2 research outputs found

    Reducing the Size of Combinatorial Optimization Problems Using the Operator Vaccine by Fuzzy Selector with Adaptive Heuristics

    Get PDF
    Nowadays, solving optimally combinatorial problems is an open problem. Determining the best arrangement of elements proves being a very complex task that becomes critical when the problem size increases. Researchers have proposed various algorithms for solving Combinatorial Optimization Problems (COPs) that take into account the scalability; however, issues are still presented with larger COPs concerning hardware limitations such as memory and CPU speed. It has been shown that the Reduce-Optimize-Expand (ROE) method can solve COPs faster with the same resources; in this methodology, the reduction step is the most important procedure since inappropriate reductions, applied to the problem, will produce suboptimal results on the subsequent stages. In this work, an algorithm to improve the reduction step is proposed. It is based on a fuzzy inference system to classify portions of the problem and remove them, allowing COPs solving algorithms to utilize better the hardware resources by dealing with smaller problem sizes, and the use of metadata and adaptive heuristics. The Travelling Salesman Problem has been used as a case of study; instances that range from 343 to 3056 cities were used to prove that the fuzzy logic approach produces a higher percentage of successful reductions

    Meta-optimization of Bio-inspired Techniques for Object Recognition

    Get PDF
    Il riconoscimento di oggetti consiste nel trovare automaticamente un oggetto all'interno di un'immagine o in una sequenza video. Questo compito è molto importante in molti campi quali diagnosi mediche, assistenza di guida avanzata, visione artificiale, sorveglianza, realtà aumentata. Tuttavia, questo compito può essere molto impegnativo a causa di artefatti (dovuti al sistema di acquisizione, all'ambiente o ad altri effetti ottici quali prospettiva, variazioni di illuminazione, etc.) che possono influenzare l'aspetto anche di oggetti facili da identificare e ben definiti . Una possibile tecnica per il riconoscimento di oggetti consiste nell'utilizzare approcci basati su modello: in questo scenario viene creato un modello che rappresenta le proprietà dell'oggetto da individuare; poi, vengono generate possibili ipotesi sul posizionamento dell'oggetto, e il modello viene trasformato di conseguenza, fino a trovare la migliore corrispondenza con l'aspetto reale dell'oggetto. Per generare queste ipotesi in maniera intelligente, è necessario un buon algoritmo di ottimizzazione. Gli algoritmi di tipo bio-ispirati sono metodi di ottimizzazione che si basano su proprietà osservate in natura (quali cooperazione, evoluzione, socialità). La loro efficacia è stata dimostrata in molte attività di ottimizzazione, soprattutto in problemi di difficile soluzione, multi-modali e multi-dimensionali quali, per l'appunto, il riconoscimento di oggetti. Anche se queste euristiche sono generalmente efficaci, esse dipendono da molti parametri che influenzano profondamente le loro prestazioni; pertanto, è spesso richiesto uno sforzo significativo per capire come farle esprimere al massimo delle loro potenzialità. Questa tesi descrive un metodo per (i) individuare automaticamente buoni parametri per tecniche bio-ispirate, sia per un problema specifico che più di uno alla volta, e (ii) acquisire maggior conoscenza sul ruolo di un parametro in questi algoritmi. Inoltre, viene mostrato come le tecniche bio-ispirate possono essere applicate con successo in diversi ambiti nel riconoscimento di oggetti, e come è possibile migliorare ulteriormente le loro prestazioni mediante il tuning automatico dei loro parametri.Object recognition is the task of automatically finding a given object in an image or in a video sequence. This task is very important in many fields such as medical diagnosis, advanced driving assistance, image understanding, surveillance, virtual reality. Nevertheless, this task can be very challenging because of artefacts (related with the acquisition system, the environment or other optical effects like perspective, illumination changes, etc.) which may affect the aspect even of easy-to-identify and well-defined objects. A possible way to achieve object recognition is using model-based approaches: in this scenario a model (also called template) representing the properties of the target object is created; then, hypotheses on the position of the object are generated, and the model is transformed accordingly, until the best match with the actual appearance of the object is found. To generate these hypotheses intelligently, a good optimization algorithm is required. Bio-inspired techniques are optimization methods whose foundations rely on properties observed in nature (such as cooperation, evolution, emergence). Their effectiveness has been proved in many optimization tasks, especially in multi-modal, multi-dimensional hard problems like object recognition. Although these heuristics are generally effective, they depend on many parameters that strongly affect their performances; therefore, a significant effort must be spent to understand how to let them express their full potentialities. This thesis describes a method to (i) automatically find good parameters for bio-inspired techniques, both for a specific problem and for more than one at the same time, and (ii) acquire more knowledge of a parameter's role in such algorithms. Then, it shows how bio-inspired techniques can be successfully applied to different object recognition tasks, and how it is possible to further improve their performances by means of automatic parameter tuning
    corecore