2,673 research outputs found

    Large-Scale-Fading Decoding in Cellular Massive MIMO Systems with Spatially Correlated Channels

    Full text link
    Massive multiple-input--multiple-output (MIMO) systems can suffer from coherent intercell interference due to the phenomenon of pilot contamination. This paper investigates a two-layer decoding method that mitigates both coherent and non-coherent interference in multi-cell Massive MIMO. To this end, each base station (BS) first estimates the channels to intra-cell users using either minimum mean-squared error (MMSE) or element-wise MMSE (EW-MMSE) estimation based on uplink pilots. The estimates are used for local decoding on each BS followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An uplink achievable spectral efficiency (SE) expression is computed for arbitrary two-layer decoding schemes. A closed-form expression is then obtained for correlated Rayleigh fading, maximum-ratio combining, and the proposed large-scale fading decoding (LSFD) in the second layer. We also formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since this is an NP-hard problem, we develop a low-complexity algorithm based on the weighted MMSE approach to obtain a local optimum. The numerical results show that both data power control and LSFD improves the sum SE performance over single-layer decoding multi-cell Massive MIMO systems.Comment: 17 pages; 10 figures; Accepted for publication in IEEE Transactions on Communication

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Multi-Cell Massive MIMO in LoS

    Full text link
    We consider a multi-cell Massive MIMO system in a line-of-sight (LoS) propagation environment, for which each user is served by one base station, with no cooperation among the base stations. Each base station knows the channel between its service antennas and its users, and uses these channels for precoding and decoding. Under these assumptions we derive explicit downlink and uplink effective SINR formulas for maximum-ratio (MR) processing and zero-forcing (ZF) processing. We also derive formulas for power control to meet pre-determined SINR targets. A numerical example demonstrating the usage of the derived formulas is provided.Comment: IEEE Global Communications Conference (GLOBECOM) 201

    On the Performance Gain of NOMA over OMA in Uplink Communication Systems

    Full text link
    In this paper, we investigate and reveal the ergodic sum-rate gain (ESG) of non-orthogonal multiple access (NOMA) over orthogonal multiple access (OMA) in uplink cellular communication systems. A base station equipped with a single-antenna, with multiple antennas, and with massive antenna arrays is considered both in single-cell and multi-cell deployments. In particular, in single-antenna systems, we identify two types of gains brought about by NOMA: 1) a large-scale near-far gain arising from the distance discrepancy between the base station and users; 2) a small-scale fading gain originating from the multipath channel fading. Furthermore, we reveal that the large-scale near-far gain increases with the normalized cell size, while the small-scale fading gain is a constant, given by γ\gamma = 0.57721 nat/s/Hz, in Rayleigh fading channels. When extending single-antenna NOMA to MM-antenna NOMA, we prove that both the large-scale near-far gain and small-scale fading gain achieved by single-antenna NOMA can be increased by a factor of MM for a large number of users. Moreover, given a massive antenna array at the base station and considering a fixed ratio between the number of antennas, MM, and the number of users, KK, the ESG of NOMA over OMA increases linearly with both MM and KK. We then further extend the analysis to a multi-cell scenario. Compared to the single-cell case, the ESG in multi-cell systems degrades as NOMA faces more severe inter-cell interference due to the non-orthogonal transmissions. Besides, we unveil that a large cell size is always beneficial to the ergodic sum-rate performance of NOMA in both single-cell and multi-cell systems. Numerical results verify the accuracy of the analytical results derived and confirm the insights revealed about the ESG of NOMA over OMA in different scenarios.Comment: 51 pages, 7 figures, invited paper, submitted to IEEE Transactions on Communication

    Sectoring in Multi-cell Massive MIMO Systems

    Full text link
    In this paper, the downlink of a typical massive MIMO system is studied when each base station is composed of three antenna arrays with directional antenna elements serving 120 degrees of the two-dimensional space. A lower bound for the achievable rate is provided. Furthermore, a power optimization problem is formulated and as a result, centralized and decentralized power allocation schemes are proposed. The simulation results reveal that using directional antennas at base stations along with sectoring can lead to a notable increase in the achievable rates by increasing the received signal power and decreasing 'pilot contamination' interference in multicell massive MIMO systems. Moreover, it is shown that using optimized power allocation can increase 0.95-likely rate in the system significantly

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead
    corecore