63,391 research outputs found

    A Unified Framework for the Study of Anti-Windup Designs

    Get PDF
    We present a unified framework for the study of linear time-invariant (LTI) systems subject to control input nonlinearities. The framework is based on the following two-step design paradigm: "Design the linear controller ignoring control input nonlinearities and then add anti-windup bumpless transfer (AWBT) compensation to minimize the adverse eflects of any control input nonlinearities on closed loop performance". The resulting AWBT compensation is applicable to multivariable controllers of arbitrary structure and order. All known LTI anti-windup and/or bumpless transfer compensation schemes are shown to be special cases of this framework. It is shown how this framework can handle standard issues such as the analysis of stability and performance with or without uncertainties in the plant model. The actual analysis of stability and performance, and robustness issues are problems in their own right and hence not detailed here. The main result is the unification of existing schemes for AWBT compensation under a general framework

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Diseño para operabilidad: Una revisión de enfoques y estrategias de solución

    Get PDF
    In the last decades the chemical engineering scientific research community has largely addressed the design-foroperability problem. Such an interest responds to the fact that the operability quality of a process is determined by design, becoming evident the convenience of considering operability issues in early design stages rather than later when the impact of modifications is less effective and more expensive. The necessity of integrating design and operability is dictated by the increasing complexity of the processes as result of progressively stringent economic, quality, safety and environmental constraints. Although the design-for-operability problem concerns to practically every technical discipline, it has achieved a particular identity within the chemical engineering field due to the economic magnitude of the involved processes. The work on design and analysis for operability in chemical engineering is really vast and a complete review in terms of papers is beyond the scope of this contribution. Instead, two major approaches will be addressed and those papers that in our belief had the most significance to the development of the field will be described in some detail.En las últimas décadas, la comunidad científica de ingeniería química ha abordado intensamente el problema de diseño-para-operabilidad. Tal interés responde al hecho de que la calidad operativa de un proceso esta determinada por diseño, resultando evidente la conveniencia de considerar aspectos operativos en las etapas tempranas del diseño y no luego, cuando el impacto de las modificaciones es menos efectivo y más costoso. La necesidad de integrar diseño y operabilidad esta dictada por la creciente complejidad de los procesos como resultado de las cada vez mayores restricciones económicas, de calidad de seguridad y medioambientales. Aunque el problema de diseño para operabilidad concierne a prácticamente toda disciplina, ha adquirido una identidad particular dentro de la ingeniería química debido a la magnitud económica de los procesos involucrados. El trabajo sobre diseño y análisis para operabilidad es realmente vasto y una revisión completa en términos de artículos supera los alcances de este trabajo. En su lugar, se discutirán los dos enfoques principales y aquellos artículos que en nuestra opinión han tenido mayor impacto para el desarrollo de la disciplina serán descriptos con cierto detalle.Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Control limitations from distributed sensing: theory and Extremely Large Telescope application

    Full text link
    We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope.Comment: submitted to Automatic

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory

    Embedded Model Control calls for disturbance modeling and rejection

    Get PDF
    Robust control design is mainly devoted to guaranteeing the closed-loop stability of a model-based control law in the presence of parametric uncertainties. The control law is usually a static feedback law which is derived from a (nonlinear) model using different methodologies. From this standpoint, stability can only be guaranteed by introducing some ignorance coefficients and restricting the feedback control effort with respect to the model-based design. Embedded Model Control shows that, the model-based control law must and can be kept intact in the case of uncertainty, if, under certain conditions, the controllable dynamics is complemented by suitable disturbance dynamics capable of real-time encoding the different uncertainties affecting the ‘embedded model', i.e. the model which is both the design source and the core of the control unit. To be real-time updated the disturbance state is driven by an unpredictable input vector, the noise, which can only be estimated from the model error. The uncertainty-based (or plant-based) design concerns the noise estimator, so as to prevent the model error from conveying uncertainty components (parametric, cross-coupling, neglected dynamics) which are command-dependent and thus prone to destabilizing the controlled plant, into the embedded model. Separation of the components in the low and high frequency domain by the noise estimator itself allows stability recovery and guarantee, and the rejection of low frequency uncertainty components. Two simple case studies endowed with simulated and experimental runs will help to understand the key assets of the methodolog
    corecore