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Introduction

Object recognition is the task of automatically finding a given object in an image or
in a video sequence. This task is very important in many fields such as medical diag-
nosis, advanced driving assistance, image understanding, surveillance, virtual reality.
Nevertheless, this task can be very challenging because of artefacts (related with
the acquisition system, the environment or other optical effects like perspective, il-
lumination changes, etc.) which may affect the aspect even of easy-to-identify and
well-defined objects.

A possible way to achieve object recognition is using model-based approaches: in
this scenario a model (also called template) representing the properties of the target
object is created; then, hypotheses on the position of the object are generated, and the
model is transformed accordingly, until the best match with the actual appearance of
the object is found.

To generate these hypotheses intelligently, a good optimization algorithm is re-
quired. Bio-inspired techniques are optimization methods whose foundations rely on
properties observed in nature (such as cooperation, evolution, emergence). Their ef-
fectiveness has been proved in many optimization tasks, especially in multi-modal,
multi-dimensional hard problems like object recognition.

Although these heuristics are generally effective, they depend on many param-
eters that strongly affect their performances; therefore, a significant effort must be
spent to understand how to let them express their full potentialities.

This thesis describes a method to (i) automatically find good parameters for bio-
inspired techniques, both for a specific problem and for more than one at the same
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time, and (ii) acquire more knowledge of a parameter’s role in such algorithms. Then,
it shows how bio-inspired techniques can be successfully applied to different object
recognition tasks, and how it is possible to further improve their performances by
means of automatic parameter tuning.

The remainder of the thesis is organized as follows:

• Chapter 1 provides the necessary theoretical background to follow the remain-
der of the paper. It is not meant to be a comprehensive review but to allow
the reader to focus on the main topics of the thesis (bio-inspired optimization
and object recognition); nevertheless many references are provided for further
documentation on each single topic;

• Chapter 2 describes the main motivations behind automatic parameter tuning
and summarizes the main approaches used to tackle this problem;

• Chapters 3 and 4 describe the two versions (single and multi-objective) of the
meta-optimization method developed, as well as several tests and experiments
that prove their effectiveness;

• Chapter 5 shows some applications in which model-based object recognition
has been employed, and how the automatic parameter tuning techniques have
been employed to further improve their performances;

• Lastly, Chapter 6 summarizes the contents of this thesis;

• This work is followed by an Appendix that describes the GPGPU computing
paradigm and a library developed to exploit it. It is not necessary in order
to understand the rest of the work, but it may be of help in reproducing the
experiments described in this thesis.



Chapter 1

Theoretical Background

Avoid both “practically hopeless, although entirely correct”
and “it always works like magic, no need for theory” approaches.

– János D. Pintér

This Chapter introduces the two main topics of this dissertation, Global Contin-
uous Optimization and Object Recognition. A broad description of these topics will
be provided, followed by a more in depth description of the algorithms and strategies
employed in the rest of the work.

1.1 Global Continuous Optimization

Every day, in many different engineering and industry fields, several decisions need
to be taken. Let us consider some examples:

• A novel axial fan needs to be designed, the main characteristic requested being
its efficiency. The designer has a very precise modeling software that allows
to predict the efficiency according to to how the fan’s parameters have been
set. The fan’s parameters on which the designer can directly operate contain
blades’ number, thickness and angle, hub’s size, and others. Therefore, the job
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the designer is requested to do is to find a feasible combination of parameters
that maximize the efficiency;

• Color quantization of an image consists of creating a palette with a limited
number of colors onto which each color in an image can be mapped. In this
case, the goal is to find the set of colors that reduce the overall difference
between the original and the quantized images;

• A medical doctor has a large database containing the outcome of several exams
performed on each patient. Some of these exams give indirect hints about the
health of each patient, while other exams (more complex, intrusive, or costly)
tell if the patient has or does not have a certain disease. The doctor would like
to know if the results of the faster and harmless exams could be used to predict
the results of the slower and more intrusive ones; in other words he wants to
find the set of parameters that are more likely to predict the health status of the
patient as fast as possible, at the lowest cost and with the smallest possible side
effects.

These situations, although very different from one another, have a weak element
in common: they all have some information that comes in input and they have to
produce a decision in output accordingly.

Consequently, finding the solution of any problem like these can be modeled as
finding the global best of a function, which may represent the quality, error, cost, util-
ity, etc. of a possible solution. In some lucky cases, this function may have a simple
behavior and the global best can be found using local techniques or fast “trial and
error” approaches. But, in general, a function modeling a real world phenomenon has
a non-linear, non-convex behavior, which requires techniques able to widely explore
the function domain to be dealt with.

Global Continuous Optimization (GCO) [59] consists of finding the overall best
solution for a problem under consideration.
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Some notations

A GCO problem can be described using simple mathematical notation (from now on
a minimization problem will be considered, but any such problem can be turned into
a maximization one, without loss of generality, by simply changing the sign of the
function):

~xmin = arg min
~x∈D

f (~x)

where~x ∈ Rn is a possible decision vector, solution or input, n being the number
of input components, also called dimensionality of the problem, and ~xmin is a solution
vector (there can be a single one or many of them) for which the function f reaches
its minimum within D. D ∈ Rn is the domain (also called search space) of the func-
tion, which means the set of all possible solutions. D may be limited by lower and
upper limits that may correspond to physical constraints or valid ranges of the vari-
able under consideration (li ≤ xi ≤ ui, i = 1, . . . ,n), as well as by other constraints,
which may represent combinations of input variables that violate some constraints
(mathematical, physical or of other nature) imposed on the solution.

The function f : Rn → R is the objective function and usually does not need
to have any particular property, such as convexity, continuity or differentiability. In
some scenarios, the function does not even have to be known: this is the case of
“black-box” optimization, where the function is used as a “black box” in which the
only information known is the output that corresponds to a given input. Anyway, the
properties of f have a great impact on the tractability of the problem.

A local minimum ~m of a function is a point for which:

f (~m)≤ f (~x) ∀~x ∈ N~m

where N~m = {~x ∈ D : |~x−~m|< ε},ε > 0, is a neighborhood of ~m. If the function
has only one local minimum (which, in this case, is also the global minimum), it is
called unimodal, in the opposite case it is multimodal. It is evident that in the latter
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case the search for the best can be misled by the local minima (see Figure 1.1), while,
in the first case, it is sufficient to “follow” the slope of the function to reach ~xmin.

Figure 1.1: The two graphs show an example of a unimodal function (on the left)
and of a multimodal one (on the right). On the x axis, the input vector (in this case
it is one-dimensional), on the y-axis the value of the objective function. In the first
case, starting from both points and following the slope of the function will lead to the
global optimum xmin. In the second one, only the white point will lead eventually to
the global optimum while, if the optimizer starts from the black point, it will find a
sub-optimal solution.

Another important property of a function in a GCO problem is separability. A
function is said to be (additively) separable if it can be decomposed as follows:

f (~x) =
n

∑
i=1

fi(xi)

If a function respects this equality, each element of the solution vector can be
analyzed independently of the others, which simplifies the task; otherwise (non-
separable functions) the search strategy needs to take into consideration also the
dependencies between the elements that compose a solution.
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GCO Strategies

A GCO strategy usually involves an iterative process within which the solution is
refined over time. The strategies used to solve GCO problems can be divided in three
main groups (see also Figure 1.2):

• Deterministic approaches [42]: they are based on the mathematical properties
of the function (e.g. gradient, Hessian matrix) and guarantee the discovery of
at least one global optimum. The main drawback is their computational com-
plexity (usually exponential against problem dimensionality) which can make
them unusable in many problem classes, such as NP-hard ones;

• Exact stochastic methods [197]: these methods (as well as Soft Computing
ones, see next point) do not guarantee that the global best solution is found, but
good methods are able to reach reasonably good approximations of ~xmin;

• Soft Computing methods: these methods often offer solutions with a lower
computational burden than the deterministic ones. They are more suited for
NP-hard problems for which no deterministic algorithm can compute a so-
lution in a feasible time. The remainder of this Chapter will focus on these
methodologies.

1.1.1 Soft Computing

The term Soft Computing (SC) has been introduced in the early eighties and compre-
hends a vast number of techniques which can perform several tasks like classification,
data mining, and optimization. According to Zadeh [192], the main ability of SC is
to “mimic the human mind to effectively employ modes of reasoning that are approx-
imate rather than exact”. SC techniques aim at formalizing the humans’ ability to
tackle problems that contain uncertainty, errors, or missing information by learning
from examples, previous knowledge or experience and cooperation.

SC techniques have been applied in many tasks, such as classification [53, 130],
prediction [4], clustering [60], data mining [108]. When considering GCO problems,
the most successful techniques fall under the name of metaheuristics.
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Figure 1.2: A partial taxonomy of GCO methods, focused on the methods studied in
this thesis.

1.1.2 Metaheuristics

Fred Glover introduced the term metaheuristic (MH) in [48]. Many definitions have
been proposed to identify this term since then. One of the most concise and precise,
although flexible enough to adapt to several techniques, has been proposed by Osman
and Laporte [128]. They define a MH as an “iterative generation process which guides
a subordinate heuristic by combining intelligently different concepts [. . . ] in order to
find efficiently near-optimal solutions”. To be able to do so, they intrinsically need to
have some abilities. One of the most useful is to efficiently explore the search space
without getting trapped in a limited area while, on the opposite, being able to deeply
analyze the most promising parts of the search space. Therefore, they must be able to
cope with two different phases of a search process:

• exploration (or diversification) is the part of a search process in which new
areas of the search space are considered, in order to find new promising zones;

• exploitation (or intensification), on the contrary, consists of focusing on a lim-
ited area with the goal to improve a current good but non-optimal solution.
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The balance of these two phases is one of the most important keys to the success
of an algorithm: too much emphasis on the first one makes the MH wander across
the search space (an extreme scenario is a “random walk”); on the opposite side, if
exploitation is overly privileged, it may miss good areas of the function domain and
land on local minima (extreme case: local search). Each MH has a different way to
tackle this problem using different operations and parameters.

The most interesting qualities that make MHs so interesting from an application
point of view are [188]:

• Simplicity: their algorithms can be usually summarized in a few lines of pseudo-
code and their implementation is therefore straightforward;

• Flexibility: they can treat any problem as a “black-box” optimization problem.
There is no need for information regarding the function like its gradient or Hes-
sian. This allows these methods to be used in a very wide variety of problems,
in which more classical approaches fail;

• Ergodicity: they contain mechanisms, usually based on randomization tech-
niques or statistical models, to escape local minima and search into highly
multimodal functions.

Some possible ways to classify MHs have been proposed by Blum and Roli [16].
The most interesting one is based on the number of solutions used at the same time.
Some methods (e.g. Tabu Search [48]) work on a single solution at a time while others
(such as Bio-Inspired Algorithms methods) use a population of solutions. This aspect
not only allows them to cover the search space with more points, but the elements of
the population can interact with one another in order to improve the behavior of the
search algorithm.
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1.1.3 Bio-Inspired Algorithms

If you think evolution means you’re a random accident,
you don’t understand evolution (or accidents).

– Richard Dawkins

Bio-Inspired Algorithms (BIAs) [188] use strategies observed in nature (such as
evolution, cooperation, social behavior, emergence) to drive the generation of novel
solutions starting from a population of randomly generated ones. The first imple-
mentations of these techniques for global optimization were developed in the mid-
seventies with the pioneering work of Holland on Genetic Algorithms (GA) [56]
and of Rechenberg on Evolution Strategies (ES) [142]. They employed the theories
developed by Darwin (“survival of the fittest”) to generate better elements (called
“individuals”, to mimic the nature-inspired concept) in the population. The main idea
behind this is to treat the function to be optimized as the “fitness” of the individual: an
individual that obtains a good result, or that has a good fitness, has more probabilities
to survive and to pass its genes to the next generation. New individuals are created
by the existing ones by the mathematical equivalents of the biological crossover and
mutation. The first one generates a “child” by merging the features of two “parents”,
the second one alters one or more values in an individual to increase diversity within
the population. These operations are repeated through the generations, and the pop-
ulation improves its average fitness leading to better results. The general structure
of an Evolutionary Algorithm (EA), one of the main examples of BIAs, is shown in
Algorithm 1.

The terminology and taxonomies reported in the literature about this field are
not consistent. Some consider EAs as a part of BIAs; some consider EAs and BIAs
as two separate families of population-based metaheuristics. From a practical point
of view, the differences between these techniques are so thin [22] that, in the rest
of this dissertation, the terms “evolutionary algorithms”, “bio-inspired algorithms”,
“population-based metaheuristics” will be simply considered as equivalent (although,
in general, this is improper [93]), since most of the approaches, experiments and
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conclusions drawn in the next chapters are valid for all of them.

Algorithm 1 Basic structure of an evolutionary algorithm. Bio-inspired algorithms
share the same paradigm.

P← InitializePopulation()
Evaluate(P)
while Termination Criteria not met do

P←U pdatePopulation(P)
Evaluate(P)
P← SelectNewPopulation(P)

end while

This field has been subject to a great expansion in the nineties, when many suc-
cessful techniques have been proposed such as Particle Swarm Optimization [73],
Differential Evolution [158], Ant Colony Optimization [156]1.

Despite the lack of full theoretical proofs (although several works are trying to fill
this gap [5]), they proved to obtain outstanding performance in many situations (e.g.
uncertain environments [67]) and in many applications such as civil engineering [74],
economics [147], electric power systems [2], materials design [133], medical image
processing [100, 107], networking design [36], robotics [119], scheduling [52], sus-
tainable energy development [196], timetabling [85], wireless sensor networks [81],
and many others.

These two aspects (lack of theoretical proofs and good performance under dif-
ferent conditions) point to another aspect of these algorithms: they are usually quite
sensitive to the tuning of their parameters. This tuning is usually performed by using
trial-and-error approaches or by testing a grid of possible combinations of parameters,
but many more systematic (as well as scientific) approaches have been presented [39].

This thesis will deal with two of the most successful bio-inspired optimization
techniques, Particle Swarm Optimization and Differential Evolution, but the conclu-

1More recently, a huge number of algorithms with an alleged biological or natural inspiration, from
frogs to cuckoos to jazz musicians, have been proposed. Please refer to [157] for a critical analysis and
to [181] for a specific example.
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sions can be easily extended to other metaheuristics.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired algorithm introduced by Kennedy
and Eberhart in 1995 [73]. It is based on the simulation of the social behavior of bird
flocks looking for food. Especially thanks to its simple implementation and ability to
reach good results quickly when compared to similar population-based techniques,
since its introduction PSO has been applied to a very wide variety of problems [136]
and many variants of the original algorithm have been proposed [23].

During PSO’s execution a population of P elements (commonly called “parti-
cles”) moves within a function domain searching for the optimum of the function
(best fitness value). The motion of the ith (i = 1, . . . ,P) particle can be described by
the following two simple equations which regulate its velocity and position:

~vi(t) = w ·~vi(t−1)

+ c1 · rand() · ( ~BPi−~Pi(t−1))

+ c2 · rand() · ( ~BGPi−~Pi(t−1))

~Pi(t) = ~Pi(t−1)+~vi(t)

where ~vi(t) and ~Pi(t) are respectively the velocity and position of the ith particle at
time t; c1, c2 are constants that represent how strongly cognitive and social informa-
tion affects the behavior of the particle; w is an inertia factor (that sometimes depends
on time t [151]); rand() returns random values uniformly distributed in [0,1], and BPi

is the best-fitness position visited so far by particle i.
In the basic global-best PSO algorithm, ~BGP is the best-fitness position vis-

ited so far by any particle of the swarm, therefore it is the same for all particles
( ~BGPi = ~BGP, ∀i). In several variants, called local-best PSOs, the swarm is subdi-
vided into smaller neighborhoods which can assume different topologies [23]. Fig-
ure 1.3 shows some of the most common choices. The one on the left is the global
one, in which each particle is connected to all others. In the second one, called ring,
the neighborhood of each particle is composed by itself, the previous K and next K
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particles, where K indicates the radius of the neighborhood. In the one on the right
(star), one particle is selected as “center” and acts like in a “global-best” PSO, while
the neighborhood of the other particles is limited to the central one and themselves.
The impact of the communication between particles on the performance of PSO is
still an open research topic [40].

Figure 1.3: Three commonly used PSO topologies used in this work: global, ring
(K = 1, since each particle has only one neighbor on the left and one on the right)
and star.

The number of proposals of PSO variants are countless [9]; among the most in-
teresting approaches can be considered:

• several topologies have been proposed in the years [175]. Two interesting vari-
ations are (i) the ones that use dynamic topologies which vary randomly [121]
or according to the results of the optimization process [148] and (ii) the ones
that rely on sub-swarms that evolve partially independently of one another and
share little information to preserve diversity within the population [89];

• hybridization consists of the insertion of operators taken from other methods in
the original algorithm. PSO has been successfully hybridized with other MHs
like genetic algorithms [70, 149, 150] or cuckoo search [179], mathematical
methods such as branch and bound [46], and local search methods [112, 140,
66, 195];

• asynchronous versions [141, 176], in which each particle does not need to wait
for the other ones before updating its position, but does so it as soon as its
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evaluation is finished. This approach proved to be successful especially for
parallel implementations [75, 115];

• extension to multi-objective [13] and dynamic problems in which the landscape
changes during optimization [50].

Differential Evolution

Differential Evolution, first introduced by Storn and Price [158], has proved to be one
of the most successful EAs for GCO, especially when the function to be optimized
is multi-modal and non-separable [177]. DE follows a simple strategy in which the
individuals of the current generation are perturbed by the scaled differences of other
randomly-selected and distinct individuals. Therefore, no separate probability distri-
bution has to be used for generating the offspring [28]. This way, in the first iterations
the population members are widely scattered in the search space and possess great
exploration ability. During optimization, the individuals tend to concentrate in the
regions of the search space with better values, so the search automatically exploit the
most promising areas [120] self-adapting its exploitation-exploration balance during
evolution.

In DE, new individuals that will be part of the next generation are created by
combining individuals of the current one. Every individual acts as a parent vector
and, for each of them, a donor vector is created. In the basic version of DE, the donor
vector for the ith parent (~Xi) is generated by combining three random and distinct
individuals ~Xr1, ~Xr2 and ~Xr3. The donor vector ~Vi is calculated by what is called an
adaptive-mutation of difference vectors as follows:

~Vi = ~Xr1 +F · ( ~Xr2− ~Xr3)

where F (scale factor) is a parameter that strongly influences DE’s performances
and typically lies in the interval [0.4, 1]. In the last few years, several DE mutation
strategies have been proposed, experimenting with different base vectors and differ-
ent numbers of vectors used as perturbations. They are commonly recognized by a
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simple nomenclature: DE/{operator}/{number of difference vectors}. For instance,
the original method described above is called DE/rand/1, which means that the first
element of the donor vector equation ~Xr1 is randomly chosen and only one difference
vector (in our case ~Xr2− ~Xr3) is added. Table 1.1 shows some of the most common
choices.

Table 1.1: DE Mutation Strategies. ~Xbest represents the individual with the best fitness
in the current population.

Strategy Formula

DE/best/1 ~Vi = ~Xbest +F · ( ~Xr1− ~Xr2)

DE/target-to-best/1 ~Vi = ~Xi +F · ( ~Xbest −~Xi)+F · ( ~Xr1− ~Xr2)

DE/best/2 ~Vi = ~Xbest +F · ( ~Xr1− ~Xr2)+F · ( ~Xr3− ~Xr4)

DE/rand/2 ~Vi = ~Xr1 +F · ( ~Xr2− ~Xr3)+F · ( ~Xr4− ~Xr5)

DE/rand-to-best/2 ~Vi = ~Xr1 +F · ( ~Xbest −~Xi)+F · ( ~Xr2− ~Xr3)+F · ( ~Xr4− ~Xr5)

After mutation, every parent-donor pair generates a child (~Ui), called trial vec-
tor, by means of a crossover operation. The two most common crossover strategies
employed are called binomial (or uniform) and exponential. The former follows this
simple strategy:

Ui, j =

{
Vi, j if (randi, j ≤CR or j = jrand)

Xi, j otherwise

The jth component of the ith donor vector is obtained by means of uniform (or
binomial) crossover, where randi, j is a uniformly distributed random number in the
range [0,1], CR is the crossover rate, and jrand is a randomly selected dimension.

In exponential crossover, instead, an integer L is first computed following this
pseudo-code:
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L = 0
do

L = L+1
while ((randi, j ≤CR) and (L≤ D))

where D is the dimension of the individuals. Then, the trial vector is finally gen-
erated:

Ui, j =

{
Vi, j for j = 〈 jrand〉D . . .〈 jrand +L−1〉D
Xi, j otherwise

where 〈·〉D represents the modulo D function.

After the crossover operation, the newly-generated individual ~Ui is evaluated and
its fitness F( ~Ui) is compared with the one obtained by its parent F( ~Xi). Following an
elitist strategy, if F( ~Ui)≤ F( ~Xi), the newly generated offspring replaces its parent in
the population, otherwise the parent “survives” and will be part of the next generation.

Due to its simplicity and effectiveness, many researchers have proposed modifi-
cations to DE’s basic algorithm [28, 120]. Among the many variants of DE opera-
tors, one of the most successful ideas was to adapt the strategy (mutation, crossover,
and parameter values [18]) during optimization, according to the results obtained.
EPSDE [97] starts with a pool of mutation and crossover strategies; at first, each in-
dividual is randomly associated with a strategy from the pool and uses it to generate
a trial vector. If the trial vector is better, it keeps the parent’s strategy, otherwise a
new strategy is assigned to the parent. Other strategies that employ a pool of possible
solutions are Composite DE [180], and Strategy Adaptation DE [139].

Like PSO, hybridization of DE with MHs [91, 111, 194] as well as with local
search [122, 189] proved to be successful. Variants of DE have been successfully
proposed for discrete [132] and binary [131] problems, multi-objective optimiza-
tion [7, 187, 143] and dynamic environments [103].
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1.1.4 Multi-Objective Optimization

Before moving forward to the next topic, let us go back to the first scenario in the be-
ginning of Section 1.1 and suppose that the designer has also to minimize the overall
production cost of the fan. In general, more than two objectives can be optimized at
the same time. The simplest strategy to tackle a situation like this consists of merging
the objectives f j, j = 1, . . . ,N into a single metric by a weighted sum:

f (~x) =
N

∑
j=1

w j · f j(~x)

where w j ∈ R is a weight associated to objective j. This strategy has several
drawbacks, the main being (i) the strong impact that the choice of the weights have
on the final result and (ii) the different measurement units by which objectives may be
measured which makes summing them senseless. A better strategy, especially when
the different goals are in conflict with each other, is the one known as Pareto Opti-
mization. The goal of this strategy is not to find a single solution, but an entire set
of non-dominated solutions. A solution is said to be non-dominated if all other so-
lutions are worse on at least one of the objectives. The collection of non-dominated
solutions represents the approximation of the Pareto Front (PF). Figure 1.4 shows a
simple two-dimensional PF. It can be said that, moving through the PF, it is possible
to find different trade-offs between the conflicting goals.

MHs have proven to be very successful in tackling multi-objective problems [24,
198]. One of the most common techniques is an extension of classical genetic algo-
rithms, called Non-dominated Sorting Genetic Algorithm (NSGA-II) [32].

Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Genetic Algorithm (NSGA-II) is one of the most used multi-
objective optimization method, introduced by Deb et al [32]. NSGA-II obtains good
results, particularly in solving non-convex and non-smooth problems, thanks to an
elitist strategy in which the elements that survive in the next generations are selected
according to their rank and their crowding distance, respectively defined by:
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Figure 1.4: Example of a Pareto Front for a minimization problem. f 1 and f 2 are the
two objective functions. The solid black line is the Pareto Front, the dotted line is its
approximation obtained by the non-dominated solutions (black dots). The white dots
represent dominated solutions. The goal of an optimization algorithm is to move the
approximation as close as possible to the real Pareto Front.

• a fast non-dominated sorting procedure (see Algorithm 2), which is a procedure
that assigns a rank to each particle ~Pi, i.e. the number of particles that domi-
nate ~Pi: non-dominated particles have rank = 0, and so on. This algorithm is
composed of two phases: in the first one (lines 1 to 16) it computes the number
of individuals that dominate each particle in the population, so that the non-
dominated ones have rank = 0. All the elements with rank = 0 compose the
front F0. In the second phase (lines 17 to 31) the ranks are assigned to the dom-
inated particles: the elements that are dominated only by individuals belonging
to F0 have rank = 1 and compose F1, and the same operation is repeated until
the rank has been assigned to all particles;

• a crowding distance that guarantees diversity between solutions without the
need of any user-requested parameter. The algorithm for crowding distance
computation is presented in Algorithm 3. For each element the crowding dis-
tance is initialized to zero, then for each goal g it is incremented by the (normal-
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ized) distance between the two elements that precede and follow it according
to g. When an element is the best (or the worst) according to a goal its distance
is set to ∞ so that it is always chosen among the particles with the same rank.
The same algorithm can be applied to parameter values instead of goals.

Algorithm 2 Fast Non-dominated Sorting algorithm. The output is the rank for each
individual in the population.

1: for all ~Pi ∈ Population do
2: Si← /0
3: ni← 0
4: for all ~Pj ∈ Population do
5: if ~Pi dominates ~Pj then
6: Si← Si∪~Pj

7: end if
8: if ~Pj dominates ~Pi then
9: ni← ni +1

10: end if
11: end for
12: if n~Pi

= 0 then
13: ~Pirank← 0
14: F0← F0∪~Pi

15: end if
16: end for

17: i← 0
18: while Fi 6= /0 do
19: N← /0
20: for all ~Pi ∈ Fi do
21: for all ~Pj ∈ Si do
22: n j← n j−1
23: if n j = 0 then
24: ~Pjrank← i+1
25: N← N∪~Pj

26: end if
27: end for
28: end for
29: i← i+1
30: Fi← N
31: end while

The NSGA-II algorithm is basically derived from a classic GA. First, a popu-
lation of P individuals is randomly initialized. Then, in each generation, some el-
ements are selected into a mating pool and are subject to crossover and mutation.
These offsprings and the current population are then merged, and the best P elements
are passed to the next generation, in an elitist way, according to the non-dominated
sorting. In case two individuals have the same rank, the one with the higher crowding
distance is selected; by doing so, it is possible to preserve diversity among the indi-
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Algorithm 3 Crowding distance computation. In this case goals are considered, but
parameter values can be used instead.

for all ~Pi ∈ Population do
~Pidistance = 0

end for
for all g ∈ Goals do

Population← sort(Population,g)
~P0distance← ∞

~PNdistance← ∞

for i = 1 . . .N−1 do
~Pidistance+= ( fg( ~Pi+1)− fg( ~Pi−1))/( fg

max− fg
min)

end for
end for

viduals. This distance can take into consideration the fitness or the encoding of the
individuals, to increase the diversity of results or of the population, respectively.
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1.2 Object Recognition

Object recognition is the task of finding a given object in an image or in a video se-
quence. This task can be difficult for humans and, in computer vision, this is far more
challenging because of artefacts (related with the acquisition system, the environment
or other optical effects like perspective, illumination changes, etc.) which may affect
the aspect even of easy-to-identify and well-defined objects. These problems may
cause an object to have different appearance depending on the specific conditions un-
der which an image has been acquired. The task may become even more challenging
when “interferences”, such as partial occlusions or noisy backgrounds, are present.
Finally, and possibly most importantly, the task is further complicated by the intrin-
sic variability exhibited by different instances of objects belonging to large general
categories or, even more relevantly, by living beings, or parts of their bodies.

In many real-world applications which rely on object recognition, such as medi-
cal imaging, advanced driving assistance, image understanding, surveillance, virtual
reality, some requirements need to be satisfied:

• precision in object detection;

• robustness against noise (like the alterations described in the previous para-
graph) and occlusions;

• fast execution, up to real-time performances, which are required in some tasks.

All object recognition tasks, implicitly or explicitly, must rely on a model of the
object that is to be detected. This is reflected in the main computer vision approaches,
which can be divided into bottom-up and top-down.

1.2.1 Bottom-Up Approaches

The more classical bottom-up (or feature-based) approaches are based on processes
where all significant generic low-level features (e.g. edges, colors, textures, regions,
etc.) are extracted from the image, and then “composed” into sets which may repre-
sent a target. These processes rely on a “natural” strategy which mimics biological
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perception, in the absence of any expectations about what the object of perception
may be. In this case, knowledge about the object (its model) is only applied after
an exhaustive extraction of features from the image. In practice, this usually leads
to a lack of specificity, as all image regions are usually explored independently of
any expected content. This may further turn into a lack of accuracy or an increase in
computation burden, due to the huge number of possible outcomes that needs to be
taken into consideration.

1.2.2 Top-down Approaches

On the other hand, top-down (or model-based) approaches rely on knowledge about
the object to be detected, as well as about the physical laws to which both the object
itself and the image acquisition process obey. A prototype model is created which
describes the most important invariant features (e.g. color, shape, relative position
with respect to other objects, etc.) of the object under consideration. At the same
time, knowledge about the physics of the object and the imaging process makes it
possible to define a transformation, from the object space to the image space, which
can represent all possible poses or deformations of the object as they may appear
within the image. After the acquisition, a tentative hypothesis is made about object
location, deformation and orientation, which represents a point in the transformation
domain. The hypothesis is then checked by evaluating the similarity between the
expected appearance of the modeled object in the image and the actual content of the
corresponding image region.

This approach is generally preferable when two criteria are satisfied:

• a priori knowledge is available, which can limit the size of the transformation
domain;

• the implementation of the transformation is sufficiently fast to allow a search
algorithm to efficiently explore such a domain.

This is a very general class of methods which can be adapted to virtually any
object that contains some invariant features (like color, shape, feasible and infeasi-
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ble deformations . . . ) that can be represented by a set of parameters, as well as of
knowledge about the physical laws to which the object obeys.

The definition of the model is performed in two steps:

• selection of the most relevant features of the object, based on the observation
of a significant subset of object instances;

• definition of the ranges within which the features may vary, based on the
knowledge of the physical laws which regulate the object and the image acqui-
sition process, in order to account for all possible transformations (perspective
effects, other geometric transformations, deformations due to noise, etc.) by
which the object may be affected.

After the definition of the model, a similarity measure must be also defined. It
takes in input a possible hypothesis on the model and must reflect the similarity be-
tween the hypothesis and the object to be identified in the image, in order to reach its
maximum when the image representation of the model is superimposed to the object.
The problem has now become a GCO problem: figure 1.5 shows a general scheme of
this process, when a MH is used to solve it.

Figure 1.5: Scheme of Model-based Object Recognition. The MH generates a new
hypothesis about the pose/deformation of the model. This new hypothesis is com-
pared to the actual image using the objective (similarity) function and the process is
repeated until a termination criteria (usually based on time or required precision) is
met.
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From a more practical point of view, “deformable models” are one of the most
common implementations of model-based object recognition.

Deformable Models

Deformable models (DMs) [162, 163] are a specific template-matching [19] imple-
mentation and refer to curves or surfaces, defined within the image domain, that are
deformed under the influence of “internal” forces, related with the curve features, and
“external” forces, related with the image features. Internal forces enforce regularity
constraints and keep the model smooth during deformation, while external forces are
defined to attract the model toward the object of interest.

Parametric models are a family of DMs which represent curve (or surfaces) by
means of an equation that represent their parametric forms during deformation. This
allows direct interaction with the model and leads to a compact representation for
a fast implementation. One of the first examples, called “snakes” or Active Contour
Models, was presented in [71] and was used for image segmentation. A model is de-
fined by n points and is deformed in order to minimize an energy function. Active
Shape Models (ASMs) [26] add more prior knowledge to deformable models: they
derive a “point distribution model” from sets of labeled points (landmarks) selected
by an expert in a training set of images; in each image, a point is placed on the part of
the object corresponding to its label. While this model has problems with unexpected
shapes, since an instance of the model can only take into account deformations which
appear in the training set, it is robust with respect to noise and image artefacts, like
missing or damaged parts. Active Appearance Models [25] extend ASMs by consid-
ering not only the shape of the model, but also other image properties, like texture or
colour. Metamorphs [61] integrate both shape and appearance in a unified space by
encoding the boundaries of an object as probability maps. Finally, “deformable tem-
plates” [64] represent shapes as deformations of a given prototype or template which
mathematically describes the prior knowledge about the object shape as the most
likely appearance of the object. One needs to provide a mathematical description of
the possible relationships between the template and all admissible object shapes. A
template is specified by a set of parameters which control its deformation until it
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matches the target.

Optimization of deformable models can be a very hard task, especially in clut-
tered situations. Therefore, the use of MHs with deformable models has been success-
ful many times in different tasks: optimization of the definition of the models [54],
object detection [65], localization [124] and segmentation [105].





Chapter 2

Parameter Tuning and
Meta-Optimization

Nothing is impossible for the man who doesn’t have to do it himself.

– Abe H. Weiler

In their recent review on Swarm Intelligence and Bio-Inspired Computation [188],
Yang et al state that “parameter tuning is a very active research area which requires
more research emphasis on both theory and extensive simulations”. Nevertheless,
fine tuning the design of these techniques is not a simple task and must take many
variables into consideration, among which the most important are:

• the nature of the problem(s) under consideration;

• the ability to generalize results over different (classes of) problems:

• the constraints of the problem, such as the restrictions imposed by computation
time requirements (e.g., real-time performances);

• the quality indexes used to assess an algorithm’s performance.
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Problem

The features of the function to be optimized are obviously the main factor to be
considered when designing a MH. It is common knowledge that a solver tailored
on a specific problem has more ability to tackle it when compared with a general-
purpose one. However, it is not always easy to extract the computational properties
that characterize the fitness landscape [135] of a problem under consideration such as
isotropy, modality, ruggedness, separability, particularly when considering real-world
tasks. This lack of domain knowledge on the problem at hand can be partially over-
come by a better knowledge of the algorithm used. In Bio-Inspired Optimization, this
translates into the need of understanding the “meaning” of the many parameters that
regulate the algorithms’ behavior and how these settings influence their performance.
In spite of this, MHs are often applied without taking this into account and “standard”
parameter settings tend to be used, which may lead to failures even in simple tasks.

Generalization

If different problems are better tackled by different solvers, a straightforward con-
sequence is that there exists a relationship between solvers and problems, and that
similar problems are likely to require similar solvers. Consequently, it could be use-
ful to find patterns or direct relationships between the characteristics of a solver and
the problems on which it performs best. If two problems have similar computational
properties, and are correctly tackled by the same solver, it should be possible to gen-
eralize this information, and use the same solver on other problems that share those
properties.

An aspect that needs to be taken into consideration when evaluating MHs is that
there are algorithms (or algorithm configurations) that can averagely reach good re-
sults on different problems, while others may be less robust, and exhibit performances
characterized by a larger variance. The former can be used more reliably for unknown
problems, but the latter can be better tailored for a specific task; this behavioral differ-
ence may be quite difficult to catch. A consequence of this statement is that, although
it can be useful to find a good set of parameters for a specific MH dealing with a spe-
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cific problem, in the long run it is probably more important to understand why such
a set works, and how a change in its values affects the algorithm’s performances.

Constraints

The approach used most frequently when evaluating a MH is simply to test it on
several fitness functions and extract some aggregated information, like average or
median fitness reached after a certain time (or number of fitness evaluations) in sev-
eral independent runs. A big issue with this way of testing is that the conditions
under which experiments are performed have a very strong influence on the results.
Consider the plots in figure 2.1: on the x axis there is the time spent optimizing the
function f (x), whose best value reached at a certain time t is plotted on the y axis. Let
us suppose to have two algorithms A and B. If they are let to run for t1 seconds, we
would say that the first performs better than the second one but, if we wait until t2, the
opposite appears to be true. This shows that choosing the better performer requires a
precise definition of the conditions under which the comparison is made: a statement
like “Algorithm A performs better than B” makes no sense unless this specification
is also clearly stated.

Quality indexes

Usually, the main property investigated in analyzing algorithms’ performance is their
ability to reach the best fitness value. However, in many real-world applications, this
is not the only goal to be aimed at. Let us consider some different real-world opti-
mization tasks:

• when dealing with object tracking and recognition in images and videos [174],
a solution must be found quickly, and it is not necessary to reach the global
optimum but a point which is “close enough” is sufficient; therefore, an algo-
rithm that is able to consistently reach good results (although not perfect) in a
short time is to be preferred to another one that reaches better results, but takes
much longer to do so;
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Figure 2.1: Comparing the performance of two optimization algorithms A and B.
Time is on the x axis, objective function value on the y. If the algorithms are stopped
when t = t1, A is better than B, but if the time budget is increased up to t = t2, the
result is the opposite. Therefore the question is: which algorithm is better?

• on the contrary, in other tasks such as structural design [74], the problem is
entirely different because there are virtually no time constraints; then, it is pos-
sible to run many experiments and keep only the best solution ever found.
Some of the properties that were desirable in the previous task, such as reach-
ing good results quickly, are not relevant in this problem, and an algorithm that
keeps refining the solution over time, although very slowly, is preferable.

Of course, the ideal case would be obtaining the best possible results in the short-
est possible time; it is easy to understand that, most often, these two goals are con-
flicting with each other, and a trade-off is needed.

2.1 Parameter Tuning

With these considerations in mind, it is very difficult to evaluate the performance of
an algorithm and choose a good set of parameters for a given problem. As a conse-
quence, comparing different algorithms is also very complicated because, for a fair
comparison, each algorithm must be used “at its best”. This does not always hap-
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pen; in fact, in the literature, many examples can be found where it is evident that
the effort spent by the authors for tuning and optimizing the method they propose is
much larger than the effort spent for tuning the ones used as reference in the compar-
ison. This may obviously lead to erroneous interpretations of the results and to wrong
conclusions.

Focusing more on MHs, several methods have been proposed to deal with their
sensitivity to their parameters. These methods can be grouped into two main classes:

• Parameter tuning [58]: the parameter values are chosen off-line and they do not
change during evolution, which is the case on which this work will focus;

• Parameter control [38]: the parameter values may vary as the optimization pro-
ceeds, according to a strategy that depends on the results of the process. These
changes can be driven either by fitness improvement (or by its lack) or by some
properties of the evolving population, like diversity or entropy.

MH parameters can be grouped according to two main types:

• Numerical parameters: either integers (e.g., number of population members) or
real numbers (e.g., DE crossover rate);

• Nominal parameters (also called categorical parameters, or settings): these pa-
rameters represent different design choices (e.g., different PSO topologies) and
cannot be ordered reasonably; as a consequence, they are not searchable by
continuous optimization methods.

Unfortunately, a very common method to tune MH parameters is a “manual”
search based on a trial-and-error approach, in which the developer first tests a param-
eter set and, driven by its results, tweaks some parameters repeating this operation
until results become good enough, or he/she gets tired. Another approach is to test
a representative grid of parameter sets [21, 44, 87], but it is a complex task, mostly
because the parameters’ search space can be very large, and may become huge when
considering all the possible issues discussed before.
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Trial-and-error approaches can be considered “manual versions” of how bio-
inspired techniques work: they generate possible solutions and, based on the re-
sults obtained, explore different areas of the search space until a stopping criterion is
reached. At the same time, finding good parameters is a multi-dimensional, “noisy”
problem, i.e., the kind of problems in which these techniques typically perform well.
Therefore, a natural way of tackling this problem could be to let a MH search the
space of the algorithm’s parameters to be tuned. This approach is usually called Meta-
Optimization and is summarized in Figure 2.2. According to the nature of the Tuner
MH, Meta-Optimization can be referred to using other names such as Meta-EA (when
an EA is used), Meta-GA and so forth.

Figure 2.2: Scheme of Meta-Optimization. The Tuner MH searches in the space of
LL-MH (lower level MH) parameters. When a LL-MH configuration is generated, it
is tested T times and an aggregated result is the fitness of the corresponding Tuner
MH individual.

The block in the lower part of the image represents a traditional optimization
problem: a MH, referred to as Lower-Level MH (LL-MH) optimizes a function fol-
lowing such an algorithm. The Tuner MH (above in the figure) works in a very similar
way, except that it does not operate in the search space of the problem to be solved,
but in the search space of the parameters of LL-MH. This means that Tuner MH
generates possible LL-MH configurations. For each set of parameters, an entire op-
timization process using LL-MH is repeated T times on the function(s) taken into
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consideration. An aggregated measure of the T results (e.g. the average final fitness,
or the time to reach a solution), called “Quality” in the image, represents the fitness
value of the individual corresponding to the configuration that has been tested of the
Tuner MH population, which runs until it converges or it runs out of time.

2.2 Automatic Parameter Tuning

Several strategies have been proposed to automatically find good parameters [39, 92]
(or, in a broader sense, to choose good heuristics). In this section, the most interesting
methods for off-line tuning of MHs will be briefly presented. This section is not meant
to offer a complete coverage of all possible approaches, but to provide the reader with
insights of possible solutions to this hard problem.

2.2.1 Meta-Optimization

The idea underlying Meta-Optimization was first introduced in 1978 by Mercer and
Sampson [104], while Grefenstette [51] conducted more extensive experiments with
a meta-GA and showed its effectiveness, despite the limited amount of computational
power available in those years. Gratch et al [49] introduced a method based on hill
climbing named Composer, Freisleben et al [43] used a GA to optimize a population
of underlying GAs, Bäck [8] proposed a meta-algorithm that combined principles of
ES and GA to tune both continuous and discrete parameters of a GA at the same time.

In the last few years several methods using the same paradigm have been pro-
posed: one of the most successful is called REVAC (Relevance Estimation and VAlue
Calibration [116]), a method inspired by the Estimation of Distribution Algorithm
(EDA [83]), in which the population explores the search space according to the prob-
ability density function of the most promising areas of the fitness landscape. In [153],
REVAC proved its effectiveness by finding parameters that improved the perfor-
mance of the winner of the competition on the CEC 2005 test-suite [159]. Meissner
et al [102] used PSO to tune itself and applied the optimal parameter sets to neural
network training; Pedersen [134] used a simple metaheuristic called Local Unimodal
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Sampling to tune DE and PSO parameters, obtaining good performance while dis-
covering unexpectedly good parameter settings.

ParamILS [62] is a method that performs a local search starting from a default
parameter configuration, which is iteratively improved by modifying one parameter
at a time; FocusedILS [63] improves ParamILS by spending more budget on the most
promising areas. GGA [3] uses a genetic algorithm variant used to configure solvers
for combinatorial problems. Luke and Talukder [95] used a Meta-EA in a massively
parallel system as an optimization method: meta-evolution is not performed to find
the best possible parameters of an underlying EA (GA, ES or DE), but to generate
good optimizers on-line and solve the problem under consideration directly.

Multi-Objective Meta-Optimization

Multi-Objective Meta-Optimization extends the meta-optimization process by choos-
ing the best MHs considering more goals at the same time. The first extension of
Meta-Optimization to the multi-objective paradigm was proposed by Dréo [35] who
used NSGA-II to optimize speed and precision of four different algorithms: Simu-
lated Annealing, an EA and two versions of EDA. However, he took into consider-
ation only one parameter at one time, so this approach cannot be considered a full
parameter set optimization algorithm. A similar method has been proposed in [155].
The authors describe a variation of a MOEA called Multi-Function Evolutionary Tun-
ing Algorithm (M-FETA), where the performance of a GA on two different functions
represent the different goals that the MOEA has to optimize; the goal is to discrim-
inate algorithms that perform well on a single function from those that do on more
than one, respectively called specialists and generalists, following the terminology
introduced in [154].

Finally, an interesting technique has been proposed by [17], in order to identify
the best parameter settings for all possible computational budgets (i.e. number of
fitness evaluations) up to a specified maximum. This is obtained using a MOEA in
which the fitness of an element is composed of the fitness values obtained in every
generation. In this way, it is possible to obtain a family of parameter sets which
guarantee that the best results are reached when different computational budgets are
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allowed.

2.2.2 Model-Based Approaches

Other approaches for parameter tuning are model-based. Their goal is to generate
meta-models that estimate the utility of a parameter by analyzing the meta-fitness
landscape. A simple example is presented in [27], in which the parameters of a GA
are subject to a “statistical exploratory analysis” to clarify the relationship between
the parameters and performance of the algorithm. Calibra [1] employs factorial de-
sign [160] to extract good parameters sets, which are then refined using a local search
method.

One of the most successful model-based approaches is Sequential Parameter Op-
timization (SPO), proposed in [12]: it is an iterative process in which, at each repe-
tition, a set of parameter configurations is generated and their utilities are estimated
according to a model. The most promising ones are then evaluated and the model is
updated accordingly. In this way, it is possible not only to find good parameter val-
ues, but also to predict a range of validity for each parameter. In [138], an interesting
discussion about how the effort should be divided between the initial creation of the
model and its evaluation/improvement is presented.

2.2.3 Portfolio Solvers

A different approach is the one employed by Portfolio Solvers [86]. This paradigm,
more frequently employed in combinatorial than in continuous optimization, consists
of having a portfolio of solvers (usually trained offline [186]), each one with differ-
ent properties and more capable of dealing with certain problems than the others.
Then, when a new problem instance is to be tackled, they all start and only the most
promising ones are allowed to continue the optimization.

2.2.4 Racing

The goal of racing algorithms is to look for the best parameters with the lowest pos-
sible number of tests. To do so, the tuner generates a population of possible config-
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urations based on a pre-defined distribution; elements from this population are then
tested and possibly discarded as soon as a statistical test indicates that there is at least
one other element in the population which outclasses them; these operations are re-
peated until a set of good configurations is obtained. The first work using this idea
is [98], and one of the most successful algorithms is irace [94], which has been em-
ployed in combinatorial [15], continuous [90], and multi-objective [14] optimization
with good success.

2.2.5 GP-based Hyper-heuristics

These approaches work at a higher level than typical parameter tuning methods. They
use Genetic Programming (GP) [76] (an evolutionary paradigm that evolve computer
programs) or other techniques to generate novel heuristics using the combination
of different operators and/or simpler heuristics, as well as tuning parameters [20].
Woodward and Swan proposed an “algorithmic tuning” opposed to the classical pa-
rameter tuning and used GP to generate novel selection [184] and mutation [185]
operators for genetic algorithms while Oltean [127] used GP to evolve complete evo-
lutionary algorithms.

2.3 An intermission on the comparison of metaheuristics

Before moving on with the presentation of the methods developed in this work, it is
maybe useful to spend some time discussing a crucial question: what is the correct
way to compare different MHs? As stated before, a sentence like “Algorithm A is
better than B” is usually pointless unless precise test conditions are also provided.
Therefore, it is necessary to perform tests that are able to support any conclusions of
this kind and, consequently, draw only the conclusions that can be derived from the
tests used. One of the most important aspects to keep in mind when working with
stochastic algorithms is that any kind of supremacy hypothesis must pass a statistical
test [34] to avoid the possibility that the difference is only due to the stochasticity
involved in the process. Another good practice is to establish in advance the kind of
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tests, proceedings and evaluations to which all the MHs under study will be subject
to in order to avoid to favor an algorithm, even unintentionally.

In [68] Johnson state that an experimental paper may be classified in four main
categories:

• Application Paper: in which the purpose is to describe the impact of the algo-
rithm on a particular application;

• Horse Race Paper: to prove that the algorithm is better than the state-of-the-art;

• Experimental Analysis Paper: to better understand the strengths and weak-
nesses of the algorithm;

• Experimental Average-Case Paper: to generate conjectures about the average-
case behavior of the algorithm when direct analysis is too hard.

The methods presented in the next Chapters can be effectively employed in all
these four cases:

• Application Paper: an automatic parameter tuning can be employed to allow
the algorithm to run “at its best”;

• Horse Race Paper: the “race” is obviously fairer if the newly-proposed algo-
rithm and the reference ones are subject to the same parameter tuning process;

• Experimental Analysis Paper: the multi-objective version presented in Chap-
ter 4 is perfectly suited for this task, as will be shown;

• Experimental Average-Case Paper: automatic parameter tuning methods are
able to find good parameters and their ranges of validity.

The next two Chapters will present the two versions of the parameter tuning
method implemented in this work, along with some tests performed on numerical
problems in different conditions, and the results obtained.





Chapter 3

SEPaT

There’s no such thing as simple. Simple is hard.

– Martin Scorsese

SEPaT (Simple Evolutionary Parameter Tuning) is our implementation of the
general Meta-Optimization paradigm. Implementations of both Tuner-MHs and LL-
MHs (see Figure 2.2) are based on DE or PSO but nothing prevents the use of other
metaheuristics.

The main improvements provided by SEPaT when compared with classic Meta-
Optimization approaches are:

• the way in which the elements of Tuner-MHs are compared to each other, to
select which is better;

• the encoding of LL-MHs, especially as regards nominal parameters.

Comparison Method

Each individual in a Tuner-MH represents a set of parameters of the lower-level op-
timizer which is to be tuned. This optimizer is tested T times on a set of F functions,
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F ≥ 1. The resulting fitness is then computed based on the average and standard devi-
ation of the best fitness obtained over all functions; that is a 2×F array of values (F
averages and F standard deviations). These fitness values are then used by the tuner
when its elements need to be compared. A set of parameters is better than another if
it obtains better results on the majority of the F functions. In case of a tie, the winner
is selected comparing the sum of Welch’s t-test [146] values over the F functions:

R =
F

∑
i=1

(X i
a−X i

b)√
sia

2+si
b

2

T

where a and b are the two sets of parameters to be compared, X i and si are the
mean and standard deviation obtained by each optimizer on function i over the T
repetitions. In a minimization problem, the optimizer a is better if R < 0, otherwise b
wins.

When it is necessary to compare more than two optimizers at a time (e.g. at
the end of the optimization process to find a winner, or during optimization when
the best element needs to be known for updating the elements), a full tournament is
performed: each element is compared with all the others and the number of times it
wins or loses is saved. The individual with the lowest number of losses is considered
to be the final best. In case more than one element are as good, the ones with more
wins (ties are also allowed) is considered the best. If more than one element have the
same number of wins and losses, they are considered to be equivalent. By doing so the
“training” functions used to tune the parameters do not need to assume values within
comparable ranges, avoiding the need for normalization; nevertheless it is important
that this set is balanced with respect to the properties of interest (e.g. unimodal and
multimodal functions). A possible problem with this approach is that a configuration
may win even if it cannot obtain good results optimizing some of the functions, since
it is required only to perform better than the others on the majority of them. In this
way, the parameters found by the process, despite being good on average, may be not
as good on all functions. This is one of the limitations that EMOPaT (see Chapter 4)
tries to overcome.
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Nominal Parameters

Since the MHs used as tuners are real-valued optimization methods, the problem
of representing nominal parameters needs to be addressed. The strategy followed in
SEPaT consists of representing each possible choice by a vector with as many real
values as the options available and selecting the option corresponding to the element
with the highest value. For instance, one of the parameters that needs to be selected
in PSO is topology. The possible choices are ring, star and global topology. This
means that three values for each individual in the PSO/DE tuner are reserved to this
choice and the topology corresponding to the largest one in the best particle is chosen.
These elements of the individual are treated by DE or PSO just like any other element.
Figure 3.1 shows the encoding of DE and PSO configurations in a Tuner MH. Please
note that during the evolution of the Tuner MH all values are normalized in the range
[0,1] and a linear scale transformation is performed when a LL-MH is instantiated.

Figure 3.1: Encoding of DE (left) and PSO (right) configurations in a tuner MH.

3.1 Experiments

In this section two experiments on numerical benchmark functions using SEPaT will
be presented. In the first one, the parameter sets found by SEPaT will be compared
with the best ones found by a systematic search over the parameters’ search space. In
the second one, SEPaT’s performance will be compared against irace, ParamILS and
standard parameters over a benchmark composed of 28 functions.

3.1.1 SEPaT vs systematic search

Four classical benchmark functions having different nature (unimodal/multimodal
and separable/non separable, see Table 3.1) have been selected to test SEPaT. For
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Table 3.1: Benchmark functions used to test SEPaT. For every function, the table dis-
plays name, search space, formula, modality (multimodal, unimodal) and separability
(separable, non separable). The fitness optima are 0 for all functions.

Name Range Formula U/M S/NS

Zakharov [−10,10]n

(
∑

n
i=1 xi

2
)
+(

∑
n
i=1 0.5 · i · xi

2
)2
+(

∑
n
i=1 0.5 · i · xi

2
)4

U S

Schwefel 1.2 [−100,100]n ∑
n
i=1

(
∑

i
j=1 x j

)2
U NS

Rastrigin [−5.12,5.12]n ∑
n
i=1
{

x2
i −10 · cos(2πxi)+10

}
M S

Rosenbrock [−100,100]n ∑
n
i=2 100(xi− x2

i−1)
2 +(1− xi−1)

2 M NS

each function, the parameter search space of DE has been systematically sampled
(with the sampling steps shown in Table 3.2) and for each of the 13728 parameter
combinations thus generated, 10 independent repetitions generated were ran. This
way, a ground truth has been created which can be used to assess the results of the
meta-optimization. The termination criterion was set after 1000 generations and the
search space size was set to 16. Figure 3.2 shows an example of results of this sys-
tematic search.

Table 3.2: Range of DE parameters allowed by the tuning algorithms. The last column
shows the sampling step used in the systematic search used as reference.

Parameter Values Step

Crossover Rate [0.0,1.0] 0.1
Scale Factor (F) [0.0,1.5] 0.1
Population Size [30,150] 10

Crossover {binomial, exponential} -
Mutation {random, best, target-to-best (TTB)} -

Automatic parameter tuning using SEPaT has been repeated 10 times (5 using
DE as Tuner, 5 using PSO) on each function. Table 3.3 shows the parameters used
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Figure 3.2: Example of results of systematic search. Scale factor F is on the x axis,
crossover rate CR on the y axis and, on the z axis, the final fitness value of the Ras-
trigin function averaged over 10 independent runs. The three wire-frames represent
the fitness values obtained using the three kinds of mutation considered (random,
target-to-best and best).

by the tuners based on DE and PSO. In order to choose them, the tuning procedure
described here has been performed over 8 benchmark functions using “standard” pa-
rameters for PSO and DE (see [173]). The best parameter configuration found, based
on the number of functions for which it obtained the best fitness value, was used
in our tests. This is a sub-optimal way to find good parameters for the tuners. Obvi-
ously, another meta-level to empirically find a good parameter set for the tuners could
be added. This could lead to an infinite repetition of the same procedure and to an
exponential increase in optimization time. However, the practical aim is just to im-
prove the performance of manually-tuned optimizers without increasing complexity
too much, when dealing with problems in which the optimizer’s performance is par-
ticularly sensitive to the parameters’ values, therefore this operation can be avoided.

Table 3.4 shows, for each function, the ranges of the parameters for the best
10 settings found in the systematic search and for the 10 combinations obtained by
SEPaT. As can be observed, the ranges within which the parameters found by SEPaT
lie are virtually overlapping with the optimal ones determined by a systematic search.
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Table 3.3: Parameter values of DE- and PSO-based tuners. Notice that, with this
parameter configuration, a maximum of 1536 sets of parameters (64 generations ×
24 individuals) are evaluated in each run.

DE PSO

Target-to-best Mutation c1 = 1.525
Exponential Crossover c2 = 1.881

F = 0.52 w = 0.443
CR = 0.91 Ring Topology

Population Size = 24, Generation = 64

This proves that the meta-optimizer behaves correctly. An analysis of the parameter
sets obtained show that F ' 0.5 is a good choice for the four functions considered,
while the crossover rate needs to be high for all functions but Rastrigin, for which the
best results are obtained setting a very low crossover rate.

For every set of parameters, 100 independent runs on the corresponding function
have been performed. All optimizers were able to obtain a median value of 0 over the
corresponding function. The Wilcoxon signed-rank test [182] confirmed the absence
of statistically significant differences between the results of the systematic search and
the tuning, since the p-values for the null-hypothesis “there is difference between the
results obtained by using the two sets of DE parameters” were always larger than
0.01. More details on these results are presented in Table 3.5.

To reduce the computational burden, these tests have been implemented on GPU
following the GPGPU (General Purpose Graphics Processing Unit) programming
paradigm. Details on the library developed to perform these experiments are provided
in the Appendix. In this particular task, the GPU-based version is 10.3 times faster
than the single-core CPU-based one on the PC we used. Please notice that this speed-
up is only indicative of this problem, since it depends on a very high number of
parameters, like population size, number of evaluations, degree of parallelism and
complexity of the fitness function as well as, obviously, on the hardware on which
the optimizer is run.
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Table 3.4: Range of the parameters found by systematic search and SEPaT. P is pop-
ulation size, Mut is mutation strategy, Cross is the crossover type.

Zakharov Schewfel 1.2 Rastrigin Rosenbrock

Systematic Search

CR ∈ [0.8,0.9] CR ∈ [0.9,1.0] CR ∈ [0.0,0.4] CR ∈ [0.8,0.9]
F ∈ [0.5,0.6] F ∈ [0.5,0.7] F ∈ [0.1,0.6] F ∈ [0.6,0.7]
P ∈ [100,150] P ∈ [120,150] P ∈ [90,150] P ∈ [90,150]

Mut ∈ {Best,T T B} Mut ∈ {Best,T T B} Mut ∈ {Rand,Best} Mut ∈ {Best,T T B}
Cross ∈ {Bin,Exp} Cross ∈ {Bin,Exp} Cross ∈ {Bin,Exp} Cross ∈ {Bin,Exp}

SEPaT

CR ∈ [0.799,1.0] CR ∈ [0.935,1.0] CR ∈ [0.0,0.344] CR ∈ [0.740,0.939]
F ∈ [0.433,0.714] F ∈ [0.535,0.667] F ∈ [0.207,0.596] F ∈ [0.646,0.686]

P ∈ [111,146] P ∈ [80,150] P ∈ [79,149] P ∈ [83,150]
Mut ∈ {Best,T T B} Mut ∈ {Best,T T B} Mut ∈ {Rand,Best} Mut ∈ {Best,T T B}
Cross ∈ {Bin,Exp} Cross ∈ {Bin,Exp} Cross ∈ {Bin,Exp} Cross ∈ {Bin,Exp}

Table 3.5: Comparison between the results obtained by the best parameter set found
by SEPaT against the one obtained during the systematic search over the parameters’
search space over 100 repetitions. The five columns report average and standard de-
viation obtained by the two methods, and p-value of the Wilcoxon test with the null
hypothesis “There are no differences between the two distributions”.

Function SEPaT Systematic Search p-value

Avg Std. Dev Avg Std. Dev

Zakharov 8.46e-05 0.95e-03 1.96e-04 2.68e-03 0.75
Schwefel 1.2 4.70e-24 1.48e-22 1.04e-21 3.28e-20 0.71
Rastrigin 1.91e-08 1.33e-07 1.99e-03 4.44e-02 0.011
Rosenbrock 0.31 1.06 0.45 2.96 0.28
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3.1.2 SEPaT vs irace and ParamILS

The experiment presented in this section aims at proving the competitiveness of
SEPaT when compared with state-of-the-art tuners. DE has been used as tuner in
SEPaT to optimize PSO and DE parameter values, and compare the performance of
the parameter sets obtained with the ones found by irace and ParamILS, along with
some manually selected sets suggested by the PSO authors in [72] and in [28] for
DE, to be used as “reference” (see Table 3.6). The ranges within which DE and PSO
parameters were allowed to vary during the tuning phase are reported in Table 3.7.

Table 3.6: Values of DE and PSO parameters used as a reference as suggested in [72]
and in [28].

Differential Evolution Particle Swarm Optimization

Population Size 30 Population Size 30
Crossover Rate (CR) 0.9 Inertia Factor (w) 0.721

Scale Factor (F) 0.5 c1 1.193
Crossover exponential c2 1.193
Mutation random Topology ring

DE and PSO parameters have been tuned on a “training set” of 7 functions and
a “validation set” of 21. These functions are defined in the CEC 2013 benchmark
suite [88], with the only difference that the function minima have been set to 0. More
details on this experiment, including the functions that compose the “training set”,
are provided in Table 3.8. The main goals of this experiment were to check:

1. whether SEPaT was able to get results competitive with state-of-the-art tuners
such as irace and to improve over the standard settings;

2. whether repeatable patterns could be found in the parameter sets obtained by
different techniques and by different runs of the same technique;

3. the generalization ability of every tuner.
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Table 3.7: Ranges of DE and PSO parameter values allowed during the optimization.
The ranges are wider than those usually considered in the literature, to allow the
different tuners to “think outside the box”, and possibly find unusual parameter sets.

Differential Evolution

Population Size [4,300]
Crossover Rate (CR) [0.0,1.0]

Scale Factor (F) [0.0,2.0]
Crossover {binomial, exponential}
Mutation {random, best, target-to-best}

Particle Swarm Optimization

Population Size [4,300]
Inertia Factor (w) [−0.5,1.5]

c1 [−0.5,4.0]
c2 [−0.5,4.0]

Topology {ring, star, global}

Each tuner was run seven times. The parameter sets obtained for PSO and DE
are shown in Table 3.9. The ones highlighted in bold are the ones that performed
best in a full tournament (see Section 4.1.2) within the seven final results. It can be
seen that SEPaT and irace obtained similar results. For PSO (left side of the table),
two main clusters can be easily recognized. The first one (SEPaT’s runs number 1,
4 and 7 and irace’s ones number 1, 4 and 5) has c1 ' c2 ∈ [0.9,1.7], w ' 0.7 and
ring topology; the second one (SEPaT 2, 3, 5 and 6 and irace 3 and 7) has c1 > c2, a
bigger population and global topology. Within the functions used in the training set
the second cluster is slightly better than the first one.

Regarding DE (right side of Table 3.9), the variability of parameter values is
even smaller: except for few exceptions, CR is between 0.7 and 0.9, F ' 0.5 and
exponential crossover is selected. Mutation type is target-to-best or best; when the
former is selected the number of elements is around 20, otherwise it is around 50.
The variability of ParamILS parameter sets is larger in both cases and its results
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Table 3.8: Comparison between SEPaT, irace and ParamILS. Experimental settings.

SEPaT settings
Population Size = 200, 80 Generations,
CR = 0.91, F = 0.52, target-to-best-mutation, exponential crossover

Function settings
10-dimensional Sphere, Rotated Cigar, Rosenbrock, Rotated Ackley,
Rastrigin, Composition Function 1, Composition Function 3 functions
Best fitness in 20000 evaluations averaged over 15 repetitions.

are affected by the need to discretize the search space imposed by the optimization
process.

The parameter configurations of PSO and DE selected in this way have been run
200 times on the 21 functions of the CEC 2013 benchmark suite that were not used
in the training phase. Their results are reported in Table 3.10 for PSO and 3.11 for
DE. For each function, the method(s) that performed best according to the Wilcoxon
test (p < 0.01) are highlighted in bold. Table 3.12 summarizes these results. It can be
seen how, for both PSO and DE, SEPaT “wins” in more functions than the manually-
tuned parameters used as reference, being largely the best method for tuning DE and
the second after irace for PSO.

3.2 Discussion

In this Chapter, SEPaT has been presented and its capabilities of automatically tune
parameters of metaheuristics have been successfully proven via a comparison with a
systematic search and with two state-of-the-art methods, irace and ParamILS. SEPaT
is able to find good parameters with a good repeatability and a low algorithmic
complexity thanks to the properties of the bio-inspired techniques utilized. It is also
able to deal with nominal parameters, an option which is usually ignored by meta-
optimization techniques.

However, this approach has two main limitations:
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Table 3.9: Best automatically-tuned parameter values found by SEPaT, irace and
ParamILS in 7 runs of every tuner. The ones highlighted are the ones that obtained
the best results during testing for each tuning technique.

Particle Swarm Optimization Run Differential Evolution

Param. SEPaT irace ParamILS Param. SEPaT irace ParamILS

c1 1.538 1.299 2.0

1

CR 0.838 0.720 0.8
c2 1.287 1.777 0.6 F 0.554 0.507 0.5
w 0.664 0.521 0.6 Pop. Size 51 46 166

Pop. Size 36 28 196 Crossover exp exp bin
Topology ring ring global Mutation best best best

c1 2.250 1.245 1.8

2

CR 0.915 0.857 0.65
c2 0.722 1.938 2.0 F 0.858 0.548 0.8
w 0.650 -0.207 0.3 Pop. Size 26 53 24

Pop. Size 50 57 72 Crossover exp exp bin
Topology global global ring Mutation TTB best TTB

c1 2.167 2.174 2.4

3

CR 0.818 0.679 0.45
c2 0.733 0.640 1.4 F 0.540 0.559 0.4
w 0.699 0.636 0.3 Pop. Size 52 23 252

Pop. Size 60 63 72 Crossover exp exp bin
Topology global global ring Mutation best best best

c1 1.358 0.962 1.0

4

CR 0.863 0.784 0.5
c2 1.153 0.914 1.6 F 0.547 0.862 0.8
w 0.732 0.805 0.7 Pop. Size 54 24 52

Pop. Size 22 19 84 Crossover exp exp bin
Topology ring ring ring Mutation best TTB best

c1 2.400 1.104 1.6

5

CR 0.865 0.796 0.8
c2 0.936 1.786 0.4 F 0.581 0.508 0.5
w 0.559 0.605 0.8 Pop. Size 53 53 180

Pop. Size 61 30 74 Crossover exp exp bin
Topology global ring global Mutation best best TTB

c1 2.329 2.092 2.0

6

CR 0.694 0.856 0.85
c2 0.887 1.208 1.6 F 0.524 0.569 0.5
w 0.649 0.572 0.3 Pop. Size 28 51 182

Pop. Size 62 26 52 Crossover exp exp bin
Topology global ring ring Mutation TTB best TTB

c1 1.529 2.213 1.0

7

CR 0.160 0.751 0.3
c2 1.827 0.788 2.0 F 0.499 0.564 0.3
w 0.496 0.633 0.4 Pop. Size 17 41 46

Pop. Size 56 54 52 Crossover exp exp bin
Topology ring global ring Mutation TTB best random



50 Chapter 3. SEPaT

Table
3.10:

PSO
results

obtained
by

autom
atically-

and
m

anually-tuned
param

eters.
For

each
tuner,

average
and

standard
deviation

of
the

final
fitness

are
reported.T

he
ones

that
are

the
statistically

better
than

the
others

for
the

function
underconsideration

are
highlighted

in
bold.

Function
SE

PaT
irace

Param
IL

S
R

eference
A

vg
Std.D

ev
A

vg
Std.D

ev
A

vg
Std.D

ev
A

vg
Std.D

ev

rotated
elliptic

3.75e+05
3.22e+05

2.91e+05
2.98e+05

2.09e+06
1.27e+06

7.81e+05
5.80e+05

rotated
discus

1.01e+04
5.51e+03

9.59e+03
4.51e+03

1.72e+04
5.42e+03

1.47e+04
5.55e+03

pow
ers

1.63e-01
1.74e+00

5.92e-01
4.73e+00

4.96e-05
4.52e-05

6.80e-01
9.59e+00

rotated
schaffers

3.42e+01
2.36e+01

3.12e+01
2.03e+01

3.72e+01
1.31e+01

3.92e+01
1.88e+01

rotated
w

eierstrass
4.56e+00

1.39e+00
4.59e+00

1.42e+00
5.49e+00

1.04e+00
5.52e+00

1.12e+00
rotated

griew
ank

4.14e+00
1.08e+01

2.13e+00
4.00e+00

2.26e+00
1.51e+00

5.27e-01
3.49e-01

rotated
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katsuura

1.13e+00
3.02e-01

1.16e+00
2.96e-01

9.75e-01
2.50e-01

8.31e-01
2.45e-01

lunacek
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1.79e+01

2.16e+02
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F
6

1.87e+02
6.57e+01

1.67e+02
5.04e+01
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1.76e+01

1.58e+02
4.83e+01

C
F

7
4.74e+02

8.28e+01
4.40e+02
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5.02e+02

6.46e+01
4.92e+02

7.68e+01
C

F
8

3.89e+02
1.64e+02

3.97e+02
1.73e+02

2.62e+02
7.71e+01

2.97e+02
1.05e+02
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Table 3.12: Comparison between SEPaT, irace, ParamILS and standard parameters.
For each tuner the table reports the number of functions for which it performed better
than the others. Please note that the sum is larger than 21 (number of functions)
because, for each function, more than one method can be the “winner”.

Method PSO DE

SEPaT 11 11

irace 13 4

ParamILS 2 6

Reference 6 4

• It aims at only one goal (in the cases presented here, the final fitness value):
it is not possible to take multiple objectives into account, like searching for a
trade-off between precision and convergence speed. Moreover, to test the same
algorithm under different conditions, several independent runs of this time-
expensive method must be run;

• The result consists of one set of good parameters, but the approach provides
neither hints about their generality nor the reasons that caused their selection.

The next Chapter will present the multi-objective version of SEPaT, which faces
these two limitations.

More details about the experiments presented in this Chapter can be found in:

• R. Ugolotti, Y.S.G. Nashed, P. Mesejo, and S. Cagnoni: “Algorithm configuration using GPU-
based metaheuristics”. In: Genetic and Evolutionary Computation Conference Companion
(GECCO’13), pages 221-222. ACM, 2013

• R. Ugolotti, P. Mesejo, Y.S.G. Nashed, and S. Cagnoni: “GPU-Based Automatic Configuration
of Differential Evolution: A Case Study”. In: Progress in Artificial Intelligence, Volume 8154
of Lecture Notes in Computer Science, pages 114-125. Springer, 2013



Chapter 4

EMOPaT

No one who has ever tried it thinks conducting
empirical research on heuristics is easy.

– Ronald L. Rardin and Reha Uzsoy

In this Chapter, the multi-objective extension of SEPaT, called EMOPaT (Evo-
lutionary Multi-Objective Parameter Tuning) will be presented, along with several
experiments that aim at showing the wide range of possible outcomes it may provide.

The first goal for which EMOPaT has been designed is obviously to find pa-
rameter sets that achieve good results considering the nature of the problems, more
than one quality index and, more in general, the conditions under which the MH is
tuned. However, it aims at the more ambitious goal of extracting information about
the parameters’ semantics, their role in the algorithm and the way they affect the algo-
rithm’s results and behavior by analyzing the Pareto fronts of the solutions obtained
by a multi-objective MH, in this case NSGA-II. The strategy used is similar to the
one presented by Deb et al [33] under the name of innovization (innovation through
optimization). This simple yet effective paradigm aims at finding a relationship be-
tween goals and parameters (decision variables) by analyzing how these vary when
moving along over the Pareto front.

From an algorithmic point of view, EMOPaT works similarly to SEPaT, the only
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difference being that more objectives are analyzed at the same time, following the
multi-objective optimization paradigm. These objectives may take into consideration
the function used, the quality indexes considered or the constraints applied, such as
time constraints, problem dimensionality or others. The output of the tuning process
is therefore not only a single solution as in SEPaT but an entire set of non-dominated
parameter configurations, i.e., ideally, a sampling of the Pareto front for the objec-
tives under consideration. This allows a developer to make a deeper analysis of the
parameters’ selection strategy. This approach can be especially relevant considering
the conclusions drawn in [152]: here, Meta-EAs performed better than SPO and RE-
VAC, but the authors pointed out the inability of Meta-EAs to provide insights about
the parameters of the algorithm being tuned.

4.1 Experiments

In this section, EMOPaT will be tested in four different scenarios, to illustrate the
various outcomes it can provide:

1. Firstly, it will be tested in some controlled situations, to assess its ability to
produce the results it is expected to yield;

2. Then, it will be directly compared with SEPaT, to prove that it is able to reach
the same results, while offering the advantages provided by the multi-objective
paradigm;

3. The third experiment will show how the configurations that rely on the Pareto
front can be actually considered as valid configurations, and that EMOPaT is
in fact able to generate a set of solutions which represent trade-offs between
the considered goals;

4. Lastly, it will be shown how it is possible to use EMOPaT to extract infor-
mation on the MH under consideration that can be useful for many purposes,
especially designing and comparing MHs.
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4.1.1 Empirical Validation

Some examples of EMOPaT’s ability to give insights about the algorithm parameters
and their influence on the optimization process will be provided in this section. To
do so, a number of test cases have been artificially created on which EMOPaT’s
performance has been assessed:

1. a numerical parameter that is useless, i.e., it does not have any influence on the
algorithm’s behavior;

2. a numerical parameter that is harmful, i.e., the higher its value, the worse its
impact on the fitness;

3. a choice of a nominal parameter that is harmful, i.e., it constantly produces bad
fitness values when selected;

4. two choices of a nominal parameter whose effects are perfectly equivalent.

Figure 4.1: Encoding of PSO configurations in the four cases used to validate
EMOPaT. From top left clockwise: useless parameter, harmful numerical parame-
ter, equivalent and harmful topology.

A similar approach has been proposed in [110], which showed the ability of irace,
ParamILS and REVAC to recognize an operator which was detrimental for the fitness
under consideration. The results of these tests increase the confidence in the actual
ability of EMOPaT to recognize the usefulness and, more in general, the role of
a parameter of a MH. These tests have been performed on PSO, considering the
problem of optimizing the Sphere and Rastrigin functions. The original encoding of
PSO configurations (see Figure 3.1) has been modified as shown in Figure 4.1. More
details on these tests are presented in Table 4.1.
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Table 4.1: Empirical validation of EMOPaT. Experimental settings.

EMOPaT settings
Population Size = 64, 100 Generations,
Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
30-dimensional Sphere and Rastrigin functions
Best fitness in 20000 evaluations averaged over 15 repetitions

Useless Parameter

To perform this experiment, a parameter γ that is totally ignored by the algorithm and
therefore has no effects on its behavior has been added to the PSO configurations’
encoding. The goal was to analyze how EMOPaT dealt with this parameter with re-
spect to PSO’s actual parameters. Table 4.2 shows mean and standard deviation of
the elements representing numerical parameters in all NSGA-II individuals (there-
fore, before the linear transformation, when their values are within [0,1]) at the end
of the execution of ten independent runs. As can be observed, γ has a mean value
close to 0.5 and its variance is 0.078, which is very close to 1

12 , the expected variance
for a uniform distribution: this does not happen with the other parameters. Figure 4.2
plots the values of the Sphere function against the values of PSO parameters. While
the values of the real parameters show a clear trend, the values of γ are uniformly
scattered all over the allowed range. This suggests that a useless parameter can be
characterized by a uniform distribution of its values. Moreover, γ shows a very low
correlation with the other numerical parameters (see table 4.3), implying that its role
in the algorithm is negligible.

Harmful Numerical Parameter

In this experiment, the representation of each PSO configuration has been modified
with the addition of a parameter β ∈ [0,1] whose only effect is to worsen the fitness
proportionally to its value. At the end of each PSO fitness evaluation, the fitness f
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Table 4.2: Empirical validation of EMOPaT. Useless Parameter. Mean, and variance
for PSO’s numerical parameters, including the useless one γ . Values of parameters
are normalized between 0 and 1.

Parameter Pop. Size w c1 c2 γ

Mean 0.159 0.555 0.586 0.332 0.441
Variance 0.0313 0.0109 0.0120 0.0103 0.0780

Table 4.3: Correlation between PSO parameter values. The ones with respect to the
useless one (γ) are smaller than the ones between actual PSO parameters.

Parameter Pop. Size w c1 c2 γ

Pop. Size - 0.296 0.322 -0.564 -0.077
w - - 0.841 -0.892 -0.179
c1 - - - -0.801 -0.159
c2 - - - - 0.149

undergoes this transformation:

f̂ = ( f +β ) · (1+β ), f ≥ 0

EMOPaT was able to constantly assign to β values close to 0 (mean 7E−4, variance
7E − 6). This shows that the optimal value of a parameter can be identified with
success. Figure 4.3 shows the values of β versus number of generations averaged
over ten independent runs of EMOPaT. β starts from an average value of 0.5 (due to
random initialization), but after a few iterations, its value rapidly falls to 0.

Harmful Nominal Parameter Setting

In this experiment, a “fake” fourth topology has been added to PSO configurations.
When this topology is selected, it just skips the PSO process and returns a bad fitness
value. The goal was to see if the selection of such a parameter would be always
avoided and which values would be assumed by its corresponding element. Figure 4.4
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Figure 4.2: PSO parameter values versus Sphere fitness values at the end of the tun-
ing procedure. The last graph plots values found for the useless parameter. Unlike
the other parameters, that have a limited range and show a clear trend, the useless
parameter γ spans across all possible values with no relationship with the fitness.

Figure 4.3: Evolution of the “bad parameter” β , averaged over all individuals in ten
independent runs of EMOPaT, versus generation number.
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Figure 4.4: Average values assumed by the elements representing the four topologies
(including the fake one) and selection percentages. On the x axis, number of NSGA-II
generations. Results are averaged over 64 individuals in 10 independent runs.

shows that the fake topology is immediately discarded, and after only 2 generations is
no longer selected in any of the ten independent runs. Moreover, its values are always
lower than the others, and, in particular, lower than the star topology, which is also
never selected, despite being a valid topology, suggesting also that the absolute values
may represent the validity of a choice.

Equivalent Settings

In the last experiment of this section, the basic representation of a PSO configuration
has been modified by adding a fourth topology that, when selected, acts exactly as
the global topology. The goal was to see if EMOPaT would be able to understand
that the two topologies were in fact the same one. Figure 4.5 shows the results in the
same format as Figure 4.4. There is no clear correlation between the two “global”
versions, but it can be seen how, at the end of the evolution, the sum of their selec-
tion percentages is close to the value reached by global in the previous experiment. It
means that, splitting this choice into two distinct values did not affect EMOPaT per-
formance. Nevertheless, a higher number of generations was necessary to reach these
results, showing that EMOPaT needs more time to “understand” the correct values of
a nominal parameter when several choices are allowed.
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Figure 4.5: Average values assumed by the genes representing the four topologies (in-
cluding the repeated one) and percentages of selection. The x axis reports the number
of NSGA-II generations.

4.1.2 Comparison with SEPaT

The experiments in this section will empirically assess the performance of EMOPaT,
by comparing its results with its single-objective version which has been proven to be
effective through comparisons with irace and with the results of an exhaustive search
(see Section 3.1). The comparison has been made on the same seven benchmark
functions used in the experiments in Section 3.1.2. Tuning has been performed (i)
once for these functions as seven different objectives using EMOPaT, and (ii) seven
separate tuning processes with SEPaT, once for each function. More details about
these experiments are summarized in Table 4.4.

The goal of these tests is to show that the best-performing parameter sets found by
EMOPaT considering a single objective are similar and, consequently, have similar
performance to the ones obtained by SEPaT: in other words, EMOPaT works properly
if its best solutions on a single objective are indistinguishable from the ones obtained
by SEPaT on the same objective.

Ten independent runs for both SEPaT and EMOPaT have been performed. The
best configuration of the MH being tuned found in each run for each function was
then run 100 times to optimize the corresponding function. The median of these latter
experiments was computed for each set of runs to determine the overall best configu-
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Table 4.4: Comparison between EMOPaT and SEPaT. Experimental settings.

EMOPaT settings
Population Size = 200, 80 Generations,
Mutation Rate = 0.125, Crossover Rate = 0.9

SEPaT settings
Tuner EA = DE, Population Size = 200, 80 Generations
CR = 0.91, F = 0.52, Mutation = target-to-best, Crossover = Exponential

Function settings
10-dimensional Sphere, Rotated Cigar, Rotated Rosenbrock, Rotated Ackley,
Rastrigin, Composition Function 1, Composition Function 3 functions
Best fitness in 20000 evaluations averaged over 15 repetitions.

ration for each function. Figure 4.6 shows the ranges of the values found by the two
methods for the crossover rate in DE and the inertia factor in PSO: it can be observed
that the parameters overlap very frequently.

Table 4.5 compares the best PSO and DE configurations obtained by SEPaT in ten
independent runs with the best configurations obtained, for each corresponding func-
tion, in ten independent runs of EMOPaT; there is a significant similarity between
the parameters obtained by the two methods. For instance, looking at the nominal pa-
rameters of both DE and PSO, the choice is the same in all cases except for the PSO
topology for Composition Function 3. This is also the only case in which the parame-
ter sets chosen by the two methods are significantly different (one population is three
times larger than the other, c1 is four times bigger and the topology is different): nev-
ertheless, since the results obtained by these two configurations are equivalent (see
table 4.6), it can be stated that these sets correspond to two equivalent minima of the
meta-fitness landscape.

Table 4.6 shows, for every function, the median fitness obtained by the best-
performing of the ten EA configurations obtained by the two methods and by the
standard parameters (see Table 3.6), followed by the p-values of Wilcoxon signed-
rank test using the Null Hypothesis “There are no differences between the two dis-
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Table 4.5: Comparison between EMOPaT, SEPaT and standard parameters. For the
two tuning methods, the best-performing parameters obtained over 10 independent
runs are shown.

Differential Evolution

Function Method PopSize CR F Mutation Crossover

Sphere
SEPaT 20 0.506 0.520 target-to-best exponential
EMOPaT 12 0.181 0.718 target-to-best exponential

R. Cigar
SEPaT 60 0.955 0.660 target-to-best binomial
EMOPaT 38 0.916 0.699 target-to-best binomial

R. Rosenbrock
SEPaT 39 0.993 0.745 random exponential
EMOPaT 47 0.989 0.761 random exponential

R. Ackley
SEPaT 85 0.327 0.0 random exponential
EMOPaT 248 0.960 0.0 random exponential

Rastrigin
SEPaT 36 0.014 0.359 random exponential
EMOPaT 25 0.049 1.065 random exponential

CF 1
SEPaT 18 0.0 1.777 best exponential
EMOPaT 33 0.045 1.070 best exponential

CF 3
SEPaT 89 0.794 0.070 random binomial
EMOPaT 98 0.868 0.088 random binomial

Particle Swarm Optimization

Function Method PopSize w c1 c2 Topology

Sphere
SEPaT 88 0.529 1.574 1.057 global
EMOPaT 25 0.774 1.989 0.591 global

R. Cigar
SEPaT 67 0.713 0.531 1.130 ring
EMOPaT 41 0.757 1.159 1.097 ring

R. Rosenbrock
SEPaT 104 0.597 1.032 1.064 ring
EMOPaT 87 -0.451 -0.092 1.987 ring

R. Ackley
SEPaT 113 0.381 0.210 1.722 ring
EMOPaT 115 0.303 -0.006 2.467 ring

Rastrigin
SEPaT 13 -0.236 0.090 3.291 global
EMOPaT 7 -0.260 0.021 3.314 global

CF 1
SEPaT 92 -0.147 -0.462 2.892 ring
EMOPaT 61 -0.163 -0.376 3.104 ring

CF 3
SEPaT 61 0.852 0.347 0.989 ring
EMOPaT 217 0.728 1.217 0.565 global
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Figure 4.6: Values assumed by crossover rate in DE (left) and inertia factor in PSO
(right) after been optimized using EMOPaT (blue boxplots) and SEPaT (red). It is
visible that the two methods find similar results.

tributions” comparing EMOPaT against SEPaT and EMOPaT against the standard
parameters. While, in most cases, the configurations found by EMOPaT perform bet-
ter than the standard parameters (last column), there is no statistical evidence that the
performances of the configurations found by the two methods differ, except for two
cases (Rotated Cigar and Rotated Ackley using DE) for which EMOPaT is slightly
better than SEPaT.

These results point out that obtaining the best results for an objective of interest
using EMOPaT is generally equivalent to (if not better than) the best results obtained
by its single-objective version, with a comparable computational burden. For this
reason, the multi-objective strategy can be preferred, since it can provide more infor-
mation without affecting performance with respect to the single-objective version.

4.1.3 Looking at the Pareto Front

The goal of this experiment is to show that the solutions lying on the Pareto front are
valid configurations that represent different trade-offs between the goals considered.
To do so, each goal of EMOPaT has been set as the same fitness function whose
optimization is limited by a different fitness evaluations budget; similar experiments
can be performed evaluating the function under different conditions (e.g. different
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Table 4.6: Comparison between the median fitness obtained by the best solutions
found by EMOPaT, SEPaT and a standard configuration of the optimization algo-
rithm over seven functions (100 independent runs for each experiment).

EA Function EMOPaT SEPaT Standard vs SEPaT vs Standard

Fitness p
DE Sphere 0.00 0.00 7.43E−26 1.00 < 1E−20

R. Cigar 7.61E−02 7.64E−04 1.76E +01 4.89E−03 5.49E−08
R. Rosenbrock 3.42E−02 2.76E−03 9.81E +00 0.41 < 1E−20
R. Ackley 2.04E +01 2.05E +01 2.05E +01 1.21E−03 9.34E−07
Rastrigin 0.00 0.00 2.17E−08 1.00 < 1E−20
CF 1 2.04E +02 2.05E +02 4.00E +02 0.06 < 1E−20
CF 3 6.09E +02 6.14E +02 1.46E +03 0.67 < 1E−20

PSO Sphere 0.00 0.00 7.57E−24 1.00 < 1E−20
R. Cigar 1.33E +06 2.43E +06 1.84E +06 0.05 0.03
R. Rosenbrock 9.44E−01 1.01E +00 9.81E +00 0.87 1.04E−17
R. Ackley 2.04E +01 2.04E +01 2.04E +01 0.16 0.67
Rastrigin 4.75E−06 1.02E−04 1.09E +01 0.57 5.88E−08
CF 1 2.01E +02 2.03E +02 4.00E +02 0.99 < 1E−20
CF 3 9.62E +02 9.85E +02 1.16E +03 0.27 2.7E−04

problem dimension) or according to different quality indexes. The following set of
quality indexes has been considered:

• {QXi}: best results obtained after {Xi} fitness evaluations, averaged over N
runs;

Two different sets of tests have been performed, in each of which one of the two
functions shown in table 4.7 was used. Each one was optimized according to three
objectives, namely Q1K , Q10K , Q100K , i.e. the best fitness values reached after 1000,
10000 and 100000 function evaluations. The goal of this experiment is to observe
the emergence of configurations that are “fast-converging” or “slow-converging”. Ta-
ble 4.7 summarizes this experiment. Each test was run 10 times.

The hypothesis to be tested is that optimal configurations for intermediate eval-
uation budgets can be inferred by the results obtained on the objectives that have
actually been optimized. These solutions can be generated in two ways:

• infer them as the mean of the two configurations that obtained the best results
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Table 4.7: Comparison with different fitness evaluation budgets. Experimental set-
tings.

EMOPaT settings
Population Size = 64, 60 Generations,
Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
30-dimensional Sphere, Rastrigin (one for each experiment)
Best fitnesses after 1K, 10K, 100K evaluations averaged over 15 repetitions.

for two different objectives between which the new objective lies. This ap-
proach presents some limitations: (i) the parameter must follow a clear trend,
(ii) a policy for nominal parameters has to be defined if the two configura-
tions used as reference have different settings, (iii) there is no guarantee that
all intermediate values of a parameter correspond to valid configurations of the
algorithm;

• select them from the Pareto front: after plotting the set of all the population
members obtained at the end of ten independent runs on the two objectives
of interest, estimate the Pareto front based on those solutions and randomly
pick one configuration that lies on it, in an intermediate position between the
extremes (see an example on the Rastrigin function in Figure 4.7).

Table 4.8 shows the parameters of the best solutions found for Sphere and Rast-
rigin for the three objectives and of four intermediate solutions, generated by the two
methods. The ones indicated by A lie between Q1K and Q10K and the ones indicated
by B between Q10K and Q100K . It can be noticed that parameter sets generated using
the Pareto front have different values from the ones inferred as a mean, and from
the best configurations. In some cases (such as DE on Sphere) these solutions use a
mutation type that differs from all other best configurations. For the nominal parame-
ters of the inferred solutions, when the two best configurations disagree, both options
have been considered, distinguishing them by an index (e.g., A1 and A2).
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Table 4.8: DE and PSO configurations considering as different goals the optimization
of the same function with three different evaluation budgets.“Best” are the parameter
sets that perform best on each objective; “Inferred” refers to the ones obtained as
an average of the best solutions; “From Pareto” are extracted from the Pareto front
obtained considering objectives pairwise (see Figure 4.7).

Differential Evolution

Method Configuration PopSize CR F Mutation Crossover

R
as

tr
ig

in

Best
Q1K 9 0.214 0.736 target-to-best binomial
Q10K 7 0.053 0.754 target-to-best exponential
Q100K 7 0.039 0.784 target-to-best exponential

Inferred
A1,A2 8 0.134 0.745 target-to-best bin., exp.
B 7 0.046 0.769 target-to-best exponential

From Pareto
A 9 0.217 0.763 target-to-best binomial
B 7 0.006 0.769 target-to-best binomial

Sp
he

re

Best
Q1K 5 0.022 0.229 random binomial
Q10K 14 0.363 0.508 random exponential
Q100K 30 0.043 0.521 random exponential

Inferred
A1,A2 9 0.192 0.368 random bin., exp.
B 22 0.203 0.514 random exponential

From Pareto
A 8 0.023 0.520 target-to-best exponential
B 15 5E−4 0.498 target-to-best binomial

Particle Swarm Optimization

Method Configuration PopSize w c1 c2 Topology

R
as

tr
ig

in

Best
Q1K 18 0.560 1.195 0.789 global
Q10K 26 0.579 2.492 0.671 global
Q100K 76 -0.251 2.533 0.487 global

Inferred
A 22 0.569 1.844 0.730 global
B 51 0.164 2.513 0.579 global

From Pareto
A 27 0.678 0.949 0.587 global
B 60 0.297 3.132 0.481 global

Sp
he

re

Best
Q1K 11 0.603 1.882 1.105 ring
Q10K 14 0.510 1.998 1.483 ring
Q100K 15 0.449 1.725 1.667 ring

Inferred
A 12 0.557 1.940 1.294 ring
B 15 0.480 1.861 1.575 ring

From Pareto
A 14 0.649 1.764 1.082 ring
B 15 0.480 1.681 1.635 ring
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Figure 4.7: Fitness values of all the solutions found in ten independent runs of
EMOPaT for the three criteria, plotted pairwise for adjacent values of the budget.
The green and red stars represent the best configurations for each objective, yellow
circles are candidate optimal solutions for intermediate evaluation budgets.

Figure 4.8 shows the performance of the configurations considered in Table 4.8,
averaged over 100 independent runs, for DE and PSO. It can be observed that the in-
termediate configurations thus generated usually perform as expected. The solid lines
represent “Best” configurations; as expected, after 1000 evaluations (highlighted in
the plots on the right) Q1K is the best-performing configuration, while Q100K is slower
in the beginning but is the best at the end of the evolution. In most cases, the inferred
solutions performance can be considered to lie between the two top solutions used
as starting points. An interesting result related to the Rastrigin function is reported in
the first row of Figure 4.8, considering, for each generation, the best-performing con-
figuration: in the first 1000 evaluations, it is Q1K , then it is surpassed by Inferred A,
followed by Q10K , Pareto B, and finally Q100K ; this example shows that it is possible
to generate new effective solutions starting from the results of EMOPaT. A relevant
exception is A2 in DE Sphere (Figure 4.8, last row) that performs worse than all oth-
ers: since its only difference with A1 is the crossover type, this suggests that it is not
possible to derive nominal parameters unless one is clearly prevalent.

These results prove that EMOPaT is able to generate an entire set of valid so-
lutions in a single meta-optimization process. In the next section, it will be shown
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Figure 4.8: Average fitness versus fitness evaluations for the PSO configurations (top
two rows) generated for the 30-dimensional Rastrigin (first row) and Sphere (second
row) functions. Same plots for DE (last two rows). The plots on the right magnify the
first 1000 evaluations to better compare the performance of “fast” versions.
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how the analysis of EMOPaT’s results can be used to broaden the knowledge of the
LL-MH used.

Table 4.9: Tests on EMOPaT. Experimental settings.

EMOPaT settings
Population Size = 60, 60 Generations,
Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
10- and 30-dimensional Sphere, Rosenbrock, Griewank and Rastrigin functions
Best fitness in 1E6 evaluations over 15 repetitions and
number of evaluations needed to reach a goal over 15 repetitions
Goals = 0.1 for Sphere and Griewank, 1.0 for Rosenbrock and 10.0 for Rastrigin

4.1.4 Exploiting the Multi-Objective Paradigm

The tests performed in this section take into consideration one function and two qual-
ity criteria at one time. EMOPaT has been used to tune DE and PSO over the func-
tions reported in Table 4.9; for each function, the two quality criteria considered are:

Q1 (Precision): best result obtained in 1E6 fitness evaluations, averaged over N
independent runs. To succeed in this criterion, a MH must be able to explore
the search space, find a good solution and refine it as much as possible;

Q2 (Speed): number of function evaluations needed to reach a minimum fitness
threshold (or goal), averaged over N independent runs. A MH that obtains good
results according this criterion must be able to move fast toward a good, even
if suboptimal, solution.

Within this experiment, several analyses can be performed by analyzing the re-
sults provided by EMOPaT:

1. Comparison between the performance of the automatically-tuned versions of
DE and PSO;
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2. Detection of a relationship between parameters and quality criteria;

3. Analysis of the range of the parameters of DE and PSO found by EMOPaT;

4. Comparison between the parameters obtained by EMOPaT and the parameters
commonly used in the literature (or obtained using other techniques).

The first thing that can be noticed is that the Sphere function, which is a simple
and unimodal function, and to a lesser extent Rosenbrock, obtained fronts usually
composed by less than three, almost indistinguishable, solutions: this means that, as
could have been expected, in these cases a greedy algorithm is the best choice be-
cause there is simply no trade-off between exploration and exploitation of the search
space, and a fast algorithm produces good results using a limited number of function
evaluations. In other words, the two objectives are not in conflict, therefore the Pareto
front is reduced to a single solution.

In the following paragraphs, the four points just described will be analyzed one
at a time and some examples will be provided to show the potentiality of EMOPaT.

Comparison between DE and PSO

A straightforward analysis that can be made when running EMOPaT with two algo-
rithms (in this case DE and PSO) is a direct comparison between the Pareto fronts
obtained by optimizing their parameters. Figure 4.9 compares the fronts obtained on
the Rastrigin and Griewank functions (10 and 30 dimensions) for DE (in dark red)
and PSO (in light blue) in the 10 runs. It can be seen how, in both functions, DE is
better than PSO according to both objectives, since PSO generates solutions that are
almost always dominated by those obtained using DE. What is important to notice
is that both MHs have been tuned in the same way, therefore this comparison is not
subject to biases introduced by the developer.

Parameters and quality criteria

In order to show how parameters affect the quality criteria, i.e. their positions on the
Pareto fronts, two subsets of solutions have been selected:
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Figure 4.9: Pareto fronts discovered by EMOPaT (dotted dark red lines for DE, solid
light blue lines for PSO) for Rastrigin (top) and Griewank (bottom) functions in ten
(left) and thirty (right) dimensions. It can be seen that solutions found by DE are
usually better than the ones obtained by PSO according to both metrics. Results of
Q1 below a low threshold have been clipped for visualization purposes.

• S1 which comprises the 10% of solutions with best results according to Q1;

• S2 in the same way, but considering Q2.

A significant difference in the values of a parameter between the two subgroups is
a reliable suggestion that such a parameter plays an important role in the algorithm.
Figure 4.10 compares some properties of S1 and S2 for DE, on the Rastrigin and
Griewank functions and shows that some parameters assume very different ranges
within the two subgroups.

An interesting outcome is that the Sphere function, compared to the other two
(multimodal) ones, never selects random mutation, in favor of target-to-best and best.
This confirms the hypothesis that random mutation has a less greedy behavior than
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Figure 4.10: In all boxplots and bar plots, a comparison is made between the subsets
S1 and S2. Each boxplot represents the distribution of the parameter represented on
the y axis in the corresponding subgroup. The bar plots on the right describe the
distribution of the selected mutation types for the 30-dimensional Rastrigin (top row)
and Griewank (bottom) functions; from left to right Population Size, F (scale factor)
and mutation type. The distribution of these three parameters is different in the two
subgroups, indicating that they significantly affect DE’s behavior.

the other two. Therefore, EMOPaT’s results suggest that it seems possible to order
the three kinds of mutations considered based on increasing greediness (or decreasing
precision): the greediest (therefore, the least precise) is best, then target-to-best and
finally random mutation.

The most evident result that recurs in all experiments, for both PSO and DE, is
the direct relationship between population size and the location of a MH instance on
the Pareto front: an algorithm with more elements wastes fitness evaluations in sub-
optimal zones, slowing down convergence, but small populations are often trapped in
local minima (see also [82]), making it impossible to consistently reach good results.
Figure 4.11 shows, for the Griewank and Rastrigin functions, that Q2 and population
size are directly correlated for the two MHs. This result confirms the ones obtained
with DE by Mallipeddi et al [96]. Another interesting result is that DE needs a smaller
population than PSO while, for both, it seems that the population size needs to be
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Figure 4.11: Population Size versus Q2 for DE and PSO. The relationship between
the parameter and the result is clear to the naked eye, and it is confirmed by computing
the Pearson coefficient, whose value is > 0.96 in all cases except Rastrigin 10 (r =
0.52). From this comparison it is also noticeable that PSO needs a larger population
(and consequently more fitness evaluations) to reach the same fitness as DE.

quite small anyway; classic rules of thumb used (e.g. population size equal to 10
times the problem dimension) seem to be contradicted, in favor of more rigorous
studies [44]. A similar observation can be made for F , particularly for the Griewank
function: in this case the relationship is inverse, as bigger values of F lead to a faster
achievement of the fitness goal, worsening Q1 (again, see Figure 4.10).

Range of selected parameters

As previously said, PSO and DE parameter values are allowed to vary within a wide
range to see if EMOPaT is able to find unexpected behaviors. This is certainly the



74 Chapter 4. EMOPaT

Figure 4.12: Values of inertia factor w across the four benchmark functions in 10
dimensions. Negative values are often selected.

case of PSO’s inertia factor w. In all the solutions in the Pareto fronts of the Rastrigin
function and for several sets obtained for the Sphere and Rosenbrock functions, this
value is negative, as shown in Figure 4.12. This has been investigated very few times
in the past, but hints suggesting this possibility have already been given by automatic
tuning methods [134] and systematic searches [99]. It seems that the tuning of this
parameter is more influenced by the fitness landscape and less by the quality criterion
considered.

Comparison with other parameters

The last analysis regards the comparison of the results obtained by EMOPaT with
other reference implementations of PSO and DE. For both MHs, some parameter
sets available in the literature have been selected, either manually or automatically
tuned by the authors. The goal of this procedure is not to prove the superiority of the
solutions found by EMOPaT, since different conditions (such as functions, quality
criteria, . . . ) may need different parameter sets; the main goal is to show that the
parameters obtained, and consequently the conclusions provided, are reliable and
yield results that are comparable to the state-of-the-art.
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To do so, five runs with each reference parameter set (see Table 4.10) have been
run. Each of these runs consist of N = 15 independent executions of the function
under consideration, exactly as it would have happened if these sets of parameters
had been generated by EMOPaT during its evolution.

Table 4.10: DE and PSO versions used as reference. The first column shows the name
that is used in the text to indicate that particular version of the MH.

Name Tuning Ref. Parameters

PSOM1 Manual [72] Pop.Size = 60, c1 = c2 = 1.496,
w = 0.730, Global Topology

PSOM2 Manual [72] Pop.Size = 60, c1 = c2 = 1.496,
w = 0.730, Ring Topology

DEM1 Manual [158] Pop.Size = 50, CR = 0.9, F = 0.5,
Random Mutation, Exp. Crossover

DEM2 Manual [158] Pop.Size = 50, CR = 0.9, F = 0.5,
Random Mutation, Bin. Crossover

PSOA1 Auto [134] Pop.Size = 134, c1 = 1.8903, c2 = 2.122,
w =−0.1618, Global Topology

PSOA2 Auto [117] Pop.Size = 125, c1 = 1.862, c2 = 1.881,
w = 0.494, Global Topology

PSOA3 Auto [173] Pop.Size = 34, c1 = 1.525, c2 = 1.881,
w = 0.443, Global Topology

DEA1 Auto [134] Pop.Size = 19, CR = 0.122, F = 0.4983,
Random Mutation, Bin. Crossover

DEA2 Auto [117] Pop.Size = 48, CR = 0.879, F = 0.520,
Random Mutation, Exp. Crossover

Most settings were unable to even reach the fitness goal, especially the manually-
tuned ones. Only in a few cases, some of the references obtained results comparable
to the versions generated by EMOPaT (see Figure 4.13 for some examples):

• Sphere: for 10 dimensions, DEA1 and PSOA3 provide good Q1 with a higher
Q2; DEA1 also prevails in 30 dimensions while performance of PSOA3 degrade;
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Figure 4.13: The reference versions of DE and PSO that are able to obtain good
results on the ten-dimensional Rastrigin function (left) and on thirty-dimensional
Griewank (right). The good results of DEA1 on Rastrigin are not totally unexpected,
because its parameters are very similar to the ones obtained by EMOPaT.

• Rosenbrock: no comparable methods;

• Griewank: DEA1 is able to obtain very precise results using a higher number of
function evaluations to reach the fitness goal, both in 10 and 30 dimensions;

• Rastrigin: performance of DEA1 are comparable to the results obtained by
EMOPaT in 10 and 30 dimensions. Two versions of PSO (PSOA2 and PSOM1)
are slightly worse than those lying on the Pareto front of PSO in the 10-
dimensional version, but their performance degrades when increasing the prob-
lem dimension to 30.

4.2 Discussion

In this Chapter, EMOPaT has been presented and tested under different conditions,
to show its ability to:

1. provide good parameter sets that are able to deal with conflicting goals;
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2. provide more knowledge about a MH, in particular about the relationship be-
tween a MH and its parameters, and how they affect the performance of the
algorithm. In turn, this result may be used for many different purposes, like a
fair and unbiased comparison between different (versions of) algorithms. Ad-
ditional experiments proving this point can be found in [164, 166].

At the moment, the main drawback of EMOPaT is that the analysis of the results
is still a “manual” piece of work. A possible way to automatically extract, gener-
alize and infer parameters is the one presented as automated innovization [31], in
which the innovization process is completed by other analyses such as clustering to
automatically identify the parameters that most influence the results. Nevertheless, a
“manual” work by an experienced developer could be sufficient to exploit most of the
information provided by EMOPaT.

More details about the experiments presented in this Chapter, as well as additional ones, can be
found in:

• R. Ugolotti and S. Cagnoni. “Analysis of Evolutionary Algorithms using multi-objective pa-
rameter tuning”. In: Genetic and Evolutionary Computation Conference (GECCO’14), pages
1343-1350. ACM, 2014

• R. Ugolotti and S. Cagnoni. “Design of EAs for Continuous Optimization aided by Multi-
Objective Parameter Tuning”. Submitted to Evolutionary Computation





Chapter 5

Model-based Object Recognition

Science isn’t about authority or white coats;
it’s about following a method.

– Ben Goldacre

This Chapter introduces the general framework for template-based object recog-
nition in images and videos using bio-inspired techniques. Then, several examples of
applications of this method developed during the last three years will be presented. In
the last two cases, the automatic parameter tuning methods presented in the previous
Chapters have been used to successfully improve the results.

5.1 General Framework

In section 1.2, some possible general methodologies have been presented that can be
used to automatically find an object inside an image on track it in a video. The model-
based approach uses a template describing the possible appearances of the object and
is then used to recognize/localize it within the current image or frame. To apply this
procedure to a particular object, or class of objects, one needs to define [174]:

1. A template of the object. This template must take into considerations the most
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relevant intrinsic features of the object (usually based on the observation of a
significant subset of object instances) that are of interest and ignore the others;
for instance, if the color is a key descriptor of the object, the template must
contain this information, while it should be ignored in the opposite case;

2. A set of actions that the template can be subject to (translations, rotations,
deformations, . . . ) in order to match the object appearance, and the limits of
the ranges of these actions, based on the knowledge of the physical laws which
regulate the object and the image acquisition process;

3. A way to generate candidate solutions starting from the template;

4. A similarity (or distance) function between the candidate solution and the ob-
ject to be observed that reaches its maximum (minimum) when the image rep-
resentation of the template is perfectly superimposed to the object as it appears
in the image. The same rule considered in the first point must be used. This
function must give more importance to the factors that are of most interest
within the application: in some cases a precise localization is more important,
in others the similarity (difference) between the template and the object.

Table 5.1 summarizes how the four points listed above have been dealt with in
the four applications that will be presented in the following sections.

The only point these applications have in common is that the generation of pos-
sible solutions is performed using bio-inspired optimization since, as shown in the
introduction, this can be considered a global optimization problem, and usually a
highly multimodal one. Let us use the problem of hippocampus localization in his-
tological images that will be presented in Section 5.4 as an example: this is a 14- to
16-dimensional problem but, even considering only the first two (which represent the
position of the template within the image), it already presents several local optima,
as shown in Figure 5.1.

Automatic parameter tuning surely helps to improve the performance of this pro-
cedure, because it can be applied only once on a small subset of possible instances of
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Table 5.1: Summary of the four object recognition applications. For each application,
it shows how the template is defined, the possible transformations it can undergo,
how candidate solutions are generated, and the criterion followed by the similarity
function.

Application Sect. Template Transformations Generation Similarity

Road Signs
Detection

5.2 Three sets of
points

Rigid transforma-
tion

B
io

-i
ns

pi
re

d
O

pt
im

iz
at

io
n

Color-
based

Human Body
Pose Estima-
tion

5.3 Deformable tem-
plate (skeleton +
mesh + dimen-
sions)

Rotations of the
limbs, size and
position of the
model

Distance
cylinder-
points

Hippocampus
Localization

5.4 ASM-like
deformable
template

Model deforma-
tion

Energy-
based

Point Cloud
Localization

5.5 Point cloud Rigid transforma-
tion

Point
cloud
distance

Figure 5.1: Variability of the target function versus the initial position of the tem-
plate. The model labeled as A represents a good localization of the lower part of the
hippocampus, and is associated with high values. In opposition, model B is badly
located, so its value is low. The fitness landscape (left) is highly multimodal.
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the object to be tracked and can find parameters that will be performant over different
unseen instances.

The remaining of this Chapter describes the four different implementations of this
approach, dealing with four very different tasks, which prove the wide applicability
of this simple paradigm. In the last two applications, it will also be shown how an
automatic parameter tuning procedure is helpful in improving the performance of the
system.

5.2 Road Signs Detection

Automatic road sign detection and classification is a task that can help drivers and
increase road safety. For this reason, this problem has been frequently tackled [109].
Solutions to this problem usually include two different stages: the presence of a sign
is first detected in the image, then it is classified to precisely recognize its meaning
and possibly activate some driving system control. In the detection phase, the features
used most frequently to recognize a sign are shape and color, but a combination of
the two is usually preferred. The techniques most frequently used for classification
are artificial neural networks and support vector machines.

The work presented in this section has been originally developed by Mussi et
al [113] and then expanded in [172].

5.2.1 Model and Similarity Function

Four models have been developed (see Figure 5.2), each of which aims at recogniz-
ing a particular class of signs (priority, warning, prohibitory and mandatory). Each
model is composed of three sets of reference points, usually placed just near the color

More details about the experiments presented in this section can be found in

• R. Ugolotti, Y.S.G. Nashed, and S. Cagnoni. “Real-time GPU based Road Sign Detection and
Classification”. In: Parallel Problem Solving From Nature - PPSN XII, volume 7491 of Lecture
Notes in Computer Science, pages 153-162. Springer, 2012
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Figure 5.2: The models used to recognize priority, warning, prohibitory and manda-
tory signs. The first three models consist of three sets of points. The first (S1) lies just
outside the sign; the second (S2) on the red band, while the third (S3) inside the sign.
In the last case, S1 behaves in the same way, S2 lies on the border of the sign and S3

in the innermost part.

discontinuities. During the localization phase, the template is roto-translated and pro-
jected on the image acquired by a calibrated on-board camera. For every set of points
located by the template points after the transformation, three color histograms in the
HSV color space are computed.

For the first three models, the distance function is:

f =
k0(1−B(h1,h2))+ k1(1−B(h2,h3))+ k2B(h1,hr)

k0 + k1 + k2

where hi is the histogram of set Si, and hr is a reference histogram centered on
red; k0, k1 and k2 ∈ℜ+ are used to weigh the elements of the equation; B(x,y) is the
Bhattacharyya coefficient [69], which estimates the overlap between two statistical
samples. If f falls below a pre-defined threshold a sign is detected, which happens
when:

• the histogram of the set outside the sign is different from the histogram of the
set located on the red band;

• the histogram of the points on the red band is as different as possible from the
one computed on the inner area of the sign;

• the histogram of the points on the red band is similar to the reference histogram
defined for the red hue (a Gaussian centered on pure red).
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The distance function for the mandatory (blue) signs is slightly different:

f =
k̄0(1−B(h1,h2))+ k̄1(B(h3,h′r))+ k̄2B(h2,h′′r )+ k̄3(1−B(h2,hr))

k̄0 + k̄1 + k̄2 + k̄3

where h′r is a reference histogram with peaks corresponding to blue and white, h′′r
a reference histogram centered on blue, and k̄i, i = 1, . . . ,4 are positive weights. To
be recognized, a sign must have a blue border and a white and blue inner part.

After a sign has been detected, the image region located by the model is then rec-
tified via a inverse perspective transform in order to obtain a frontal view to simplify
a neural network-based classification.

5.2.2 Experimental Results

The entire process (also including the neural network-based classification of the sign)
has been implemented on GPU. PSO and DE implementations rely on the library
described in the Appendix.

Table 5.2: Results of the detection phase (min-max) for the four categories of signs
(detections): worst and best result in 10 independent runs.

Parma Sequence Turin Sequence
Total False Positives Detections Total False Positives Detections

Warning
DE 51 0-1 27-31 53 0-2 39-43

PSO 51 0-0 27-30 53 0-1 35-40

Prohibitory
DE 44 2-6 26-30 47 2-4 39-42

PSO 44 0-1 22-27 47 0-1 39-40

Priority
DE 30 5-11 18-22 15 2-4 13-15

PSO 30 0-2 15-18 15 0-1 7-12

Mandatory
DE 62 2-4 40-41 39 0-1 27-29

PSO 62 0-1 35-39 39 0-1 24-27

The benchmark used to evaluate the results in a real environment is composed of
two sequences [101]. The first one, which includes 10000 frames at a resolution of
750×480 pixels, was acquired at 7.5 fps in Parma on a sunny day. The sequence con-
tains images featuring all possible light orientations. The second sequence is about
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5000 frames long and was acquired at 7.5 fps in Turin on a cloudy day. Images in
this sequence feature more constant lighting but lower contrast. Table 5.2 reports the
best and worst detection results obtained over 10 runs on each sequence using DE
and PSO. These results are similar to the ones reported in [101], but thanks to the
GPU-based implementation, they can been obtained in a shorter time.

5.3 Human Body Pose Estimation

Markerless body pose estimation is an important task in computer vision. The
possible applications of this task are countless: among the most common there are
human-computer interaction, gaming and medical assistance.

The research in this field has recently made significant progress, thanks to the
wide availability of low-cost systems for computing depth maps, such as the Kinect
by Microsoft. The availability of depth maps that can be acquired in form of point
clouds can limit the effects of some problems that hamper human pose estimation in
images, by simplifying tasks like background subtraction, and totally solving others,
like depth estimation.

5.3.1 The Model

The three-dimensional model used to represent a human pose can be separated into
three different, albeit related, components [165].

The skeleton

The skeleton is defined as a tree whose nodes are 4× 4 transformations. Each node
represents the relative position and orientation of a joint with respect to its parent

More details about the experiments presented in this section can be found in

• R. Ugolotti, and S. Cagnoni: “Differential Evolution based Human Body Pose Estimation from
Point Clouds”. In: Genetic and Evolutionary Computation Conference (GECCO’13), pages
1389-1396. ACM, 2013
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(a) (b) (c)

Figure 5.3: On the left, the kinematic chains used to describe the human model. On
the centre, the skeleton of the model. This is the base position of the model in the first
frame. On the right, the base mesh generated by the skeleton.

node. A joint (root) corresponding to the pelvis is the top of the hierarchy. Five dif-
ferent kinematic chains are linked to it to describe the entire body. Figure 5.3a de-
scribes the kinematic model used for the skeleton, which is shown in Figure 5.3b.
The distances between two joints are based on the size of a standard model and are
tuned according to the evolution of the Dimensions parameter vector (see next para-
graph). Since the anatomical limits of the human body do not allow some rotations,
the degrees of freedom of the whole skeleton are only 29.

Dimensions

Dimensions is a vector of 7 parameters that define the actual size of the mesh. The
reference model is defined as an average-height man, and these scaling parameters
affect the distances between the joints and the thickness of the mesh built around
them. These parameters are used as multipliers of the standard mesh, i.e., when they
are equal to 1, the reference model is used as is; when they are larger than 1 the
model is taller/fatter than the standard and when they are smaller than 1 the model is
shorter/thinner.
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Mesh

The actual mesh (Figure 5.3c) is composed of 11 cylinder-spheres [10], whose posi-
tions depend on the location of the skeleton’s joints and whose widths depend on the
Dimensions parameters. Two of them are used to describe the torso, one represents
the head, and the remaining eight stand for the arms and the legs.

In conclusion, the total number of parameters subjected to DE optimization is 29
angles + 7 scale factors + 6 values that represent the position and orientation of the
model with respect to the world reference system, for a total of 42 parameters. The
model is intrinsically hierarchical, and this feature is also exploited during the opti-
mization. In fact, the optimization is not performed all in one step, but is split into
four steps, in each of which only some parameters of the model are optimized. In this
way, one high-dimensional problem can be seen as four lower-dimensional problems,
at the cost of performing four different and consecutive optimization processes. Af-
ter one optimization step ends, its resulting parameters are frozen and the next step
considers them as constants. This choice has been made after some tests made clear
that tackling the pose estimation problem in a single step led to large errors.

5.3.2 The distance function

The fitness of a candidate solution is proportional to the sum of the distances of all
points in the input cloud from the mesh. For each point in the cloud, the distance from
each cylinder that composes the mesh is calculated using a variant of the method
presented in [10]. This method has been chosen due to the very light computation
needed to calculate the distance between a solid and a point. The shortest distance
(di) from each point i to the closest part of the mesh undergoes this simple equation:

d′i =

{
di

α if di ≤ β

β α otherwise

The two parameters α and β affect the precision of the localization. A value of
α > 1 can be used to help the model ignore small details, but be more focused on
reaching all parts of the body (particularly hands and feet) while a value of α < 1
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Figure 5.4: The repetition of these five steps compose the body pose estimation pro-
cess. On the right the percentage of time spent on every function is reported. The total
does not add up to 100% because initialization and result retrieval are not included.

induce the model to refine good solutions. β can be seen as the distance beyond
which a point does not affect the pose estimate any more. In this way, the behavior
of the model becomes more robust with respect to outliers. The final fitness is then
calculated as the sum of all d′s terms.

5.3.3 Implementation details

Like all methods described in this Chapter, this application has been implemented
on GPU. In this way, the huge amount of computation needed can be performed in a
fast way and reach real-time performance (average 43.9± 3.4 ms for a frame). The
final architecture is composed of 5 different functions (see Figure 5.4). The first and
the last implement the DE algorithm, while the remaining three are in charge of pose
estimation and fitness evaluation:

• “Compute Skeleton” reads all the DE elements to be evaluated in parallel and
uses them to generate the location of the skeleton joints. Despite the hierar-
chical structure of the model, all joints can be computed in parallel in order to
save time. A joint that depends on other joint locations, must go back to the
root of the hierarchy and compute the chain;

• “Compute Mesh” generates the positions of the cylinders that compose the
mesh using the joint locations and size modifiers;
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• “Evaluate Fitness” computes, for each point, the distance from the closest part
of the mesh and adds them up to obtain the final fitness. This is by far the most
computationally expensive part of the algorithm.

5.3.4 Experimental Results

This algorithm has been tested on a publicly available dataset [45]. It is composed of
28 sequences collected using a Time-of-Flight camera, with a resolution of 176×144
pixels. During the acquisition, the subject was wearing markers, whose location can
be used as ground truth to assess the precision of the pose estimation. This dataset
has also been used in [6, 45, 161, 190], which allows a comparison with the results
reported therein to be made.

Every sequence was processed 10 times; the average results (compared to the
other four approaches) are presented in Figure 5.5. The sequences of this dataset are
approximately sorted by difficulty. While in the first ones the subject performs only
small movements, in the last ones the movements are more complicated (including
a 360◦ rotation and a tennis serve). Our method is one of the worst performing on
the simpler sequences (probably due to our mesh definition, since a cylinder is not
a perfect approximation of a limb) while, when processing the most complicated
ones, results are comparable to the state-of-the art, showing that our method has good
generalization properties and good tracking results.

Figure 5.5: Comparison with the state-of-the-art. Results represent the average dis-
tance over all markers on all frames of the sequence over 10 independent runs.
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5.4 Hippocampus Localization

The hippocampus is a structure located in the mammalian brain that has long
been known for its crucial role in learning and memory processes [123], as well as an
early biomarker for Alzheimer disease and epilepsy. Thus, its automatic, robust and
fast localization is of great interest for the scientific community. From an anatomical
point of view, the hippocampus (see Figure 5.6) is located within the medial temporal
lobe and it is composed by the Dentate Gyrus (DG) and Ammon’s Horn (CA), which
is further composed by three different regions (CA1, CA2, and CA3). In turn, within
these regions, the zones that are visually easiest to locate are the pyramidal (SP) and
granule (SG) cell layers, which belong to the CA and DG regions, respectively.

The goal of the project [170] within which the application presented here was
developed was to automatically locate and segment the hippocampus in mouse brain
histological images, in order to extract textural information and find genes with visual
patterns (and consequently, chemical behavior) similar to other genes with known

More details about the experiments presented in this section can be found in the following publi-
cations.

• P. Mesejo, R. Ugolotti, F. Di Cunto, M. Giacobini, and S. Cagnoni. “Automatic Hippocampus
Localization in Histological Images using Differential Evolution-Based Deformable Models”.
In: Pattern Recognition Letters, Volume 34(3), pages 299-307, 2012

• R. Ugolotti, P. Mesejo, S. Zongaro, B. Bardoni, G. Berto, F. Bianchi, I. Molineris, M. Giacobini,
S. Cagnoni, and F. Di Cunto: “Visual Search of Neuropil-Enriched RNAs from Brain In Situ
Hybridization Data through the Image Analysis Pipeline Hippo-ATESC” In: PloS-One, Vol. 8,
2013

• P. Mesejo, R. Ugolotti, F. Di Cunto, S. Cagnoni, and M. Giacobini. “Automatic Segmentation
of Hippocampus in Histological Images of Mouse Brains using Deformable Models and En-
semble Classifiers”. In: IEEE International Symposium on Computer-Based Medical System
(CBMS’12), 2012

• R. Ugolotti, P. Mesejo, Y.S.G. Nashed, and S. Cagnoni: “GPU-Based Automatic Configuration
of Differential Evolution: A Case Study”. In: Progress in Artificial Intelligence, Volume 8154
of Lecture Notes in Computer Science. Springer, 2013



5.4 Hippocampus Localization 91

Figure 5.6: Regions of the hippocampus.

properties used as reference. A correct localization of the hippocampus is therefore a
non-trivial but essential part of this pipeline, summarized in Figure 5.7.

The images used in this study have been extracted from the Allen Brain Atlas
(ABA), a publicly available image database [84] which contains a genome-scale set
of histological images (cellular-resolution gene-expression profiles) obtained by In
Situ Hybridization of serial sections of mouse brains. Figure 5.8 reports some exam-
ples taken from this source, showing the significant variability of the appearance of
hippocampi, in term of size, shape, hue, lighting and considering the possible arte-
facts due to image acquisition like tears, scraps and bubbles.

5.4.1 Template and Fitness Function

The template used in this application [168] is based on Active Shape Models. It con-
sists of a medial shape-based representation of the hippocampus in polar coordinates,
and has the objective of creating simple models that can be managed easily and effi-
ciently. Two parametric models representing SP and SG are moved and deformed by
DE according to an energy-based similarity function between the template and the
hippocampus image.

Each model comprises two sets of points (Figure 5.9a): the goal is to superimpose
the first one (Inner Set,~I) to the part of the hippocampus to be located, while placing
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Figure 5.7: The image of the brain is downloaded from the ABA, then an atlas-based
registration is used to roughly locate a ROI containing the hippocampus, which is
properly localized using the technique described in this section. This localization is
used as a starting point for a segmentation step to localize 13 sub-regions of interests,
on which a texture analysis is performed to obtain features which represent gene’s
activation.

Figure 5.8: Examples of hippocampus images taken from the ABA. From top to bot-
tom, 5 different genes; from right to left, 4 different locations within the brain.
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(a) (b) (c)

Figure 5.9: (a) the inner and outer models for SP and SG; (b) the deformations al-
lowed by the inner model (the deformation of the outer model is obtained by a rigid
shift of the deformed inner model); (c) the models superimposed to a hippocampus
image, showing how the external energy is computed [105].

the other one (Outer Set, ~O), obtained by rigidly shifting the first one, immediately
outside it. The template is subject to external forces (generated by the attraction of
the image features onto the model) and internal forces (generated by the model de-
formation). The target function H to be maximized (see [106] for a more detailed
description) has three components: the external energy EE, the internal energy IE,
and the contraction factor C.

H = EE− (IE +C)

In turn, EE can be divided in two components: PE, that depends on the control
points of the model (denoted by black dots in Figure 5.9b) and CE, that is computed
considering the points which belong to the segments connecting them:

EE = γP ·PE + γC ·CE

PE =
n

∑
i=1

[T (N3(Ii))−T (N3(Oi))]

CE =
n

∑
i=2

p

∑
j=1

T (Ii−1 +
j

p+1
(Ii− Ii−1))−

n

∑
i=2

p

∑
j=1

T (Oi−1 +
j

p+1
(Oi−Oi−1))
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where Ii and Oi represent the points of the two sets, γP and γC are positive values
that weigh the two components, N3(P) is a 3× 3 neighborhood centered in P, T (P)
is the intensity of P if P is a point, or the average intensity if P is a neighborhood,
and p is the number of points sampled in each segment. In short, the main goal is to
superimpose~I to a dark part of the image and ~O to a bright part, right next to~I.

The internal energy IE is computed as:

IE = ξρ ·

√
n

∑
i=2

(ρi−ρmi)
2 +ξϑ ·

√
n

∑
i=2

(ϑi−ϑmi)
2

where ξρ and ξϑ are two positive weights that regulate the deformability of the
model. (ρi,θi) represents the relative position of a point of the model with respect to
the previous one in polar coordinates, while (ρmi,θmi) represents a point of a refer-
ence model derived empirically from a set of “training” images which represents the
“expected” shape of the template.

Finally, the contraction factor C also regulates the template’s deformability to
avoid infeasible situations that are not allowed by the nature of the hippocampus and
is defined as follows:

C = ξc · ‖In− I1‖

If ξc < 0 the two extremes of the model repel each other, if ξc > 0 they attract
each other. In this case, ξc > 0 for the SP model and ξc < 0 for the SG model.

5.4.2 Experimental Results

This method has been tested on both real and synthetic images. 320 images (corre-
sponding to 320 different genes) were randomly selected from the ABA within sub-
sets of representative samples of all possible hippocampi, featuring both good-quality
and low-quality images, with different characteristics. Moreover, 20 synthetic images
have been created which represent simplified versions of the real ones. In these im-
ages, the hippocampus is made up of small circles having random radius and color;
small and big ellipses were also added trying to simulate cells and, finally, gaussian
and salt and pepper noise were introduced to add fuzziness to the images.
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In [106], DE proved to be better than the other MHs used as comparison (PSO,
GA, Scatter Search, Simulated Annealing and Levenberg-Marquardt) according to
the final fitness. The results of the localization process have been manually evaluated
by dividing the outcomes into three quality classes (see Figure 5.10):

1. Perfect Match: all points of the two models are over the corresponding parts
and cover them almost entirely;

2. Good Localization: (i) all points of the two models belong to the regions which
must be detected, but they do not cover them entirely or (ii) at most two points
are slightly outside of them;

3. Error: all other possibilities, from three or more misplaced points to models
which are located in a completely different position of the brain.

Figure 5.10: Results in the localization of the hippocampus. Upper row: perfect
matches; middle row: good results; lower row: erroneous localizations.

This method was able to perfectly localize the hippocampus in 58.0% of synthetic
images and in 47.8% of real images, and reached a good localization in 35% and
43.1% of cases, respectively. This means that this method was able to localize the
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hippocampus satisfactorily in 93.0% of the cases with synthetic images (20 images
and 25 runs per image) and in 90.9% with real images (320 images and 1 run per
image).

5.4.3 Automatic Parameter Tuning

To further improve the performance of the localization, SEPaT has been used to opti-
mize DE’s parameters [169]. Ten independent optimization processes have been run,
5 times using DE as tuner, 5 times using PSO. The parameters of the tuners were the
same shown in Table 3.3, while the valid ranges of DE parameters are the ones which
have been presented in Table 3.7. The function to be optimized in the tuning process
was the maximization of the fitness function on a single hippocampus image, and the
optimization was stopped after 100 DE generations.

Table 5.3 shows the manually-tuned parameters, which had been used originally,
and the ones generated by SEPaT. Each row in the table presents the method used in
the meta-optimization process and the parameter sets found. Two observations can
be made:

• The parameter sets found by SEPaT in different runs show a very high homo-
geneity, proving once more the stability of such a method;

• DE population is very high compared to what has been reported in Chapter 3;
the reason is that, in this case, the number of generations instead of the number
of evaluations has been taken into account (because of the GPU-based imple-
mentations, all evaluations of a generation can be run in parallel), therefore
more particles can be used without imposing any additional overhead.

Each set of parameters have been tested 10 times over the 320 hippocampus im-
ages. In order to check the statistical significance of the results obtained, a Wilcoxon
signed-rank test was used to assess the statistical significance of the difference be-
tween the automatically-generated optimizers and the reference, manually-tuned ones
(Original) for the two parts that compose the model (SP and SG), which proved that
the quality of the SEPaT-generated parameters was enhanced. The parameter sets
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Table 5.3: The manually-tuned parameters and the ten sets generated by SEPaT. The
two columns for SP and SG indicate the average fitnesses and standard deviations.
This is a maximization problem: a higher value represents a better solution.

Parameters SP SG
CR F Pop.Size Mut Cross Avg Std Avg Std

Original 0.9 0.7 150 T T B Exp 142.6 14.7 136.2 17.8
DE 1 0.859 0.41 121 Rand Bin 144.5 12.1 141.0 13.9
DE 2 0.952 0.427 150 Rand Exp 145.0 11.3 141.9 13.2
DE 3 0.952 0.419 150 Rand Exp 145.0 11.5 141.8 13.1
DE 4 0.9 0.431 144 Rand Bin 144.8 11.7 141.3 13.8
DE 5 0.954 0.44 115 Rand Exp 144.9 11.7 141.4 13.7

PSO 1 0.949 0.448 149 Rand Exp 145.1 11.2 141.8 13.1
PSO 2 0.953 0.471 143 Rand Exp 145.0 11.3 141.7 13.2
PSO 3 0.974 0.473 150 Rand Exp 145.0 11.5 142.0 13.0
PSO 4 0.783 0.347 150 Rand Bin 144.6 11.8 141.0 13.7
PSO 5 0.922 0.437 139 Rand Exp 145.0 11.2 141.4 13.2

automatically selected by SEPaT always lead to higher mean and lower standard de-
viation than the ones set after a time-consuming manual tuning.

5.5 Point Cloud Localization

In this last application we consider a system which is part of an architecture
whose goal is to help users program robotic tasks [171]. To reach this goal, a sub-
system for object recognition is required (see Figure 5.11). It receives input data

More details about the experiments presented in this section can be found in

• R. Ugolotti, G. Micconi, J. Aleotti, and S. Cagnoni. “GPU-based Point Cloud Recognition us-
ing Evolutionary Algorithms”. In: Applications of Evolutionary Computation, Lecture Notes in
Computer Science, pages 489-500. Springer, 2014

• R. Ugolotti and S. Cagnoni. “Multi-objective Parameter Tuning for PSO-based Point Cloud
Localization”. In: Advances in Artificial Life and Evolutionary Computation, Volume 445 of
Communications in Computer and Information Science, pages 75-85. Springer, 2014
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from a laser scanner mounted on the wrist of a six-degrees of freedom robot arm.
The estimated accuracy of the whole measurement chain is about 1.5 cm, and the
main sources of error are the variable remission of objects and the angle of incidence
of the laser. Data undergo several preprocessing steps to refine the acquisition and
are then passed to the FPFH (Fast Point Feature Histograms) based recognizer, along
with a list of models stored in a database. The output of the recognizer indicates
which objects are present in the scene and their pose. A description of a preliminary
version of this system can be found in [126].

Figure 5.11: Representation of the system within which the FPFH recognizer, or the
one based on PSO as an alternative, is used.

The main goal of this work is to recognize the pose of a known object, so the
first step just consists of reading a point cloud from a database of available models.
Since the model can only be subject to a rigid transformation, the search space is
defined only by six degrees of freedom (translations and rotations around the three
axes). This means that the dimensionality of the search space in which DE and PSO
operate is six.

The scope of these experiments is to assess the performance of the bio-inspired
model-based object recognition method in several situations and compare their results
to those obtained using FPFH features (see next section). Figure 5.11 shows that this
recognizer can be easily embedded into the existing system. Eventually, EMOPaT
will be employed to show how it can further improve the performance of such a
system.
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5.5.1 FPFH

Fast Point Feature Histograms [144] are pose-invariant local features which repre-
sent the underlying surface model properties for all the elements composing a point
cloud. These descriptors are computed for each point of a given point cloud and are
generated by comparing the normal of a point with the normals of the points within a
certain radius. For a more detailed description, please refer to [145]. Once all descrip-
tors of the two point clouds (target and reference) have been computed, a particular
version of the RANSAC algorithm (RANdom SAmple Consensus) [41] is used to
find a raw alignment between the clouds. This version is called SAC-IA (SAmple
Consensus - Initial Alignment) and is followed by a second step, which attempts to
refine the previous alignment, using the Iterative Closest Point algorithm. Eventually,
the two transformations found by the algorithms are composed in order to compute
the full transformation needed to align the two clouds.

5.5.2 Fitness Function

This section describes the fitness function used by PSO and DE, as well as the sys-
tem’s GPU-based implementation. From now on, reference will be made only to a
PSO-based implementation, but DE plays the same role.

The fitness function optimized by PSO is relatively straightforward. The target
cloud T to be recognized (composed of NT points) is compared with a reference
cloud R extracted from a database, composed of NR points. This reference is subject
to a transformation M encoded by a PSO particle, to obtain R′ = M(R). The fitness
of a particle is the average of the minimum distances of each point of T to the closest
point of the roto-translated reference R′. More formally:

F(T,R′) =
1

NT
∑
p∈T

min
q∈R′

(
dist(p,q)

)
where dist() is a valid distance metric between points; in this case the squared eu-
clidean distance is used.

Each point cloud is expressed within a local reference frame centered around its
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Figure 5.12: Scheme of the implementation of the fitness function on CUDA. Target
points are computed sequentially. The parallel implementation relies on the fact that
each point is compared (potentially) in parallel to all reference models (10 in this
case), where each of the 24 PSO particles represents a possible transformation; 512
points are processed simultaneously for each particle.

centroid. A model can do a full rotation around each axis while the range of trans-
lation is limited to 10 cm in each direction, which is good enough to satisfy the
requirements of the environment considered.

5.5.3 GPU Implementation

The entire system, including the computation of the fitness function, has been imple-
mented on GPU. Several implementation designs have been tested. In the final one,
two degrees of parallelism are exploited:

1. The ith PSO particle represents a possible transformation Mi of the reference R
and relies on a CUDA block, so all Mis can be computed in parallel;

2. Within each particle (so, within each block), each of many parallel threads
processes a limited number of points of R, by firstly computing a portion of the
transformed point cloud R′ and then comparing it with all points of T .
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The points of T are actually processed sequentially, but a significant speed-up
can be obtained anyway because each of them is compared at the same time to sev-
eral points of the reference cloud, and to different transformations of R. If the target
is compared with more than one reference (for instance, to recognize which object
has been scanned), a further level of parallelism can be added: several optimization
processes can be executed in parallel using different reference models. Figure 5.12
outlines how the work is subdivided among CUDA blocks and threads.

The PSO and DE parameters (unless specified otherwise) were set as in Table 5.4.
They have been chosen by manually generating 40 possible combinations, and test-
ing them on the problem described in the next subsection. The configuration that
gave the best average fitness was finally selected. Two PSO versions (with different
topologies) proved to be almost equivalent.

Table 5.4: Manually-selected parameters used by DE and PSO.

DE PSOr PSOg

CR = 0.9 c1 = 1.19 c1 = 1.8
F = 0.5 c2 = 1.19 c2 = 0.7

Exponential Crossover w = 0.5 w = 0.72
Target-to-best Mutation Ring Topology Global Topology

Population Size = 24 Population Size = 24 Population Size = 24
Generations = 90 Generations = 90 Generations = 90

In the tests that follow, except the last one, the same model (a wooden mallet)
has been used as target and as reference, with random roto-translations applied to
the target. Therefore, it was actually possible to achieve a perfect matching if the
recognition process identified the correct transformation. The error in the localiza-
tion process has been defined in terms of translation (euclidean distance between the
translation obtained at the end of the experiment and the translation actually applied
to the target) and rotation (angle between the estimated rotation and the one applied
to the target).
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5.5.4 Computation Time Comparison

We tested different PSO, DE and FPFH parameters (varying the number of genera-
tions in the first two, of RANSAC and ICP iterations for the other) in order to see
how they behave when different time budgets are allowed. Four different time limits
were considered: 0.7 s, 1.3 s, 2.3 s and 3.2 s. Figure 5.13 shows that FPFH reaches
good results very quickly, but is unable to improve them any further, while MHs use
their exploitation abilities to constantly refine their results. This is confirmed by sta-
tistical tests (Friedman test with the Dunn-Sidak correction, p < 0.01) which show
that, within the first two time limits, FPFH is statistically better than the other meth-
ods considering translation and rotation errors, while this difference disappears with
higher computation time budgets.

Figure 5.13: Error versus processing time allowed for optimization, computed over
100 experiments. Solid lines represent average values, while dotted lines represent
medians.

Moreover, PSO/DE have usually a lower median and higher average than FPFH.
This result (that will be confirmed in all other tests) proves that MHs have a better
ability of finding more precise solutions, but they sometimes fall into local minima
and fail to localize the object. On the contrary, FPFH steadily obtains good results,
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though worse than the ones obtained in the successful runs of the metaheuristics.

The sequential single-thread CPU implementation of the PSO recognizer takes
an average of 60.5 s for 90 generations, which means it is 18.9 times slower than
the GPU version on our PC (8-cores Intel Core i7 running at 3.40 GHz equipped
with an nVIDIA GeForce GTX680 with 1536 cores working at 1.20 GHz). If the
optimization process is parallelized over the 8 cores available on the CPU, the time
needed is reduced to 16.4 s, thus the GPU is still 5.1 times faster.

5.5.5 Noise and Occlusions

In this section, we simulated some situations that can hamper object recognition,
like noise and occlusions. The former was simulated by adding to each point of T a
random value from a uniform distribution (we chose ranges of 0.001, 0.002, 0.005,
0.01 m), and the latter by removing all points above a certain percentile along a given
dimension (we “occluded” 20%, 40%, 60% and 80% of the target). Figure 5.14 shows
that FPFH is less robust to this kind of problems than PSO. Starting from an occlusion
percentage of 60%, and for a noise level of 0.01 m, FPFH is significantly worse than
all the MHs.

5.5.6 Object Recognition

After assessing the performance of these two methods under different conditions, we
performed some tests on the problem of recognizing the object. In this case, the goal
was not only to understand where the object was located, but also to recognize which
is the target object, within a set of ten references: the wooden mallet used so far, a
ewer, a burner, a toy horse, a mug and five boxes of different shapes and sizes. We
performed 50 independent tests in which each object was used as target and compared
to all the others both under normal conditions and simulating the presence of noise
and occlusions. Results are presented in Figure 5.15.

The main conclusions can be summarized as follows:

• FPFH reaches good results in a very short time, but it is not able to further
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Figure 5.14: Variation of errors in the presence of occlusions (top) and noise added
to the target (bottom) over 100 experiments. Solid lines represents average values,
while dotted lines represents medians.
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Figure 5.15: Percentage of correct recognitions over 500 experiments (50 repetitions
for each of the ten different objects) for each entry of the bar chart. Again, one can
see how FPFH performance degrades in the presence of occlusions.

improve them. Vice versa, the longer the time allowed to run MHs, the better
the results they obtain;

• FPFH reaches good results almost always in ideal conditions, while MHs are
able to achieve higher precision most of the times, but sometimes fail;

• MHs are more robust to noise and occlusions than FPFH.

5.5.7 Automatic Parameter Tuning

The goal of this test is to find PSO parameter sets that are able to find a good
alignment between point clouds in a short time. For this reason, the two objectives
EMOPaT tries to optimize are [167]:

1. Minimum time required to reach a fitness value of 0.1, averaged over 10 repe-
titions;

2. Best fitness reached after a time limit of 6 seconds, averaged over 10 repeti-
tions.
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NSGA-II was used as tuner with these parameters: 60 individuals, 30 generations,
mutation rate = 0.125, crossover rate = 0.9. PSO parameters were allowed to vary
within the range shown in Table 3.7. The goal was to estimate the localization of the
wooden mallet, just like in the previous experiments.

Figure 5.16 shows the results obtained by EMOPaT. Each point represents the
result of a set of parameters on the two objectives. The ones highlighted in red are the
non-dominated ones. The main difference that can be observed between parameter
sets that converge quickly to a solution with respect to the ones that reach a high final
precision is that the former have a smaller population. This confirms the results ob-
tained on benchmark functions in the previous chapters; small populations are good
at reaching quickly a good fitness value, but generally fail in refining it because they
are more likely to get stuck into local minima. Nevertheless, good populations are
usually smaller than the ones usually suggested by common rules of thumb.

Figure 5.16: Results of EMOPaT. Larger, red dots represent the solutions approximat-
ing the Pareto front. E1 and E2 indicate the “fastest” and the “most precise” solutions,
respectively.

We selected the two solutions which lie on opposite ends of the Pareto Front
approximation (E1 and E2 in Figure 5.16, their parameter values are reported in Ta-
ble 5.5), and tested them more deeply on the point-cloud alignment problem using
each set of parameters with different time limits (0.3, 0.7, 1.3, 2.3 and 3.2 seconds)



5.5 Point Cloud Localization 107

comparing them with the manually-tuned PSOs.

Table 5.5: PSO instances optimized by EMOPaT.

Parameter E1 E2

Population Size 15 22
w 0.6652 0.5944
c1 1.0479 2.1320
c2 0.4271 0.7120

Topology Global Global

Table 5.6 shows, for each PSO configuration and for each time limit, the aver-
age fitness and standard deviation computed over 100 independent repetitions. The
Wilcoxon signed-rank test (p < 0.01) has been performed between results at each
time limit to see if there were significant differences; for each time limit, the best-
performing PSO configurations are highlighted in bold.

Table 5.6: Average and standard deviation of fitness. Each column shows data of a
PSO version, each row shows all data obtained at the corresponding time limit. PSO
versions that perform statistically better are highlighted in bold.

PSO→ PSOg PSOr E1 E2

Time ↓ Avg Std Avg Std Avg Std Avg Std
0.3 s 1.62e-01 9.34e-02 1.24e-01 5.89e-02 7.66e-02 9.11e-02 1.10e-01 1.12e-01
0.7 s 4.37e-02 2.96e-02 3.65e-02 2.41e-02 2.48e-02 2.64e-02 2.05e-02 1.54e-02
1.3 s 1.80e-02 1.55e-02 1.41e-02 2.61e-02 1.68e-02 2.01e-02 9.30e-03 1.62e-02
2.3 s 7.48e-03 7.83e-03 7.64e-03 1.24e-02 1.30e-02 1.44e-02 6.65e-03 1.42e-02
3.2 s 4.02e-03 6.36e-03 5.65e-03 1.04e-02 1.29e-02 1.25e-02 4.53e-03 8.62e-03

These results prove the correctness of the multi-objective approach. The set of
parameters E1, which was the fastest to reach the fitness goal, is in fact the best-
performing one after 0.3 seconds, but it is not able to further improve its results. At
the end of evolution, E2 is comparable to the two manually-tuned ones. The main
difference between E2 and the latter is clear if one considers the intermediate time
limits, on which E2 performs better than PSOg and PSOr (see Table 5.4). This is
a clear advantage of using EMOPaT. Eventually, many parameter combinations are
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able to solve the problem when a sufficient amount of time is given. EMOPaT has
the ability to find, among all these possible solutions, the ones that are also able to
reach a good fitness as fast as possible, because it also optimizes the other objective,
that is not taken into consideration in a single-objective optimization or is difficult
to consider during a manual tuning. Figure 5.17 shows the same results considering
translation and rotation errors instead of fitness.

Figure 5.17: Results of the four PSOs with different time budgets.

5.6 Conclusions

This Chapter has described four applications in which the combination of bio-inspired
techniques and model-based methods was used to successfully recognize objects in
images and videos. This paradigm proved to be robust and of wide applicability. Au-
tomatic parameter tuning techniques were successfully employed to further improve
the performance of the systems.
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Conclusions

An expert is a man who has made all the mistakes
which can be made in a very narrow field

– Niels Bohr

Several topics have been addressed in this thesis. It begins, in Chapter 2, with
a description of several methods to automatically perform tuning and selection of
the parameters of a metaheuristic of interest. Meta-Optimization has been chosen
as a technique that combines easy implementation with high performance. In Chap-
ter 3, a meta-optimization implementation called SEPaT (Simple Evolutionary Pa-
rameter Tuning) has been proposed. Comparison with a systematic search and with
some other well-established methods which perform the same task have proven that
SEPaT is an effective method to find good parameter configurations for a metaheuris-
tic. Some of the main drawbacks of SEPaT, mostly its inability of finding validity
ranges for the parameters and their role in affecting the algorithm’s performance
(shared with most of the meta-optimization techniques) induced us to extend it to
the multi-objective paradigm. In doing so, our goal was to extract additional infor-
mation regarding a metaheuristic applying the concept of innovization, which con-
sists of finding a relationship between goals and parameters by analyzing the Pareto
front. The multi-objective version presented in Chapter 4, called EMOPaT (Evolu-
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tionary Multi-Objective Parameter Tuning), is able to optimize the parameter values
of a metaheuristic according to many objectives at the same time. The experiments
show it is useful in many tasks, among which we can recall:

• finding good parameter values whose performances are indistinguishable from
those obtained using its single-objective version;

• finding the range of validity for the values of a parameter;

• understanding the role and the utility (or the lack of it) of a parameter within
an algorithm;

• performing an unbiased comparison between different metaheuristics, since
they all undergo the same tuning procedure.

After that, in Chapter 5, we described the applications on which we have tested
our meta-optimization algorithms: the recognition of objects in images and video
sequences. Model-based approaches using bio-inspired optimization are a family of
methods that were proved to have a wide applicability and achieve good performance
in many different problems. Moreover, this thesis showed that automatic parame-
ter tuning can improve the performance of object recognition without affecting its
complexity, except for a small overhead in the design phase. In this field, meta-
optimization can be considered as an operation that moves some of the complexity of
the problem from the online phase to the design phase, simplifying the overall task.

The main direction towards which the work presented in this thesis may be ex-
panded is the automation of the processes involved. Both in the analysis of EMOPaT’s
results and in the development of model-based object recognition methods, most
work needs to be manually performed by the developer. In the former case, an au-
tomatic analysis of the Pareto front could be a significant improvement, especially if
an investigation of the properties of the functions considered in the tuning process is
also included. In the latter, at present, the developer has to define a model, a series
of possible operations and a similarity function. These aspects are strictly dependent
on the problem considered, but a more general framework can be studied, into which
they can be included.
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A Final Consideration

The work behind this thesis spans over more than three years. It actually started from
what concluded this dissertation, the automatic recognition of objects in images and
videos. When working on this approach I realized that the metaheuristics involved,
although playing a fundamental role, were usually not used at their best. Therefore,
an in-depth analysis showed me that this problem was not related only to the par-
ticular family of applications on which I was working on, and not only to the appli-
cations that rely on metaheuristics in general, but to the development itself of these
techniques. As a result, I started to work mainly at understanding these algorithms,
how they work and what is a good way to develop them in a more “scientific” way.
Every year, many “novel” versions of bio-inspired algorithms are presented to the
scientific community, by authors who claim that they are able to easily overtake the
older versions; nonetheless the vast majority of this work is immediately forgotten.
The main reason is that, following the “horse race” metaphor proposed by John-
son [68], winning a race is easy if you can accommodate the rules, choose the track
and select your opponents (some of these problems have already been discussed at the
beginning of Chapter 2). This is obviously not the first time this criticism have been
made [37, 57] and many ideas have been proposed to tackle this problem [11, 47]. My
idea is that automatic parameter tuning could be used as an effective technique to im-
prove the quality of investigations on metaheuristics. In particular, the multi-objective
approach proposed here, EMOPaT, has many properties that make it suitable for this
task. EMOPaT is able to provide much information that a developer can use to widen
its knowledge about the algorithm he/she is working on, such as whether a parameter
is useful (or useless), the role of a parameter in an algorithm and so on. Moreover, as
demonstrated in Section 4.1.1, EMOPaT is able to “understand” how a setting per-
forms when compared to the “standard” ones, therefore it can automatically reject
one that is not well-performing. Finally, using EMOPaT, it is possible to run an algo-
rithm at its best, therefore it allows one to perform an unbiased comparison between
different algorithms, as shown in Section 4.1.4.





Appendix A

libCudaOptimize

In this Appendix, the main concepts and advantages of GPGPU programming will
be presented, followed by a basic introduction to libCudaOptimize, the GPU-based
library we developed and which served as the basis for most of the code written for
this work. The library is freely available on SourceForge1.

A.1 CUDA Programming Model

General-purpose programming on GPU (GPGPU [129]) is the way of using a graphic
card, which typically handles computations only for computer graphics and gaming,
to execute applications traditionally managed by the Central Processing Unit (CPU).
In this context, a GPU can be seen as a highly parallel, multi-threaded, many-core
processor. Figure A.1 shows the theoretical number of floating-point operations per
second for recent CPUs and GPUs.

CUDA™ (Compute Unified Distributed Architecture) is a GPGPU environment
that includes a parallel computing architecture and programming model, developed
by nVIDIA™ to exploit the massively parallel computation capabilities of its GPUs.

nVIDIA CUDA-C [125] is an extension of the C language for the development
of GPUs routines (called kernels) that are executed N times in parallel by N uniquely

1http://sourceforge.net/projects/libcudaoptimize

http://sourceforge.net/projects/libcudaoptimize
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Figure A.1: Floating-point operations per second for recent CPUs and GPUs [125].

identified CUDA threads, following the Single Instruction Multiple Thread model:
each kernel runs the same code, but on different data. Kernels are run on the device
(GPU) while the rest of the code runs on the host (CPU). The threads on which the
kernels run may be grouped into blocks. A block can be seen as a group of threads
that share the same information and can exploit fast, local memory instead of using
the slow, although large and persistent, global one. In this way they can exploit inher-
ent properties of GPUs such as fast shared memory, atomic data manipulation, and
synchronization.

The most desirable properties for an application to fit the GPGPU paradigm are
low memory requirements, high degree of parallelization, high arithmetic intensity
(ratio between arithmetic and memory operations) and few interactions between in-
dependent processes. These properties are perfectly matched by bio-inspired tech-
niques, which employ a high number of elements that perform the same operation at
the same time with very little (or, sometimes, none at all) information to be shared
among them.
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Figure A.2: Grid of Thread Blocks [125].

A.2 Bio-Inspired Algorithms on GPU

Many GPU implementations of BIAs have been presented in the last decade. One
of the first was a GA implementation presented in 2005 [191]. Then, several im-
provements have been proposed to better exploit GPU properties such as hierarchical
models [193], hybridization [183], extension to island models [137] and to multi-
GPUs architectures [178]. The advantages of parallelizing GAs on GPUs have been
recently investigated in [55].

The first implementations of PSO and DE relying on CUDA were developed in
2009 and 2010, respectively [29, 30]. After that, other implementations of DE have
been developed [80, 199], and fast versions of PSO have been implemented by re-
moving the constraint of synchronicity between particles [115]. The early PSO im-
plementations on GPUs suffered from a coarse-grained parallelization that neglected
the opportunity to compute the fitness function, usually the most time-consuming
process, in parallel over the problem dimensions. This problem was solved in the
PSO implementation described in [114] by adding a further level of parallelism. The
early DE implementations contained similar inefficiencies, such as a partially se-
quential implementation of the fitness function and of the random number generator.
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These problems were addressed by [80] using four kernels executed sequentially.
This number has been reduced to three in [118].

Recently, Krömer et al have presented comprehensive reviews regarding GPU-
based implementations of PSO [77], DE [78], and other MHs [79].

A.3 Overview of the library

The main idea behind the development of libCudaOptimize [118] is to offer a user the
chance to apply MHs as simply and fast as possible to his own problem of interest,
exploiting the parallelization opportunities offered by modern GPUs.

libCudaOptimize is a GPU-based open source library that allows users to run
their methods in parallel to optimize a fitness function, introduce new optimization
algorithms, or easily modify/extend existing ones. In the first case, the only thing one
needs to do is to implement the new fitness function in C++ or CUDA-C, while in
the second and third cases, one can take advantage of the framework offered by the
library to avoid the need to go deep into basic implementation issues, especially as
concerns parallel code.

Although no explicit understanding of CUDA-C or even of MHs is required, it is
very useful anyway; nonetheless, one can use this library just by writing a C++ fitness
function and launching one of the optimization techniques already implemented (to
date PSO, DE and Scatter Search). This allows one to:

• implement commonly successful techniques with limited efforts;

• easily compare the results obtained by running different techniques on different
functions;

• analyze the effects of changing values of the parameters which regulate the
behavior of the optimization techniques on user-defined problems;

• run high-dimensional optimization experiments on consumer-level hardware,
thanks to the efficient CUDA-C parallel implementation.
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The documentation of libcudaoptimize can be found online2 and some examples
have been provided in [118]. In short, to implement a MH, one only needs to fill the
functions that replicate the pseudo-algorithm presented in Algorithm 1:

• initSolutions initializes the population;

• step generates the population to be evaluated;

• fitnessEvaluation calls the fitness function;

• update selects the population to be passed to the next generation/iteration.

All the experiments presented in Chapter 5 have been implemented relying on
this library. In the simplest cases, it has been enough to write a simple wrapper to
allow the communication between the library and the already coded fitness function;
in other cases the function has been ported from the original language (Matlab, C++)
into CUDA-C; in the most complex cases, the functions of interest have been ex-
tracted from the library and embedded into the existing code. Figure A.3 shows the
differences in terms of performance for the hippocampus localization when (i) both
fitness function and MH were implemented in C++; (ii) fitness function was imple-
mented in C++ using libCudaOptimize’s MHs; (iii) the entire program was run on
GPU.

Figure A.3: Execution time versus number of generations.

2http://ibislab.ce.unipr.it/software/libcudaoptimize/doxygen

http://ibislab.ce.unipr.it/software/libcudaoptimize/doxygen
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