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Nowadays, solving optimally combinatorial problems is an open problem. Determining the best arrangement of elements proves
being a very complex task that becomes critical when the problem size increases. Researchers have proposed various algorithms
for solving Combinatorial Optimization Problems (COPs) that take into account the scalability; however, issues are still presented
with larger COPs concerning hardware limitations such as memory and CPU speed. It has been shown that the Reduce-Optimize-
Expand (ROE)method can solveCOPs faster with the same resources; in thismethodology, the reduction step is themost important
procedure since inappropriate reductions, applied to the problem, will produce suboptimal results on the subsequent stages. In this
work, an algorithm to improve the reduction step is proposed. It is based on a fuzzy inference system to classify portions of the
problem and remove them, allowing COPs solving algorithms to utilize better the hardware resources by dealing with smaller
problem sizes, and the use of metadata and adaptive heuristics. The Travelling Salesman Problem has been used as a case of study;
instances that range from 343 to 3056 cities were used to prove that the fuzzy logic approach produces a higher percentage of
successful reductions.

1. Introduction

In the field of mathematics and computer science, one of the
most challenging problems is searching for optimal arrange-
ments of elements within hundreds of thousands of possibili-
ties. Collectively, these problems are known as Combinatorial
Optimization Problems (COPs), and their importance lies in
the large diversity of real-life problems that can be solved
in the industry and engineering sectors by studying them.
They become a challenge because using a direct approach
of calculating all the possibilities and choosing the best one
becomes an unfeasible task, because the number of possible
combinations grows quickly compared to checking modestly
sized instances, which is beyond the capabilities of even the
most powerful today’s supercomputers; therefore, a great deal
of research has been invested in developing faster and better
algorithms for solving COPs [1].

One of the most well-known COPs is the Traveling Sales-
man Problem (TSP) whose popularity and importance can be
attributed to its simple definition but high complexity to solve
it, making it an ideal research test problem. Additionally,
there are many scientific, real-life industrial and commercial
applications that can be analyzed in an analogous way. The
TSP consists in finding the shortest tour that a traveling
salesmanmust take between a finite amount of cities, starting
and ending in the same city. The TSP is known to be NP-
hard [2] and the term was coined by W. R. Hamilton and
Thomas Kirkman in the 1800s [3]; it was first formulated as
a mathematical problem in 1930 by Karl Menger. Numerous
approaches to solving it have been published [4, 5], from
which two main categories can be identified: exact solutions
and approximate approaches [6].

The most straightforward exact solution algorithm would
be to utilize brute force by creating every possible outcome
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and choosing the best one. This approach is not feasible for
larger TSP instances and, thus, better performing algorithms
were proposed. One of the best proposals comes under
the published name “implementing the Dantzig-Fulkerson-
Johnson algorithm for large traveling salesman problems”
[7, 8], which was an early description of the computer
program solver for the symmetric TSP named Concorde
[9]. A modified Concorde’s algorithm was used for solving
instances up to 85,900 cities optimally [10]. Other approaches
such as “Branch-and-Bound/Cut”methoddescribed in [11] in
1958 was applied to solve the TSP in 1963 in [12].

The search for exact solutions is not always the best course
of action when trying to solve a problem, and this is where
approximate approaches take the lead. Based on heuristics,
these types of algorithms do not guarantee that the optimum
solution will be found; however, they provide suboptimal
results that can be “good enough” for the task at hand. One
of the best known approximate algorithms was published
as “Polynomial Time Approximation Schemes for Euclidean
Traveling Salesman and Other Geometric Problems” [13].
Some other heuristics examples as well as their adaptation
to solve the TSP are as follows: Lin-Kernighan [14, 15], Tabu
Search [16, 17], Evolutionary Algorithms [18–20], Ant Colony
Optimization [21–23], Bee Colony [24], Neural Network
Algorithms [25, 26], Memetic Approaches [27, 28], and
hybrid strategies such as Neural Networks [29] and Memetic
Algorithms [30] plus Lin-Kernighan local optimization.

Differently from the above proposals, in this work, the
goal is not to provide new solving algorithms but to allow
that current proposals can perform better by providing
an operator that performs a systematic selection, removal,
optimization, and reconstruction of TSP instances to reduce
the problem size. The ROE method was conceived in [31],
and, here, we will contribute to the method by providing
better selection strategies (operator) than the existing ones,
which includes the use of adaptive heuristics. This will
produce a higher percentage of reductions that are part of the
global optimum. With the Reduce-Optimize-Expand (ROE)
method, we can produce faster and higher quality solutions
and, in some cases, provide solutions which was previously
impossible due to algorithm or hardware limitations; now,
using the fuzzy operator with adaptive heuristics, it will
be possible to improve the quality of solutions. We present
a series of comparative experiments from the well-known
TSPLIB that showcase the improvement of the fuzzy selection
strategy to those that were previously published.

The main contributions of this work can be summarized
as follows: a general method to reduce the size of TSP
instances that uses a rule-based Fuzzy Inference System
(FIS) and a procedure to adequate TSP instances for future
evaluation by the FIS; this includes the creation of custom
made linguistic variables based onTSP instancemetadata and
the logical rules that drive the FIS. The above contributions
improve the ROE methodology [31] providing a higher
quantity of reductions that are part of the global optimum.

This paper is organized as follows. In Section 2 a summary
of the state of the art of this extensive topic, focusing onTSP, is
presented. Section 3 provides a mathematical overview of the
TSP. Section 4 is concerned with the proposed methodology

and its inclusion in the ROEmethod, the fuzzy logic classifier
with adaptive heuristics, which is the core of this work, and
the use of advanced metadata is explained. In Section 5, a
detailed case of study through the use of plots is explained.
Section 6 provides experimental results for ten TSP instances
from the TSPLIB. Finally, Section 7 provides the conclusions
and future work.

2. Related Work

Research has been conducted to solve the scalability issues
associated with COPs in different ways. One of the most
relevant trend that have proved to be very effective is to
utilize modern hardware architectures to provide an addi-
tional degree of scalability through high levels of parallelism.
With the increased access to such technologies, mainly by
the introduction to mainstream multicore CPU computing
and more recently GPU oriented computing, a significant
amount of effort has been shifted to develop algorithms that
properly use these new paradigms. Researchers have proven
that revisiting classic algorithms and adding parallelism to
them is a very effective strategy for solving COPs. Such
is the work in [32] where the authors revisited the design
and implementation of Branch-and-Bound algorithms for
solving large COPs on GPU-enhanced multicore machines,
and in [33] a high-performance GPU implementation of
the 2-opt and 3-opt local search algorithm was presented.
Other metaheuristics that were enhanced using GPU are
Ant Colony Optimization [34, 35] and Genetic Algorithms
[36, 37].

The systematic breakdown of COPs has also proven to
be an effective strategy. Utilizing the divide and conquer
strategies, the algorithms are capable of producing smaller
problems that can be solved, and at a later stage they can be
interconnected.The task at hand is providing proper dividing
methodologies and the algorithms that will interconnect
them. Works such as [38] describe the effectiveness of this
approach and a discussion of multiple algorithms for under-
taking the task is presented. In [29], a hybridNeural Network,
with local search via modified Lin-Kernighan algorithm that
tries to solve a million city TSP, was introduced, although the
work proves to be very successful in allowing for a higher
degree of division of this huge TSP instance, thus enabling
more scalability; the next inherent issue is presented in their
results: faster solution with lower quality.

In the ROE method [31], a proposal to reduce the size of
TSPs was presented; the main concept is to apply systematic
reductions to the TSP instance in order to obtain a new
instance that is representative of the original but with the
added benefit that the TSP solving algorithms would require
fewer resources to produce solutions. After it has been solved,
the last stage of the ROE methodology is to reconstruct the
original instance, giving us the final solution in the form of
the expanded route. In [39] source code to implement the
method is provided. Experimental results reported a 30% to
55% reduction in computational time, and the final solutions’
length remained between 6.48% and 15.30% from the global
optimum.
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An exhaustive literature review in the Scopus database,
ACMDigital Library, IEEE Xplore, Springer link, and Google
Scholar was performed, and therewas nomethodology found
that works similarly to what is proposed in this work, that
is, a generic methodology that aims to remove elements
from the given problem using a Fuzzy Inference System
based on metadata and adaptive heuristics. To compare the
ROE method using the proposed fuzzy operator, we have
surveyed the current state of clustering algorithms, taking
a special interest in clustering by fuzzy strategies. ROE can
be denoted as a clustering algorithm because it performs the
task of grouping via classification, in such a way that the
elements share fuzzy characteristics. The idea of using fuzzy
classification for clustering has been also considered by other
researchers; however, they do not use advanced metadata
based on adaptive heuristics, which provides a good degree
of intelligence in the grouping process.

Clustering algorithms are usually unable to locate global
optima because of an underlying data structure that is
difficult to propose optimally. However, important contri-
butions in clustering have been reported, and, similarly to
this new approach, their aim is to improve performance.
Fuzzy classification has been employed as a powerful tool
in clustering algorithms; two important advantages are as
follows:

(1) The use of linguistic variables to describe important
characteristics and concepts about the elements in the
problem.

(2) Classification based on knowledge represented
through fuzzy rules extracted from the human
expertise.

By surveying fuzzy logic applied to COPs, we found a
clear tendency of using C-means fuzzy clustering techniques
as the main form of grouping. From the year 2004 to the
present, the consulted digital databases contain around 40
articles that fall within the search terms regarding fuzzy
clustering and applications for TSP. The keywords chosen
were TSP, COP, fuzzy clustering, fuzzy sets, and classifi-
cation, among different variations of them. A selection of
the surveyed articles was carried out. The following works
are of special interest because they are the most fitting for
comparison with the proposed methodology; however, they
are still being substantially different because the grouping
method and final purpose is dissimilar.

Focusing only on clustering based algorithms, the other
methodologies usually group all the elements that fall within
certain decision criteria and then they calculate the centroid
of that group this being the first step in the optimization
process. Differently, ROE using the proposed fuzzy operator
classifies segments of the problem instance, and a centroid is
calculated for those segments that are chosen to be removed;
the segments may or may not be close to each other. This
concept of classification and grouping of elements is one of
the main contributions of this work.

Now, focusing on three-step methodologies for solving
the TSP problem, the work presented in [40] proposes using
a Genetic Algorithm (GA) based on unsupervised fuzzy

clustering. In the first step, the cities in the problem are
divided into several subtours, using a clustering algorithm. In
the second step, each partition of cities is considered a smaller
size TSP and it is solved using a GA, obtaining optimal
subtours of the cities for each partition. In the third step,
the subtours are connected in an appropriate way to obtain
an optimized tour. Then a fourth step is required since the
final tour needs to be improved by the GA. On the other
hand, the ROE method, with the fuzzy operator, has three
well-defined steps, and, differently from the above method,
it does not depend on a particular method to achieve the
optimization. Instead of working with independent subtours,
which inevitably most of the times guide the optimization
process to suboptimal solutions, the ROE works with the
whole problem at the same time; in the first step the problem’s
original size is reduced to a convenient size using a fuzzy
classifier based on advanced metadata and heuristics. In the
second step, the reduced size problem can be optimized by
any state-of-the-art method. In the third step, the optimized
tour is methodology adapted to the original size problem,
producing better solutions.

In [41] a hybrid metaheuristics for solving the TSP is
presented; this is a fused method that combines a GA and
an adaptive fuzzy greedy search operator. In [42], the indi-
viduals of the population of a GA are subject to be grouped
using a fuzzy clustering approach; hence the reduction and
the optimization stages are also fused. Contrary to these
approaches, in ROE, the optimization process is not blended
with the method, providing it with a big flexibility since it
does not requiremodifying the inner workings of the selected
optimization algorithm.

Fuzzy c-means clustering is the most popular technique
of all. Twenty of the surveyed articles use this group-
ing method. In [43], a hybrid evolutionary fuzzy learning
algorithm that automatically determines the near optimal
traveling path in large-scale traveling salesman problems is
presented. It described the steps required to identify, group,
solve, and connect clusters of cities. The key difference in the
aforementioned work is that the cities of the TSP are never
removed; thus the problem size remains the same. Other
works that apply fuzzy clustering in a similar matter can be
in [42, 44, 45].

Hybrid approaches besides Evolutionary Algorithms
exist. Although these types of approaches do not share as
many characteristics as the ones discussed previously, it is
important to note that fuzzy clustering can be applied in
different ways. In [46], a fuzzy self-organizing map for an
artificial Neural Network is presented.

Other approaches come in the form of fixing edges [47]
and they provide significant improvements to the solving of
the TSP instances as well. However, these approaches require
additional local optimization as a preprocess.

3. Mathematical Formulation of the TSP

The TSP is a highly studied problem for testing and
benchmarking algorithms. Mathematically, the TSP can be
expressed as an edge-weighted, directed graph 𝐺 = (𝑉, 𝐸),
where 𝑉 is the set of 𝑛 = |𝑉| vertices (cities), 𝐸 ⊆ 𝑉 × 𝑉,
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the set of (directed) edges (path between two cities), and a
distance function 𝑑 : 𝐸 → R+ assigning each edge 𝑒 ∈ 𝐸 to a
distance 𝑑(𝑒) [10, 48].

A tour 𝜋 is Hamiltonian cycle that consists of a single
unique permutation of all𝑁 + 1 vertices in 𝑉 where the first
and last elements of the permutation are the same, and𝑊 is
the set of all tours 𝜋. By interpreting 𝜋(𝑗) as the city visited
after city 𝑗, for 𝑗 = 1, . . . , 𝑁, the cost of a tour can be written
as

𝑐 : 𝜋 󳨃󳨀→

𝑁

∑

𝑗=1
𝑑
𝑗𝜋(𝑗)
. (1)

Thus, the TSP is defined as a set V1, V2, . . . , V𝑁 cities where,
for each pair (V

𝑖
, V
𝑗
) of distinct cities, there exists a distance

𝑑(V
𝑖
, V
𝑗
); the goal is to find the ordering 𝜋 of cities that

minimize the quantity:

𝑁−1
∑

𝑖=1
𝑑 (V
𝜋(𝑖)
, V
𝜋(𝑖+1)) + 𝑑 (V𝜋(𝑁), V𝜋(1)) . (2)

This quantity is referred to as the tour length since it is the
length of the tour that a salesman would make when visiting
the cities in the order specified by the permutation, returning
at the end of the initial city. For two-dimensional problems,
the vertices are points 𝑃

𝑖
= (V
𝑥𝑖
, V
𝑦𝑗
) in the plane, and 𝑑

𝑖𝑗
is

the Euclidian distance [31] given by

󵄩󵄩󵄩󵄩󵄩
⃗𝑑
󵄩󵄩󵄩󵄩󵄩2 = 𝑑𝑖𝑗 =

√(V
𝑥𝑖
− V
𝑥𝑗
)
2
+ (V
𝑦𝑖
− V
𝑦𝑖
)
2
. (3)

Finally, solving the TSP consists in producing a tour
which comprises a closed route where there are no repeated
nodes, except for the first and last node as they are the same
and the length of the tour is minimal. This task is not easy to
satisfy, specifically as the amount of cities increases, in which
obtaining a tourwithminimal cost for a large number of cities
is classified as an NP-hard problem; these kinds of problems
are considered unsolvable by polynomial algorithms. For this
very reason, there is a special interest in developing and using
methodologies that limit the search space and then utilize a
metaheuristic.

As it was explained, many different variations of the
TSP exist in literature [6]; however, three of them stand
out as the most widely studied and used: the symmetric
Traveling SalesmanProblem (sTSP)where the distancesmust
always satisfy 𝑑(V

𝑖
, V
𝑗
) = 𝑑(V

𝑗
, V
𝑖
), the asymmetric Traveling

Salesman Problem (aTSP) in which at least one distance is
𝑑(V
𝑖
, V
𝑗
) ̸= 𝑑(V

𝑗
, V
𝑖
), for both cases 1 ≤ 𝑖, 𝑗 ≤ 𝑁, and finally, the

Multitraveling Salesman Problem (mTSP) where𝑚 salesmen
are deployed from the starting city with the objective of
finding a tour for each salesman and each city is visited once
by only one salesman, and the cost of the tour is minimized.

Each variation of the TSP requires a different mathe-
matical formulation and consideration. Being the sTSP the
most cited work [7], with specialized WEB pages such as
the TSPLIB where the most recent advances and optimally
obtained results for different instances are summarized, we
focused this proposal on this variation of TSP, with the aim of

havingmany examples to achieve comparisons with the latest
results obtained by the state-of-the-art algorithms. From this
point forward, when speaking of the TSP, we are referring to
the sTSP.

4. The VFS with Adaptive Heuristics in
the ROE Method

The ROE method [31] produces a temporally smaller-sized
COP, representing the original problem.The purpose is help-
ingCOP solving algorithms to perform faster providing high-
quality solutions. For huge sized problems, where no other
existing methods can provide a solution, the ROE method
allows doing it whether the problem can be effectively
reduced to a manageable size for optimizing algorithms. The
first reduction operators of ROE were inspired by Artificial
Immune Systems (AIS) [49–51], specifically in artificial vac-
cination [52]; for this reason, the reduction operators in this
method are called vaccines. Twomain operators for selection
were reported in [31], and they are Vaccination by Random
Selector (VRS) and Vaccination by Elitist Selector (VES). In
this paper, the operator Vaccination by Fuzzy Selector with
adaptive heuristics (VFSah) is proposed.

The ROE method consists of three steps, and they are as
follows:

(i) Reduction. In this first step, the TSP instance is
analyzed to select the nodes to be removed; it is the
most important and researched step. It has many
considerations to guarantee that the reductions made
to the instance actually form part of the optimal
solution, and they remain representing the original
TSP instance. The reduction step has most signif-
icance on the outcome of the whole methodology.
A selection or decision criteria to determine which
candidates are chosen to be removed is required. In
our program, a .tsp file was created to save the new
reduced TSP instance. This stage requires achieving
the next following actions:

(1) Loading the TSP Instance and Representation.
The instance data is loaded into memory. Each
city is represented in (𝑥, 𝑦) coordinates. An
example of this representation is shown in
Figure 1(a).

(2) Mesh Generation. The mesh consists of a series
of connections (edges) between nodes. Obtain-
ing multiple paths from one node to the rest
is desirable to promote options for the fuzzy
classifier; however, a big amount of nodes can
slow down algorithms due tomemory and com-
puting limitations. The simplest mesh can be
created by calculating the distancematrix for the
particular TSP instance; nevertheless this is not
the best choice because we found the previously
discussed problem. A better alternative is to
create a distance matrix but only to the nearest
nodes, and in this way the size is reduced
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Figure 1: In this example, the operator Vaccine by Fuzzy Selector
with adaptive heuristics (VFSah) was applied to reduce the TSP size,
using the ROE method.

considerably. An example of amesh is illustrated
in Figure 1(b).

(3) AdvancedMetadata Generation.This consists in
calculating 𝑤

𝑖
for each edge; this value contains

both the Proximity and Secludedness values
that are part of the mesh. Figure 1(c) shows a
representation of each edge with its assigned
value.

(4) Using the Operator VFSah. The VFSah is used
to classify each of the edges in the mesh as
vaccines or not vaccine; that is, the idea is to
identify which edges can be removed from the
original TSP. This classification is represented
using colors in Figure 1(d); in green color are
the chosen edges to be removed (vaccines), in
yellow are those that cannot be classified as
vaccines, and in red are those that will remain as
part of the instance. The resulting TSP reduced
instance is shown in Figure 1(e).

(ii) Optimize. The new reduced instance is ready to be
solved by any state-of-the-art specialized optimizing
algorithm. This is one of the most important advan-
tages of the ROE methodology, since we do not need

to achieve any change to the optimizing algorithm.
The resulting tour is going to be used in the next step.
Figure 1(f) shows a reduced TSP instance that has
been solved by any TSP solving algorithm as usual. It
is expected that the TSP solving algorithm generates
an output file in the formof a “.tour file.” In this paper,
we will not discuss TSP solving algorithms.

(iii) Expand. The expand step takes the solution from the
previous step and reconstructs the tour by return-
ing the removed nodes from the reduction step.
Local optimization can be used in order to create
a better reconstruction scenario when connecting
the reduced nodes and paths. This step is critical
because it provides the correct solution to the TSP
instance. Figure 1(g) illustrates the last step; it consists
in the expansion of the previously generated tour by
including the original removed sections. This step
requires the solution generated by the TSP solving
algorithm, the original TSP instance data, and the
reduced TSP instance; the final tour will be in terms
of the original TSP instance, thus providing the real
tour length.

Because the reduction step is the most critical one
and the focus of this work, we will describe in detail its
inner workings. First, we must consider the quality of the
starting mesh to define possible candidates to be reduced. As
most heuristics, the difference between a “good” and “bad”
starting point changes the outcome significantly. A better
construction of a starting mesh will result in a more effective
selection process. The mesh not only requires containing
good candidates, but it also needs to avoid large candidates
to produce fast results.

The VFSah reduction operator uses the metadata con-
tained in the edges of the mesh, as it was indicated in
Figure 1(c), where the metadata is formed with the Proximity
and Secludeness values.

4.1. Metadata. Metadata provides data about data. In the
particular case of the TSP, data comes in the form of nodes
with (𝑥, 𝑦) coordinates that represent the position of cities
on a map. The most basic form of metadata pertaining the
TSP is the distance between nodes, also known as Euclidean
distance; it can be calculated using (3).

The Distance Matrix (DM) is used to organize the dis-
tances between nodes (4).Most of the TSP solving algorithms
use the DM as a starting point for generating solutions. Being
one of themost basic forms ofmetadata, the DMprovides the
stepping stone for evenmore robust metadata generation and
complex searching techniques. Consider

DM =
(
(
(

(

𝑑11 𝑑12 𝑑13 ⋅ ⋅ ⋅ 𝑑1𝑛

𝑑21 𝑑22 𝑑23 ⋅ ⋅ ⋅ 𝑑2𝑛

𝑑31 𝑑32 𝑑33 ⋅ ⋅ ⋅ 𝑑3𝑛

.

.

.
.
.
.

.

.

. d
.
.
.

𝑑
𝑚1 𝑑𝑚2 𝑑𝑚3 𝑑𝑚4 𝑑𝑚𝑛

)
)
)

)

. (4)
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Require: 𝑘 ≥ 1
(1) DM = GenerateDistanceMatrix()
(2) for 𝑖 = 0; 𝑖 < DM.Lenght; 𝑖 + +; do
(3) Select all distances values for 𝑖 row
(4) Sort all values ascending, keep track of each index
(5) Take 𝑘 first elements from the sorted indexes
(6) if Elements are not in NNNDM then
(7) Add the pair [row index, column index] to NNNDM
(8) else
(9) Go back to taking 𝑘 first elements from the sorted indexes and repeat the check
(10) end if
(11) end for
(12) return NNNDM

Algorithm 1: Pseudocode for implementing Nonrepeat Nearest Neighbor Distance Matrix. It is easier to save the indexes that refer to the
original Distance Matrix.

ROE employs the DM between cities with the important
modification of reducing the matrix to nearest neighbors
on the premise that TSP connections rarely will join far
cities. This modified DM is known as Nearest Neighbor
Distance Matrix (NNDM) where the amount of nearest
neighbors 𝑘 needs to be specified. Additionally, calculating
the NNDM and not allowing repeated nearest neighbors
between nodes provides more paths without redundancy.
This modified NNMD is called Nonrepeat Nearest Neigh-
bor Distance Matrix (NNNDM) and is the preferred basic
metadata calculation used by the proposed methodology.
The pseudocode for implementing NNNDM can be found in
Algorithm 1.

4.2. Fuzzy Classifier for Problem Reduction. People can solve
reasonably sized TSP by using their own reasoning. A person
may realize and say “this part of the route is the shortest”
to describe a specific part of the instance. Such opinion is
just an estimation of the distance, and it might be far from a
precise number; however, it can be precise enough for certain
applications and in some cases it can be even the optimal
decision. Such powerful expressions that help us to solve
problems by observation and applying common sense are
fuzzy expressions, and they are based on linguistic variables.
Fuzzy logic uses them to formulate rules and emulate human
reasoning. Therefore, incorporating techniques based on the
theory of fuzzy sets over more conventional approaches to
solve complex problems lies in their capability of integrating
a priori knowledge and human expertise about the problem.

In the particular case of the TSP, the problem is analyzed
bymaking connections between the nodes and assigning such
linguistic connotation, such as Far, Close, and Secluded, to
shape our problem into a possible solution.

The Mamdani fuzzy classifier that evaluates the edges for
possible problem reduction size is shown in Figure 2. The
linguistic variables are variables whose values are words or
sentences in a natural or artificial language; they allow us to
create a link between conceptual thought and numbers. Here,
two main linguistic variables are proposed for the inputs.
These must be obtained from the problem’s metadata and

have been designed to be both global and locally impactful
in the decision-making process.

The FIS inputs and output linguistic variables are Prox-
imity, Secludedness, and IsVaccine, respectively.

4.2.1. Linguistic Variable Proximity. The linguistic variable
Proximity is a normalized fuzzy measure that indicates how
near are two cities. Figure 3 shows its linguistic terms:
VeryFar, Far, Average, Close, and VeryClose; the correspond-
ing membership functions (MFs) of these terms are evenly
distributed between 0 and 1.

For applying the linguistic variable Proximity to a TSP
problem, it is necessary to calculate the normalized distance
between the cities of interest.This normalization is calculated
using the following by considering the distance from the
departure city to its nearest and its farthest city, 𝐸min and
𝐸max, respectively:

Norm (𝑒
𝑖
) = 1−

𝑒
𝑖
− 𝐸min

𝐸max − 𝐸min
, 𝐸min ̸= 𝐸max; (5)

that is, 𝑒
𝑖
corresponds to each edge of the mesh, 𝐸min is the

minimum distance between nodes (cities) of the mesh, and
𝐸max is the maximum distance between the nodes of the
mesh.

4.2.2. Linguistic Variable Secludedness. The linguistic variable
Secludeness is also a normalized fuzzymeasure that indicates
how remote is an edge; so Secludeness weights how separated
a particular edge is when compared to its neighbors. This
linguistic variable is locally impactful since it only considers
edges that are close to it.

The Secleudeness value is the result of using an adaptive
heuristic, and it is achieved with a rewarding iterative process
that depends on the number of the considered nearest edges;
only the edges with a bigger value than the segment that
we are analysing will contribute with the reward which is
calculated using (6), being different for each edge in the same
problem. The higher Secludedness values represent the more
isolated edge.
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Figure 2: Fuzzy logic classifier.
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Figure 3: Membership functions of the input linguistic variable
Proximity.

To explain this concept Figure 4 is used. We start with
a Secludeness value equal to zero. Considering that, in this
case, the distance between cities A and B (AB) is 1, AE = 4,
and BD = 3, and so forth. To obtain the Secludeness value
of the edge AB, it is necessary to compute the reward, in this
case, 0.25, since there are four nearest neighbor edges, and
every time the length AB is shorter than one of the edges
an increment of 0.25 on the Secludedness value is achieved.
Secludedness is also a normalized value between 0 and 1 and
the increments can be determined by

Increment = 1
Number Of Nearest Edges

. (6)

A
1

4

2

3

3

B

C

DE

F

Figure 4: Example of the calculation of the Secludedness value for
edge AB. The value is equal to 1 because AB’s length is shorter than
any other neighboring edges.
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Figure 5: Membership functions of the input linguistic variable
Secludedness.

Figure 4 shows an example of how to calculate the
Secludedness value of the edge AB (red). The distance AB is
equal to 1; the increment is calculated with (6) as 1/4 = 0.25
because we have four nearest edges, two fromA and two from
B (blue). The Secludedness value is then calculated resulting
in 1 because the edges AE, AF, BC, and BD are longer than
AB, giving four increments of 0.25.

Figure 5 describes the terms of the Secludedness linguistic
variable, and they are VeryNeighboring, Neighboring, Nor-
mal, Secluded, and VerySecluded.

4.2.3. Output Linguistic Variable IsVaccine. The linguistic
variable IsVaccine provides the fuzzy classification of a
particular edge after being processed by the FIS illustrated in
Figure 2. The MFs for IsVaccine are NotVaccine, CouldBe-
Vaccine, and Vaccine; they are shown in Figure 6.

4.2.4. Rule Base. The rule base is shown in Table 1; at the
present, the only cities that can be reduced are those classified
as “V”; the other fuzzy outputs “CV” and “NV” could not be
considered as vaccines.

5. Case of Study

To illustrate the whole methodology, a TSP instance with
343 cities that is called pma343 in the TSPLIB was selected.
This particular size of TSP was chosen because it allows
a convenient graphic representation; a higher node count
would lead to confusing images.
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Figure 6: Membership functions of the output linguistic variable
IsVaccine.

Table 1: FIS rules.

Secludedness Proximity
VeryFar Far Average Close VeryClose

VeryNeighboring NV CV NV NV CV
Neighboring CV V V NV CV
Normal NV NV NV NV V
Secluded NV NV V CV V
VerySecluded V NV CV V V
NV: NotVaccine, CV: CouldBeVaccine, and V: Vaccine. The input variables
are Proximity and Secludedness. The output variable is IsVaccine.

Figure 7 shows the pma343, and it is represented as
a series of (𝑥, 𝑦) coordinates on the plane. This figure
corresponds to the first step of the proposed method.

Figure 8 illustrates the creation of the starting mesh.
The Nonrepeat Nearest Neighbor Mesh strategy was imple-
mented.The first node of themesh was the first selected node
of the TSP instance, and two neighbors per node were calcu-
lated. Experiments show that this provides adequate coverage
and enough optional paths for the selection strategy to choose
from. Note that this strategy does not guarantee that all the
mesh will be interconnected, and, in Figure 8, four mesh
groups can be identified. Each connection between nodes
has its own metadata values corresponding to Proximity and
Secludedness (not illustrated for clarity in the graph).

After the metadata creation and assignment of the crisp
input values for the linguistic variables based on the estab-
lished logical rules, the FIS calculates which one of the
connections will be chosen for reduction. Figure 9 shows
those connections that were classified as reduction. Note, in
the section enclosed in black, the edges will be removed and
replaced by a new node representative of the removed nodes
connected by the edges.

In Figure 10, the reduced TSP instance is shown.The TSP
solving algorithms will work with this new reduced instance.
It is a substitute instance of the original but with fewer nodes.
The new instance will allow faster solving times and, in some
cases, the TSP solving algorithm will be capable of finding a
solution which previously was not possible due to hardware
or algorithm limitations when handling large instances. Note,
in the section enclosed in black, that the nodes which were
connected by the edges have been removed and replaced by

two new nodes corresponding to the center of each removed
edge.

Figure 11 shows the optimal route. A comparison between
this route and the route with the selected reductions is
presented in Figure 12.

6. Experimental Results

With the aim of showing that theVFSah can produce effective
reductions that are part of the global optimal route, we have
chosen ten different TSP instances from the TSPLIB; they
vary in size from 343 to 3056 cities, and their optimal route is
known, which is important in order to evaluate the method
quantitatively.

A summary of results for ten instances is shown in
Table 2. At a first glance, a clear tendency is presented. The
methodology provides significant reduction of the problem
instances, and a high percentage of these belong to the global
optimum. The table provides information such as mesh size,
number of reductionsmade, and the percentage of reductions
that are part of the reported global optimum, according to
the TSPLIB. With particular emphasis on the percentage of
optimal reductions, a range from 71.87% to 86.67% with
no notable dependency on the instance size was observed.
The smallest instance of 343 cities had 84.92% of optimal
reductions; meanwhile the largest instance, with 3,056 cities,
resulted in 73.22% of optimal reductions; however, in the
larger instance there were 2,254 more reduced cities than in
the smaller instance.The last columns indicate the percentage
of reduction of the original problem size, which is very
important, since the TSP requires exponential time to be
solved; therefore, reducing the size by at least ≈29% is quite
good since the needed time to solve the TSP will be impacted
drastically. Note, in the table, that there exists a tendency
to grow up this last factor; for example, for the 3,056 cities
instance, the problem was reduced in a 40.12%.

6.1. Comparison among VRS, VES, and VFSah. To show the
advantages of VFSah reduction operator, against the existing
VRS and the VES operators for the ROE method, Table 3
shows a qualitative comparison of the methods, and Table 4
presents a quantitative comparison.

Table 3 shows that the only operator that is able to achieve
reductions based on rules, applying the expertise knowledge,
as well as reductions based on advanced metadata is the
VFSah operator. This operator also provides the best amount
of positive reductions. The other two existing operators, the
VRS and the VES, are also good operators; however, these
operators require that the user provides a numeric input
that forces achieving a specific number of reductions in the
problem instance, which sometimes may result in obtaining
poor quality reductions. Comparing these three operators,
theVFSah has the best qualities; the only issue is that it is little
more complex to implement since it requires a fuzzy clas-
sifier with adaptive heuristics and implementing advanced
metadada. However, their computational complexity remains
being linear.



Mathematical Problems in Engineering 9

Table 2: Experimental results for 10 TSP instances fromTSPLIB treated with Vaccination by Fuzzy Selector with adaptive heuristics (VFSah).
Significant degree of problem reduction is achieved, and a high percentage of optimal is reached with the proposed methodology.

TSP instance Size Mesh size Reductions Optimal reductions % of optimal reductions Reduced TSP size % of reduction
pma343 343 686 199 169 84.92% 244 28.86%
pbk411 411 822 284 220 77.46% 269 34.55%
pbm436 436 872 306 343 77.45% 283 35.09%
xql662 664 1324 518 390 75.29% 405 39.01%
rbu737 737 1474 375 325 86.67% 550 25.37%
lim963 963 1926 638 544 85.27% 644 33.13%
dka1376 1376 2752 911 735 80.68% 921 33.07%
rby1599 1599 3198 1321 961 72.75% 939 41.28%
dcb2086 2086 4172 1852 1331 71.87% 1160 44.39%
pia3056 3056 6112 2453 1796 73.22% 1830 40.12%

Figure 7: Problem Analysis Step 1. Loading and representing the TSP instance.

Figure 8: Problem Analysis Step 2. Mesh generation by Nonrepeat Nearest Neighbor Distance Matrix. Note that particularly dense zones
have more connections than the unions between those zones and some zones are isolated due to the nature of the nearest neighbor strategy.

Table 4 shows in the first column ten instances of the
TSP; columns two to four show the amount of reductions
achieved by the VRS, VES, and VFSah reduction operators.
Column five shows the percentage of improvements of the
VFSah with respect to the VRS and, similarly, column six, the
VFSah versus the VES.

7. Conclusion

Combinatorial optimization (CO) is an importantmathemat-
ics branch that hasmany applications in artificial intelligence,
machine learning, and other science and engineering fields.
In general, the computational cost of finding the global
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Figure 9: Problem Analysis Step 3. The selected vaccines from the mesh are shown.

Figure 10: Problem Analysis Step 4. The reduced TSP instance is shown. In blue color are the nodes that remained unchanged; in red color
are the nodes representing removed nodes.

Table 3: Comparison between VFSah, VRS, and VES.

VFSah VRS VES
Adaptive reductions based on
advanced metadata ✓

Forced amount of reduction ✓ ✓

Best amount of positive reductions Best Good Better
Experiments consistency ✓ ✓ ✓

Implementation difficulty High Low Medium
Computational complexity Linear Linear Linear
Reductions based on rules ✓

Usage of expert knowledge ✓

optima of a COP grows up as the number of nodes increases.
The TSP is a classical problem in CO; in fact, it can be
considered an intractable problemwhen the number of nodes
increases because there is no efficient algorithm that can
solve it efficiently. Since the original formulation of the
TSP, hundreds of proposals to solve it emerged; however,
only few methods demonstrated to be efficient doing this
task, and, broadly speaking, they are based on mathematical

foundations reinforced by technological advances, but the
problem remains when the problem size is increased. Other
mathematical tendencies search for reducing the problem
size, and at the present there are efficient proposals, with
their own pros and drawbacks, but the onlymethodology that
treats COP in a general way, leaving aside the optimization
methods because it can use any of the existing methods, is
the ROE method.

The ROE method in its original formulation was pro-
posed with two vaccines (operators) to reduce temporally
the size of a TSP. In this work, a new reduction operator for
the ROE, named VFSah, which is based on a fuzzy classifier
reinforced with an adaptive heuristic, was introduced.

The experiments show that the VFSah outperforms the
existing ROE operators.The ROEmethod is the only existing
proposal that treats COPs in a general way, so that it does
not make the optimization step be the fundamental part,
because there are many successful proposals to achieve this
task, but they fail for large instances of COPs; therefore, the
essential task of the ROE method is to reduce the prob-
lem size by providing flourishing reductions to a problem
instance, after which an appropriate optimization algorithm
produces a solution, where in the last step the solution is
reconstructed, generating the optimal result. So, the objective
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Table 4: Summary of values to compare the three different selector strategies: Vaccination byRandom (VRS), Elitist (VES), and Fuzzy Selector
with adaptive heuristics (VFSah) for percentage of optimal reductions.The VFSah strategy provides higher percentage of optimal reductions
for all tested TSP instances. The last two columns compare VRS and VES to VFSah, respectively.

TSP instance VRS VES VFSah VFSah versus VRS VFSah versus VES
pma343 43.92% 64.32% 84.92% 41.00% 20.60%
pbk411 43.31% 62.68% 77.46% 34.15% 14.78%
pbm436 44.84% 59.48% 77.45% 32.61% 17.97%
xql662 46.06% 62.36% 75.29% 29.23% 12.93%
rbu737 45.17% 70.67% 86.67% 41.49% 16.00%
lim963 44.39% 66.93% 85.27% 40.88% 18.34%
dka1376 44.72% 64.65% 80.68% 35.96% 16.03%
rby1599 43.73% 53.82% 72.75% 29.02% 18.93%
dcb2086 45.31% 58.59% 71.87% 26.56% 13.28%
pia3056 44.08% 58.62% 73.22% 29.14% 14.60%

Figure 11: Problem Analysis Step 5. Optimal route for optimum for the pma343 TSP instance is shown.

Figure 12: Problem Analysis Step 6. Comparing the generated vaccines with the optimal route.The optimal route is shown in cyan color.The
vaccines that are part of route are shown in green color. False-positives vaccines are shown in red.

is to provide faster high-quality solutions by empowering the
ROE providing higher-quality solutions than before. As a
direct consequence of this improvement, the amount of huge
problems with unknown solutions that can be treated using
known optimization algorithms can increase.

At the present, the rule matrix of the fuzzy classifier and
the fuzzy terms of the linguistic variables were set using the
expertise knowledge. To improve these results, as futurework,
for the VFSah, it is possible to obtain a better distribution of
the linguistic terms as well as an optimized rule base matrix
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to provide better reductions; hence the speed and quality of
solutions will increase.

7.1. Methodology Scope and Limitations. It is well-known
that there are a large number of classic difficult computa-
tional problems from different fields such as graph theory,
mathematical programming, and combinatorics that can be
reduced among themunder certain considerations; therefore,
it is expected that finding a solution for one of the aforemen-
tioned problems will serve the others [53]. Focusing on the
TSP, state-of-the-art clustering algorithms are usually unable
to locate the global optima because of an underlying data
structure that is difficult and most of times impossible to
propose optimally, providing low quality fast solutions.

On the other hand, the proposal presented in this work,
the VFSah operator, provides a broader scope than the
existing ones, mainly because it enhances the ROE method
with a new operator that improves results supplying better
solutions in similar times; the ROE proposal is based on
reducing the problem size of a COP, instead of working on
a solving algorithm for a specific problem as is the common
factor in the existing methods. Therefore it is expected that,
using a similar approach, a larger number of classic unsolved
problems of routing, assignment, packing, and others can be
solved more efficiently. Clustering algorithms also work by
grouping the problem instance; however, they do not make
reductions in an intelligent way as it is the case of the VFSah
operator.

The ROE methodology is recent, and, at the present,
the VFSah operator offers the best results; however, new
operators that might outperform it can be developed. There
are no true limitations to apply the ROEmethodology and the
VFSah operator to different sizes of TSP problems, even those
with unknown solution, but its performance will depend on
the hardware computer limitations. The world of COPs is
very complex and extensive, so this methodology has not
been tested yet on other problems different from the TSP;
but based on the reducibility principle it is expected that this
methodology will serve to solve other problems of the same
class.
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of artificial immune algorithms,” inHigh Performance Program-
ming for Soft Computing, O. Montiel and R. Sepúlveda, Eds.,
chapter 10, CRC Press, 2014.

[40] K. Jebari, A. El Moujahid, A. Bouroumi, and A. Ettouhami,
“Unsupervised fuzzy clustering-based genetic algorithms to
traveling salesman problem,” in Proceedings of the International
Conference onMultimedia Computing and Systems (ICMCS ’12),
pp. 1013–1015, May 2012.

[41] K. Sheibani, “The fuzzy greedy search in combinatorial opti-
mization with specific reference to the travelling salesman
problem,” in Proceedings of the IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM
’10), pp. 1367–1370, December 2010.

[42] J.-W. Yoon and S.-B. Cho, “An efficient genetic algorithm with
fuzzy c-means clustering for traveling salesman problem,” in
Proceedings of the IEEE Congress of Evolutionary Computation
(CEC ’11), pp. 1452–1456, June 2011.

[43] S. H. Nasseri and M. H. Khaviari, “Solving TSP by considering
processing time: meta-heuristics and fuzzy approaches,” Fuzzy
Information and Engineering, vol. 3, no. 4, pp. 359–378, 2011.

[44] N. Ernest and K. Cohen, “Fuzzy logic clustering of multiple
traveling salesman problem for self-crossover based genetic
algorithm,” in Proceedings of the 50th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace
Exposition, January 2012.

[45] Y.-F. Liao, D.-H. Yau, and C.-L. Chen, “Evolutionary algorithm
to traveling salesman problems,” Computers and Mathematics
with Applications, vol. 64, no. 5, pp. 788–797, 2012.

[46] A. Chaudhuri, K. De, and D. Chatterjee, “A study of the
traveling salesman problem using fuzzy self organizing map,”
in Proceedings of the 3rd International Conference on Industrial
and Information Systems (ICIIS ’08), pp. 1–5, IEEE, Kharagpur,
India, December 2008.

[47] T. Fischer and P. Merz, “Reducing the size of traveling salesman
problem instances by fixing edges,” in Evolutionary Computa-
tion in Combinatorial Optimization: 7th European Conference,
EvoCOP2007, Valencia, Spain, April 11-13, 2007. Proceedings, vol.
4446 of Lecture Notes in Computer Science, pp. 72–83, Springer,
Berlin, Germany, 2007.

[48] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-
tion Algorithms and Complexity, Dover, New York, NY, USA,
1998.

[49] Y. Zhu, Z. Tang, H. Dai, and S. Gao, “Cooperation artificial
immune system with application to traveling sales-man prob-
lem,” ICIC Express Letters, vol. 2, no. 2, pp. 143–148, 2008.

[50] M.-Y. Zhao, K. E. Tang, G. Lu et al., “A novel clonal selection
algorithmand its application,” inProceedings of the International
Conference on Apperceiving Computing and Intelligence Analysis



14 Mathematical Problems in Engineering

(ICACIA ’08), pp. 385–388, IEEE, Chengdu, China, December
2008.

[51] D. Dasgupta and L. F. Nino, Immunological Computation:
Theory and Applications, CRC Press, Taylor & Francis, Boca
Raton, Fla, USA, 2009.

[52] L. de Castro and J. Timmis, Artificial Immune Systems: A New
Computational Intelligence Approach, Springer, London, UK,
2002.

[53] S. Arora and B. Barak, Computational Complexity A Modern
Approach, Cambridge University Press, Cambridge, UK, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


