103 research outputs found

    Improving the performance of Virtualized Network Services based on NFV and SDN

    Get PDF
    Network Functions Virtualisation (NFV) proposes to move all the traditional network appliances, which require dedicated physical machine, onto virtualised environment (e.g,. Virtual Machine). In this way, many of the current physical devices present in the infrastructure are replaced with standard high volume servers, which could be located in Datacenters, at the edge of the network and in the end user premises. This enables a reduction of the required physical resources thanks to the use of virtualization technologies, already used in cloud computing, and allows services to be more dynamic and scalable. However, differently from traditional cloud applications which are rather demanding in terms of CPU power, network applications are mostly I/O bound, hence the virtualization technologies in use (either standard VM-based or lightweight ones) need to be improved to maximize the network performance. A series of Virtual Network Functions (VNFs) can be connected to each other thanks to Software-Defined Networks (SDN) technologies (e.g., OpenFlow) to create a Network Function Forwarding Graph (NF-FG) that processes the network traffic in the configured order of the graph. Using NF-FGs it is possible to create arbitrary chains of services, and transparently configure different virtualized network services, which can be dynamically instantiated and rearranges depending on the requested service and its requirements. However, the above virtualized technologies are rather demanding in terms of hardware resources (mainly CPU and memory), which may have a non-negligible impact on the cost of providing the services according to this paradigm. This thesis will investigate this problem, proposing a set of solutions that enable the novel NFV paradigm to be efficiently used, hence being able to guarantee both flexibility and efficiency in future network services

    COMPOSER: A compact open-source service platform

    Get PDF
    Compute and network virtualization enable to deliver network services with unprecedented agility and flexibility based on (a) the programmatic placement of service functions across the available infrastructure and (b) the real-time setup of the corresponding network paths. This paper presents and validates COMPOSER, a compact, flexible and high-performance service platform for the deployment of network services. COMPOSER supports multiple virtualization engines (e.g., virtual machines, containers, native network functions) and it can use seamlessly the above different execution environments to instantiate network services belonging to different chains, hence facilitating domain-oriented orchestration and enabling the joint optimization of compute and network resources. We demonstrate that COMPOSER can run on resource-constrained hardware, such as residential gateways, as well as on high-performance servers. Finally, COMPOSER integrates optimized data plane components that enable our platform to reach top-class results with respect to data plane performance as well

    Distributed services across the network from edge to core

    Get PDF
    The current internet architecture is evolving from a simple carrier of bits to a platform able to provide multiple complex services running across the entire Network Service Provider (NSP) infrastructure. This calls for increased flexibility in resource management and allocation to provide dedicated, on-demand network services, leveraging a distributed infrastructure consisting of heterogeneous devices. More specifically, NSPs rely on a plethora of low-cost Customer Premise Equipment (CPE), as well as more powerful appliances at the edge of the network and in dedicated data-centers. Currently a great research effort is spent to provide this flexibility through Fog computing, Network Functions Virtualization (NFV), and data plane programmability. Fog computing or Edge computing extends the compute and storage capabilities to the edge of the network, closer to the rapidly growing number of connected devices and applications that consume cloud services and generate massive amounts of data. A complementary technology is NFV, a network architecture concept targeting the execution of software Network Functions (NFs) in isolated Virtual Machines (VMs), potentially sharing a pool of general-purpose hosts, rather than running on dedicated hardware (i.e., appliances). Such a solution enables virtual network appliances (i.e., VMs executing network functions) to be provisioned, allocated a different amount of resources, and possibly moved across data centers in little time, which is key in ensuring that the network can keep up with the flexibility in the provisioning and deployment of virtual hosts in today’s virtualized data centers. Moreover, recent advances in networking hardware have introduced new programmable network devices that can efficiently execute complex operations at line rate. As a result, NFs can be (partially or entirely) folded into the network, speeding up the execution of distributed services. The work described in this Ph.D. thesis aims at showing how various network services can be deployed throughout the NSP infrastructure, accommodating to the different hardware capabilities of various appliances, by applying and extending the above-mentioned solutions. First, we consider a data center environment and the deployment of (virtualized) NFs. In this scenario, we introduce a novel methodology for the modelization of different NFs aimed at estimating their performance on different execution platforms. Moreover, we propose to extend the traditional NFV deployment outside of the data center to leverage the entire NSP infrastructure. This can be achieved by integrating native NFs, commonly available in low-cost CPEs, with an existing NFV framework. This facilitates the provision of services that require NFs close to the end user (e.g., IPsec terminator). On the other hand, resource-hungry virtualized NFs are run in the NSP data center, where they can take advantage of the superior computing and storage capabilities. As an application, we also present a novel technique to deploy a distributed service, specifically a web filter, to leverage both the low latency of a CPE and the computational power of a data center. We then show that also the core network, today dedicated solely to packet routing, can be exploited to provide useful services. In particular, we propose a novel method to provide distributed network services in core network devices by means of task distribution and a seamless coordination among the peers involved. The aim is to transform existing network nodes (e.g., routers, switches, access points) into a highly distributed data acquisition and processing platform, which will significantly reduce the storage requirements at the Network Operations Center and the packet duplication overhead. Finally, we propose to use new programmable network devices in data center networks to provide much needed services to distributed applications. By offloading part of the computation directly to the networking hardware, we show that it is possible to reduce both the network traffic and the overall job completion time

    Towards 5G Software-Defined Ecosystems: Technical Challenges, Business Sustainability and Policy Issues

    Get PDF
    Techno-economic drivers are creating the conditions for a radical change of paradigm in the design and operation of future telecommunications infrastructures. In fact, SDN, NFV, Cloud and Edge-Fog Computing are converging together into a single systemic transformation termed “Softwarization” that will find concrete exploitations in 5G systems. The IEEE SDN Initiative1 has elaborated a vision, an evolutionary path and some techno-economic scenarios of this transformation: specifically, the major technical challenges, business sustainability and policy issues have been investigated. This white paper presents: 1) an overview on the main techno-economic drivers steering the “Softwarization” of telecommunications; 2) an introduction to the Open Mobile Edge Cloud vision (covered in a companion white paper); 3) the main technical challenges in terms of operations, security and policy; 4) an analysis of the potential role of open source software; 5) some use case proposals for proof-of-concepts; and 6) a short description of the main socio-economic impacts being produced by “Softwarization”. Along these directions, IEEE SDN is also developing of an open catalogue of software platforms, toolkits, and functionalities aiming at a step-by-step development and aggregation of test-beds/field-trials on SDNNFV- 5G

    Experimental design for a next generation residential gateway

    Get PDF
    Puolella eurooppalaisista kotitalouksista on laajakaistaliittymä. Yleensä käyttäjä kytkeytyy ulkoiseen verkkoon kotireitittimen avulla (residential gateway). Internet-yhteyden ja IP-perustaisten palveluiden kuten VoIP- ja IPTV-palveluiden lisäksi kotireititin muodostaa kotiverkon ytimen kodin verkkolaitteiden liittyessä siihen. Kotiverkkojen lukumäärän ja koon kasvun seurauksena kotiverkoissa voidaan tunnistaa kolme ongelmaa. Ensinnäkin kotiverkkojen hallinta on haastavaa kotiverkossa tuettavien verkkotekniikoiden ja laitteiden määrän kasvaessa. Toiseksi sisällönhallinta. on monimutkaistunut käyttäjien luodessa ja kuluttaessa yhä enemmän sisältöä. Kolmanneksi uudet verkkoperustaiset tekniikat kuten sähköisen terveydenhuollon ratkaisut (e-health) integroituvat usein heikosti olemassa olevien kotiverkkolaitteiden kanssa. Tässä diplomityössä edellä mainittuihin ongelmiin pyritään löytämään yhtenäinen ratkaisu kotireititintä apuna käyttäen. Työssä analysoidaan uudentyyppisen kotireitittimen vaatimuksia käyttämällä hyväksi joukkoa käyttötapauksia. Vaativuusanalyysin perusteella luodaan malli, joka sisältää seuraavat pääkomponentit. (i) Virtuaalisointitekniikkaan pohjautuva kotireititinarkkitehtuuri. (ii) Kotireititinperustainen mekanismi yhteisöverkostoiden pystyttämiseen kotiverkkojen välillä. (iii) Hajautettu tiedostojärjestelmä yhteisöverkkojen pystyttämiseksi ja parannetun sisällönhallinnan ja sisällön jakamisen mahdollistamiseksi. (iv) Mekanismeja joiden avulla vierailevat käyttäjät voivat hyödyntää muiden käyttäjien kotireitittimien resursseja. Työssä. toteutetaan em. ydintoimintoja laaditun mallin perusteella ja toteutuksen toimivuus verifioidaan käyttötapauksiin perustuvalla testauksellaToday over half of the European homes have a broadband Internet connection. Typically, this connection is enabled through a residential gateway device at the users' premises. In addition to facilitating triple play services, this gateway also forms the core of users' home networks by connecting their network-enabled devices. While the number and the size of such home networks keep on increasing, three major problems can be identified in current systems. First, home network management is getting increasingly complex, and a growing number of networking technologies and connected devices must be supported and managed. Second, content management has become difficult. Users are generating an increasing amount of content and this content is stored (and sometimes shared) in an almost anarchical manner across different home network devices as well as online. Third, new network-enabled services, such as e-health systems, are emerging, but are typically poorly integrated into existing home networks. There is a clear need for home networking solutions that address these problems. In this thesis, we adopt a gateway-centric approach to address these problems in a unified manner. We concretise the requirements for a next generation residential gateway by analysing a set of future home networking use cases. These requirements serve as input to our gateway system design. In summary, our design includes the following main components. (i) A residential gateway architecture based on virtualization. This enables new features and new ways to implement the other components of our design. (ii) A gateway-based mechanism to set up community networks between different home networks. (iii) A distributed file system to establish community networks and to enable improved content management and sharing. (iv) Mechanisms for visiting gateway users to utilize other users' gateway resources. We implement these core functionalities and develop a proof-of concept prototype. We successfully validate our prototype through use case driven testbed experiments. Finally, we believe that the insights gained from this study and the prototype implementations are important overall contributions that can be used in the future research to further explore the limitations and opportunities of this gateway-centric approach

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operación y la gestión de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desafíos críticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilización de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes móviles (MNO). Esto requiere técnicas avanzadas de gestión de redes que deben desarrollarse en función de las características especiales de estas redes y las demandas de tráfico. Por lo tanto, es necesario proporcionar soluciones que permitan la creación de particiones de red aisladas lógicamente sobre la infraestructura de red física compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualización de la RAN destinadas a abordar estos desafíos. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red física, en un escenario LTE-A de múltiples niveles que es propiedad de un solo MNO. Proponemos una solución de virtualización a nivel de estación base (BS), donde los módulos de banda base de BSs distribuidas, interconectadas a través de la interfaz lógica X2, cooperan para reasignar los recursos radio en función de las necesidades de tráfico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparación con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales móviles (MVNO), al integrar el capacity broker en la arquitectura de administración de red 3GPP con un conjunto míinimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en inglés on-demand) a varios MVNOs. Además, para aprovechar al máximo las capacidades del capacity broker, proponemos un algoritmo para la asignación de recursos bajo demanda, considerando dos tipos de tráfico con distintas características. Nuestra propuesta alcanza 50% más de solicitudes admitidas sin violación del Acuerdo de Nivel de Servicio (SLA) en comparación con otros esquemas. En la tercera parte de la tesis, estudiamos una solución para el slicing de red independiente del tipo de BS, considerando la virtualización de BS en un escenario de múltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tráfico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra solución logra una ganancia promedio de uso de espectro de 67% y una reducción de la carga de procesamiento de la banda base de 16.6% en comparación con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desafíos y retos de investigación para trabajos futuros.Postprint (published version
    corecore