732 research outputs found

    Performance model for two-tier mobile wireless networks with macrocells and small cells

    Full text link
    [EN] A new analytical model is proposed to evaluate the performance of two-tier cellular networks composed of macrocells (MCs) and small cells (SCs), where terminals roam across the service area. Calls being serviced by MCs may retain their channel when entering a SC service area, if no free SC channels are available. Also, newly offered SC calls can overflow to the MC. However, in both situations channels may be repacked to vacate MC channels. The cardinality of the state space of the continuous-time Markov chain (CTMC) that models the system dynamics makes the exact system analysis unfeasible. We propose an approximation based on constructing an equivalent CTMC for which a product-form solution exist that can be obtained with very low computational complexity. We determine performance parameters such as the call blocking probabilities for the MC and SCs, the probability of forced termination, and the carried traffic. We validate the analytical model by simulation. Numerical results show that the proposed analytical model achieves very good precision in scenarios with diverse mobility rates and MCs and SCs loads, as well as when MCs overlay a large number of SCs.Authors would like to thank you the anonymous reviewers for the review comments provided to our work that have decisively contributed to improve the paper. Most of the contribution of V. Casares-Giner was done while visiting the Huazhong University of Science and Technolgy (HUST), Whuhan, China. This visit was supported by the European Commission, 7FP, S2EuNet project. The authors from the Universitat Politecnica de Valencia are partially supported by the Ministry of Economy and Competitiveness of Spain under grant TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The research of Xiaohu Ge was supported by the National Natural Science Foundation of China (NSFC) grant 61210002, the Fundamental Research Funds for the Central Universities grant 2015XJGH011, and China International Joint Research Center of Green Communications and Networking grant 2015B01008.Casares-Giner, V.; Martínez Bauset, J.; Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks. 24(4):1327-1342. https://doi.org/10.1007/s11276-016-1407-8S13271342244ABIresearch. (2016). In-building mobile data traffic forecast. ABIreseach, Technical Report.NGMN Alliance. (2015). Recommendations for small cell development and deployment. NGMN Alliance, Technical Report.Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.Yamamoto, T., & Konishi, S. (2013). Impact of small cell deployments on mobility performance in LTE-Advanced systems. In IEEE PIMRC workshops (pp. 189–193).Balakrishnan, R., & Akyildiz, I. (2016). Local anchor schemes for seamless and low-cost handover in coordinated small cells. IEEE Transactions on Mobile Computing, 15(5), 1182–1196.Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials, 15(1), 293–311.Yassin, M., AboulHassan, M. A., Lahoud, S., Ibrahim, M., Mezher, D., Cousin, B., & Sourour, E. A. (2015). Survey of ICIC techniques in LTE networks under various mobile environment parameters. Wireless Networks, 1–16.Andrews, M., & Zhang, L. (2015). Utility optimization in heterogeneous networks via CSMA-based algorithms. Wireless Networks, 1–14.El-atty, S. M. A., & Gharsseldien, Z. M. (2016). Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Networks, 1–22.Huang, Q., Huang, Y.-C., Ko, K.-T., & Iversen, V. B. (2011). Loss performance modeling for hierarchical heterogeneous wireless networks with speed-sensitive call admission control. IEEE Transactions on Vehicular Technology, 60(5), 2209–2223.Bonald, T., & Roberts, J. W. (2003). Congestion at flow level and the impact of user behaviour. Computer Networks, 42, 521–536.Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys & Tutorials, 16(4), 2142–2180.Rappaport, S. S., & Hu, L.-R. (1994). Microcellular communication systems with hierarchical macrocell overlays: Traffic performance models and analysis. Proceedings of the IEEE, 82(9), 1383–1397.Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C.-X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319.Song, W., Jiang, H., & Zhuang, W. (2007). Performance analysis of the WLAN-first scheme in cellular/WLAN interworking. IEEE Transactions on Wireless Communications, 6(5), 1932–1952.Ge, X., Martinez-Bauset, J., Gasares-Giner, V., Yang, B., Ye, J., & Chen, M. (2013). Modeling and performance analysis of different access schemes in two-tier wireless networks. In IEEE Globecom (pp. 4402–4407).Tsai, H.-M., Pang, A.-C., Lin, Y.-C., & Lin, Y.-B. (2005). Repacking on demand for hierarchical cellular networks. Wireless Networks, 11(6), 719–728.Maheshwari, K., & Kumar, A. (2000). Performance analysis of microcellization for supporting two mobility classes in cellular wireless networks. IEEE Transactions on Vehicular Technology, 49(2), 321–333.Whiting, P., & McMillan, D. (1990). Modeling for repacking in cellular radio. In 7th UK Teletraffic Symposium, IEE, Durham.Kelly, F. (1989). Fixed point models of loss networks. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 31(02), 204–218.McMillan, D. (1991). Traffic modelling and analysis for cellular mobile networks. In A. Jensen & V. Iversen (Eds.), Proceedigs of ITC-13 (pp. 627–632). IAC. Copenhaguen: Elsevier Science.Fu, H.-L., Lin, P., & Lin, Y.-B. (2012). Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8), 1587–1597.Eklundh, B. (1986). Channel utilization and blocking probability in a cellular mobile telephone system with directed retry. IEEE Transactions on Communications, 37, 329–337.Karlsson, J., & Eklundh, B. (1989). A cellular telephone system with load sharing—An enhancement of directed retry. IEEE Transactions on Communications, 37(5), 530–535.Nelson, R. (1995). Probability, stochastic processes and queueing theory. New York: Springer.Iversen, V.B. (Aug. 1987). The exact evaluation of multi-service loss systems with access control. In Proceedings of the Seventh Nordic Teletraffic Seminar (NTS-7) (Vol. 31, pp. 56–61) Lund, (Sweden).Ross, K. W. (1995). Multiservice loss models for broadband telecommunication networks. New York: Springer.Lin, Y.-B., & Mak, V. W. (1994). Eliminating the boundary effect of a large-scale personal communication service network simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS), 4(2), 165–190.Karray, M.K. (2010). Evaluation of the blocking probability and the throughput in the uplink of wireless cellular networks. In IEEE ComNet (pp. 1–8)

    Wireless Power Transfer in Massive MIMO Aided HetNets with User Association

    Get PDF
    This paper explores the potential of wireless power transfer (WPT) in massive multiple input multiple output (MIMO) aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as possible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze two user association schemes. We adopt the linear maximal ratio transmission beam-forming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then we derive the average uplink achievable rate under the harvested energy constraint.Comment: 36 pages, 11 figures, to appear in IEEE Transactions on Communication

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    Load-Aware Modeling and Analysis of Heterogeneous Cellular Networks

    Full text link
    Random spatial models are attractive for modeling heterogeneous cellular networks (HCNs) due to their realism, tractability, and scalability. A major limitation of such models to date in the context of HCNs is the neglect of network traffic and load: all base stations (BSs) have typically been assumed to always be transmitting. Small cells in particular will have a lighter load than macrocells, and so their contribution to the network interference may be significantly overstated in a fully loaded model. This paper incorporates a flexible notion of BS load by introducing a new idea of conditionally thinning the interference field. For a K-tier HCN where BSs across tiers differ in terms of transmit power, supported data rate, deployment density, and now load, we derive the coverage probability for a typical mobile, which connects to the strongest BS signal. Conditioned on this connection, the interfering BSs of the ithi^{th} tier are assumed to transmit independently with probability pip_i, which models the load. Assuming - reasonably - that smaller cells are more lightly loaded than macrocells, the analysis shows that adding such access points to the network always increases the coverage probability. We also observe that fully loaded models are quite pessimistic in terms of coverage.Comment: to appear, IEEE Transactions on Wireless Communication

    Enhanced Inter-Cell Interference Coordination Challenges in Heterogeneous Networks

    Full text link
    3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.Comment: 12 pages, 4 figures, 2 table
    • …
    corecore