147 research outputs found

    Nonlinear optical thresholding in a 4-Channel OCDMA system via two-photon absorption

    Get PDF
    We demonstrate the use of a Two-Photon Absorption based detector in an OCDMA system. This detector provides a significant performance improvement over standard linear detection

    Performance analysis of a 2-D time-wavelength OCDMA wavelength-aware receiver with beat noise

    Get PDF
    The effect of beat noise on two-dimensional time-wavelength optical code-division multiple-access systems utilising wavelength-aware receivers is examined. A derivation of a general formula for the bit error probability taking into consideration multiple access interference (MAI) and other noise sources is given. In addition, a comparison between the system performance of such a receiver and the traditional configuration is presented. Studies to date that have focused only on the MAI limited case showed that the wavelength-aware configuration yields a better performance when compared to the traditional receiver. When beat noise is considered, the numerical results reveal that the performance of wavelength-aware receiver is very sensitive to beat noise and is not superior over the traditional receiver

    In situ method for power re-equalization of wavelength pulses inside of OCDMA codes

    Get PDF
    A simple in-situ method to equalize power among individual wavelengths pulses representing two-dimensional wavelength-hopping time-spreading OCDMA code originally generated by a fibre Bragg grating-based OCDMA encoder is presented. Experimental data obtained in a field-based multiuser OCDMA testbed shows that applying this method results in system performance enhancements which was demonstrated by observing improved bit error rate (BER) during the field trials

    Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application

    Get PDF
    With the explosive growth of bandwidth requirement in optical fiber communication networks, optical code division multiple access (OCDMA) has witnessed tremendous achievements as one of the promising technologies for optical access networks over the past decades. In an OCDMA system, optical code processing is one of the key techniques. Rapid optical code reconfiguration can improve flexibility and security of the OCDMA system. This thesis focuses on advanced optical modulations and en/decoding techniques for applications in fast reconfigurable OCDMA systems and secure optical communications. A novel time domain spectral phase encoding (SPE) scheme which can rapidly reconfigure the optical code and is compatible with conventional spectral domain phase en/decoding by using a pair of dispersive devices and a high speed phase modulator is proposed. Based on this scheme, a novel advanced modulation technique that can simultaneously generate both the optical code and the differential-phase-shift-keying (DPSK) data using a single phase modulator is experimentally demonstrated. A symmetric time domain spectral phase encoding and decoding (SPE/SPD) scheme using a similar setup for both the transmitter and receiver is further proposed, based on which a bit-by-bit optical code scrambling and DPSK data modulation technique for secure optical communications has been successfully demonstrated. By combining optical encoding and optical steganography, a novel approach for secure transmission of time domain spectral phase encoded on-off-keying (OOK)/DPSK-OCDMA signal over public wavelength-division multiplexing (WDM) network has also been proposed and demonstrated. To enable high speed operation of the time domain SPE/SPD scheme and enhance the system security, a rapid programmable, code-length variable bit-by-bit optical code shifting technique is proposed. Based on this technique, security improvements for OOK/DPSK OCDMA systems at data rates of 10Gb/s and 40Gb/s using reconfigurable optical codes of up to 1024-chip have been achieved. Finally, a novel tunable two-dimensional coherent optical en/decoder which can simultaneously perform wavelength hopping and spectral phase encoding based on coupled micro-ring resonator is proposed and theoretically investigated. The techniques included in this thesis could be potentially used for future fast reconfigurable and secure optical code based communication systems

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Optical code-division multiple access system and optical signal processing

    Get PDF
    This thesis presents our recent researches on the development of coding devices, the investigation of security and the design of systems in the optical cod-division multiple access (OCDMA) systems. Besides, the techniques of nonlinear signal processing used in the OCDMA systems fire our imagination, thus some researches on all-optical signal processing are carried out and also summarized in this thesis. Two fiber Bragg grating (FBG) based coding devices are proposed. The first coding device is a superstructured FBG (SSFBG) using ±π/2-phase shifts instead of conventional 0/π-phase shifts. The ±π/2-phase-shifted SSFBG en/decoders can not only conceal optical codes well in the encoded signals but also realize the reutilization of available codes by hybrid use with conventional 0/π-phase-shifted SSFBG en/decoders. The second FBG based coding device is synthesized by layer-peeling method, which can be used for simultaneous optical code recognition and chromatic dispersion compensation. Then, two eavesdropping schemes, one-bit delay interference detection and differential detection, are demonstrated to reveal the security vulnerability of differential phase-shift keying (DPSK) and code-shift keying (CSK) OCDMA systems. To address the security issue as well as increase the transmission capacity, an orthogonal modulation format based on DPSK and CSK is introduced into the OCDMA systems. A 2 bit/symbol 10 Gsymbol/s transmission system using the orthogonal modulation format is achieved. The security of the system can be partially guaranteed. Furthermore, a fully-asynchronous gigabit-symmetric OCDMA passive optical network (PON) is proposed, in which a self-clocked time gate is employed for signal regeneration. A remodulation scheme is used in the PON, which let downstream and upstream share the same optical carrier, allowing optical network units source-free. An error-free 4-user 10 Gbit/s/user duplex transmission over 50 km distance is reazlied. A versatile waveform generation scheme is then studied. A theoretical model is established and a waveform prediction algorithm is summarized. In the demonstration, various waveforms are generated including short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse. ii In addition, an all-optical simultaneous half-addition and half-subtraction scheme is achieved at an operating rate of 10 GHz by using only two semiconductor optical amplifiers (SOA) without any assist light. Lastly, two modulation format conversion schemes are demonstrated. The first conversion is from NRZ-OOK to PSK-Manchester coding format using a SOA based Mach-Zehnder interferometer. The second conversion is from RZ-DQPSK to RZ-OOK by employing a supercontinuum based optical thresholder

    Coherent pulse detection and multi-channel coherent detection based on a single balanced homodyne receiver

    Get PDF
    The performance of coherent pulse detection (CPD) and multichannel coherent detection (MCCD) based on a single dual-balanced homodyne receiver was experimentally demonstrated using a grating-coupled hybridly mode-locked semiconductor laser. Compared with direct detection, a high coherent gain of over 10 dB, as well as an SNR improvement of over 5 dB, was obtained in both detection schemes. Our experimental results have confirmed that the coherent detection processes in CPD and MCCD are nearly the same based on a square-root LO power dependence. Nevertheless, the MCCD scheme has shown an advantage in a path-length error over the CPD scheme, revealing 2 similar to 3 dB improvement in sensitivities

    How photonic networking can help data centres

    Get PDF
    In light of rapidly increasing demand for ultra-high speed data transmission, data centres are under pressure to provide ever increasing data transmission through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present electronic switching technology using current data centre architecture is becoming increasingly difficult to scale despite improved data management. In this paper electronic scalability issues will be discussed and alternative optical solutions will be reviewed including a novel and highly scalable optical interconnect

    Study of a hybrid OCDMA-WDM segmented ring for metropolitan area networks

    Get PDF
    Proceeding of: 12th International Conference on High Performance Switching and Routing, Cartagena, Spain, July 4-6, 2011Optical Code Division Multiple Access (OCDMA) techniques have shown outstanding capabilities in the sharing of optical media, in particular in access networks. However, OCDMA systems may suffer from Multiple Access Interference (MAI) and other kinds of noise when many users access the shared media simultaneously, increasing the BER (Binary Error Rate) to unacceptable levels, that is, a situation at which all combined signals interfere and are lost. This work proposes a mixed OCDMA and Tunable Transmitter- Fixed Receiver (TT-FR) WDM and ring architecture at which the ring is split into small-size segments to limit the probability of MAI. Essentially, every segment in the ring has got two hub nodes (on the segment’s head and tail) which forwards inter-segment traffic to other hub nodes on dedicated home wavelengths, thus making use of WDM. The access media inside the segment is shared between the nodes by means of OCDMA, and code reuse is possible on different segments. Our performance analysis shows how to split a given ring into segments in order to minimise the BER due to multiple users accessing the network and allow for high bit-rates for a given traffic load. In addition, we analyse the possibility of introducing Forward Error Correction (FEC) at a moderate overhead cost to improve performance.The work described in this paper was carried out with the support of the BONE project (“Building the Future Optical Network in Europe”), a Network of Excellence funded by the European Commission through the 7th ICT-Framework Programme. Additionally, the authors would like to thank the support of the T2C2 Spanish project (under code TIN2008-06739-C04-01) and the Greencom UC3M-CAM project under code (CCG10-UC3M/TIC-5624).Publicad
    corecore