35 research outputs found

    Local Partial Zero-Forcing Precoding for Cell-Free Massive MIMO

    Full text link
    Cell-free Massive MIMO (multiple-input multiple-output) is a promising distributed network architecture for 5G-and-beyond systems. It guarantees ubiquitous coverage at high spectral efficiency (SE) by leveraging signal co-processing at multiple access points (APs), aggressive spatial user multiplexing and extraordinary macro-diversity gain. In this study, we propose two distributed precoding schemes, referred to as \textit{local partial zero-forcing} (PZF) and \textit{local protective partial zero-forcing} (PPZF), that further improve the spectral efficiency by providing an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-hauling overhead, and implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. PZF and PPZF can substantially outperform maximum ratio transmission and zero-forcing, and their performance is comparable to that achieved by regularized zero-forcing (RZF), which is a benchmark in the downlink. Importantly, these closed-form expressions can be employed to devise optimal (long-term) power control strategies that are also suitable for RZF, whose closed-form expression for the SE is not available.Comment: This paper was accepted for publication in IEEE Transactions on Wireless Communications on March 31, 2020. {\copyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Coverage performance in multi-stream MIMO-ZFBF heterogeneous networks

    Get PDF
    We study the coverage performance of multiantenna (MIMO) communications in heterogenous networks (HetNets). Our main focus is on open-loop and multi-stream MIMO zero-forcing beamforming (ZFBF) at the receiver. Network coverage is evaluated adopting tools from stochastic geometry. Besides fixed-rate transmission (FRT), we also consider adaptive-rate transmission (ART) while its coverage performance, despite its high relevance, has so far been overlooked. On the other hand, while the focus of the existing literature has solely been on the evaluation of coverage probability per stream, we target coverage probability per communication link — comprising multiple streams — which is shown to be a more conclusive performance metric in multi-stream MIMO systems. This, however, renders various analytical complexities rooted in statistical dependency among streams in each link. Using a rigorous analysis, we provide closed-form bounds on the coverage performance for FRT and ART. These bounds explicitly capture impacts of various system parameters including densities of BSs, SIR thresholds, and multiplexing gains. Our analytical results are further shown to cover popular closed-loop MIMO systems, such as eigen-beamforming and space-division multiple access (SDMA). The accuracy of our analysis is confirmed by extensive simulations. The findings in this paper shed light on several important aspects of dense MIMO HetNets: (i) increasing the multiplexing gains yields lower coverage performance; (ii) densifying network by installing an excessive number of lowpower femto BSs allows the growth of the multiplexing gain of high-power, low-density macro BSs without compromising the coverage performance; and (iii) for dense HetNets, the coverage probability does not increase with the increase of deployment densities

    Coverage performance of MIMO-MRC in heterogeneous networks:a stochastic geometry perspective

    Get PDF
    We study the coverage performance of multi-antenna (MIMO) communications with maximum ratio combining (MRC) at the receiver in heterogeneous networks (HetNets). Our main interest in on multi-stream communications when BSs do not have access to channel state information. Adopting stochastic geometry we evaluate the network-wise coverage performance of MIMO-MRC assuming maximum signal- to-interference ratio (SIR) cell association rule. Coverage analysis in MIMO-MRC HetNets is challenging due to inter-stream interference and statistical dependencies among streams' SIR values in each communication link. Using the results of stochastic geometry we then investigate this problem and obtain tractable analytical approximations for the coverage performance. We then show that our results are adequately accurate and easily computable. Our analysis sheds light on the impacts of important system parameters on the coverage performance, and provides quantitative insight on the densification in conjunction with high multiplexing gains in MIMO HetNets. We further observe that increasing multiplexing gain in high- power tier can cost a huge coverage reduction unless it is practiced with densification in femto-cell tier

    Coverage Analysis of Multi-Stream MIMO HetNets with MRC Receivers

    Get PDF
    Most of current research on the coverage performance of multi-stream MIMO heterogeneous networks (HetNets) has been focusing on a single data-stream. This does not always provide accurate results as our analysis shows the cross-stream correlation due to interference can greatly affect the coverage performance. This paper analyzes the coverage probability in such systems, and studies the impact of cross-stream correlation. Specifically, we focus on the max-SIR cell association policy, and leverage stochastic geometry to study scenarios whereby a receiver is considered in the coverage, if all of its data-streams are successfully decodeable. Assuming open-loop maximum ratio combining (MRC) at receivers, we consider cases where partial channel state information is available at the receiver. We then obtain an upper-bound on the coverage and formulate crossstream SIR correlation. We further show that approximating such systems based on fully-correlated (non-correlated) datastreams, results in a slight underestimation (substantial overestimation) of the coverage performance. Our results provide insights on the multiplexing regimes where densification improves the coverage performance and spectral efficiency. We also compare MRC with more complex zero-forcing receiver and provide quantitative insights on the design trade-offs. Our analysis is validated via extensive simulations

    Design, Modeling, and Performance Analysis of Multi-Antenna Heterogeneous Cellular Networks

    Get PDF
    This paper presents a stochastic geometry-based framework for the design and analysis of downlink multi-user multiple-input multiple-output (MIMO) heterogeneous cellular networks with linear zero-forcing transmit precoding and receive combining, assuming Rayleigh fading channels and perfect channel state information. The generalized tiers of base stations may differ in terms of their Poisson point process spatial density, number of transmit antennas, transmit power, artificial-biasing weight, and number of user equipments served per resource block. The spectral efficiency of a typical user equipped with multiple receive antennas is characterized using a non-direct moment-generating-function-based methodology with closed-form expressions of the useful received signal and aggregate network interference statistics systematically derived. In addition, the area spectral efficiency is formulated under different space-division multiple-access and single-user beamforming transmission schemes. We examine the impact of different cellular network deployments, propagation conditions, antenna configurations, and MIMO setups on the achievable performance through theoretical and simulation studies. Based on the state-of-the-art system parameters, the results highlight the inherent limitations of baseline single-input single-output transmission and conventional sparse macro-cell deployment, as well as the promising potential of multi-antenna communications and small-cell solution in interference-limited cellular environments
    corecore