
Performance of Scheduling Policies in Adversarial 
Networks with Non-synchronized Clocks 

Antonio Fernández Anta • José Luis López-Presa • 
M. Araceli Lorenzo • Pilar Manzano • 
Juan Martínez-Romo • Alberto Mozo • 
Christopher Thraves 

Abstract In this paper we generalize the Continuous Adversarial Queuing Theory 
(CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, 
pp. 144-155,2005) by considering the possibility that the router clocks in the network 
are not synchronized. We ñame the new model Non Synchronized CAQT (NSCAQT). 
Clearly, this new extensión to the model only affects those scheduling policies that 
use some form of timing. In a flrst approach we consider the case in which although 
not synchronized, all clocks run at the same speed, maintaining constant differences. 
In this case we show that all universally stable policies in CAQT that use the injec-
tion time and the remaining path to schedule packets remain universally stable. These 
policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). 
Then, we study the case in which clock differences can vary over time, but the máx
imum difference is bounded. In this model we show the universal stability of two 
families of policies related to SIS and LIS respectively (the priority of a packet in 
these policies depends on the arrival time and a function of the path traversed). The 
bounds we obtain in this case depend on the máximum difference between clocks. 

A. Fernández Anta 
LADyR, GSyC, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain 

J.L. López-Presa 
EUITT, Universidad Politécnica de Madrid, Madrid, Spain 

M.A. Lorenzo • R Manzano • A. Mozo 
EUI, Universidad Politécnica de Madrid, Madrid, Spain 

J. Martinez-Romo 
ETSII, Universidad Nacional de Educación a Distancia, Madrid, Spain 

C. Thraves (El) 
LaBRI, Université Bordeaux I, domaine Universitaire, 351 cours de la Liberation, 33405 Talence, 
France 
e-mail: cbthraves@gmail.com 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148660795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cbthraves@gmail.com


This is a necessary requirement, since we also show that LIS is not universally stable 
in systems without bounded clock difference. We then present a new policy that we 
cali Longest in Queues (LIQ), which gives priority to the packet that has been waiting 
the longest in edge queues. This policy is universally stable and, if clocks maintain 
constant differences, the bounds we prove do not depend on them. To flnish, we pro-
vide with simulation results that compare the behavior of some of these policies in a 
network with stochastic injection of packets. 

Keywords Scheduling • Continuous adversarial queuing theory • Adversarial 
models • Clock skew • Clock drift • Clock synchronization 

1 Introduction 

Stability is a requirement in a packet switched network in order to be able to provide 
some quality of service. Stability means that the amount of trafflc that is being routed 
in the network is always bounded. It is well known that an appropriate scheduling of 
packets is fundamental in order to guarantee stability [3]. A fundamental question is 
to identify scheduling policies that are able to guarantee stability, and among these, 
policies that guarantee good quality of service (e.g., latency). 

The study of the capability of scheduling policies to guarantee stability under 
worst-case situations has been done with adversarial models [3, 6-8, 10]. In these 
models, the arrival of packets to the network is controlled by an adversary which de
fines, for each packet, the instant and node in the network where it is injected, and 
very often, its pafh in the network. To avoid the overload of links in the network, 
the number of packets that the adversary can inject is bounded. As we said, the main 
objective of these models is to explore the ability of scheduling policies at the routers 
to maintain the system stable or provide good quality of service even in the worst 
conditions. 

1.1 Adversarial Models 

In this general framework two main adversarial models have been defined. In the Per-
manent Session Model [7, 8, 10], also known as the (a, p)-regulated injection model, 
all the trafflc in the network is grouped in sessions, whose route and máximum packet 
injection rate are defined by the adversary. The adversary is restricted on the rates a¡ 
that it can assign to sessions in the sense that the total rate of the sessions that cross 
a link does not satúrate the link. Additionally, the adversary is in control of the ar
rival of packets. The adversary always tries to créate instability or to increase the 
máximum latency experienced by packets. There have been many works exploring 
this model, and proposing stable policies with different guarantees of quality of ser
vice (e.g., [7, 8, 10-12]). It is also interesting to observe that, in this model, FIFO (or 
FCFS), which is the most popular scheduling policy by far, can be made unstable at 
any constant network load [1]. 

The Temporary Session Model, commonly known as the Adversarial Queuing 
Theory (AQT) model [3, 6], relaxes the restriction that packets are assigned to ses
sions. This relaxation is similar to allowing the adversary to dynamically change the 



sessions over time. In this model, each packet is injected with its own path and the 
only restriction on the adversary is that it cannot overload any link, in an amortized 
sense. The AQT model assumes that the network evolves in steps, and in each step 
at most one packet crosses each link. The Continuous AQT (CAQT) model, recently 
presented in [5], is an extensión of the AQT model in which packets can have arbi-
trary sizes, and links have different bandwidths and propagation delays. This model 
is closer to reality than AQT, and due to the fact that AQT is a particular case of 
CAQT, the instability results obtained for AQT remain valid for CAQT. Additionally, 
it was shown in [5] that many positive results under the AQT model also hold under 
the CAQT model. The system model we consider in this paper is strongly based on 
the CAQT model. 

Time-Based Scheduling Policies From all the policies that have been shown to be 
stable in all networks (which we cali universally stable) under the AQT and CAQT 
models, those that seem to provide the lowest end-to-end packet delays are based on 
timing. In fact, it has been shown by Weinard [14] that for any policy in the family 
Wifhout-Time-Stamping strategies, there are w-node under-loaded networks in which 
the delays and queue sizes are 2 Q ' ^ . A policy of this family is assumed to know the 
network topology, and it assigns the priority of a packet as a function of its path and 
the number of edges it already crossed. This implies that, in general, it is convenient to 
use some timing information for scheduling. Unfortunately, the simplest time-based 
policies, can also suffer of large delays. For instance, for Shortest in System (SIS), 
the policy that gives the highest priority to the newest packet in the network, there are 
networks in which the delays and queue sizes are 2Q(-^"} [3]. Similarly, for Longest 
in System (LIS), the policy that gives the highest priority to the oldest packet in the 
network, there are networks with diameter d in which the delays and queue sizes are 
2Q(d) [ 2 l 

The good news are that time-based policies can in fact provide low delay guaran-
tees. For instance, in [3] it is presented a randomized scheduling algorithm that guar-
antees delays polynomial on the network parameters. This algorithm basically uses a 
longest-in-system strategy with random permutations. The deterministic scheduling 
algorithm with polynomial delays presented in [4] uses a similar approach. Addition
ally, there are simulation studies [13] which show that LIS may in fact behave much 
better in practice than one may expect from the lower bounds mentioned above. 

Clocks, Clock Drifts, and Clock Skews The above mentioned results for time-based 
scheduling policies are obtained in network models in which it is implicitly assumed 
that each node in the network has a local clock to provide the time, and that all these 
clocks are synchronized and provide the same time. However, this latter assumption 
is not realistic in practice, since the oscillation frequency of each computer timer is 
different, what produces different clock drifts. The consequence of these drifts is that 
it is not unusual that different clocks provide different times. The differences between 
the clock times is what we cali clock skews. In practice, in order to limit the effect of 
clock drifts, and to bound the clock skews, there are mechanisms, like the Network 
Time Protocol (NTP), that allow the resynchronization of clocks. 



The Non-synchronized CAQT Model In this paper we propose a model of adver-
sary in which docks do not need to be synchronized. We cali the new model Non-
synchronized CAQT (NSCAQT), since it is basically the CAQT model with this addi-
tional generalization. Under this model we will study the behavior of different queue 
scheduling policies which depend on time and can be affected bofh by dock skews 
and dock drifts. To study these policies, we need to make assumptions on how they 
use the local docks. For instance, for LIS and SIS we will assume that packets are 
assigned the local dock valué of fheir injection node at their injection time, valué that 
they carry with them and is used for scheduling. 

In this paper we will study three main variations of the NSCAQT model. In the 
flrst one we assume that the system has dock skews but no dock has drifts. Henee, 
in this model clocks do not have the same time, but their time differences remain 
constant. We cali this the NSCAQT model with constant skews. The second model we 
will study is a model in which skews can vary over time, but there is a bound on the 
máximum difference between the time of the clocks. We cali this model the NSCAQT 
model with bounded skews, and is very suited to model a network in which a protocol 
like NTP is used to periodically resynchronize all the clocks. The third model we 
explore has constant drifts and no resynchronization mechanism guarantees that the 
skews are bounded. We cali this model the NSCAQT model with constant drifts. 

1.2 Contributions 

The main contribution of this work is the detailed deflnition of a model in which 
clocks need not be synchronized. We have not found a model that considers this pos-
sibility in any previous adversarial model. Then, the flrst result we provide is on the 
NSCAQT model with constant skews. We study under this model scheduling policies 
that assign priorities to packets based on their injection times and their remaining 
paths. For these policies we will show how the NSCAQT system can be transformed 
into a CAQT system by changing the topology of the network and the adversary. As a 
consequence, we conclude that any such policy that is universally stable under CAQT 
is also universally stable under NSCAQT with constant skews. 

We then explore universal stability under the NSCAQT model with bounded 
skews. We flrst define two families of policies that include SIS and LIS, respec-
tively, as special cases. Then we show that all the policies in these families are uni
versally stable in this model. We cali these families Shortest in System considering 
Path (SISP) and Longest in System considering Path (LISP) respectively. The policies 
from these families assign packet priorities depending on bofh the injection time and 
a function of the packet path and the number of edges it already traversed. 

Unfortunately, for the universally stable policies that we identifled with the previ-
ously mentioned results, all the upper bounds on delays and queue sizes that we could 
prove depend on the dock skews. In fact, in several cases it can be easily shown that 
these parameters become larger as the skews grow. Then, the question is whether 
there are policies whose performance does not depend on the dock skews. We in
troduce a new policy, Longest in Queues (LIQ), which gives priority to the packet 
that has been waiting in queues the longest. We show that this policy is universally 
stable in the NSCAQT model with bounded skews. More interestingly, we show that 



in the NSCAQT model with constant skews this policy has an upper bound on the 
end-to-end delay that does not depend on the skews and is cióse to that of LIS in 
CAQT. 

Finally, we present some simulations which try to shed some light on the behavior 
of LIS, SIS, and LIQ in a network with stochastic arrival patterns, instead of adver-
sarial, in the NSCAQT model with constant skews. The results show that, as expected 
by analysis, LIQ is not affected by the clock skews, and presents the best performance 
from among the three policies. 

1.3 Structure 

The structure of the rest of the paper is the following. In Sect. 2 we define the 
NSCAQT model in detail and introduce some notation to be used on the paper. In 
Sect. 3 we study stability under the NSCAQT model with constant skews. In Sect. 4 
we study the policies in SISP and LISP under the NSCAQT model with bounded 
skews. In Sect. 5 we show the instability of LIS in the NSCAQT model with con
stant drift. In Sect. 6 we explore the performance of LIQ under the NSCAQT models. 
Finally, in Sect. 7 we present the simulations that have been done. 

2 System Model 

Like most previous adversarial network models, the NSCAQT system model has 
three major elements: an underlying network Q, a scheduling policy used V, and 
an adversary A. With these elements, the evolution of the system can be seen as a 
game between the adversary, which injects packets in the network trying to créate 
instability, and the scheduling policy, that decides which packets move along their 
paths in the network, trying to prevent instability. The model of system considered in 
this paper is a direct extensión of that presented in [5]. 

The Network In this model a network is modeled by a directed graph Q, formed 
by a set of nodes V(Q), representing the hosts and routers, and a set of edges E(Q), 
representing links between the nodes.1 Each link e of the network has associated a 
positive finite bandwidth Be, which determines the transmission speed of the link, 
and a finite propagation delay Pe > 0. We use a specific notation for the largest 
propagation delay and smallest bandwidth as follows: .Pmax = maxes£(g){f>

e} and 
#min = mme€£(g){#e}- (Since Q is finite, these valúes are well defined.) 

The Bounded Adversary In a system with network Q, the adversary A defines the 
traffic pattern, continuously deciding which packets are injected. Additionally, for 
each packet p, the adversary chooses the moment of injection To(p), the source node 
vo(p), the destination node v,¡ (p), and the path the packet has to traverse U(p) = 
(eo(p), e\{p),..., e¿ _i (/?)). (When clear from the context, wemay omit the packet 
p from the notation.) Notice that dp represents the length of the path packet p has to 

Throughout the paper we use interchangeably the terms link and edge. 



~P~1 

Fig. 1 Path n (/?) assigned to a packet p in the network 

traverse. We assume that a packet path is edge-simple, i.e. it does not contain the same 
edge more than once, although it can visit the same node several times.2 We denote 
by ¿/max the length of the longest path of a packet, which is clearly open bounded by 
the length of the longest edge-simple path in the network. In Fig. 1 we represent the 
path assigned to a packet p. 

Although the adversary controls the traffic arrival, it is restricted on the load that 
it can inject to the system. We assume that the injection of a packet is instantaneous. 
Then, if Ne(I) represents the number of bits of the packets which want to cross edge 
e injected by A during an interval / , it must satisfy that 

Ne(I)<r\I\Be + b = (l-e)\I\Be + b (1) 

for every edge e and for every time interval / . We denote by r, 0 < r < 1, the long 
term rate (load) the adversary can impose on the system. For convenience we some-
times use the notation r = 1 — s, for s > 0. The parameter b,b>l,is the burstiness 
allowed to the adversary injections, which is the excess of bits allowed to arrive at any 
time during the complete game. An adversary that satisfies this condition is called an 
(r, b)-adversary. 

Packets, Queues, and Buffers Packets are sequences of bits of possibly different 
sizes. We denote by Lp the size in bits of a packet p and by Lmax the máximum size 
of a packet. Because of the above restriction (1) on the adversary and the assump-
tion of instantaneous injection of packets, it can be easily observed that Lmax < b. 
Note that b is also an upper bound on the number of packets that the adversary can 
inject instantaneously (which is achieved in the improbable case that all packets have 
size 1). 

Packets in the system follow their path traversing one edge after the other toward 
their destination. As explained in [5], in every node in the network there is a reception 
buffer for each edge entering the node and an output queue for each edge leaving the 
node. The output queue of an edge has unbounded capacity and holds the packets that 
are ready to cross this edge. The scheduling policy of the edge's output queue chooses 
the next packet to cross the edge from those in this output queue. The reception buffer 
is used to store the received portion of a packet until it has been completely received. 
Then, the packet is placed instantaneously by a dispatcher in the corresponding output 
queue or it disappears from the system if it already reached its destination. 

This assumption does not decrease the generality of the model in terms of universal stability of policies, 
since it is known that a system in which packets may traverse the same edge several times can be simulated 
by another system with only edge-simple paths [1]. 



Note that once a packet p starts to cross edge e, it will spend -¡f- + Pe units of 
time to completely cross it. As parameter of the network we have the greatest amount 
of time that a packet can spend crossing an edge, denoted ZVax, and deflned as 

{ _/_jfllílX I U 

— Y Pe) < ~ h PmzK-
Be J fimin 

Clocks As we said, the main difference between the NSCAQT model we propose 
and previous models [3, 5, 6, 10] is that we consider here the impact of clocks not 
being synchronized on the performance. In order to make the model as general as 
possible, we assume that the output queue of each edge has its own internal clock, 
called edge clock (this is clearly more general than assuming one clock per node). 
Additionally, we assume there is an external reference clock which is always on time. 
We refer to this clock as the real clock and we say that it provides the real time. We 
assume that the adversary has access to both the edge clocks and the real clock, while 
the scheduling policy at a given edge has only access to the clock of that edge. 

The difference between the real clock and the edge clock of e at real time t is what 
we cali the clock skew of e's edge clock at time t, and is denoted by <f>e(t). Then, if 
te denotes the valué of the edge clock of e at real time t, we have te = t — <f>e(t). If 
this valué changes over time, we say that the edge clock has a drift. If an edge clock 
has no drift we omit the time and denote its skew by <f>e. Note that, at any given time, 
the skew of an edge clock can be positive or negative. However, for convenience 
we assume that these skews are all non-negative if all edge-clock skews are lower 
bounded. We can do this freely since the real clock is not available to the scheduling 
policies and does not interfere in the relation between edge clocks. 

We denote by 7¡(p), 0 <i < dp, the real time at which a packet p arrives to 
the output queue of the edge e¡(/>)- Diie to clock skews, according to edge e¡(p)'s 
clock, the instant when packet p arrives to the output queue is 7¡(p) — <t>ei(P)(Ti(p)). 
Additionally, we denote by Tdp (p) the time at which p is completely received at its 
destination and leaves the system. 

Scheduling Policies As we said above, the scheduling policy is in charge of decid-
ing, whenever a link e is available, which packet from those in the output queue of e 
must be sent next across e. In this paper we only consider distributed work-conserving 
time-based scheduling policies. We say that policies are distributed if fhey do not use 
the state (and in particular the clock) of other edges to make scheduling decisions. 
Policies are work-conserving (also called greedy) if fhey always send a packet across 
the link as long as the edge's output queue is not empty. Finally, we only consider 
time-based policies, which are policies that use the edge clocks for scheduling. Note 
that policies that are not time-based are not affected by clock skews and drifts. 

We will only consider in this work systems in which all the queues use the same 
scheduling policy. The study of systems under the NSCAQT model in which different 
queues may use different scheduling policies is left for future work. 

Two of the most studied distributed work-conserving time-based scheduling poli
cies are Longest in System (LIS) and Shortest in System (SIS). The LIS policy gives 
the highest priority to the packet that has been in the system for the longest time, 



while the SIS policy gives the highest priority to the paeket that has been in the sys
tem for the shortest time. These deflnitions do not clearly show the use these policies 
make of the edge clocks. For that, we need to look at the natural implementation of 
these policies: upon arrival of a paeket p into the system, it is assigned a time-stamp, 
TS(p), which p carries with it. Then, the LIS and SIS policies only compare the time-
stamps of the packets to decide which to schedule next. The edge scheduler in LIS 
gives the highest priority to the paeket with the smallest time-stamp, while in SIS it 
gives the highest priority to the paeket with the largest time-stamp. Note that when 
clocks are not synchronized, these time-stamps are not aecurate, since the time-stamp 
for a paeket p is 

TS(p) = T0(p) -<Pe0(p)(To(p))-

These two policies have been proved to be universally stable in [5] for the CAQT 
model, where <f>e = 0 for all eeE(Q). 

In addition to these two well-known policies, we will study two families of policies 
derived from SIS and LIS, that we cali Shortest in System considering Path (SISP) 
and Longest in System considering Path (LISP), respectively. In the policies of these 
families, packets carry their time-stamp, and (when needed) the paeket path and the 
number of links traversed, so that at its edge e¡(p), paeket p is assigned a priority 
label of the form 

PL(p,i) = TS(j>) + f(Mp),i), 

where f(U(p), i) is a function which assigns a real number to each pair formed by 
a paeket path U(p) and a valué i e {0 ,1 , . . . , dp — 1}, being i the number of crossed 
edges by the paeket in its path. A policy Vf is in SISP (resp. LISP) if at each queue 
it gives the highest priority to the paeket p with the largest (resp. smallest) valué 
PL(p, i). Notice that when f(U(p), i) = 0 for all U(p) and i, Vf is equivalent 
to SIS (resp. LIS). Since the function / is deflned over the flnite sets of paths and 
number of edges crossed by a paeket, it has a máximum and a minimum valúes, that 
we denote by /m a x and / m ¡ n , respectively. 

Finally, we will consider a new policy named Longest in Queues (LIQ). In this 
policy the highest priority is assigned to the paeket that has been waiting the longest 
in all the output queues it has visited. In our model NSCAQT, in which clocks are not 
synchronized, we assume that the time in queues is measured locally at each output 
queue. The time a paeket p waits at the edge e's queue is the difference between the 
valué of the edge clock when the paeket arrives and the valué when it starts being 
transmitted, or the current valué of the edge clock if it is still waiting. The time used 
to schedule p is the sum of these waiting times in all the visited queues. 

2.1 System Stability 

To study stability and performance in paeket switching networks, we introduce the 
concept of a (Q, V, A) system to represent the game played between an adversary A 
and the paeket scheduling policy V over the network Q. In the NSCAQT model, a 
system (Q, V, A) is stable if the máximum number of packets (or bits) present in the 
system is bounded at any time by a constant that may depend on system parameters: 



the network, the adversary or the policy. A policy V is universally stable if the system 
(G,V,A) is stable on every network Q and against every (r, b)-adversary A with 
r < 1 and b > 1. 

3 Stability of Policies for Constant Clock Skews 

In this section we study the case in which all the edge clocks have zero drift, so that 
4>e is constant. This framework allows to assure the stability in a non-synchronized 
system if there is stability in a synchronized system for many policies, in particular 
for those policies that only depend on the injection time and the remaining path of 
the packets. 

We present a proof by transformation of this case. We start from a (Q, V, A) sys
tem with non-synchronized clocks, where A is an (r, b)-adversary, r < 1. Then, we 
vary the network Q and the adversary A to obtain a synchronized system (Qf,V, Af), 
where A! is an (r, b') -adversary, so that if (G',V, A!) is stable, then (Q, V, A) is also 
stable. 

Constmction ofQ' As we explained in the previous section, since we arbitrarily fix 
the real clock, we can do it so that all the clock skews are non-negative. Then, let 
Q = (V, E) be a directed graph in the NSCAQT model with constant skew (¡)e > 0 for 
each edge clock. We construct Q' starting from Q as shown in Fig. 2. 

For each edge e e E(Q) with (¡)e > 0, let Ke = \b+ rBe(j)e/2~\. Then, we add 
^max x Ke edges and Lmax x Ke nodes. New edges and nodes are denoted e1^ 
and vl,J, respectively, where / e {1, 2 , . . . , Lmax} and j e {1, 2 , . . . , Ke}. For all / and 
for all j , we place edge e1^ from node v1^ to the tail of edge e. For every edge el,J\ 
we set the bandwidth to Beij = |^ and the propagation delay to Peij = ^f. 

Remark 1 With this constmction process, a packet p of size Lp takes ^ units of 
time to be fully sent and (j)e units of time to be fully received across any edge eLp,J', 
; e { l , 2 U 

Ke 

Fig. 2 Basic process to transform Q into Q' 



Construction of A We now construct the adversary A from A. A packet that is 
injected by A at edge e of Q wifh cpe = 0 is injected exactly in the same edge at the 
same time in Q' by A. Now, let p be a packet of size L¿, that was injected in Q by *4 
at time t, such that </>«(,(;,) > 0. Then, A will inject a packet / / in (/' at time t — 4>eo(p) • 
The size of p' will be Lpi = Lp and its pafh will be 

n(p') = (el;pJ(p),eo(p),ei(p),...,edp(p)), 

where e0
p,}\p) is an edge corresponding to the construction described above. This 

edge must satisfy that no other packet has been injected in it in the previous <f>e/2 
time. Since Ke is clearly an upper bound on the number of packets of length Lp that 
can be injected in any interval of <f>e/2 time, and fhere are Ke edges for each Lp, there 
is always a suitable edge to be used. 

Under these circumstances, if packet is injected by A in time t in the queue of 
edge e, and labeled wifh an time-stamp oft — <f>e,& corresponding packet injected by 
A will arrive to the same queue at the same time t, labeled wifh the same time-stamp. 
Let us now bound the parameters of the adversary A. 

Remark 2 The packets injected by A during an interval of size | /1 + </>max are injected 
by A during an interval / ' wifh máximum size |/ | . So, since A is an (r, fc)-adversary, 
A is an (r, b')-adversary, where b' = b + </>max#max, and </>max =

 maxeS£(g){</>«}. 

We can now state the main result of this section. 

Theorem 1 Let (Q', V, A) be the synchronized system in the CAQT model obtained 
from the non-synchronized system (Q, V, A) through the above process. Let V be a 
scheduling policy which considers only the time of injection of the packets and the 
paths that the packets still have to traverse. Then, (Q, V, A) is stable if and only if 
(£', V, A) is stable. 

Proof Note that the stability of (Q, V, A) must occur for any valué of the clock 
skews, including the case in which all skews are zero. Then, it trivially follows that if 
(G, V, A) is stable, (£', V, A) is stable as well. 

In the other direction, we flrst have that the queues of the new edges e1^ in system 
(Q', V, A) never present contention since, from Remark 1 and by the construction 
of the adversary A, by the time a packet arrives the previous packet (if any) was 
already sent. Then, if we observe the output queues of the edges that Q' and Q have in 
common, we flnd that similar sets of packets arrive at the same times, wifh the same 
time-stamps, and with the same remaining paths to cross in both systems (Q, V, A) 
and (Q', V, A). Since these are the parameters used by V to schedule the packets, we 
have that the behavior of these queues in systems (G,V,A) and (Q', V, A) is exactly 
the same. So, if there is no bound on the number of packets in (Q, V, A), there is no 
bound either on the number of packets in (Q', V, A). Then we have that if (Q, V, A) 
is unstable then (Q', V, A) is unstable or, equivalently, if (Q', V, A) is stable then 
(G, V, A) is stable. D 



Corollary 1 The scheduling policies that are universally stable in CAQT and only 
consider the times ofinjection and the paths that the packets still have to traverse are 
universally stable in the NSCAQT model with constant dock skews. 

4 Stability of Policies for Bounded Clock Skews 

In this section we will study the case in which clocks may experience drifts. Henee, 
we assume here that the clock skews are not necessarily constant. However, the máx
imum difference between real time and any edge clock is bounded. As we said, this 
model flts naturally with a system in which edge clocks are periodically resynchro-
nized, for instance via NTP. 

In this section we will again adapt the real time reference clock, in order to sim-
plify the analysis and the presentation. Like in the previous section, we will as-
sume that all clock skews are non-negative, Le., for any edge e and any time í, 
<t>e(t) > 0. Additionally, since we assume that skews are bounded, we can safely de
fine </>max = max^í^Cí)}. 

Under these assumptions, we show that all policies in the families SISP and LISP 
are universally stable. Since the model NSCAQT with bounded skews is more gen
eral, this also shows that these policies are universally stable in the CAQT model 
(which was previously unknown in general). 

4.1 Universal Stability of SISP 

In this subsection we explore the stability of the new family of policies SISP de-
flned in Sect. 2, which is based on the injection time, and the path and number 
of edges already crossed by a packet. As described there, a policy Vf in SISP as-
signs to each packet p at the queue of its edge e¡(p) a priority label PL(p, i) = 
TS(p) + f(U(p), i), and gives the highest priority to the packet with the largest la-
bel. 

Now we prove that every policy in SISP is universally stable in the NSCAQT 
model when the clock skew is bounded by <?Vax- We start with the following simple 
lemma. 

Lemma 1 Let p and q be twopackets. If To(q) > 7b(p) + /max - /min + <t>m¡a., then 
p never has higher priority than q in any queue. 

Proof Let us assume that p and q meet at the output queue of edge e¡(/>) = ej(q). 
Note that <pmax - <peo(q) > 0 and that f(U(q), j) - /m i n > 0. Henee, 

PL(q, j) = T0(q) - <PeQ{q) + f(Tl(q), j) 

> T0(p) + /max - /min + 0max - <Pe0(q) + f(Tl(q), j) 

>T0(p) + fmía>PL(p,i), 

and then PL(q, j) > PL(p, i) for all i and j . D 

The proof of universal stability of the policies in SISP we present is very similar 
to that of SIS presented in [5] for the CAQT model. We flrst recall a lemma proved 



there, which limits the time spent by a packet in the queue of an edge e if there are 
k - 1 bits in the system with higher priority to cross that edge. The assumptions 
and the proof of this lemma do not depend on whether the clocks are synchronized. 
Henee, it can be applied directly to our model. 

Lemma 2 [5] Let p be a packet that, at real time t, is waiting in the queue ofedge e. 
At that instant, let k — 1 be the total size in bits ofthe packets in the system that also 
want to cross e and that may have priority over p. Then, p will start crossing e in at 
most (k + b)/{eBe) units oftime. 

Recall that, when a packet p starts crossing an edge e, it spends Pe + Lp/Be < 
•Dmax units of time until it crosses it completely. Then, using this and the previous 
lemma recursively we can prove the following result. 

Lemma 3 Let k0 = r(<pmax + /max - fmm)Bmax + b, and k¡ = £¿_i + r(ki-fí
1+b + 

Anax)#max + b,for 0 < i < dmax. When a packet p arrives to the output queue of 
edge e¡ (/?), no more that k¡ — 1 bits can have priority over it in any edge e¡ (p),for 

Proof Let us flrst consider the case i = 0. When a packet p, arrives into the system, 
from Lemma 1, the packets that may have priority over it have been injected at most 
0max + /max — /min units of time earlier than p, because, although they maybe arrived 
to the system before p, they have a greater time-stamp due to their initial edge's 
clock skew or the valué ofthe function / ( ) . The total size of these packets is at most 
r(0max + /max - /min)#max + b - 1 = k0 - 1 bits (since Lp > 1). 

Let us now assume as induction hypothesis that the claim holds for 0 > i < dp — 1. 
Then, from Lemma 2, p will arrive at the output queue of edge e¡+i(/?) at most 
(ki + b)/{eBmm) + Z)max time units after arriving at the output queue of edge e¡ (/?). 
During this time at most packets with r((fc¡ +fc)/(efim¡n) + Z>max)Bmax + b bits 
are injected that can block p at any edge. Henee packets with at most (k¡ - 1) + 
r((ki + b)/(eBmin) + Dmax)Bmax + b = ki+í - 1 bits can block p in any edge e¡{p), 
j>i + l. • 

Using these deflnitions of k¡ and the previous lemma, we can limit the size of the 
queues and the amount of time that a packet spends in the network as it was done 
in [5]. The proof of the fheorem is verbatim to the Anal part of the corresponding 
theorem in [5] and is henee omitted. 

Theorem 2 Let Q be a network and dmax the length of its longest edge-simple di-
rected path, let A be an (r, b)-adversary with r = 1 - e < 1 and b > 1, and let Vf 
be a policy in SISP. Then the system (Q, Vf, A) is stable under the NSCAQT model 
with bounded clock skews, no queue ever contains fc^-i + ¿max bits, and no packet 
spends more than 

«max» i - 2 w = 0 K' , , n 
~r «max^^max 

S^min 

units oftime in the system. 



Henee the main result of the section. 

Corollary 2 Anypolicy in SISP, and in particular SIS, is universally stable under the 
NSCAQT model with bounded dock skew, and henee under the CAQT model. 

4.2 Universal Stability of LISP 

As deflned in Sect. 2, LISP is a family of policies based on the injection time, and 
the path and the number of edges already crossed by a packet. A policy Vf in LISP 
assigns to each packet p at the queue of its edge e¡(p) a priority label PL(p, i) = 
TS(p) + f(U(p), i), and gives the highest priority to the packet with the smallest 
label. 

Now we prove that every policy in LISP is universally stable in the NSCAQT 
model when the clock skew is bounded by </>max- We start with the following simple 
lemma, which is similar to Lemma 1 in the previous section. 

Lemma 4 Let p and q be twopackets. If To(q) > 7b(p) + /max - /min + <t>m¡a., then 
q never has higher priority than p in any queue. 

Proof Let us assume that p and q meet at the output queue of edge e¡(/>) = ej(q). 
Note that <pmax - <peo(q) > 0 and that f(U(q), j) - /m i n > 0. Henee, 

PL(q, j) = T0(q) - <t>eo(q) + f(Tl(q), j) 

> T0(p) + /max - /min + 0max - <Pe0(q) + f(Tl(q), j) 

> T0(p) + /max 

> PL(p, i), 

and then PL(q, j) > PL(p, i) for all i and j . D 

Let p be a packet in the system and let t denote some real time in [T0(p), Tdp (/?)]. 
We denote by g(t) the real injection time of the oldest packet in the system at time 
í. We define Cp = m&xte[To(pyTd (p)]{t - g(t)}. Notice that Cp represents the age 
of the oldest packet in the system while p is present. For convenience we use the 
abbreviation K = /max - /min + 0max-

In the following lemma we start by bounding the amount of time, 7¡+i (p) - 7¿ (/?), 
that p takes to move from the queue of e¡ to the queue of e !+i, which allows us to 
bound the time p is in the system. 

Lemma 5 The time packet p is in the system is at most 

Tdp (p) - T0(p) < (1 - sd) (K + CP + ^ ) . 

Proof Observe that the oldest packet in the system when p arrives at the queue of 
e¡ at time T¡(p) was injected at most at time T¡(p) — Cp. Then, from Lemma 4 we 



have that p, and all the packets with higher priority than p in the queue of e¡, were 
injected during the interval [7¡(p) - Cp, To(p) + K]. Since the packets injected in 
this interval can have at most 

(1 - e)(Zb(/>) + K-Ti(p) + Cp)Bei + b 

bits, we know that all of them cross e¡ in at most 

(1 - e)(T0(p) + K-Ti(p) + Cp) + -^- + Pe. 

< (1 - e)(T0(p) + K-Ti(p) + Cp) + Dmax 

units of time. Then, we have that 

Ti+i(p) < Ti (p) + (1 - e)(To(p) + K-Ti(p) + Cp) + £»max 

= sTi(p) + (1 - e)(T0(p) + K + Cp) + Anax, 

and solving the recurrence for Tdp (p) we get 

Tdp (p) - To(p) < (1 - ed) (K + Cp+ £»max/(l - e)). D 

Now, we have bounded the time that a packet spends in the system, but our bound 
depends on Cp. To flnish the proof we need the following lemma. 

Lemma 6 For any packet p we have that 

Cp < —-. K + - ^ = C. 
gdmax y i _ g J 

Proof By contradiction, let us assume there are packets that spend in the system 
more than C time. Let í be the flrst time at which a packet has been in the system 
more than C time, and let p be one packet that satisfles this. Then T¡¡p (p) - To(p) > 
t — To(p) > C Note that before t no packet in the system has age older than C. 
Henee, by Lemma 5 with Cp = C we have that 

Tdp (p) - T0(p) < (1 - sdP) (K + C + ^ 

< (1 - ed™*) (K + C ' max 

1 

C - e r f m x C + (l -ed^)[ K 
Dn 

= C, 

which is a contradiction. D 

Now we can enunciate the Anal theorem of this section. The proof is by Lemmas 5 
and 6, and the deflnition of K. 



Theorem 3 Let Q be a network and dmsK the length of its longest edge-simple di-
rectedpath, let A be an (r, b)-adversary, with r = 1 - e < 1 and b > 1, and let Vf 
be a policy in LISP. Then the system {Q, Vf, A) is stable under the NSCAQT model 
with bounded dock skew, and no packet spends more than 

1 - edimx ( . Dn 
/max — /min ~r < j i jmax jmm i Y'max i , 

c«max \ | 

units oftime in the system. 

Corollary 3 Any policy in LISP, and in particular LIS, is universally stable under the 
NSCAQT model with bounded dock skew, and henee under the CAQT model. 

5 Instability of LIS in the NSCAQT Model with Constant Drifts 

In this section we show the instability of LIS in the NSCAQT model with constant 
drifts and unbounded skew. To do so, we present a specifle network with (only) two 
links whose skew is not bounded and whose drift is constant. For this network we 
present an injection pattern (an adversary) such that the number of packets in the 
network grows forever if LIS is used. 

The network Q used in this section is presented in Fig. 3, and is similar to the 
one shown in Fig. 2 of [3] (sometimes called the "baseball graph"). In this network 
we assume that no link has skew, except links f¿ and f[ which have no skew at time 
í = 0 and have a constant drift of 1. Then, the skew at time t in fhese links is (pf (t) = 
<t>f(t) = t. Henee, any packet p injected in fhese two links is assigned a time-stamp 

TS(p) = O,3 and under LIS it will have priority over any other packet in the system 
injected after t = 0 in any other link. Additionally, we assume that all packets p have 
the same length, Lp = l bits, and that all links e have the same bandwidth Be = l bits 
per unit of time, and nuil propagation delay. With these assumptions, any packet p 
takes exactly one unit of time to cross each link. 

We now present the adversary A that creates instability in the network Q under 
LIS. The adversary is described inductively in phases. Initially, at time ío = 0, A 
injeets a set So of ÍO packets at node w\, of which s0/2 have pafh f\, e0, f0 and s0/2 
have pafh f[, eo, fo- This creates the base case of induction. The induction hypothesis 
of phase i, for any i > 0, is the following. Let í¿ the time at which phase i starts 
(which coincides with the time phase i - 1 ends). At time í¿, for i even (resp. odd), 
there is a set S¡ of s¡ packets at node w\ (resp. w0), of which s¡/2 have pafh f\, e0, f0 

(resp. fo, e\, f\) and J ¡ / 2 have path f[, eo, fo (resp. f¿, e\, f \ ) . We will show that at 
time í !+i there will be more than s¡ packets at node wo (resp. w\). We present here 
only the behavior of even-numbered phases, since odd-numbered phases are perfectly 
symmetrical. 

Then, the sequence of injections and the system behavior during phase í¿, for i 
even, is as follows: 

Note that this means that the clock of these links has stopped. We consider this situation for simplicity, 
but is it very simple to modify the proof to use a clock that always advances. 



Fig. 3 Network in which LIS is 
unstable with unbounded skew 

1. At time ti the packets of set Si, initially at node w\, start to be transmitted. The 
first one will arrive at node vo at time U + 1, and all of the packets of set Si will 
arrive at node i>o in SÍ/2 + 1 units of time. Then, they will be sent across link eo 
during the time interval [ti + 1, ti + Si + l] .4 During this time A injects in node vo 
a set X of Ir Si} packets, whose path is eo, f¿,e\, f\. These packets are blocked 
by the packets in Si, so that they will be transmitted across eo in the interval 
[ti+Si + l,ti+Si + Irsi} + 1]. 

The packets in Si are sent across link fo in the time interval [ti + 2, ti + SÍ + 2]. 
During this time A injects at node wo a set Y of rsi packets which only want 
to traverse link fo. These packets are blocked by the packets in Si, and will be 
transmitted across fo during the time interval [ti + Si + 2, í; + Si + l/s/J + 2]. 

2. During this interval [í¿ +57 + 2 , í¿ + 57 + l/s/J + 2], the packets in X reach wo 
to cross link /Q. In this interval .4 injects at node wo a set Z of Ir [rsijj packets 
whose path is f¿. Due to the skew of link /Q and the LIS policy, the packets in Z 
have higher priority than those in X. Then, at time ti + ¿7 + |/S7 J + 2 there still 
will be a subset X' of X with \r \JSÍ\\ packets in the queue of f¿. 

During the same time interval, A also injects in wo a set Y' of \r \JSÍ\\ packets 
whose path is /o, ei, f\ • These packets remain in the queue of fo at the end of the 
interval, since they are blocked by those in Y. 

Then, at time í/+i = ti + ¿7 + |/S7 J + 2 the following packets will be at node wo: 

• In the queue of link fo, the \_r \JSÍ\\ packets in set Y', whose path is /o, ei, f\ • 
• In the queue of link f¿, the Ir [rsi]] packets in set X', whose path is f¿,eo, f\. 

These two sets form the set S/+i that satisfies the induction hypothesis of phase / + 1. 
Now, for instability the size 57+1 = 2 |_r [rsijj of set S/+i must be a larger than 57. For 
this condition we can find a rate r and an initial valué of so such that queues get larger 
at each phase, making the system unstable. 

The last packet is sent at time í; + s¿ + 1 and arrives completely at WQ at time í; + s¿ + 2 . 



Theorem 4 The system (Q, LIS, A) is unstable, where A is the (r, b)-adversary de-
scribed abovefor the network Q ofFig. 3, with JO > 4, r > V0.5 + 2/so, and b > sol. 

Proof From the above, it is enough to show that J¡+I = 2\_r [rsi]] > J¿ for all i > 0. 
Since |xj > x - 1 , wehavethat I / I / J Í J J > r(rs¡ — 1) —1 > r2s¡ -2. Henee, instabil-
ity follows from r2s¡ —2> s¡/2, which yields a lower bound oír > V 0 . 5 + 2 / J ¿ . It 
is enough that this holds for i = 0, since then Í ! + I > J¿ and the bound only decreases. 
Henee, JO > 4 to allow r < 1. The bound on b follows trivially. D 

Corollary 4 LIS is not universally stable in the NSCAQT model with constant drifts 
and unbounded skew. 

6 Universal Stability of LIQ 

In previous sections we have shown how several policies are universally stable in 
the NSCAQT models with constant and bounded clock skews, respectively. Unfortu-
nately, the bounds on end-to-end packet latencies we derived were dependent on the 
máximum clock skew that can oceur in the system. This means that in a system with 
high máximum skew, the latencies can be very high. It is easy to construct examples 
for policies like SIS and LIS in which this can be observed. 

In this section we study a new policy named LIQ, which gives the highest priority 
to the packet that has been waiting in output queues for the longest time. We prove 
that LIQ is universally stable in the NSCAQT model with bounded clock skews. 
The bad news is that in this case the end-to-end lateney bound we obtain depends 
also on the máximum skew. The good news is that for the NSCAQT model with 
constant clock skews LIQ is universally stable, and the bound does not depend on the 
máximum skew, and it is similar to that obtained with LIS in a synchronized system. 

As in previous sections, we assume that <f>e(t) > 0 for all e and í. Then, 
we define </>min(e) = m i n ^ ^ í ) } and </>max(e) = mnxt{(¡)e(t)}. Finally, let A</> = 
maxe{</)max(e) - </>min(<?)}. Observe that in the model of constant skews, A</> = 0. 

Let Wi¡t (p) be the amount of real time which packet p has waited in output queues 
when at time t it is at the queue of edge e¡ (/?). We have that 

t = To(p) + WU(P) + J2 (ir1- + p«(p)) 

and, henee, 

t - To(p) - ¿maxAnax < WU(p) < t - T0(p). (2) 

Recall that measuring the waiting time of a packet at a queue is done by tak-
ing the local time when the packet arrives and the local time when it leaves (or 
the current local time if it is still in the queue). Then the measured time at one 
queue can have an error of up to ±A</>. Henee, the measured waiting time of a 
packet p that at time t is in queue e¡(p), denoted Mitt(p), is a valué in the inter-
val [Wu(p) - iA<f>, Wu{p) + iA<f>]. 



The proof we nave is similar to the proof for the LISP family of policies. We flrst 
prove a lemma analogous to Lemma 4. 

Lemma 7 Let p and q be twopackets. If To(q) > To(p) + dmax(2A<p + Dmax), then 
q never has higher priority than p in any queue. 

Proof Let us assume that p and q meet at the output queue of edge e¡ (p) = e¡ (q) at 
time í. We need to show that Mjtt(q) < M^t{p) is satisfled for any i, j , and í. The 
largest valué Mj¿ (q) can take is 

Mjlt(.q) < Wjit(q) + jA<p < Wj4q)+dmaxA(p. 

Similarly, M^t{p) > Witt (p) - dmaxA(p, and therefore we are left with the problem of 
showing that Wj,t(q) < Witt(p) - 2dm¡aA(p. Then, by using (2) and the assumption 
of the lemma, we have 

Wj,t(q)<t-T0(q) 

< t - To(p) - ámax(2A</) + Dmax) 

< Wu{p)-2dmaxA(p 

which completes the proof. D 

Now, deflning K = íímax(2A</> + Dm¡a), we have that Lemmas 5 and 6 are also 
valid in this case. Then, we can enunciate the following fheorem. 

Theorem 5 Let Q be a network with dmax the length of its longest edge-simple di-
rectedpath, and let A be an (r, b)-adversary with r = 1 - e < 1. Then 

1. The system {Q,LIQ, A) is stable under the NSCAQT model with bounded dock 
skews, and no packet spends more than 

1 - edmsx ( D 
í¿max(2A</) + Dmax) 1 - e 

units oftime in the system. 
2. The system (Q, LIQ, A) is stable under the NSCAQT model with constant dock 

skews, and no packet spends more than 

1 o^max / J~) 

j i "max^max ' max 
£%iax \ 1 — £ 

units oftime in the system. 

Corollary 5 LIQ is universally stable under the NSCAQT model with bounded dock 
skews, and henee under the CAQT model. 



7 Simulations 

In order to partially evalúate the theoretical results we have developed several sim-
ulation experiments. All the experiments in this article have been carried out using 
the J-Sim discrete event simulator [9]. J-Sim has been designed to simúlate network 
behaviors in a realistic way, including propagation delays, packet processing times, 
etc. The J-Sim package has been modifled in several ways, mainly to adapt it to our 
model. First, the trafflc generator has been modifled in order to ensure that destina-
tions are uniformly distributed over all nodes in the network. Then, the sink monitor 
has also been changed in order to log several parameters that are not stored by J-Sim 
by default (e.g., the mean and the variance of the packet delay and the queue size, and 
samples of fhese valúes chosen at random). Also, the routing algorithm has been re-
placed and some scheduling policies discussed in this paper have been implemented. 

The network topology used in all the experiments is an 11 x 11 torus, in which 
every node is, at the same time, router, source, and sink of packets. Each node peri-
odically generates new packets, whose destination is chosen randomly and uniformly 
among the nodes of the network. The routing is deterministic, so that the trafflc is 
balanced among all the links. We have adjusted the average load of the network to 
99% in the simulations because we are interested on the response of the network with 
high load levéis. In our experiments all the queues are of unbounded size, links have 
no propagation delays, the link bandwidth is set to 100 Kbps and the packet size is 
105 bytes. The simulation experiments have been run for 6000 seconds, ignoring the 
flrst 1000 seconds in the analysis of the results. 

We assign to local node clocks (all output edge clocks in a node are the same) 
different skews following a normal distribution with a mean valué of 0 seconds and 
a standard deviation of up to 105 milliseconds. Before starting the experiment, each 
node randomly chooses a constant skew for its clock from the above distribution. 

Figure 4 shows the mean and máximum latencies experienced by packets that 
cross 10 links when, as said before, the distribution of clock skews have standard 
deviations ranging from 0 to 105 milliseconds. As expected, LIQ is not affected by 
clock skews, since it does not consider injection time (which could be affected by 
clock skews), but waiting time, which is always correctly computed since all clocks 
run at the same speed (there are no drifts). It is also noticeable that the mean and the 
máximum latencies of LIQ are very low, which is not the case for the other policies, 
especially when clock skews grow. At flrst sight, it seems a bit paradoxical the fact 
that the mean latency with SIS decreases when skews grow. However, this behavior 
may be attributed to the fact that increasing skews randomizes the behavior of the 
policy. Note that the máximum latency with SIS does not seem to be signiflcantly 
affected by the skew variation. LIS suffers from increasing clock skews, since its 
effectiveness relies on the accuracy of clocks. When skews grow, LIS clearly degrades 
its performance. Finally, we want to emphasize the great distance between the mean 
and the máximum in the case of SIS, and in the case of LIS for large skews. 

Figure 5 shows how the number of hops a packet needs to reach its destination 
affects the latency. Here we see that LIS when all clocks are synchronized (no skews) 
and LIQ give analogous results, and behave quite uniformly on the number of hops. 
It is again noticeable that the mean and the máximum are much closer in the cases 



Means with Hops=10 (Logarithmic) 

14-

12-

10 

« 8-

2 2 3 3 4 4 5 
10 3x10 10 3x10 10 3x10 10 

Skew (milliseconds) 

Max with Hops=10 (Logarithmic) 
2000 

1000 

500 

1 200 

1 100 

M 50 

20 

10 

10 3x10" 103 3x10" 10" 
Skew (milliseconds) 

3x10 10 

Fig. 4 Latency experienced by packets that cross 10 links with policies LIS, SIS, and LIQ under distrib-
ution of skews with different standard deviations 

of LIS with no skews and LIQ, than in the other cases (between one and two orders 
of magnitude). Observe that, while with LIS the slope of the curve increases with the 
skew, with SIS the slope decreases. 

8 Conclusión 

We considered the continuous versión of the well-known Adversarial Queuing The-
ory (AQT) model as scenario. It was generalized by considering the possibility that 
the router clocks in the network are not synchronized. The model was called Non-
Synchronized CAQT (NSCAQT). We have shown that in NSCAQT when, although 



Means (Logarithmic) 

2 4 6 8 10 

Hops 

Fig. 5 Latency experienced by packets with policies LIS, SIS, and LIQ under normal distribution of skews 
with standard deviations of 0 and 100000 

not synchronized, all clocks run at the same speed; all universally stable policies in 
CAQT that use the injection time and the remaining path to schedule packets re-
main universally stable. In a second approach, we studied the case in which clock 
differences can vary over time, but the máximum difference is bounded. Under this 
framework, we introduced two families of policies called LISP and SISP based on the 
well-known policies LIS and SIS. We have shown that bofh LISP and SISP families 
are universally stable. The bounds that we showed in these cases depend on the máx
imum difference between clocks. This is a necessary requirement, since we also have 
shown that LIS is not universally stable in systems without bounded clock difference. 
We introduced a new universally stable policy called Longest In Queues. In the case 
when clocks maintain constant differences, the bounds we proved do not depend on 



them. To flnish, we have provided simulation results that compare the behavior of 
some of these policies in a network with stochastic injection of packets. 

We believe that the policy proposed LIQ could be an interesting alternative to 
other popular policies. We believe that further study of LIQ is required. In particular, 
we would like to know whether it is stable in NSCAQT under unbounded skew but 
constant drift. Along these lines, it would be interesting to devise a policy that is 
stable in this model. 

Acknowledgeinents The authors would like to thank Anna Puig, Agustín Santos and Juan Céspedes for 
fruitful discussions. This work was partially supported by the Spanish MEC under grants TIN2005-09198-
C02-01 and PR2008-0015, the Spanish MICINN under grant TTN2008-06735-C02-01, and the Comunidad 
de Madrid under grant S-0505/TIC/0285. The last author gratefully acknowledges the support of Universi
dad de Chile, Facultad de Ciencias Físicas y Matemáticas via a postgraduate fellowship, Proyecto Mecesup 
UCH0009, CONICYT via Anillo en Redes ACT08 and FONDAP in Applied Mathematics. 

References 

1. Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily small network loads. 
In: Bansal, N., Pruhs, K., Clifford, S. (eds.) SODA, pp. 219-228. SIAM, Philadelphia (2007) 

2. Andrews, M., Zhang, L.: The effects of temporary sessions on network performance. SIAM J. Com-
put. 33(3), 659-673 (2004) 

3. Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T, Liu, Z.: Universal stability 
results and performance bounds for greedy contention-resolution protocols. J. ACM 48(1), 39-69 
(2001) 

4. Andrews, M., Fernández, A., Goel, A., Zhang, L.: Source routing and scheduling in packet networks. 
J. ACM 52(4), 582-601 (2005) 

5. Blesa, M.J., Calzada, D., Fernández Anta, A., López, L., Martínez, A.L., Santos, A., Serna, M.J., 
Thraves, C: Adversarial queuing model for continuous network dynamics. Theor. Comput. Syst. 
44(3), 304-331 (2009) 

6. Borodin, A., Kleinberg, J., Raghavan, P, Sudan, M., Williamson, D.P: Adversarial queuing theory. 
J. ACM 48(1), 13-38 (2001) 

7. Cruz, R.L.: A calculus for network delay, part I: network elements in isolation. IEEE Trans. Inf. 
Theory 37(1), 114-131 (1991) 

8. Cruz, R.L.: A calculus for network delay, part II: network analysis. IEEE Trans. Inf. Theory 37(1), 
132-141 (1991) 

9. http://j-sim.org/ 
10. Le Boudec, J.-Y., Thiran, P: Network Calculus: A Theory of Deterministic Queuing Systems for the 

Internet. Lecture Notes in Computer Science. Springer, Berlin (2001) 
11. Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated 

services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344-357 (1993) 
12. Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow control in integrated 

services networks: the multiple-node case. IEEE/ACM Trans. Netw. 2(2), 137-150 (1994) 
13. Santos, A., Fernández Anta, A., López, L.: Evaluation of packet scheduling policies with application 

to real-time traffic. In: Actas de las V Jornadas de Ingeniería Telemática, JITEL (2005) 
14. Weinard, M.: The necessity of timekeeping in adversarial queuing. In: Nikoletseas, S.E. (ed.) WEA. 

Lecture Notes in Computer Science, vol. 3503, pp. 440^151. Springer, Berlin (2005) 

http://j-sim.org/

