulty system.We study
the dependence between the conditions for the stability of the system, and how the packets affected by failures aremanaged,
under non-trivial underloadedworst-case scenarios. The adversary is responsible not only for the traffic joining the network,
but also for the failures of the links and nodes. Those failures have the effect of blocking temporally both those packets that
arrive to a link/node while it is failed, and those waiting already to be transmitted through at the moment when the failure
occurs. In addition to proposing adversarial models for such faulty networking systems, we study the dependence between
the conditions for the stability of the system, andhow the packets affected by failures aremanaged. Aswewill see, depending
on how the system is organized and prepared to dealwith failures, the dynamics of the system change and thus its conditions
for stability.

First, we study systems in which the faulty elements are the links. We propose an adversarial model for them and study
the conditions for stability under three different ways of managing the packets involved in the failures. This treatment gives
rise to three versions of the proposed adversarial model for link-faulty networks, one for each management type, that we
denote in the following as edge-R, edge-nR and edge-nR-B models. The difference relies on whether the queue of a failed
link is able to receive (extension -R) packets or not (extension -nR) and, in case it is not, on whether the affected packets are
kept in the normal queues or in a special buffer (extension -B) that the node keeps to that aim.

Then, we propose a adversarial model and study the stability of systems in which the faulty elements are the nodes.
The model has four variations which we denote in the forthcoming as node-RnT, node-nRnT-B, node-nRnT and node-nRT
models. The main difference among them relies on whether the queues of a failed node are able to receive (extension -R)
packets or not (extension -nR) and on whether a failed node that cannot receive new packets while being failed is able to
transmit (extension -T) those packets that are already queued, or not (extension -nT). In some of these cases, there might be
also an additional buffer (extension -B) where the affected packets are kept. To the best of our knowledge, this is the first
time that the stability of dynamic adversarial systems with failing nodes has been studied. As a natural extension to our
study of systems with (exclusively) link or node failures, we consider also systems in which both the nodes and the links
may fail. Obviously, the instability results observed in the non-combined models apply also in the combined ones, and thus
the interest is in stability results. We show that when combining link models and node models with a common positive
stability property, that property also holds in the model combining them.

The aqtmodel was the model of reference for the study of stability of systems under adversarial traffic conditions. Then,
it is important to put in relation our results with those obtained in the basic aqt model, where no failures occur. We show
that for the failuremodels edge-R, node-RnT, and their combination the set of universally stable networks coincideswith the
set of universally stable networks in the aqtmodel, while some universally stable protocol in the aqt becomes unstable. For
the remaining models we show that, in contrast to what happened under aqt, already very simple direct-acyclic topologies
are unstable. We show also that several protocols considered universally stable under aqt become now unstable.

Organization of the article

Section 2 describes the characteristics of the network scenario that this work assumes. The properties presented there
are common to all the models that will be presented in this paper. Also in Section 2, most of the key concepts that are used
in this work (especially those concerning the adversaries and stability) are formalized.

In Section 3, we concentrate on studying the effect of link failures and propose three adversarial models for describing
systems that suffer from that type of failure. Complementarily, in Section 4 four adversarial models are presented whose
focus is on studying the effect of node failures. All the adversarial models proposed in both sections are distinguished from
each other in how the system is organized for managing those packets that suffer from failures. Under all those models, we
study the stability of networks as well as the stability of some well-known protocols.

This separation between link and node failures allows us to study their direct effect on the dynamics of the systems and
on the conditions for stability in a quite simple and readable way. Moreover, it allows us to extract clear conclusions about
what happens in systems that can suffer only from link or node failures and highlight those combinations of link and node
failure management that require further analysis. The reader will find those final results in Section 5. Finally, Section 6 gives
some conclusions and reviews some open problems for future research.

2. Faulty model scenario

In this section, we detail the characteristics of the faulty network scenario that is assumed in this work. Hence, the
following properties are common to all the models that will be introduced later.

Systems composed of network, adversary and protocol. The systems we deal with are composed of three main elements
(N , A, P ), where N is the network topology, A is an adversary defining the traffic and failure pattern on N , and P is
a scheduling protocol. Networks are modeled by directed graphs in which nodes represent the hosts and edges represent
the links between those hosts. We assume that the graphs might have multiple arcs but no loops. The adversary controls the
traffic pattern and the failure pattern. The protocol determines the order in which the packets requiring to cross a link are
scheduled to be forwarded.
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As we will see, systems are always considered in the context of an adversarial model, which will fix how the adversary
is restricted in its power for injecting and making failures, and how the infrastructure of the network is organized to deal
with the packets affected by those failures.

Adversarial traffic flow and adversarial connection disruption. In this work we deal with faulty adversarial models in which
the links and/or the nodes may fail temporarily. In such a dynamic scenario, the adversary is allowed to control not only
the traffic injection, but also those link and node failures. The different models we present in this work apply different
restrictions on the adversary. In broad terms, in any interval of time I , the adversary will be allowed to inject an amount of
packets requiring a certain link e proportional to the steps in I in which the e is really available. The precise shape of the
restrictions on the adversaries will be introduced later, when introducing each of the faulty models under consideration.

Queues at the head nodes of the links. Weconsider a situation inwhich there is a queue associated to each link of the network.
For every link, such a queue is physically kept at the node which is the head of the link. The role of such queues is to store
those packets that require to cross the link but cannot immediately, either because the link is busy due to the transmission
of a different packet, or because some transmission disruption in the context of that link happened. We consider that every
packet has unit size and has to be received integrally before it is forwarded to the next outgoing link, i.e., networks do not
have cut-through capabilities.

In some cases, with the aim of not overloading the outgoing queues, we consider the existence of an additional buffer in
the nodes. This consideration leads to the buffered models. In such models, that buffer is in charge of storing the blocked
packets that suffered a failure. When the faulty element (link or node) is recovered from the failure, those packets affected
by the failure are set to non-blocked. After that, the protocol chooses one packet among the non-blocked packets according
to the scheduling policy of the system and puts the chosen packet, instantaneously, in the corresponding output queue (i.e.,
the queue corresponding to the next link in its path). Thus, only one packet can leave the buffer in one time step.

When a failure occurs (either in the edge associated to the queue, or in the node hosting the queue), the normal functional
behavior of the queuemay vary. We define different failure models depending on those variations. In some cases, the queue
may be blocked for reception, while in some others it may be blocked for transmission. It may be even blocked for both
reception and transmission. Fig. 2 depicts how those situations will be represented in our figures.

Synchronization. As is usual in studies of stability, we assume that the evolution of the packets in the network is
synchronized. Tomaintain synchronization, each time step is divided into three basic phases: (1) receive, inwhich the packets
(if any) arrive to the node and are placed in their corresponding outgoing queue; (2) request connectivity and schedule, in
which the state of the node and every corresponding outgoing link is checked, and in which a packet to be forwarded is
selected among all the available packets in all the outgoing queues (if any) according to the protocol of the system; and (3)
send, in which, for each outgoing queue with packets, the packet chosen by the protocol leaves the queue.

This behavior varies slightly when some node failure occurs or when dealing with buffered nodes. How this behavior
is changed in every case will be detailed later in the paper, in Sections 3 and 4, when presenting the different adversarial
models under study.

Short-lived failures. We focus on short-lived failures, and consider that no link or node can be failed for an arbitrary large
amount of time, i.e., there exists a constant w, independent of time, bounding the number of consecutive steps for which
any edge or node can be down. That means that if any edge or node fails at any time step t then it will be recovered after at
most w + 1 steps. This parameter will be one of the limits imposed on the sequence of failures that can be provoked by an
adversary.

Evolution under failures. When a link failure is produced no packet kept in its queue can be served. But we also have to
consider what to do with the incoming packets. Since they cannot be lost, either they are received by its queue, or they are
not. In the latter case, either the packets wait in the previous link of their path or they are kept in an additional buffer at the
link’s head node which is common for all the output links of such a node.

When a node failure is produced we consider different managements depending on whether the queues of the output
links of the failed nodes can transmit packets or not and in this latter situation we take into account whether there is an
additional buffer where all the packets that need to go through the node can be kept.

When failures can occur, greedy protocols refer to those ones advancing a packet whenever the link is able to transmit
and there is at least one available packet waiting in the queue. In all the situations we assume an ideal world in which no
packet already in the system is lost.

Homogeneity. We assume that all the links (respectively, all the nodes) will manage the packets and the queues affected by
failures in the same way. The different options considered for such management will be presented later in the paper. The
case of non-homogeneous management, i.e., when different links (and possibly also different nodes) deal with failures in
different ways, remains open.

Having in mind the common networking scenario presented in Section 2, we need to specify clearly what a faulty
adversarial model is, what an adversary is, and the definition of the different concepts of stability we will use. Let us start
with the definition of a faulty adversarial model.

Definition 1 (Model M). A faulty adversarial model M specifies the following three characteristics of a system:
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(a) Non-blocked. (b) Transmission blocked.

(c) Reception blocked. (d) Transmission and reception blocked.

Fig. 2. Graphical representation of the functionality of the queues.

– whether the queues are or are not accessible during a failure,
– whether there are or there are not additional buffers, and
– what the restrictions are that apply to the adversary.

Since all the models we introduce in this work are aimed at adversarial systems in which failures may occur, we often
skip the adjective faulty and refer just tomodel M .

In our systems, the adversary represents the unpredictable source of traffic of the system and additionally, in the case
of faulty scenarios, it is also the source of failures for the network elements. Although unpredictable, the behavior of an
adversary is expected to be as harmful as possible, inside some limits that avoid trivial overflooding of the network. We
need to provide a more formal definition for an adversary and its representation, which will be assumed for the rest of the
paper.

Definition 2 (Adversary). An adversary A for network N is an infinite sequence of triples. The t-th triple ⟨Pt , Et , Vt⟩

corresponds to the changes in traffic and failures at time t; it is composed of the following elements:

– the set of packets Pt injected in the system at time t ,
– the set of links Et that fail at time t , and
– the set of nodes Vt that fail at time t .

In general we will omit the reference to the network in those cases where N is clear from the context.
In faulty models the adversary decides not only the packet injections but also the failures (in links, nodes or both), and

thus this information must be part of its definition. Of course, since the aqt model is a non-faulty model, an adversary in
aqt is described just by an infinite sequence of singletons; each singleton is formed by the set Pt of packets injected in the
system at a time step t .

Before introducing the general restrictions that an adversary must obey we introduce some notation that will help in
their description. Let A be an adversary for network N which at time step t has associated triple ⟨Pt , Et , Vt⟩; then, for any
edge e = (u, v) of N , we denote as

Ne(t), the number of packets p ∈ Pt whose trajectory uses edge e

Fe(t) =


1 e ∈ Et
0 otherwise

He(t) =


1 u ∈ Vt
0 otherwise

De(t) = Fe(t) + He(t) − Fe(t)He(t).

Observe that Fe(t) indicateswhether the link e fails at time t , andHe(t) indicateswhether the link e is unavailable because
its head node fails at time t; thus, De(t) gives evidence of whether the link e is available or not at time t , independently of
what the reason is for it (link failure or head-node failure). We keep the notation Ne(t) and Fe(t) to be compatible with the
usual notation in the aqt model and the failure model in [2]. The above functions can be extended as usual, by addition, to
an interval of time I = [t0, t1] composed of |I| = t1 − t0 + 1 time steps. For example De(I) =

∑
t∈I De(t).

As we said, in order to avoid trivial overloading situations, the behavior of the adversaries must be restricted. Different
restrictions on the power and shape of an adversary will lead to different adversarial models for faulty networks. In a faulty
adversary, these restrictions are based on three elements:

• on the amount of traffic that the adversary has permission to inject,
• on the amount and type of failures that the adversary is allowed to produce, and
• on the maximum duration of any of those failures.

To capture these issues in the definition of a faulty adversary, we introduce the concept of an (r, b, ω)-adversary, which is
defined as follows.
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Definition 3 ((r, b, ω)-Adversary in Model M). An adversary A is an (r, b, ω)-adversary if the type of failures is the one
allowed in model M and the sequence of injections and failures of A satisfies the following restrictions. Those restrictions
are defined by the injection rate r , with 0 < r < 1, the burstiness 0 ≤ b, and the maximum failure life-time ω ≥ 0. For any
edge e and any time interval I , the adversary must respect the equations

Ne(I) ≤ ⌈r(|I| − De(I))⌉ + b and (|I| = De(I)) ⇒ |I| ≤ ω. (2)

Observe that, with the previous definition, an (r, b)-adversary in the aqt model is always an (r, b, 0)-adversary, just by
skipping the possibility of producing failures.

Confronting such (r, b, ω)-adversaries, we will study the stability of different systems with different characteristics.
Stability refers to the fact that the number of packets in the system remains bounded as the system dynamically evolves in
time. This bound, which can be a function of the system parameters, is not dependent on time. This desirable property is
studied in relation to the three main components forming a system (N , A, P ): the network N , the traffic pattern defined
by the adversary A on N , and the scheduling protocol P .

Definition 4 (System in Model M). We say that S = (N , A, P ) is a valid system in model M if A is an (r, b, ω)-adversary
in model M, for some r , 0 < r < 1, and some b, ω ≥ 0, that controls the type of failures allowed in model M.

The evolution over time of a system under a model is fully determined by the model, i.e., by the queue management,
accessibility of the queues, the existence of additional buffers, and the restrictions that the model puts on the allowed
failure types, link, edges, or both. Thus, apart from the components of a system, themodel in which the system is considered
determines the contents of the queues (and the buffers, if any) at any time step.

Now, let us state the main definitions of stability. These stability concepts will be used in the remainder of the paper. We
start by describing the most general notion of stability, i.e., the stability of a system in a certain model.

Definition 5 (System Stability). Let S = (N , A, P ) be a valid system in model M. S is stable in model M if the number
of packets in the system (i.e., the number of packets in all the queues of the network) remains upper bounded by a time-
independent constant c(r, b, ω, N ) as the system dynamically evolves in time according to M.

We formally define now the property of network stability in a certain model. In this notion of stability, the network and
a rate r (with 0 < r < 1), are fixed.

Definition 6 (Network r-stability Under a Protocol P ). A network N is r-stable under protocol P in model M, if for any
b, ω ≥ 0 and any (r, b, ω)-adversary A for N in model M, the system (N , A, P ) is stable in model M.

A stronger concept is that of universal stability. In broad terms, a network N is said to be universally stable if the number
of packets in the system is bounded whatever adversary A is considered and whatever protocol P is used for scheduling
packets at the edges.

Definition 7 (Network Universal Stability). A network N is universally stable in model M if it is r-stable in model M under
any greedy protocol and for any 0 < r < 1.

Like for networks, the concept of universal stability can be applied to protocols. In broad terms, a protocol P is said to
be universally stable if the system S = (N , A, P ) is stable for every N and A. The following is a more formal definition of
this concept.

Definition 8 (Protocol Universal Stability). A protocol P is universally stable in model M if, for any network N and any
0 < r < 1, N is r-stable under protocol P in model M.

As much as possible, it is always useful and interesting to infer new knowledge about the stability of some system,
network or protocol from the already existing knowledge about some other systems, networks or protocols. In this section,
we describe how systems can be simulated by other systems, which, as we will see, will be a useful tool for inferring some
of the stability results that appear later in this work.

Definition 9 (System Simulation). Let S = (N , A, P ) be a system in model M, and let S ′
= (N , A′, P ′) be a system in

model M′. The system S is simulated by the system S ′ if all the following conditions hold:

– when A injects at time t a packet p with route ρ in the system S, the adversary A′ injects a corresponding packet p′ at
the same time t with the same route ρ in the system S ′,

– every time t that, according toP , the packet p crosses the edge e ofN in the system S, the packet p′ crosses in S ′, according
to P ′, the same edge e of N at the same time t .

It is possible to define amore generic definition of system simulation, however the previous one is enough for the system
simulations used in the paper. Observe that when a system S can be simulated by another system S ′, the two systems have
the same network and furthermore the number of packets present in the system S at time t is upperbounded by the number
of packets present at time t in system S ′. Therefore, we get
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(a) A 6-line graph. (b) An 8-cycle or 8-ring graph.

(c) A 5-fork graph; v5 is its forking node. (b) A 5-crossing graph; v5 is its crossing vertex.

Fig. 3. Examples of line, fork, crossing, and ring graphs.

Lemma 1. Let S = (N , A, P ) be a system in model M that can be simulated by a system S ′
= (N , A′, P ′) in model M′. If the

system S ′ is stable in model M′, then system S is stable in model M.

Since any (r, b)-adversary in the aqtmodel is an (r, b, 0)-adversary in a faulty adversarial model, the system behavior in
a faulty adversarial model when no failure occurs will be the same as in the aqtmodel. Thus, for any of the faulty adversarial
models M introduced in this paper, we can show trivially that

Fact 1. Any system that is not stable in the aqtmodel, remains not stable in model M.

Finally we need some notation and definitions for directed graphs. Given a network N whose topology is described by
the graph G,2 we denote as V (G) and E(G) the sets of nodes and edges of G, respectively. As usual, an edge e ∈ E(G) in a
directed graph G is represented by the two endpoint vertices that define it, i.e., e = (u, v), where u ∈ V (G), is said to be
the head of the edge, and v ∈ V (G) is said to be its tail. This representation implicitly defines also the orientation of the
edge; thus, the edge e = (u, v) is oriented from u to v, i.e., from its head node to its tail node. The output degree of a vertex
v ∈ V (G) is the number of edges whose head node is v; on the contrary, its input degree is the number of edges whose tail
node is v.

With this widely-used graph notation in mind, we introduce in the following some of the particular network topologies
that will bementioned during the rest of this work. Basically, the only topologies we need to distinguish are cycles and some
specific types of directed acyclic graphs.

Definition 10 (Simple Dags). Let G be a connected directed graph, and let n > 1.

(i) G is an n-cycle (or n-ring) graph if it has n vertices and n edges organized in the following way: G = ({{v1, . . . ,
vn}, {(vi, vi+1) | 1 ≤ i < n} ∪ {(vn, v1)}).

(ii) G is an n-line graph if it is obtained from an n-cycle graph, by removing one of its edges, i.e., G = ({v1, . . . ,
vn}, {(v1, v2), . . . , (vn−1, vn)}).

(iii) G is an n-fork graph if it is obtained from an n-line with two additional end vertices, in the following way: G =

({v1, . . . , vn, vn+1, v
′

n+1}, {(v1, v2), . . . , (vn−1, vn), (vn, vn+1), (vn, v
′

n+1)}).
(iv) G is an n-crossing graph if it is obtained by joining an n-fork with an (n − 1)-line in the following way: G =

({v1, . . . , vn, vn+1, v
′

n+1, w1, . . . , wn−1}, {(vi, vi+1) | 1 ≤ i < n} ∪ {(wi, wi+1) | 1 ≤ i < n − 2} ∪

{(vn, vn+1), (vn, v
′

n+1), (wn−1, vn)}).

Fig. 3 depicts some examples. In the following, we sometimes refer to line graphs, fork graphs, crossing graphs and rings to
denote the whole family of n-line graphs, n-fork graphs, n-crossing graphs and n-rings, respectively, for every n > 1. Lines
and cycles have the particularity that the input and output degree of their vertices is at most one. As we will see, this fact
will provoke the dynamics of systems with such topologies of behave alike. Fork graphs and crossing graphs have only one
vertex with out degree two; we will refer to this vertex as the forking, respectively crossing vertex.

2 When the context is clear enough and we want to focus on some property of the topology G of a network N , we will commit an abuse of terminology
and refer to G as the network.
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3. Failures on links

In this section, we focus on the study of stability conditions in dynamic networks in which only the edges may fail. The
constraints of an adversary in such faulty environments correspond to the restriction given in (2), in which case only links
can be failed. We study the stability of networks and protocols when the management of those packets that suffer a failure
is performed in different ways, depending on the accessibility of the queues. More precisely, we consider three situations.

(type 1) In spite of the failure of the link, the queue at the head of the link can still receive packets, in such a case packets
are kept at the queue associated to the failed link.

(type 2) During a failure of a link the queue at its head is not accessible. In such a case, the packets have to wait in their
previous location.

(type 3) During a failure of a link the queue at its head is not accessible, but there is a buffer at each node that can store
those packets that want to traverse a failed outgoing link.

We call the differentmodels arising under such assumptions the edge-Rmodel (i), the edge-nRmodel (ii), and the edge-nR-B
model (iii), respectively. Of course, in any of these models, we assume that a failed edge cannot transmit any packet, and
thus no packet leaves the queue of a link during its failure.

3.1. The edge-R model

We consider the first model in which during a failure of a link e the packets wait to traverse e in its associated queue.
Packets from incoming links and/or from the excess of the burstiness3 might arrive to e since its queue is accessible. However,
the arriving packets will wait in the queue until the edge recovers. When the link recovers, its queue always advances a
packet if there is one. This behavior is depicted in Fig. 4(b).4 Observe that this coincides with the failure management under
the failure model introduced in [2] and, in the case of adversaries that do not create any failure, it coincides also with the
behavior in the aqtmodel.Wepropose the edge-Rmodel, inwhich the network has receiver links like the ones just described.

We will show that the edge-R model can be simulated by the failure model introduced in [2], in which the injection rate
strongly constrains both the maximum number of failures and the maximum number of packet injections per edge. The
management of a failure is the same in both models, i.e., they both manage failures with links that can receive packets
although being failed. However, the number of injections and failures that an (r, b)-adversary in the failure model can
produce is restricted to

Ne(I) + Fe(I) ≤ r|I| + b.

Observe that this expression already restricts the duration of failures by itself, without the necessity of fixing an explicit
upper bound for it. Observe also that, given a concrete injection rate r , our edge-Rmodel allows more powerful adversaries
than the failure model, both in terms of failure production and in terms of packet injection. We can establish the following
relation.

Theorem 2. Given a network N , any (r, b)-adversary A for N in the failure model is an (r, b, ⌈b/(1 − r)⌉)-adversary in the
edge-R model.

Proof. The restriction for the edge-R model can be easily obtained from the failure model restriction, taking into account
that 0 < r < 1:

Ne(I) + rFe(I) < Ne(I) + Fe(I) ≤ r|I| + b.

The restriction Ne(I) + Fe(I) ≤ r|I| + b implies also that Fe(I) ≤ r|I| + b. Therefore, in a time interval of length t in which
an edge is failed, it must hold that t ≤ rt + b, which implies that t ≤ b/(1 − r). �

Moreover, any adversary in the edge-R model is also an adversary in the failure model with an increased injection rate.
Such an increase depends on ω.

Theorem 3. Given a network N , any (r, b, ω)-adversary A in the edge-R model is an ( r+ω
ω+1 , b)-adversary in the failure model.

Proof. Recall that ω bounds the number of consecutive steps in which any edge can be down. Since the duration of a failure
in any edge e is bounded, the maximum number of failures that can occur to e in the edge-R model at any interval of time I
is ω

ω+1 |I|. Then, we can rewrite the constraint

Ne(I) ≤ r(|I| − Fe(I)) + b

3 Note that, when an edge e is failed during an interval I , then Ne(I) ≤ b packets can still be injected.
4 With the aim of making the figure more clean and comprehensive, we depict the queue associated to each link right over the link (instead of at the

head of the link, where it really is).
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(a)No failure occurs: Packets incoming to the central node from e1
are scheduled to the queue at e2 or e3 depending on which is the
next destination node in their path.

(b) Failure under the edge-R model: When edge e2 fails, its queue
at the central node can still receive the packets addressed to e2, but
it cannot transfer them forward. As soon as e2 recovers, its queue
can forward packets normally again.

(c) Failure under the edge-nRmodel:When edge e2 fails, its queue
at the central node can neither receive nor forward packets. In
consequence, those packets addressed to e2 must be kept in the
previous node. As soon as e2 recovers, its queue can again receive
and forward packets normally.

(d) Failure under the edge-nR-B model: When edge e2 fails, its
queue at the central node can neither receive nor forward packets.
Those packets addressed to e2 are kept in the extra buffer of the
node. As soon as e2 recovers, its queue can again receive packets
(both from the incoming edge e1 and from the extra buffer) and
forward packets normally.

Fig. 4. Accessibility of the queues under the different edge-failure models.

for an (r, b, ω)-adversary A in the edge-R model as

Ne(I) + Fe(I) ≤ r|I| − rFe(I) + Fe(I) + b;

therefore,

Ne(I) + Fe(I) ≤ r|I| − rFe(I) + Fe(I) + b
= r|I| + (1 − r)Fe(I) + b
≤ r|I| + ((1 − r)ω/(ω + 1)) |I| + b
= ((r + ω)/(ω + 1)) |I| + b.

This expression corresponds to the restriction that applies to an (r ′, b)-adversary in the failure model, in which r ′
=

(r + ω)/(ω + 1) and for which it holds that 0 < r ′ < 1. �

Since the behavior of the queues and the systems in the failure model in [2] and in the edge-R model is the same, we
have (from Theorems 2 and 3) that any valid system S = (N , A, P ) in the edge-R system is also a valid system in the failure
model, and vice versa. Furthermore, at any time step, the number and position of any packet in S in the edge-R model is
the same as in S in the failure model. Thus, the failure model and our edge-R model are equivalent from the point of view
of universal stability of networks and protocols. Therefore, according to the equivalence between the failure and the aqt
models, and to Theorem 2 (network universal stability equivalence amongmodels) shown in [2], we can state the following
corollary.

Corollary 4. Directed acyclic graphs and rings are universally stable in the edge-R model.

From the results in Theorems 4, 6, 8 (universal stability of sis, ftg and nfs in differentmodels) and 9 (universal instability
of lis) in [2], the following two corollaries can also be stated.
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Corollary 5. A network N is universally stable in the edge-R model if, and only if, N is universally stable in the aqtmodel.

Corollary 6. sis, ftg, andnfs are universally stable in the edge-Rmodel. However, fifo, lifo,ntg, ffs, and lis are not universally
stable in the edge-R model.

In this last corollary, the protocol lis is put in a different category with respect to the aqt adversarial model for non-
faulty systems, where lis was universally stable. This is due to the instability of lis under the failure model, which was
shown in [2]. The liq protocol remains unclassified, as this protocol is universally stable in the aqt model [13] and not
known to be universally stable in the failure model. We can show that liq is not universally stable in the failure model.

Lemma 7. liq is not universally stable in the failure model.

The proof of this lemma is, as is the case for most of the proofs of instability in this work, based on induction. A set of
rounds compose a step of the induction reasoning. The goal is to demonstrate that the number of packets in the system
can increase from step to step (and, by applying the inductive hypothesis, they can increase infinitely). The configuration
of the system at the end of every step must be the same as at the beginning (in terms of the type and the location of the
packets). For the sake of simplicity, in those proofs we usually only reproduce the inductive step and sometimes we omit
some additive constants in our analysis, which never change the final result.

In order to enhance the readability of the paper, we pushed most the proofs for instability based on induction to the end
of the paper. This is the case for the proof of Lemma 7.

It is the case that, inductively using the same adversary given in the proof of Lemma 7, we can also show the instability
under lis. Therefore, taking into account Theorem 2, we can conclude the following result, whose proof is also to be found
at the end of the paper.

Corollary 8. liq and lis are not universally stable in the edge-R model.

3.2. The edge-nR model

Let us take now into consideration the case in which during a link failure the associated queue is not accessible. This fact
forces that no packet can be injected requiring a failed edge. Moreover packets directed to an edge e = (v, w) which come
from an incoming link e′

= (u, v) will not be able to join the queue of e since we consider it is not accessible. They will stay
in the queue of e′. In order to avoid losing packets, the packets in an active queue are classified as blocked or not. A packet
is blocked if the link connecting to its next destination is down. The queuing policy applied to such a queue type will select
one packet among those that are not blocked. Blocked packets remain in the queue. This behavior is depicted in Fig. 4(c).

We propose the edge-nR model, in which the network has non-receiver links like the ones just described. In this model,
we show that there are very simple topologies, like line graphs, that turn out not to be universally stable. Observe that in this
model when a packet cannot traverse a link it remains in the queue of the previous link and so it competes with a different
set of packets in subsequent steps.

In the following we show that line graphs are not stable in the edge-nR model under sis, lifo, ntg, nfs, and ffs.

Theorem 9. For every injection rate 0 < r < 1, there is an n0 > 1 such that any n-line graph with n ≥ n0 is not r-stable in the
edge-nR model under protocols sis, lifo, ntg, nfs, and ffs.

Furthermore, for the ftg protocol there are very simple directed acyclic graphs which are not stable. In the following we
show that networks with topologies describing some forking can be made unstable.

Theorem 10. For every injection rate 0 < r < 1 there is an n0 > 1 such that any n-fork graph with n ≥ n0 is not r-stable in the
edge-nR model under ftg.

From the previous Theorems 9 and 10, Corollary 11 follows.

Corollary 11. Directed acyclic graphs and rings are not universally stable in the edge-nRmodel. More precisely, there are directed
acyclic graphs which are not stable under protocols sis, lifo, ntg, nfs, ffs and ftg.

All these protocols can bring the system to instability because they allow the accumulated packets to be rescheduled
in such a way that old queued packets are kept on as blocked, while newer ones have priority over them. On the contrary,
the intrinsic ordered nature of the protocols fifo and lismakes it difficult to accumulate packets. Although we suspect that
acyclic topologies and even rings are stable under fifo, lis, and liq, these questions are left as open in thiswork. Nevertheless,
we can show that lis and liq are not universally stable protocols by using a simple cyclic topology, the graph given in Fig. 7.

Lemma 12. lis and liq are not universally stable in the edge-nR model.
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3.3. The edge-nR-B model

Finally, we consider a mixed situation in which the queue of a failed link is not accessible, but in which the packets that
cannot join it are kept in an additional buffer placed at the head node of the link. This buffer is shared by all the links incident
at the same head node (i.e., there is only one buffer per node), thus acting as an intermediate buffer for packets that have
to continue to the queue of a link that was failed when they arrived. We assume that the buffer at every node is always
accessible and always active. Moreover, the packets at the buffer are tagged with its state (blocked packet or non-blocked
packet). Thus if a packet p traverses the link e1 = (u, v), and next p has to traverse e2 = (v, w) but e2 goes down, then
p is kept in the buffer at node v. It will be considered as a blocked packet while e2 is failed, and it will change its state
to non-blocked as soon as e2 becomes alive again. Once the failed link is alive, its blocked packets become non-blocked.
Then, according to the scheduling policy of the system, one packet among all those set to non-blocked is chosen and put
instantaneously in its corresponding output queue. That behavior is repeated as long as there are non-blocked packets in
the extra buffer. Thus, one non-blocked packet (but only one) will leave the extra buffer in one time step. This behavior is
depicted in Fig. 4(d).

We propose the edge-nR-B model, in which the network has non-receiver links with extra buffers like the ones just
described. In this model, we study a specific subset of networks: those whose vertices all have output degree at most one.
This includes line graphs and ring graphs. In this case, the buffer in a node v of the graph will (only) store the packets that
cannot be served towards the queue of the (unique) outgoing edge (v, w). It seems that, in this case, the edge-nR-B model
has some similarities with the edge-R model. The main idea behind this is that each queue in the edge-R model can store
the packets of the queue of the corresponding edges as well as the packets in the extra buffer of its source node.

Theorem 13. Let N be a network in which all the nodes have output degree at most one. Any system S = (N , A, P ) in the
edge-nR-B model can be simulated by a system S ′

= (N , A, P ′) in the edge-R model.

Proof. When no failures occur, the protocol P ′
= P makes the predicate hold trivially. When failures occur in the system

S, the packets requiring to traverse any failed edge e = (u, v) ∈ E(N ) are kept in the extra buffer at node u. We simulate
this system S = (N , A, P ) by S ′

= (N , A, P ′) in the edge-R model; the greedy protocol P ′ will be defined during the
proof.

For system S, let us denote as Qu(t) and Qe(t) the contents at time t of the extra buffer at node u ∈ V (N ) and the queue
corresponding to edge e ∈ E(N ), respectively. By Q ′

e(t) we refer to the queue at the same time t and the same edge e, but in
the system S ′. Protocol P ′ is defined in such a way that whenever link e is not failed and Q ′

e(t) = Qu(t) ∪ Qe(t), the packet
that traverses e is the same one as selected by P . We describe for each time step t the behavior of S ′ simulating S, and we
show by induction on t that each edge e = (u, v) satisfies that:

– Q ′
e(t) = Qe(t) ∪ Qu(t), and

– if p crosses in S the link e of N at time t , the corresponding packet crosses in S ′ the same link e at the same time t .

Let us consider the behavior of edge e at time step t + 1 in both systems in the following two cases.

1. e is alive. At time step t , the queue associated to e may receive three different sets of packets:
• a set of packets Le scheduled by the queues of the incoming edges,
• a set of packets Ie injected by the adversary, and
• a set of packets Pu coming from the buffer.
Notice that Pu is either empty, when Qu(t) = ∅, or contains only one packet, otherwise. After receiving these
packets, it applies the protocol P and selects a packet pte in order to be scheduled. Hence, Qe(t + 1) = (Qe(t) ∪

Le ∪ Ie ∪ Pu) \ {pte} and Qu(t + 1) = Qu(t) \ Pu.
In the system S ′, the queue of edge e receives the same packets as in S: Le by induction hypothesis and Ie because
the adversaries are identical. Now, since by induction hypothesis Q ′

e(t) = Qe(t) ∪ Qu(t) and e receives the same
new packets, protocol P ′ can select the same packet pte for being scheduled. Then we have that Q ′

e(t + 1) =

(Q ′
e(t) ∪ Le ∪ Ie) \ {pte} = (Qe(t) ∪ Qu(t) ∪ Le ∪ Ie) \ {pte} = Qe(t + 1) ∪ Qu(t + 1).

2. e is failed. In this case the queue of edge e in system S cannot receive any packet. If a packet pte ∈ Le is scheduled to e at
time step t , then it is stored in the extra buffer at node u at time step t + 1. If the adversary injects a set of packets
Ie at time step t + 1 they are also stored in the extra buffer at u. Then we have that Qe(t + 1) = Qe(t) and, as u has
output degree 1, Qu(t + 1) = Qu(t) ∪ Le ∪ Ie.

In the system S ′, the queue of e cannot schedule any packet but it receives the same packets as the queue
of u in S, packet pi injected by the adversary and packet pte ∈ Le scheduled at time step t . Then we have that
Q ′
e(t + 1) = Q ′

e(t) ∪ Le ∪ Ie = Qe(t) ∪ Qu(t) ∪ Le ∪ Ie = Qe(t + 1) ∪ Qu(t + 1).

Observe that the contents of the queue corresponding to edge e = (u, v) in the system S ′ are the same as the sum of
contents of the extra buffer at the node u plus the queue for the edge e in the system S ′. The quantity of packets does not
vary, but their location does. This applies for every edge e and time. �

As the following theorem proves, this simulation is in fact two sided.
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Theorem 14. Let N be a network in which all the nodes have output degree at most one. Any system S = (N , A, P ) in the
edge-R model can be simulated by a system S ′

= (N , A, P ′) in the edge-nR-B model.

Proof. When no failures occur, the protocol P ′
= P makes the predicate hold trivially. When failures occur in the system

S, the packets requiring to traverse any failed edge e = (u, v) ∈ E(N ) are kept in the queue of edge e. We simulate this
system S = (N , A, P ) in the edge-R model by the system S ′

= (N , A, P ′) in the edge-nR-B model. Protocol P ′ is defined
in such a way that the same packets requiring to traverse ewould be kept either in the queue of e or in the extra buffer at u.
As the output degree of u is one, all the packets in those queues must traverse e, we define P ′ in such a way that at any time
step the packet selected to traverse e is the same selected by P . Taking this into account, the rest of the proof is similar to
that of Theorem 13. �

Combining these theorems with Corollary 4, we can state the following result.

Corollary 15. Any graph in which all the nodes have output degree at most one (this includes line graphs and rings) is universally
stable in the edge-nR-B model.

However, a significant difference appears when considering nodes with output degree greater than one, e.g., when
considering forks. In the following we show that for every injection rate, we can find a fork which is not stable under several
of the usual greedy protocols, namely lifo, sis, ntg, ftg, nfs, and ffs.

Theorem 16. For every injection rate 0 < r < 1, there exists an n0 > 0 such that the n-fork graph, for n ≥ n0, is not r-stable in
the edge-nR-B model under any of the following protocols: lifo, sis, ntg, ftg, nfs, and ffs.

In contrast to the edge-nR model, even if the queues of the failed links are not accessible, the packets requiring those
links are kept in a different queue, i.e., the extra buffer. However, this fact does not imply significant changes in the networks
which are stable. Already in networkswhose nodes have output degree one, situations similar to those in the edge-nRmodel
are obtained.

By considering the graph and adversary used for the proof of Lemma 7, we can also show that the protocols lis and liq
are not universally stable in the edge-nR-B model. Therefore, we have that

Lemma 17. lis and liq are not universally stable in the edge-nR-B model.

4. Failures on nodes

In this section, we consider dynamic networks in which the nodes may fail. All the models presented in this section
impose the restriction that only nodes can fail. We study the stability of networks when the management of those nodes
that suffer a failure is performed in different ways. More precisely, we take into consideration the possibility that the nature
of the failure affects the transmission and/or reception of packets. This feature leads us to consider three types of node failure
management.

(type 1) During a node failure nodes are unable to transmit and to receive packets.
(type 2) During a node failure nodes are unable to transmit but able to receive packets.
(type 3) During a node failure nodes are able to transmit but unable to receive packets.

The type 1 of failure is the strongest one; under this type of failure packets do not arrive and leave, therefore it is natural
to consider a queueing system in which all the queues of the outgoing links of a node are not accessible during a failure.
Observe that in such a case packets whose next link to traverse has a failed head node must wait

(i) in the queue of the previous link.

In the type 2 of failure packets are not leaving from the node, but can arrive. Thus, in the associated queuing systems the
packets arriving to the node can be kept

(ii) in the queue associated to the edge, or
(iii) in an extra buffer at the node. Here we assume that even though the node can receive its output link queues are not

accessible.

The type 3 of failures leave us with a failed node which is unable to receive but it can still transmit. Then those packets that
have to arrive to the failed node cannot follow their next link and are kept

(iv) in the queue of the previous link, while packets at a failed node can be transmitted provided that the next node is not
failed.

Each of these options will be considered in the adversarial models we present in this section. Option (ii) will characterize
the node-RnT model, while option (iii) will define the node-nRnT-B model. Option (i) is used in the node-nRnT model and,
finally, option (iv) will be considered in the node-nRT model.
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(a) (5 + ⌈k/r⌉)-line graph. (b) (4 + ⌈k/r⌉)-fork graph.

Fig. 5. The line graphs and fork graphs used in Theorems 9 and 10.

4.1. The node-RnT model

We consider the first type of node failure management in which a failure of a node v means that the packets wait to
traverse v in their corresponding output queue. Packets from incoming links and/or from the excess of the burstiness might
arrive to v since its queue is accessible. However, the arriving packets will wait in the corresponding output queue until the
node recovers. When the node recovers, every outgoing queue advances a packet if there is one. This behavior is depicted
in Fig. 6(b).5 We consider now the node-RnT model, in which the network has receiver non-transmitter nodes.

Using the fact that a node failure represents somehow the failure of all its outgoing edges, wewill show that the node-RnT
model can be simulated by the edge-Rmodel. For doing so we have to take into account that the management of a failure is
the same in both models, i.e., they both manage failures with receiver links. However, the adversaries in the edge-R model
are more powerful as they can make one outgoing edge fail independently of the other outgoing edges.

Theorem 18. Any system S = (N , A, P ) in the node-RnTmodel can be simulated by a system S ′
= (N , A′, P ) in the edge-R

model.

Proof. The new adversary A′ is obtained from A by keeping the same sequence of packet injections and replacing any
failure of a node u ∈ V (N ) by the failure of all the outgoing edges of u. From the definition of the adversaries it follows that,
for every link e and any time interval I , the amount He(I) incurred by adversary A in system S coincides with the value Fe(I)
incurred by adversary A′ in S ′. Therefore, from the definition of the models it is straightforward to show that when A is an
(r, b, ω)-adversary in model node-RnT then A′ is also an (r, b, ω)-adversary in model edge-R, and that the two systems act
alike. �

With this result, any (positive) network or protocol stability result from the edge-R model can be transferred to the
node-RnT model. Thus, from Corollary 4 we obtain the following result.

Corollary 19. Directed acyclic graphs and rings are universally stable in the node-RnT model.

Corollary 5 establishes that the set of networks that are universally stable in the edge-R model coincide with the set of
networks that are universally stable in the aqtmodel. Therefore, taking into account Fact 1, we obtain

Corollary 20. A network N is universally stable in the node-RnT model if, and only if, N is universally stable in the aqtmodel.

From the results in [3],we also know that testing the property of universal stability in networks can be done in polynomial
time. Thus we can state that

Corollary 21. The universal stability of a given network in the node-RnT model can be decided in polynomial time.

For protocols, we have a similar scenario. Taking into account Fact 1, any instability result for protocols in the aqtmodel
extends to the node-RnT model and, taking into account Theorem 18, any universal stability result in the edge-R model
extends to the node-RnT model. We then get

Corollary 22. sis, ftg, and nfs are universally stable in the node-RnT model, while fifo, lifo, ntg, and ffs are not universally
stable in the node-RnT model.

Only lis and liq remain unclassified as those protocols are universally stable in the aqtmodel but not universally stable
in the edge-R model. The following lemma shows that they are not universally stable in the node-RnT model.

Lemma 23. lis and liq are not universally stable in the node-RnT model.

5 With the aim of making the figure more clean and comprehensive, nodes are depicted now as bigger blocks, with a dispatcher switch that puts every
incoming packet in the corresponding output queue. The queue for each outgoing link is depicted now inside the node, as it really is.
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(a) No failure occurs: Packets incoming to the central node v from
e1 are scheduled to the queue at e2 or e3 depending on which is
the next destination node in their paths.

(b) Failure under the node-RnT model: When node v fails, its
queues can still receive the packets addressed to its outgoing
edges, however none of the queues can transfer packets forward.
As soon as node v recovers, all the queues in it can again forward
packets normally.

(c) Failure under the node-nRT model: When node v fails, its
queues can still forward the packets queued in them through their
corresponding outgoing edges, however none of the queues can
receive new packets. In consequence, those packets that need to
traverse node v must be kept in the previous node. As soon as node
v recovers, its queues can receive packets normally again.

(d) Failure under the node-nRnT model: When node v fails, its
queues can neither receive nor forward packets. In consequence,
those packets that need to traverse node v must be kept in the
previous node. As soon as node v recovers, its queues can receive
packets normally again.

(e) Failure under the node-nRnT-B model: When node v

fails, its queues can neither receive nor forward packets.
Those packets that need to traverse node v are kept in the
extra buffer of the node. As soon as node v recovers, its
queues can again receive packets (both from the incoming
edge e1 and from the extra buffer) and forward packets
normally.

Fig. 6. Accessibility of the queues under the different node-failure models.

4.2. The models with non-receiving nodes

The common property of all the models we consider in this section is that, during the failure of a node, the queues can
not receive packets. In other words, they are not accessible during the failure. Under this assumption, two scenarios need to
be studied: (a) the case where, in spite of being unaccessible for new packets, the queues can forward the packets stored in
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them (see Fig. 6(c)), and (b) the case where they are also blocked for transmission (see Fig. 6(d)). In this latter case, if a node
v is failed the packets wanting to cross an incoming link (u, v) must wait at the output queue at u until v recovers.

According to these cases, we propose two models, the node-nRT model, in which the network has non-receiver but
transmitter nodes, and the node-nRnT model, in which the network has non-receiver non-transmitter nodes. We will
consider also the node-nRnT-B model, a variation of the latter in which u keeps in an extra buffer the packets that can
not be transferred to v, rather than keeping them in its output queue. In this model, there is only one additional buffer per
node, which is shared by all the packets that at some time step could not be forwarded from v. As before, we assume that
the extra buffers at the nodes are always accessible and always active.

In relation to the buffered models presented earlier in this work, there is a significant difference concerning the state of
the packets. Since the element failing is now the node, and since a failed node does not transmit any packet, all the packets
stored in the buffer will always be tagged as blocked (while the node is failed) or as non-blocked (while the node is alive).
Somehow, the failure of a node implies the failure of all the outgoing links. In those periods in which the node is not failed,
the node queue policy will select one packet among the packets in the buffer and put it instantaneously in its corresponding
output queue. Once there, it will compete with the other packets in the output queue for being forwarded. This behavior is
depicted in Fig. 6(e).

As a first result we show that, when non-buffered failed nodes cannot receive packets, every network can be made
unstable. This bad behavior is due to the fact that the restrictions imposed by the model on the adversaries do not take
into account the failures at the tail of the link.

Theorem 24. Any network with at least one link can be made unstable in the node-nRnT and the node-nRT models.

Proof. We show that for any r , 0 < r ≤ 1, the 2-line graph is not r-stable under any greedy protocol. Consider a 2-line
graph, and let us denote as (v1, v2) its unique edge. Let us assume that initially there are q packets stored in the queue at
v1 whose destination is the next adjacent vertex v2. An adversary playing the following round indefinitely can make the
network unstable for any of the usual greedy protocols.

Round 1: For q time steps, the adversary injects rq packets at v1, whose destination is v2. During that time, the vertex v2 is
failed. This failure makes the packets stored at v1 remain there.

Round 2: The vertex v2 recovers for one time step.
At the end of the second round, there will be rq + q − 1 packets stored in the queue at v1 with destination v2. By infinite
repetitions of this pattern of injections and failures, this adversary would make the system unstable for any r such that
rq > 1, as r > 0, we have that this happens for any q > 1/r . Thus for any required r , a sufficiently large initial load q can
be found such that this inequality holds. Observe that, implicitly, ω = q and that this result is independent of the protocol
used in the system and also independent of the length of the line. �

As a consequence of the previous theorem we have also that

Corollary 25. There are no universally stable greedy protocols in either the node-nRnT model the node-nRT model.

When extra reception buffers are considered, namely under the node-nRnT-B model, the situation changes. Let us first
focus on a specific subset of networks: those whose vertices all have output degree at most one. This includes line graphs
and ring graphs. In this case, it is easy to see that the failure of a node (in terms of both injections and buffer occupancy)
has the same impact as a failure of the outgoing edge in the edge-nR-B model. As a consequence of this fact, we have the
following result.

Theorem 26. Let P be a greedy protocol and N a network in which all the nodes have output degree at most one. Any system
S = (N , A, P ) in the node-nRnT-B model can be simulated by a system S′

= (N , A′, P ′) in the edge-R model.

Proof. The new adversary A′ is obtained from A by keeping the same sequence of packet injections and replacing any
failure of a node u by the failure of the unique outgoing edge of u. From the definition of the adversaries, it follows that for
every link e and any time interval I , the amount He(I) incurred by adversary A in system S coincides with the value Fe(I)
incurred by adversary A′ in S ′. Therefore, from the definition of the models it is straightforward to show that when A is an
(r, b, ω)-adversary in model node-nRnT-B then A′ is also an (r, b, ω)-adversary in model edge-R.

We consider the protocol P ′ defined in such a way that, from any node u, the packet that is transmitted through the
unique outgoing edge e = (u, v) ∈ E(N ) is selected by P when considering the packets present in the queue Qe associated
to e and the extra buffer Qu. The sequence of injections and the definition of P ′ guarantees that at any time step the set of
packets stored in the queue Q ′

e associated to e′
∈ E(N ) coincides with Qe ∪ Qu, and thus the simulation follows. �

As a consequence of the previous theoremwe have that those networks which are universally stable in the edge-Rmodel
and whose vertices have output degree at most one remain universally stable in the node-nRnT-B model.

Corollary 27. Line graphs and rings are universally stable in the node-nRnT-B model.

However, we can show that in the node-nRnT-B model there are directed acyclic graphs other than line graphs that are
not stable under any greedy protocol.
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Theorem 28. For every injection rate 1
2 < r < 1, there is an n0 > 1 such that any n-crossing graph with n ≥ n0 is not r-stable

in the node-nRnT-B model under any greedy protocol.

Corollary 29. There are directed acyclic graphs that are not universally stable in thenode-nRnT-Bmodel. In fact, there are directed
acyclic graphs that are not stable in the node-nRnT-B model under any greedy protocol.

5. Failures on both links and nodes

Until now, we have considered separately the case in which the communication network can only suffer link failures
from the case in which the network can only suffer node failures. In this section we tackle the general case in which both
link and node failures might occur in the system. The restrictions on an (r, b, w)-adversary in an adversarial model M are
described by Eq. (2).

We consider combined faulty adversarial models in which the queue management for failed links implements one of
the models presented in Section 3 (namely the edge-R, edge-nR or edge-nR-Bmodel), and the queue management for failed
nodes follows one of themodels presented in Section 4 (namely the node-RnT, node-nRnT-B, node-nRnT or node-nRTmodel).
Since both the model implemented at the links and the model implemented at the nodes apply over the same set of queues,
we must carefully specify how their access to them is organized. When a node failure occurs (independently of whether
some of the outgoing edges also fail), the system uses the adversarial model implemented by the node. If, on the contrary, a
node does not fail but some of its outgoing edges do, then the system uses the adversarial model implemented by the links
to deal with that failure.

When, in a combination of models, only the model for links (respectively, for nodes) is buffered, then the extra buffer at
the nodes is used only to store the packets suffering the failures of the links (respectively, of the nodes). In the combined
(edge-nR-B,node-nRnT-B) model, in which both the model for links and the model for nodes are buffered, we consider that
the extra buffer at each node is also unique, and thus the buffer is shared by both models.

Table 1 summarizes the results obtained concerning the universal stability of rings and directed acyclic graphs, and the
universal stability of the protocols sis, nfs, ftg, lis and liq for the models presented in Section 3. Table 2 summarizes the
results obtained concerning the universal stability of the samenetworks and protocols for themodels presented in Section 4.

Table 1
Universal stability property in the combination of adversarial models in which the nodes do not fail, i.e., they implement the aqt model, but the links
do. The symbol

√
means that the network (respectively, the protocol) is universally stable, while the symbol × means it is not. The symbol other-usp

represents the other aqt universal stable protocols mentioned in this paper, i.e. sis, nfs, and ftg.

Models edge-R edge-nR-B edge-nR

non-faulty node

ring
√

dags
√

lis, liq ×

other-usp
√

ring
√

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

Table 2
Maintenance of the universal stability property in faulty adversarial models. The symbols have the same meanings as in Table 1. The results for the
combination of non-faulty nodes and non-faulty edges are omitted, since they are the same as in Table 1.

Models node-RnT node-nRnT-B node-nRnT
node-nRT

non-faulty edge

ring
√

dags
√

lis, liq ×

other-usp
√

ring
√

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

It is clear that a systemwith a combination of models, in which at least one of them can produce some type of instability,
can automatically suffer from the same instability. Thus, those results on instability that we obtained in Sections 3 and 4 (see
Tables 1 and 2) apply directly to the combined adversarial models incorporating any of the models in which the negative
result arises. In the following we study the universal stability of networks and protocols in combined adversarial models,
considering only those combinations of models that guarantee universal stability when considered separately.

When considering the universal stability of rings, the combined models still to be studied are those combining either
edge-R or edge-nR-B in their links, and node-RnT or node-nRnT-B in their nodes. When considering the universal stability of
directed acyclic graphs, only the combined model (edge-R,node-RnT) needs still to be studied. We study all these combined
models in the following. First, let us point out the fact that systems in the (edge-R,node-RnT) model can be simulated by
systems in the edge-R model. As we will see, this will have further implications.

Theorem 30. Any system S = (N , A, P ) in the (edge-R,node-RnT) model can be simulated by a system S ′
= (N , A′, P ) in

the edge-R model.
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Proof. Let A be an (r, b, w)-adversary for N in the (edge-R,node-RnT) model. Assume that A at time t has an associated
triple ⟨Pt , Et , Vt⟩ following the same idea used in Theorem 18, we replace node failures by outgoing link failures. Thus, A′

at time t has associated tuple ⟨Pt , E ′
t⟩ where

E ′

t = Et ∪


∪

u∈Vt
{e ∈ E(N ) | e = (u, v)}


.

As the behaviour of the queues in the (edge-R,node-RnT) model is the same as in the edge-R model, the result follows. �

With this result, any (positive) network or protocol stability result from the edge-R model can be transferred to the
(edge-R,node-RnT) model. Thus, from Corollary 4 we obtain the following result.

Corollary 31. Directed acyclic graphs and rings are universally stable in the (edge-R,node-RnT) model.

Moreover, recall that Corollary 5 stated that universal stability of networks in the edge-Rmodel is equivalent to universal
stability of networks in the aqt model. Taking also into account that the set of networks that are not universally stable in
the aqtmodel is also not stable in the edge-R, we can conclude the equivalence also between the (edge-R,node-RnT) model
and the aqtmodel.

Corollary 32. A networkN is universally stable in the (edge-R,node-RnT) model if, and only if,N is universally stable in the aqt
model.

Since universal stability in the aqtmodel can be decided in polynomial time [3], we can then state that

Corollary 33. The universal stability of a given network in the (edge-R,node-RnT) model can be decided in polynomial time.

From Theorem 26 we know that any system S = (N , A, P ) in the node-RnT or node-nRnT-B model, in which all the
nodes ofN have output degree at most one, can be simulated by a system S′

= (N , A′, P ′) in the edge-Rmodel. Therefore,
for the particular case of lines and rings, we have the following result when taking into account Corollary 4.

Theorem 34. Lines and rings are universally stable in the (edge-R, node-RnT) model and in the (edge-R, node-nRnT-B) model.

In Theorem 18 we showed that any system S = (N , A, P ) in the node-RnT model can be simulated by a system
S ′

= (N , A′, P ) in the edge-R model. Also from Theorem 13, we know that any system S = (N , A, P ) in the edge-
nR-B model, in which all the nodes of N have output degree at most one, can be simulated by a system S′

= (N , A′, P ′)
in the edge-R model. Those simulations can be extended to combined models in which the adversarial model of the nodes
does not change. Therefore, for the particular case of lines and rings, we have the following result.

Theorem 35. Lines and rings are universally stable in the (edge-nR-B, node-RnT) model and in the (edge-nR-B, node-nRnT-B)
model.

As a consequence of the instability results obtained in Sections 3 and 4, the instability of some of the protocols considered
in this work can be directly stated in some combined models. Thus, only the universal stability of sis, nfs and ftg in the
(edge-R,node-RnT) combined adversarial model remains to be studied. As we have just shown in Theorem 30, systems in
the (edge-R,node-RnT) model can be simulated by systems in the edge-R model, and this allows us to transfer any positive
network or protocol stability result from the edge-Rmodel to the combined (edge-R,node-RnT)model. Thus, fromCorollary 6
we obtain the following result.

Corollary 36. sis, ftg, and nfs are universally stable in the (edge-R,node-RnT) model, while fifo, lifo, lis, liq, ntg, and ffs are
not universally stable in the (edge-R,node-RnT) model.

6. Conclusions

Themain contribution of this paper is twofold: first, an important effort has beenmade in properly defining and unifying
concepts and techniques in a rigorous and formalway; second, exhaustive study and analysis have beenmade of the effect of
edge or/and node failures on the stability of networks and protocols in relation to the way those failures are administrated.
Moreover, to the best of our knowledge, node failures were never studied before when studying stability in the context
of adversarial systems. After some years of study on the stability of adversarial systems, we observed that the generated
literature had some clear gaps in unifying the definition of some basic concepts and describing properly the techniques
used. An important part of this work aims at overcoming this problem and fixing that notation for the future.

Using as base model the aqt for static networks, we have proposed extensions for dynamic packet-switched networks
in which short-lived link and/or edge failures might occur. Different models can be considered, depending on how the
management of link failures or node failures affects the accessibility to their queues and depending also on where the
affected packets are stored during the failure. Table 3 summarizes the most relevant results of our work concerning the
universal stability of networks and protocols. The rows in Table 3 consider the node-faulty models, while the columns
consider the edge-faulty models, both from less tomore restrictive. Thus, the results at the leftmost upper cell represent the
results for aqt, and the rest of the results in the first row and first column of the table state the results for the homogeneous
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Table 3
Summary of results: Maintenance of the universal stability property in faulty adversarial models. Rows depict different node-failure models, while
columns depict different edge-failure models, and thus each cell summarizes the results for systems combining the corresponding node and edge failure
models. Then, the results at cell (1, 1) (non-faulty nodes and non-faulty edges) correspond to the basic aqtmodel. The symbol

√
means that the network

(respectively, the protocol) is universally stable, while the symbol × means that it is not. The symbol other-usp represents the other aqt universal stable
protocols mentioned in this paper, i.e. sis, nfs, and ftg.

MODELS non-faulty edge edge-R edge-nR-B edge-nR

non-faulty node

ring
√

dags
√

lis, liq
√

other-usp
√

ring
√

dags
√

lis, liq ×

other-usp
√

ring
√

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

node-RnT

ring
√

dags
√

lis, liq ×

other-usp
√

ring
√

dags
√

lis, liq ×

other-usp
√

ring
√

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

node-nRnT-B

ring
√

dags ×

lis, liq ×

other-usp ×

ring
√

dags ×

lis, liq ×

other-usp ×

ring
√

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

node-nRnT
node-nRT

ring ×

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

ring ×

dags ×

lis, liq ×

other-usp ×

cases, i.e., for the (exclusively) edge-faulty or node-faulty models. The rest of the cells show the results for the combined
models, where both link and nodes might fail.

Concerning networks, it is worth mentioning the fact that only in one of the model combinations (edge-R with node-
RnT) is the property of universal stability robust with relation to aqt. In the rest of the combinations, even very simple
directed acyclic network topologies (and thus of course any network containing those topologies) can be made unstable
when failures occur. Ring topologies remain universally stable under more models (and combinations of them) than simple
directed acyclic topologies do. Interestingly enough, rings become not universally stable as soon as the failures at the edges
and/or at the nodes block their respective receiving capabilities and no extra buffers are available.

It is clear from our results that the combination of the edge-R model with the node-RnT model, in which the queues
are always accessible, would be preferable since it is robust (in terms of network stability) when related to the aqt model.
This management form assures the same stability conditions for faulty communication networks as does the aqtmodel for
non-faulty ones. This is an especially interesting and desirable property, since it is transferring the conditions for stability
from a non-faulty environment to a faulty one; however, it is quite unrealistic as an assumption. When the access to the
queues corresponding to failed edges cannot be assured, then a management in the way considered in the buffered models
is preferable since it assures at least universal stability of simple topologies such as lines and rings.

Concerning protocols, it is interesting to observe how lis and liq, which are known to be universally stable under aqt,
easily lose this property as soon as failures are considered, even when they occur only at nodes or only at links and even
when those failures aremanaged in the simplest way. The protocols sis,nfs, and ftg (which are also universally stable under
aqt) remain so under the receiving models edge-R and node-RnT and their combination, but they also lose the property as
soon as failures impede the reception of packets.

Open problems

Focusing on the proposedmodels, it would be especially interesting to provide a characterization for universal stability of
networks in themodels inwhich someof the aqtuniversally stable networks are not universally stable. This characterization
will allow us to asses the equivalence of models from the point of view of network universal stability, as we have done
between the aqtmodel and the edge-R and node-RnTmodels and the model that combines both. Although we believe that
the edge-nR-B model is equivalent, in this sense, to the node-nRnT-B model, to prove this fact an exact characterization of
the universal stable networks in both models is needed. In relation to this, another related interesting question is whether
the universally stability of networks under faulty models can be decided in polynomial time.

The models presented in this work consider that all the links, respectively nodes, of the network share the same failure
management strategy. It would be of interest to study the stability of heterogeneous systems, i.e., systems whose nodes
and links do not share the same failure management forms. For a heterogeneous faulty environment, it seems natural to
consider that the adversary could also be restricted by the constraint proposed in Eq. (2) (but, of course, other constraints
might also be appropriate). An important matter in the study of faulty heterogeneous systems would be the study of the
influence of certain types of failure management and the importance of their incidence and location in the system. This
would give us some knowledge about system configurations with certain stability guarantees or, from the opposite point of
view, knowledge about which system configurations are not convenient because of their potential to provoke instability.

Observe that we have obtained very strong instability results as soon as the queues kept at a node are not accessible
during a failure. This is due to the fact that we can make the tail of a node fail and use this fact to overflow the network



C. Àlvarez et al. / Theoretical Computer Science 412 (2011) 6855–6878 6875

Fig. 7. Network N , with V (N ) = {u, v, w} and E(N ) = {(u, w), (w, v), (u, v), (v, u)}.

while preserving the adversary restrictions. A better understanding of the behavior of such a system under other adversary
restrictions is an interesting open problem.

The kind of failures considered in this work are due to misbehavior of the communicating links or in the accessibility to
the queues. We have not considered other sources of failure inspired by the classical Byzantine faults (see [18]), which are
due to misbehavior in the computation. In the aqt setting it would also be of interest to analyze other faults coming from
potential misbehavior in the outcome of the queuing policy (violating the pre-established rule) or deviations in the time of
serving packets (violating the greedy assumption).

Othermodels for dealingwith adversarial traffic and failure under other forms of failuremanagement are also of interest,
for example, adversarial models that drop those packets that suffer long delays due to failures along their traversal, and
require a posterior packet retransmission. One might also require additional properties on the trajectories of the packets,
in order to minimize (or to overcome) the effect of a failure, for example to require that, during a given period of time,
the packets in the system are guaranteed to describe edge/vertex disjoint trajectories. Also related to this latter option of
requiring extra properties on the paths, one could consider an alternative approach, which is to compute backup or repair
routes that allow the failure to be repaired locally by re-routing the affected packets to their backup routes.

The methodology used in this work to obtain most of our proofs of stability is based on system simulations. We believe
that such a technique will be helpful in comparing the global behaviour of different adversarial models that incorporate
other features of interest.

Appendix. More proofs for instability based on induction

Lemma 7. liq is not universally stable in the failure model.

Proof. Consider the network N = (V , E), with vertex set V (N ) = {u, v, w} and edge set E(N ) = {(u, w), (w, v),
(u, v), (v, u)}, depicted in Fig. 7. Assume an initial configuration consisting of s packets, s/2 of them located at the node
w that want to cross the path {wvu}, and the other s/2 packets located at the node u that want to cross the path {uvu}. The
following adversary makes the network described above unstable under liq.

Round 1: For the first s steps, we inject a set α of rs packets that want to traverse the path {vuv}. During all that time, a
constant flow of packets from the initial configuration will also arrive to v. Since the protocol is liq, and since those packets
from the initial configuration have been queued up in the system for a longer time than the newly-injected packets from α,
they have priority to pass node v. Thus, the packets from α will remain stacked at node v at the end of the round.

Round 2: For the next rs steps we inject a set β of r2s packets that follow the path {vuwv} together with a set γ of r2s packets
that follow edge (u, v). Those packets compete with the set α. At the end of the round there will be r2s packets waiting to
traverse the path {vuwv} and r2s packets waiting to traverse {uv}.

Round 3: For the next r2s steps we inject a set δ of r3s packets that follow the path {uv} together with a set η of r3s packets
that follow the path {uwvu}. Those packets compete with the surviving packets and at the end of the round there will be
r3s packets waiting to traverse {uv} and r3s packets waiting to traverse the path {uwvu}.

Round 4: For the next r3s steps we make link (w, v) fail for r4s steps and inject a set of r4s packets that follow the path
{uvu}. Those packets compete with the surviving packets of the previous round and the failures keep some of the packets
waiting to traverse link (w, v). So, at the end of the round there will be r4s packets waiting to traverse the path {wvu} and
r4s packets waiting to traverse the path {uvu}.
At the end of the fourth round, we are in the initial situation but with a set of 2r4s packets in the system instead of s. For
r > 0.841, we have that 2r4s > s and thus by repeating the set of rounds the number of packets in the system grows
unboundedly, thus making the system not stable under liq.

Observe that the proposed adversary obeys the restrictions of the failure model. �

Theorem 9. For every injection rate 0 < r < 1, there is an n0 > 1 such that any n-line graph with n ≥ n0 is not r-stable in the
edge-nR model under protocols sis, lifo, ntg, nfs, and ffs.

Proof. Let k = ⌈2/r⌉, ℓ = ⌈k/r⌉ and n0 = 5 + ℓ. Observe that rk > 1. Consider an n0-line graph with edges labelled as in
Fig. 5(a). We assume that initially the network is empty and that the protocol is sis. The adversary operates in the following
rounds.

Round 1: For the first ℓ steps, we inject a set α of k packets that want to traverse the line starting at ea and ending at ed. Note
that due to the length of the line all the injected packets will stay in the system at the end of the round, distributed along
the line.
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Round 2: Edges ed fails for n0 steps, this guarantees that all the α packets will be waiting at ec at the end of the round. So, at
the end of this round there are k packets queued at ec .

Round 3: For the next ℓ steps, ed fails andwe inject a set β of k packets that want to traverse the line starting at ea and ending
at ec .

Round 4: Edge ed and ec fail for n0 steps. Again this provides enough time to guarantee that all the β packets are waiting at
eb. At the end of this round there are k packets at the queue of ec and k packets at the queue of eb, all of them requiring ec .

Round 5: For the next k steps, we inject a set γ of rk packets that want to traverse the line graph starting at ea and ending
at ed. Since the scheduling policy is sis the β packets queued at eb leave and, at the end of this round, there will be the k
packets of the α set still at ec . Furthermore, there are rk packets traversing the line with final destination ed.

Round 6: Edge ed fails for n0 steps. Thus all the set γ will be waiting at ec after those steps. At the end of this round there are
k + rk packets queued at ec , all with destination ed.
The adversary continues repeating rounds 3 to 6, thus creating at every completed phase an additional increase at edge ec
of rk > 1 packets with respect to the quantity of packets queued at this edge at the beginning of every phase. The above
construction shows instability of a line graph for sis, but can be also applied for lifo and ntg, nfs and ffs (with an adequate
tie breaking). Furthermore, observe that in the above description we have that ω = n0.

The above adversary will make unstable any network containing a path of length n0, in particular any n-line graph with
n ≥ n0. �

Theorem 10. For every injection rate 0 < r < 1 there is an n0 > 1 such that any n-fork graph with n ≥ n0 is not r-stable in the
edge-nR model under ftg.

Proof. Let k = ⌈2/r⌉, ℓ = ⌈k/r⌉ and n0 = 4 + ℓ. Observe that rk > 1. Consider an ℓ-fork graph with edges labelled as in
Fig. 5. The adversary operates in phases. During each phase φ ≥ 0 (rounds 1–4) we will accumulate rk packets at the queue
of ec . Let us suppose that at the beginning of phase φ there are k + φrk packets queued at edge ec with destination ed.6 The
four rounds composing every phase φ ≥ 0 are described in the following. It is easy to see by induction on the number of
phases φ that the number of packets in the system grows up unboundedly.

Round 1: For ℓ steps, k packets with destination ee are injected in edge ea. During all these steps edge ed fails, thus
accumulating all the packets still queued at edge ec .

Round 2: Edges ed and ee fail for n0 steps. At the end of the round, packets with destination ed or ee are waiting at the queue
of ec . At the queue there are k + φrk packets with destination ed and k more packets with destination ee.

Round 3: For the next k steps, the adversary injects a set β of rk packets at edge ea with destination ed. Since neither edge
ed nor edge ee fails a tie arises. ftg solves the tie in such a way that the k packets at the queue of ec with destination ee will
flow to ee.

Round 4: Edge ed fails for the next n0 steps, time enough to guarantee that the β packets get queued at edge ec . At the end
of this round there are k + (φ + 1)rk packets at the queue of ec with destination ed.
The adversary continues repeating the same sequence of rounds, thus creating at every completed phase an additional
increase of rk packets. Furthermore, observe that in the above description we have ω = n0. Again the adversary will make
unstable any network containing an n0-fork graph. �

Lemma 12. lis and liq are not universally stable in the edge-nR model.

Proof. Consider the network N = (V , E), with vertex set V (N ) = {u, v, w} and edge set E(N ) = {(u, w), (w, v),
(u, v), (v, u)}, depicted in Fig. 7. Assume an initial configuration consisting of s/2 packets located at the node u that want
to cross the path {uwvu} and a set of s/2 packets located at the node u that wants to cross the path {uvu}.

The adversary follows the same four rounds as the adversary used for the proof of Lemma 7. Since no failures occur
during the first three rounds, at the end of the third round, both under liq and lis, the packet distribution on the network is
as follows:

• there are r3s packets waiting to traverse only the edge (u, v), and
• r3s packets waiting at node u to traverse the path {uwvu}.

In the fourth round, the adversarymakes the link (w, v) fail and, sincewe are dealingwith the edge-nRmodel, the packets
remain blocked at their initial position at node u (i.e., with path {uwvu} still to traverse).

Thus, at the end of the fourth round, the system has a configuration analogous to the initial one but with 2r4s packets
in the system instead of s. For any injection ratio that makes 2r4s > s (i.e., for r > 0.841), the infinite repetition of the
described rounds makes the system not stable, under both liq and lis. �

6 To start from an empty initial configuration just consider two initial preceding rounds: (first round) for k/r steps, inject k packets at ea with destination
ed , and (second round) edge ed fails enough to guarantee that all the packets get blocked at the queue of ec .
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Theorem 16. For every injection rate 0 < r < 1, there exists an n0 > 0 such that the n-fork graph, for n ≥ n0, is not r-stable in
the edge-nR-B model under any of the following protocols: lifo, sis, ntg, ftg, nfs, and ffs.

Proof. Given a valid injection rate r , let k = ⌈2/r⌉, ℓ = ⌈k/r⌉ and n0 = 4 + ℓ. Observe that rk > 1. Consider a 4 + ℓ-fork
like the one depicted in Fig. 5, whose length depends on r . In that network, we denote as vf the source node of the forking,
i.e., let vf be the target node of link ec and the source node for links ed and ee. Again we suppose that the initial configuration
is empty. The following adversary can make the network not stable for any of the above-mentioned greedy protocols.

Round 1: For the first ℓ steps, the adversary injects a set α of k packets of the form (ea, . . . , ed).

Round 2: The edge ed fails for the next n0 steps, time enough to make all the set α accumulate in the queue of node vf .

Round 3: For ℓ steps, the edge ed continues failing and a set β of k packets is injected, which wish to traverse the path
(ea, . . . , ee).

Round 4: The edges ed and ee fail for the next n0 steps. This is enough to accumulate the packets from the α and β sets in the
queue of node vf . At the end of this round there are 2k packets in the queue of this node.

Round 5: We consider now an interval of time of k steps. This represents that, except in the case that both edges ed and ee
fail, k packets will leave the queue at edge vf . The adversary injects a set γ of rk packets of the form (ea, . . . , ed). The packets
which abandon the queue at vf are the packets from the β set. An additional round has to be considered.

Round 6: The edge ed fails for n0 steps, thus blocking the packets from α and the packets from γ at the queue of the vertex vf .
At the end of the sixth round, there are k+ rk packets in the queue of vf with destination ed. By indefinitely repeating rounds
3 to 6, after rounds 1 and 2, the system accumulates rk additional packets at every iteration. The number of packets in the
system grows unboundedly, thus making the system unstable under the mentioned protocols. For the protocols ntg, ftg,
nfs and ffs, the forms of the packets are valid to bring the system to instability, solving ties appropriately. Furthermore,
observe that in the above description we have ω = n0. �

Lemma 17. lis and liq are not universally stable in the edge-nR-B model.

Proof. Consider the graph used in the proof of Lemma 7 (see Fig. 7). Consider a slightly different initial configuration
consisting of s packets, where s/2 of them are located at the node u and want to cross the path {uwvu}, and s/2 packets
are located at the node u andwant to cross the path {uvu}. Consider also the adversary given for the proof of Lemma 7. Since
no failures occur in the first three rounds, the configuration obtained after the third round is the same when applying that
adversarial pattern under lis and liq in the edge-nR-B model, i.e., at the end of the third round there will be r3s packets
waiting to traverse {uv} and r3s packets waiting to traverse the path {uwvu}.

Let us consider now also the same injection and failure pattern for the fourth round, i.e., for r3s steps, wemake link (w, v)
fail for r4s steps and inject a set of r4s packets that follow the path {uvu}. Those packets compete with the surviving packets
of the third round and the failures keep some of the packets waiting to traverse link (w, v). In the edge-nR-B model, those
packets wait in the queue of the previous link (u, w) (in contrast to what happens in Lemma 7, where theywait in the queue
of (w, v) itself). At the end of the fourth round there will be r4s packets waiting to traverse the path {uwvu} and r4s packets
waiting to traverse the path {uvu}.

At the end of the fourth round, we are in the initial situation but with a set of 2r4s packets in the system instead of s. The
number of packets grows with respect to the initial configuration for r > 0.841, i.e., when 2r4s > s. �

Lemma 23. lis and liq are not universally stable in the node-RnT model.

Proof. This result can be easily shown by applying the adversary given in the proof of Lemma 7 over the graph given in
Fig. 7, where every failure of edge (w, u) is replaced by failure of the node w. �

Theorem 28. For every injection rate 1
2 < r < 1, there is an n0 > 1 such that any n-crossing graph with n ≥ n0 is not r-stable

in the node-nRnT-B model under any greedy protocol.

Proof. Let n > 2 and consider the n-crossing graph depicted in Fig. 8, where we denote as λ1 and λ2 the two n-line graphs
with endpoints in the crossing vertex vc , and as v1 and v2 the tail vertices of the two edges outgoing from the crossing vertex.

Let us assume that initially there are 2n packets stored in the extra buffer of the crossing vertex vc . An adversary playing
the following rounds indefinitely will make the network unstable, independently of the greedy protocol used.

Round 1: For the first n steps, the adversary injects rn packets at the first node of λ1 with destination v1, and also rn packets at
the first node of λ2 with destination v2. Those injections are done simultaneously at regular intervals of length 1/r starting
at time 1. Since |λ1| = |λ2| = n, none of the injected packets have arrived to the crossing vertex vc at the end of this round.

Round 2: The crossing vertex vc fails for n steps, thus at the end of the round all the packets injected in the previous round
will be stored in its extra buffer.

Round 3: For the next 1/r steps no packet is injected and no node is failed.
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Fig. 8. The n-crossing graph used in Theorem 28.

At the end of the third round, there will be 2rn + n − 1/r packets stored in the extra buffer of the crossing vertex vc .
Observe that the last round provides time to guarantee that in the interval between the last failure and the first injection
the adversary restriction is fulfilled.

By infinite repetitions of the above pattern of injections and failures, this adversary would make the system unstable for
any r such that 2rn + n − 1/r ≥ 2n + 1, in particular this holds for any r such that

r ≥
1
4

·
n + 1 +

√
n2 + 10n + 1
n

.

Observe that this result is independent of the protocol used in the system. Observe also that 0.5 is the lower bound for the
instability of the n-crossing graphs, since

lim
n→∞


1
4

·
n + 1 +

√
n2 + 10n + 1
n


=

1
2
. �
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