910 research outputs found

    Route diversity analyses for free-space optical wireless links within turbulent scenarios

    Get PDF
    Free-Space Optical (FSO) communications link performance is highly affected when propagating through the time-spatially variable turbulent environment. In order to improve signal reception, several mitigation techniques have been proposed and analytically investigated. This paper presents experimental results for the route diversity technique evaluations for a specific case when several diversity links intersects a common turbulent area and concurrently each passing regions with different turbulence flows

    Diversity receiver design and channel statistic estimation in fading channels

    Get PDF
    The main goal of this thesis is to provide an in-depth study of two important techniques that are effective in improving the performance, data rate, or bandwidth-efficiency in wireless communication systems. The two techniques are, first, diversity combining equipped with quadrature amplitude modulation (QAM), and second, the estimation of fading channel statistical properties;To effectively combat the adverse effect of fading and to improve the error rate performance in wireless communications, one of the major approaches is to employ diversity combining techniques. In the first part of this thesis, we focus on the equal gain combining (EGC) and hybrid-selection equal gain combining (HS/EGC) for bandwidth-efficient wireless systems (i.e. QAM systems). For EGC QAM systems, we propose the receiver structure and the corresponding decision variables, and then study the effects of imperfect channel estimation (ICE) and quantify the loss of the signal-to-noise ratio (SNR) gain caused by ICE. For HS/EGC QAM system, we develop a general approach to derive unified error rate and outage probability formulas over various types of fading channels based on the proposed HS/EGC receiver. The main contribution of this work lies in that it provides effective hybrid diversity schemes and new analytical approaches to enable thorough analysis and effective design of bandwidth efficient wireless communication systems which suffer from ICE and operate in realistic multipath channels;Channel statistic information is proven to be critical in determining the systems design, achievable data rate, and achievable performance. In the second part of this thesis, we study the estimation of the fading channel Statistics and Probability; We propose several iterative algorithms to estimate the first- and second-order statistics of general fading or composite fading-shadowing channels and derive the Cramer-Rao bounds (CRBs) for all the cases. We demonstrate that these iterative methods are efficient in the sense that they achieve their corresponding CRBs. The main contribution of this work is that it bridges the gap between the broad utilization of fading channel statistical properties and the lack of systematic study that makes such statistical properties available

    Analysis of DVB-H network coverage with the application of transmit diversity

    Get PDF
    This paper investigates the effects of the Cyclic Delay Diversity (CDD) transmit diversity scheme on DVB-H networks. Transmit diversity improves reception and Quality of Service (QoS) in areas of poor coverage such as sparsely populated or obscured locations. The technique not only povides robust reception in mobile environments thus improving QoS, but it also reduces network costs in terms of the transmit power, number of infrastructure elements, antenna height and the frequency reuse factor over indoor and outdoor environments. In this paper, the benefit and effectiveness of CDD transmit diversity is tackled through simulation results for comparison in several scenarios of coverage in DVB-H networks. The channel model used in the simulations is based on COST207 and a basic radio planning technique is used to illustrate the main principles developed in this paper. The work reported in this paper was supported by the European Commission IST project—PLUTO (Physical Layer DVB Transmission Optimization)

    Analysis and Simulation of MRC Diversity Reception in Correlated Composite Nakagami-Lognormal Fading Channels

    Get PDF
    The physical meaning of the composite Nakagami-lognormal fading model is not well understood by many researchers using the model. The signal power transfer and transform at the interface between the global lognormal shadowing sub-channels and the local Nakagami multipath sub-channels in the presence of correlation between these diversity sub-channels is rather complex. This is the main reason why a thorough analysis or a simulation model is absent to date for the case of correlated composite Nakagami-lognormal diversity channels. This paper presents a novel technique for the estimation of the probability density function (PDF) of the signal-to-noise (SNR) at the output of a maximum ratio combining (MRC) receiver operating in correlated composite diversity fading channels. The PDF is estimated using the recently proposed two-point lossless moment generating function (MGF) matching technique and a closed-form expression for the bit-error rate (BER) for QPSK signal is consequently presented using the Gauss-Hermite polynomial approximation. The paper also presents the complex Monte-Carlo simulation model for the MRC reception and BER counting in correlated composite Nakagami-lognormal fading channels

    Physical-Layer Security Over Non-Small-Scale Fading Channels

    Get PDF
    corecore