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Abstract

Compute and network virtualization enable to deliver network services with unprecedented agility
and flexibility based on a) the programmatic placement of service functions across the available
infrastructure and b) the real-time setup of the corresponding network paths. This paper presents
and validates COMPOSER, a compact, flexible and high-performance service platform for the
deployment of network services. COMPOSER supports multiple virtualization engines (e.g., vir-
tual machines, containers, native network functions) and it can use seamlessly the above different
execution environments to instantiate network services belonging to different chains, hence facili-
tating domain-oriented orchestration and enabling the joint optimization of compute and network
resources. We demonstrate that COMPOSER can run on resource-constrained hardware, such as
residential gateways, as well as on high-performance servers. Finally, COMPOSER integrates op-
timized data plane components that enable our platform to reach top-class results with respect to
data plane performance as well.

Keywords: Service orchestration, Service virtualization, Compute node, High performance,
Resource-constrained device, NFV, SDN, Service chain

1. Introduction

Compute and network virtualization enable the instantiation of Service Functions (SF) across the
(possibly heterogeneous) resources available in the infrastructure of a network operator, ranging
from Customer Premises Equipment (CPE), which are typically based on low-cost hardware, to
high-end servers in the operator data centers.5

In order to enable efficient service deployment and delivery on such resources, we designed
COMPOSER (COMPact Open-source SERvice platform), that offers a high-level abstraction for
composing service functions in arbitrary service graphs used to deliver virtualized services. We
design and implement COMPOSER so that it is well-suited to run virtualized services on high-
volume servers, as one would expect based on the current research and industry efforts. In addition,10

we demonstrate that COMPOSER brings the power and advantages of IT virtualization on resource-
constrained hardware such as home/SOHO CPEs, also known as residential gateways, thus enabling
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telecom operators to use the same service deployment model across the entire (heterogeneous)
infrastructure available from the end-user sites through the fronthaul/backhaul/core network till
to the remote datacenters.15

COMPOSER, whose source code is available at [1], can be executed on different hardware
platforms, ranging from high-volume servers equipped with Intel x86 CPUs and several GBs of
memory and disk, to embedded devices equipped with ARM or MIPS processors, limited hardware
resources, and possibly a custom version of the Linux operating system. COMPOSER exploits
locally available information to optimize service deployment. For instance, COMPOSER evaluates20

local resources/constraints to select the best implementation of a required service and binds SF(s)
to the most appropriate CPU core. Finally, COMPOSER is able to execute SF(s) running in
different execution environments, according to the different operating contexts. For instance, a
resource-constrained CPE can execute SF(s) on bare metal, while full-fledged virtual machines are
more appropriate for “fat” servers.25

Figure 1 is a high-level view of the overall operation. First, COMPOSER receives a service graph
from an overarching (hierarchy of) orchestrator(s) and subsequently takes care of all operations
required to make the service fully functional on edge and mid-path resources, e.g., residential
gateways and server(s) at customer premises or at the Points of Presence (POPs) of the operator,
while data center servers are typically managed by cloud computing software platforms such as30

OpenStack.
Note that this paper focuses on COMPOSER and does not delve into the details of the over-

arching orchestrator, which is orthogonal and complementary to this work. Interested readers can
refer to earlier literature on FROG [2] and ESCAPE [3], which have been demonstrated to work
seamlessly with COMPOSER at different venues, including IETF 96.35

The remainder of the paper is structured as follows. Section 2 briefly recaps the terminology used
in this paper, while Section 3 analyzes related work and compares it with COMPOSER. Section 4
highlights the design objectives of our platform, Section 5 presents the overall software architecture
of COMPOSER, while Section 6 focuses on the data plane. Section 7 discusses how COMPOSER
can be used to implement pure SDN/OpenFlow services, as well as its relationship with the ETSI40

NFV architecture, showing how COMPOSER can also provide Network Functions Virtualization
(NFV) services according to the ETSI model. An extensive evaluation of the proposed platform is
then provided in Section 8, while Section 9 concludes the paper.

2. Terminology

This section recaps the concepts and terms used in the remainder of the paper.45

A service function (SF), or simply function, is a functional block or application that either
operates on (e.g., reads, manipulates) traffic in transit (in this case, it corresponds to a Virtual
Network Function (VNF) defined by ETSI [4]), or acts as the origin/final destination for some
types of traffic. Without loss of generality, and essentially for illustration purposes, we will often
refer to “firewall” and “NAT” as examples of the first class of functions. The second class includes,50

for example, applications related to the “traditional” cloud computing world, such as a private
storage service.

A service graph is a set of functions suitably interconnected to implement a specific service,
such as, for example a comprehensive security solution. As illustrated in Figure 2, links between
functions can be potentially marked with the traffic that has to cross such connections, thus enabling55

the differentiation of various types of traffic. In addition, according to the recursive functional
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blocks concept advanced by ETSI [5], each function may, in turn, be defined as a service graph.
As an example, SF security in Figure 2 is in fact a service graph comprising a firewall and an
advertisement blocker (adv-blocker).

An infrastructure node (or simply node) is a physical machine that can execute SFs in one60

or more execution environments and can implement the network paths among them as described
in the service graph. As stated in the introduction, we target a deployment environment that is
heterogeneous in terms of node capabilities, ranging from high-volume standard servers to resource-
constrained devices.

A capability is an information that indicates what an entity “can do” and how it can be65

exploited. For example, an overarching orchestrator can use capabilities to select the best node
on which (part of) the service graph has to be instantiated. We distinguish between two types of
capabilities: functional and infrastructure. The former indicates the SFs that can be executed in
a given infrastructure node, which must be able to launch them by simply receiving the name of
the function that has to be started. Examples of functional capabilities include firewall and NAT,70

possibly with some specific attributes such as 3 ports, Gigabit Ethernet NICs, support for IPv4 or
IPv6, and so on. A functional capability does not specify how a function is implemented. That
means that COMPOSER can implement a service graph using any arbitrary combination of virtual
machines (VMs), containers, or processes running natively on the node and taking advantage of
any available hardware acceleration facilities (e.g., for traffic encryption/decryption). The selection75

of the most suitable implementation for the task at hand is left to the infrastructure node. An
infrastructure capability is instead a low-level characteristic of the infrastructure node, such as its
CPU architecture, the possibility to execute KVM-based VMs or Docker containers, and so on.

A resource is an information that relates to what an infrastructure node “can offer”. For
example, resource represents the available amount of a hardware component of the infrastructure80

node, such as memory (e.g., 4 GB), CPU (e.g., CPU load: 66% ), possible hardware accelerators,
and more. This information can be exploited by the overarching orchestrator while selecting the
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best infrastructure node for SF deployment.

3. Related work

The scientific literature includes several software-based architectures of network nodes that,85

similarly to COMPOSER, can execute service functions exploiting the advantages of compute and
network virtualization.

NetVM [6] is a platform designed to efficiently transfer packets between SFs running inside
virtual machines, which mainly focuses on the data plane and marginally considers control and
orchestration aspects. NetVM defines its own virtual switch based on the DPDK framework, which90

can transfer packets with zero-copy between trusted VMs, while a copy is required to transfer
packets between untrusted VMs. Moreover, existing network applications are not supported by
NetVM as they must use a library that hides the communication with the NetVM framework. The
NetVM architecture includes a NetVM manager that can talk with an overarching orchestrator by
means of a message based protocol similar to OpenFlow, although no more information is provided95

in [6].
OpenNetVM [7, 8] and SDNFV [9] are platforms built on top of NetVM, which execute ad-

hoc DPDK-based SFs within Docker containers and provide a high-level abstraction to compose
SFs in service chains, control packet flows, and manage SF resources. Particularly, the SFs that
have to process a packet can be selected both by an SDN controller (not part of the OpenNetVM100

framework) and by SFs, which can program the vSwitch forwarding table without the necessity
to interact with said controller. Notably, SDNFV [9] also focuses on creating paths among SFs
deployed on multiple hosts.

ClickOS [10] proposes a platform for high-performance NFV services. Particularly, it uses
the VALE vSwitch [11] to provide packets to ClickOS virtual machines, i.e., Xen-based [12] VMs105

executing a Click [13] program running on top of a minimal operating system. Unlike COMPOSER,
which supports many execution environments and focuses on control and orchestration aspects
(although it integrates many technologies oriented to optimize data path as well), ClickOS only
focuses on performance of the data plane as it solves bottlenecks in the network I/O of the Xen
hypervisor, and runs applications explicitly designed for the ClickOS environment.110

nf.io [14] is a platform that employs the Linux file system as an interface to express NFV
management and orchestration operations and acts as an API towards the NFVO. Particularly,
nf.io defines the semantics of files and directory structures to perform operations such as VNF
deployment, configuration, chaining and monitoring. Similarly to COMPOSER, nf.io can execute
VNFs as processes on physical machines, VMs, Docker and LXC containers. Forwarding rules can115

be configured both with the iptables Linux facility or with OpenFlow for traffic paths implemented
using OvS.

GNFC [15] and GLANF [16, 17] are frameworks to deploy VNFs. In addition to a manager that
allocates VNFs to servers, and a network controller that configures traffic steering rules both in
the server itself and among different servers, these frameworks define a per-server agent responsible120

of managing (e.g., start, stop, connect them to OvS) VNFs. However, this agent simply manages
Docker containers and creates ports on OvS, while COMPOSER includes an orchestrator on each
server which can further optimize service deployment.

OpenStack [18] is a widespread cloud platform used for orchestrating all the resources available in
the data center, namely compute, network and storage. Then, unlike COMPOSER, which manages125

the resources of a single node, OpenStack is able to deploy SFs across multiple compute nodes.
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Being oriented to large-scale infrastructures, OpenStack presents several limitations when focusing
on a single node, even more when resource-constrained devices are involved. Furthermore, it does
not take properly into account some peculiar aspects of some service functions, such as the I/O
bound ones. For instance, it does not have the concept of network service, which means that each130

SF is just seen as a VM (or container) to be executed independently from the others on one of
the servers forming an OpenStack cluster. Hence, VMs are allocated to server/CPU cores without
taking into consideration connections between SFs in the service to be deployed, which may result in
poor performance for the whole service, particularly when I/O bound SFs are involved. An attempt
to introduce the concept of service in OpenStack is described in [19], which also highlights how the135

so-called network-aware scheduling is hard to be implemented in such an environment. Moreover,
as shown later in Section 8.1, OpenStack is not suitable for resource-constrained environments such
as CPEs. Instead, OpenStack can be used to implement a virtual CPE such as in [20], in which the
traditional CPE functions are implemented as VNFs running in an OpenStack-based data center.

As detailed later in Section 7.2, COMPOSER can provide NFV services according to the ar-140

chitecture proposed by the European Telecommunications Standards Institute (ETSI) [21], as it
includes orchestration and Virtual Infrastructure Manager (VIM) functionalities defined by such a
proposal. Based on the ETSI architecture, both industry and academia introduced several proto-
types and proofs of concept (PoCs) to deploy network services and functions. However, most of said
earlier works define the architecture of the orchestrator (NFVO in the ETSI terminology [4]) that145

sits on top of many infrastructure nodes and deploys network services through OpenStack (which
then acts as a VIM). An example of such proposals is OpenStack Tacker [22], which implements
the NFVO and a generic Virtual Network Functions Manager (VNFM), and uses the Topology and
Orchestration Specification for Cloud Applications (TOSCA) [23] as a formalism to describe the
various aspects of the service to be deployed, which is an implementation of the ETSI descriptors.150

Open Baton [24] defines a NFVO and a generic VNFM and can be installed on top of existing cloud
infrastructures like OpenStack. Open Source MANO (OSM) [25], whose fourth version has been
released in October 2017, provides an open source Management and Orchestration (MANO) frame-
work aligned with ETSI NFV Information Models. Among the other features, it is compatible with
several VIMs (i.e., OpenStack, OpenVIM, Vmware and Amazon Web Services) and SDN controllers155

(OpenDaylight, ONOS, Floodlight), and supports the integration of new ones thanks to its plugin
model. All these proposals are orthogonal to our work on COMPOSER, as they mainly operate on
top of the infrastructure nodes and can be extended to interact with COMPOSER instead of the
other supported environments.

Similar considerations are valid for Cloud4NFV [26, 27], a platform for managing network ser-160

vices in a cloud environment; it exploits both a data center controller (OpenStack) to deploy VNFs
and a WAN controller (OpenDaylight) to interconnect parts of the service deployed in different
data centers. OpenStack and OpenDaylight are used also by vConductor [28], while SONATA [29]
can support different infrastructures by means of adapters; moreover, SONATA supports recursion
at the orchestrator layer. Recursion was considered also in the UNIFY project [30], where two165

orchestrators [31], [2] that can sit on top of different infrastructures have been defined, and in the
5GEx project [32], which considers orchestration of network services across multiple administrative
domains.

Table 1 summarizes the above-mentioned literature and compares it against the COMPOSER
design objectives (detailed later in Section 4). Note that platforms based on OpenStack are not170

included in the table, as they inherit the characteristics summarized in the corresponding OpenStack
row of the table. Moreover, it is worth to point out that, according to the table, the uniqueness of
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Table 1: COMPOSER vs. service platforms and frameworks.

Domain-oriented
Orchestration

Multiple
vSwitch Support

Execution
Engine Support

Joint
optimization
net/compute

Performance CPE Support

COMPOSER YES
OvS (+DPDK)
xDPd
ERFS

KVM, Docker,
NSFs,
DPDK proc.

Possible
YES: DPDK, SF
direct connection,
ERFS

YES:
small footprint,
NSFs

OpenStack NO Possible YES
Hard to
implement [19]

Possible
NO: each
machine is
a Nova node

NetVM
Info not
available

NO: ad-hoc
DPDK-based
switch

NO: ad-hoc
DPDK process
in VM

Info not
available

YES:
DPDK-based
zero-copy

NO: VMs
require significant
resources

OpenNetVM
NO: info
not exported

NO: based
on NetVM

NO: ad-hoc
DPDK process
in Docker)

Info not
available

YES:
DPDK-based

Info not
available

ClickOS
Orchestration
out of scope

NO: based
on VALE

NO: Xen-based
VMs running
Click)

NO:
no concept
of network
service

YES: efficient
data transfer
mechanism
between Xen
and the guest

Info not
available

nf.io
Info not
available

OvS,
iptables

VM, Docker,
LXC, processes

Info not
available

Info not
available

Info not
available

GNFC
GLANF

Info not
available

Possible: currently
OvS with veth ports

Docker,
Linux containers

NO
Info not
available

YES:
small footprint,
container-based

COMPOSER is not in the support of each single feature, but in the fact that, at the best of our
knowledge, it is the only platform that supports all those features at the same time.

In addition to services including VNFs and cloud oriented applications, COMPOSER supports175

SDN services. For instance, it can be used to provide pure OpenFlow services as detailed later in
Section 7.1, as well as it can be used as a platform to run the home gateway proposed in [33], which
controls the wireless devices available in an home network.

COMPOSER is well suited for resource constrained environments such as CPEs; among the
other projects focusing on deploying network applications on CPEs we can cite the tethered Linux180

CPE [34], which has the limitation of being able to only run SFs implemented as eBPF programs
loaded into the Linux kernel.

Before concluding this section, we analyze projects that are orthogonal to COMPOSER, as
they do not cover all aspects of our proposal, have different targets and design goals, and they may
interact with/be exploited by COMPOSER for some tasks.185

Docker Datacenter [35] is a framework oriented to the deployment, management and monitor-
ing of applications packaged as one or more Docker containers. One of its main components is
the Docker Universal Control Plane (UCP) [36], which supports both private infrastructure and
public clouds such as Amazon Web Services and Microsoft Azure. It exploits Docker Swarm as a
container scheduler and infrastructure clustering, and Docker Compose to create multi-container190

applications (that can be deployed on multiple nodes). Unlike COMPOSER, these projects are
explicitly designed for Dockerized applications; moreover, they do not focus on the architectures
of the nodes running the containers. Similar considerations are valid for Kubernetes (K8s) [37] as
well, a framework for automating the deployment and management of containerized applications,
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which orchestrates computing, networking, and storage infrastructure.195

Finally, the architecture presented in this paper seamlessly integrates together some technologies
that were already presented in our previous works (the NSF concept [38], the SF-to-SF optimiza-
tion [39], the ERFS [40] and the Elastic Router service [41]), and makes the prototype usable in
the real world.

4. Design objectives200

This section summarizes the COMPOSER design objectives.

4.1. Domain-oriented Orchestration

COMPOSER can interact with overarching orchestrators operating according to two different
models: domain-oriented orchestration, based on functional capabilities, and what we will refer to
as “legacy” orchestration, akin to what is currently used in the cloud computing/data center world205

based on checking for infrastructure capabilities and available resources. More specifically, the
former model abstracts each infrastructure node, that can be considered as a “domain”, with a set
of functional capabilities, thus hiding from the overarching orchestrator the internal details of each
domain, such as the amount of available resources or the way in which a SF is actually implemented.
This enables the upper orchestration layers to request a SF such as firewall instead of prescribing210

a “specific VM” (that, for instance, implements a firewall).
With this model, COMPOSER can (i) support different implementations of the same SF and

use them transparently from the upper orchestration layer; and (ii) flexibly select the best imple-
mentation for a given request and specific SF, according to the current state of COMPOSER per
se, i.e., number of CPU cores currently available or availability of a SF compatible with a hard-215

ware accelerator. Consequently, COMPOSER exposes functional capabilities, while infrastructure
capabilities, such as the possibility to execute KVM-based VMs, and resources, such as the amount
of CPU/RAM available on the node, are exported only when necessary to maintain compatibility
with legacy orchestrators.

4.2. Network Abstraction220

The COMPOSER control plane can interact with different virtual switches (vSwitches) in order
to implement paths between functions, each of which may be more appropriate for a specific deploy-
ment (e.g., CPE vs. high-volume server). For instance, a vSwitch optimized to exploit hardware
acceleration available on the specific node is well suited when such hardware component(s) exist,
while another vSwich, tailored to exploit multiple CPU cores available in high-end processors, may225

be the best choice when COMPOSER is deployed on a high-volume standard server.

4.3. Compute Abstraction

The COMPOSER control plane is able to interact with different execution engines and therefore
to execute SFs in different ways, depending for example on the availability of some hardware accel-
erator or specific software libraries on the infrastructure node, and the amount of available resources230

(e.g., CPU, memory). In fact, different execution engines may have different requirements in terms
of hardware resources needed to run their SFs (e.g., VMs use more memory than containers), and
hence are well suited for particular COMPOSER deployments.
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4.4. Joint Network and Compute Service Graph Optimization

The service to be implemented by COMPOSER is specified according to the Service Functions-235

Forwarding Graph (SF-FG) formalism detailed in Section 5.1.1, which describes both the compute
and networking aspects of the service, i.e., the required functions and the interconnections between
them. This way, each COMPOSER node has the complete view of the entire service, and can thus
optimize, for example, the binding between SFs and CPU cores by considering the way SFs are
interconnected with each other in the service graph.240

4.5. High-performance Data Plane

When traffic steering is implemented through Open vSwitch (OvS) and SFs are DPDK [42]
processes executed in VMs, COMPOSER is able to optimize packet transfer between SFs by by-
passing the vSwitch when the service specifies point-to-point connections among them. In addition,
COMPOSER can control the Ericsson Research Flow Switch [40], which implements a high-speed245

OpenFlow pipeline compliant with OpenFlow 1.3.

4.6. Small Footprint

This enables to deploy services (or part of them) also on resource-limited hardware already
available at the edge of the network, e.g., on residential gateways, that cannot be controlled by
existing orchestration platforms such as OpenStack.250

4.7. Support for Native Service Functions

Existing virtualization engines are quite demanding in terms of resources required to run SFs
(e.g., memory, CPU, image size), therefore they may not be appropriate for resource-constrained
nodes. However, such devices usually run a Linux-based operating system that includes a number of
software modules (e.g., iptables) that can be used to implement SFs executed directly on the host,255

hence providing services with a reduced overhead compared to VMs and containers. Furthermore,
CPEs may include some hardware components (e.g., crypto accelerator, L2 switch) that can be
exploited to implement SFs as well.

Native Service Functions (NSF) represent a way to exploit these native (software and hard-
ware) modules, delivering efficient SFs implementations and reduced overhead. As a consequence,260

COMPOSER, due to its small footprint and seamless support for NSFs, enables the operator to
deploy the service graph on existing residential gateways, which are then integrated in the overall
virtualization telco infrastructure. This is a design feature that in a real-world deployment enables
an overarching orchestrator to optimize SF placement and scheduling. As an illustrative example,
SFs required to be close(r) to the end users (e.g., secure tunnel termination, low-latency functions,265

etc.) can be instantiated directly on the CPE, while other functions of the same service (e.g.,
network address translation) can be executed in a data center.

5. COMPOSER architecture and control plane components

This Section presents the main components of the COMPOSER architecture, whose high-level
view is depicted in Figure 3.270

The COMPOSER orchestrator (c-orch in the remainder of the paper) is undoubtedly the main
component of the control plane; it receives commands through a northbound interface and takes
care of implementing them on the infrastructure node. c-orch provides network and compute
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abstraction, hence it orchestrates the above resources within COMPOSER by (i) handling the
complete lifecycle of the virtual execution environment(s) and (ii) configuring the proper network275

primitives (e.g., traffic steering rules). Moreover, c-orch facilitates domain-oriented orchestration
and enables joint optimization of compute and network resources based on the incoming service
graph requests.

c-orch relies on the SF repository to select the best SF implementation available that matches
the service request. The SF repository may also be deployed on another server and can be contacted280

by multiple nodes.
The data plane includes a vSwitch that controls the traffic paths between the SFs and a number

of compute engines that can execute SFs implemented with different technologies (e.g., virtual
machines, containers, or natively).

The remainder of this section details the modules of c-orch from both an architectural and285

a functional point of view, together with its northbound interface that is used to interact with
the upper orchestrators, and the traffic steering model used to properly implement network paths
between SFs. Data plane features of COMPOSER will instead be considered in Section 6.
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5.1. Northbound Interface

c-orch interacts with the overarching orchestrator(s) through a bidirectional northbound inter-290

face. Specifically, c-orch receives a service graph described according to the SF-FG formalism [2],
and exports information using an OpenConfig-derived [43] YANG model describing the COM-
POSER domain.

As shown in Figure 3, Create, Read, Update and Destroy (CRUD) commands related to the
SF-FG are received through a REST API, while the COMPOSER description is exported through295

DoubleDecker (DD) [44], a hierarchical messaging bus based on ØMQ [45] and that, among other
things, supports a publish/subscribe model. The rationale behind this choice is the following. The
overarching orchestrator knows exactly the COMPOSER entity (e.g., the IP address of c-orch)
on which (part of) the service has to be created/updated/deleted, and hence a REST interface
is appropriate for this function. On the other hand, thanks to the message bus, the c-orch does300

not need to know the consumer(s) of the description it exports, as there may be several entities
interested in such information. All COMPOSERs publish their description through DD using a
specific topic, enabling all entities interested in such information to subscribe to it. In this case, a
pertinent example is the above-mentioned orchestrator, which can use the COMPOSER descriptions
to select the node where the service should be deployed.305

As depicted in Figure 3, the REST server interacts with the security manager, a module that
manages authentication and checks the permissions of the entities that can send commands to c-
orch. For instance, only the network operator may be allowed to deploy SF-FGs, while end users
may have limited access to the current portion of the service graph that handles their own Internet
connection, and in read-only mode.310

5.1.1. Service Functions - Forwarding Graph

The Service Functions - Forwarding Graph (SF-FG) formalism [2] describes the service to be
instantiated with respect to compute (i.e., functions composing the service) and network (i.e.,
traffic steering rules) primitives. Furthermore, it may contain some annotations expressed using
the MEASURE language (described in [46]) that specify which parameters of the SF-FG should be315

monitored.
As shown in Figure 4, each SF-FG consists of three main parts. First, the SFs section lists

the functions that compose the service. Particularly, the SF-FG may require a function without
specifying any specific implementation (e.g., firewall in the figure). In this case the proper image
is selected by c-orch through the interaction with the SF repository. However, the SF-FG can also320

ask for a particular implementation of a function, by specifying a template that describes it in terms
of, e.g., image to be executed, number of CPU cores needed, technology to be used to implement
the virtual network interface cards (vNICs), and so on.

The saps section describes the Service Access Points (SAPs), namely the ingress/egress points
of traffic in the (part of the) service deployed on COMPOSER. In general, we have considered325

generic L1, L2 and L3 SAPs, although the current prototype implements only four specific SAPs,
namely interface, vlan, GRE and host stack, as typical representatives. In this case, while the
interface SAPs (Figure 4) correspond to physical or virtual interfaces of COMPOSER, a vlan SAP
only includes traffic belonging to a specific VLAN, although possibly associated with an interface.
This means that COMPOSER guarantees that only the traffic with a specific VLAN ID arrives330

from this SAP (e.g., VLAN ID 25 in Figure 5a), and that all traffic sent on such a SAP is tagged
(by COMPOSER) with the proper VLAN ID.
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{

"sffg":

{

"id": "0x1",

"name": "example graph",

"SFs": [

{

"id": "0x1",

"name": "firewall",

"ports": [

{

"id": "0xa",

"name": "internal port"

},

....

]

},

....

],

"saps": [

{

"id": "0x1",

"type": "interface",

"interface": {

"if-name": "eth1"

}

}

....

],

"flowrules": [

{

"id": "0x1",

"priority": 1,

"match":

{

"port_in": "service-access-point:0x1",

....

},

"actions":

{

"output_to_port": "sf:0x1:0xa",

....

}

},

....

]

}

}

Figure 4: Excerpt of Service Functions - Forwarding Graph (SF-FG).

{
” id ” : ”0x2 ” ,
” type ” : ” vlan ” ,
” vlan ” :
{

” vlan−id ” : ”25” ,
” i f−name ” : ” eth1 ”

}
}

(a)

{
” id ” : ”0x3 ” ,
” type ” : ” gre ” ,
” gre ” :
{

” l o c a l−ip ” : ” 1 0 . 0 . 0 . 1 ” ,
” remote−ip ” : ” 1 0 . 0 . 0 . 2 ” ,
” gre−key” : ”0x1”

}
}

(b)

Figure 5: Examples of SAPs in the SF-FG: (a) vlan SAP; (b) GRE SAP.
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GRE SAP
- Local IP: 1.1.1.1
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- Remote IP: 1.1.1.1
- Key: 0x1

Figure 6: Using GRE SAPs to set up traffic steering between subgraphs.

The GRE SAP (an example is shown in Figure 5b) represents the termination of a GRE tunnel.
COMPOSER guarantees that only the traffic encapsulated in a specific GRE tunnel enters from
this SAP, and that all traffic exiting from such a SAP will be encapsulated in such a GRE tunnel.335

Both vlan and GRE SAPs can be used to connect (i.e., steer the traffic between) parts of the
same service that are instantiated in different infrastructure nodes, or even in different domains.
Figure 6 provides an example in which the overarching orchestrator splits the original service graph
into two subgraphs; as shown, the firewall and the adv-blocker are then attached to GRE SAPs
representing a GRE tunnel between the IP addresses 1.1.1.1 and 2.2.2.2, and identified by the340

key 0x1. This way, traffic exiting from the firewall is encapsulated, by COMPOSER, into the
GRE tunnel and then delivered to the adv-blocker by the network infrastructure, and vice versa.
Consequently, SAPs enable SFs to operate irrespective of the nature of the network connection,
because the actual delivery of the traffic to the next SF in the chain is done transparently by the
infrastructure node, e.g., by encapsulating packets in a given VLAN or in a tunnel toward a remote345

destination.
The host stack SAP represents the connection point between the service graph and the TCP/IP

stack of the device where COMPOSER is executed. This allows any TCP/IP service executed in
the host (e.g., the COMPOSER REST server) to connect to the external world through a service
graph, resulting in the possibility to control their connections to the network (e.g., the COMPOSER350

REST server may be “protected” through a firewall instantiated in a service graph).
Finally, the flowrules section in Figure 4 describes the interconnections between SF ports and

SAPs. We opted to use semantics akin to OpenFlow whereby each connection is characterized by:
(i) a priority; (ii) a match on a SAP/SF port and potentially on protocol fields (e.g., IP source);
(iii) an action that forwards packets through a specific SAP/SF port and that potentially modifies355

the packet content (e.g., decrease the IPv4 TTL).
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5.1.2. Domain Description

The COMPOSER domain description published by c-orch via DD includes both network and
compute characteristics of the infrastructure node. From the network point of view, COMPOSER
is abstracted as a “big switch” with a set of endpoints, each one characterized with the following360

(optional) information: (i) neighbor domain, i.e., the identifier of another infrastructure node (e.g.,
COMPOSER) in case there is a direct connection with it; (ii) IP address; (iii) support for VLAN
traffic: in this case the endpoint indicates the available VLAN IDs; (iv) support for GRE tunnels.

From the compute point of view, COMPOSER exports functional and infrastructure-level ca-
pabilities, as well as available resources, as mentioned earlier.365

5.2. Traffic Steering Model

As shown in Figure 3, c-orch implements the network paths between SF ports and SAPs through
two LSI layers. The foundation LSI-0 is overlayed by a set of LSIs (graph-LSI), each one in charge of
implementing paths between SFs of a different graph. LSI-0 is created at boot time and dispatches
the traffic from the COMPOSER physical interfaces to the graph-LSIs, while additional LSIs (each370

one created when a new SF-FG has to be deployed) implement the traffic steering paths among the
SFs, host stack and GRE SAPs that belong to that graph. In fact, while physical interfaces are
connected to LSI-0, SF ports, host stack and GRE SAPs are connected to the associated graph-LSI.

Notably, as each graph-LSI is connected to SFs, host stack and GRE SAPs of a different SF-FG,
c-orch can implement multi-tenancy and isolate traffic of different tenants with LSI-0 being the375

only LSI traversed by packets belonging to multiple tenants/service graphs.
Moreover, the LSI hierarchy takes care of removing encapsulations used to implement the vlan

and the GRE SAPs, in case of traffic arriving from such SAPs. Similarly, SFs are not aware that
traffic they transmit will be sent, by the LSI hierarchy, through a vlan/GRE SAP; also in this case,
in fact, it is the LSI hierarchy that encapsulates packets in the proper headers, according to the380

flow rules described in the SF-FG.
In addition, none of the LSIs can be programmed by an external SDN controller, belonging, e.g.,

to the owner of the service graph. LSIs are in fact exploited by c-orch to implement the network
paths described in the SF-FG, and are under the complete control of c-orch (through the network
manager, as detailed below).385

Finally, LSIs provide to COMPOSER complete control on the SFs networking, hence it can
implement network connections as defined in the SF-FG. In contrast, note that the standard net-
working models offered, e.g., by KVM and Docker, do not provide such full control of networking
paths, since they usually attach VMs/containers always to a L2 bridge.

5.3. Node Resource Manager390

The node resource manager is the main module of c-orch, as it handles the commands received
through the REST API and exports the node description both at boot time as well as each time
that something changes in its configuration.

According to the message sequence diagram of Figure 7, when c-orch receives a command to
create a new SF-FG, the node resource manager: (i) interacts with the SF repository in order395

to select the most appropriate SF image for each function that is part of the service and that is
not explicitly associated with an image in the SF-FG; (ii) configures the vSwitch to create a new
LSI and the ports required to connect it to the SFs to be deployed; (iii) deploys and starts the
selected SFs; and (iv) configures the forwarding table(s) of the LSI(s) according to the required
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traffic steering rules. Similarly, the node resource manager takes care of updating or destroying a400

graph, when the corresponding commands are received.
Figure 3 shows that c-orch includes, among other modules, the network manager and the com-

pute manager, which are exploited by the node resource manager to interact respectively with the
vSwitch and the execution engines to create the proper paths and start the proper SFs. The SF
resolver interacts with the SF repository and selects the best implementation for the required func-405

tions, according to parameters such as the amount of compute and memory resources available
on COMPOSER and constraints associated with the requested SF (e.g., 3 ports). Finally, the SF
scheduler can optimize the SF/CPU core(s) binding(s) by taking into consideration information
such as how a SF interacts with the rest of the SF-FG.

5.4. Network Manager410

The network manager is the module that handles the networking part of the service graph. It
can interact with different vSwitches in order to create the virtual network infrastructure that im-
plements the paths described in the SF-FG; such an architecture supports the parallel instantiation
of multiple service graphs according to the traffic steering model presented in Section 5.2.

Setting up the paths described in the SF-FG requires the network manager to interact with415

the vSwitch through the management and control interfaces. The former is used to create a new
graph-LSI with the required virtual ports that will be later attached to the SFs1. The latter is
used to program the forwarding tables of LSI-0 and of the new graph-LSI in order to realize traffic
steering.

The management interface, through the set of primitives listed in Table 2, enables the network420

manager to interact with different vSwitches without knowing anything about their switching tech-
nology. These primitives are implemented by a set of technology-specific drivers and enable the
network manager to (i) create/destroy an LSI, (ii) create/destroy a port that will be then connected
to a SF, (iii) create/destroy virtual links between two LSIs, and (iv) create/destroy SAPs.

The support for multiple switching technologies enables the selection of the best vSwitch for a425

given scenario. Particularly, our prototype supports (one at a time) the widely-used Open vSwitch
(OvS) [47], the extensible Data-Path daemon (xDPd) [48] and the Ericsson Research Flow Switch
(ERFS) [40]. In fact, while xDPd supports offloading OpenFlow rules to the underlying hardware
and then is well suited in case COMPOSER is deployed on a box with hardware switching capa-
bilities, ERFS is very fast but requires to be executed on high-end servers, due to its high demand430

it terms of CPU cores. Further vSwitches can be supported by writing the corresponding driver
implementing the primitives of Table 2.

Similarly, the control interface of the network manager can potentially enable the configuration of
the forwarding table(s) of the LSIs by means of different technologies (e.g, OpenFlow [49], eBPF [50],
P4 [51]), while at the same time hiding from the network manager the actual technology used. The435

set of primitives defined by the control interface is listed in Table 3 and must be implemented by
the technology-specific controllers in order to enable the network manager to insert/remove traffic
steering rules in/from a specific LSI.

As shown in Figure 3, a different technology-specific controller is created for each LSI, which

1The technology of the virtual ports depends on the SF image selected. For instance, in the case of a DPDK-
enabled process, dpdkr ports must be used to interconnect the vSwitch with said SF.
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Resource manager SF resolver Compute manager Network manager SF repository Execution environment vSwitch

selectImplementations(sffg.SFs)

getTemplates(SF)

list<Template> sfTemplates

looploop [for each SF]

list<SelectedImpl> selectedImplementations

createLSI(sffg.flowRules,sffg.SFports,sffg.SAPs)

createLSI()

∗graphLSI

connectLSIs(graphLSI,LSI-0,numVirtLinks)

list<virtualLinks>

createPortOnLSI(graphLSI,sfport→technology)

∗port

looploop [for each SF port]

createSAPOnLSI(graphLSI,SAP→description)

∗sap

looploop [for each SAP]

list<SFport> SFports,list<SAP> saps,list<Link> virtualLinks

createAndStartSFs(sffg.SFs)

createSF(sf→ports,sf→parameters)

∗sf
startSF(sf)

looploop [for each SF]

list<SFs∗ > sfs

createTSrules(sffg.flowRules,virtualLinks)

createTSrule(graphLSI,flowRule)

createTSrule(LSI-0,flowRule)

∗

looploop [for each SF-FG flow rule]

Figure 7: c-orch new SF-FG deployment message sequence diagram.
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Table 2: Management interface.

Function Description

lsi ∗createLSI() Create a new LSI
void destroyLSI(lsi) Delete a specific LSI
list<∗link> connectLSIs(lsi1,lsi2,N) Create N virtual links between two LSIs
void destroyVlink(link) Destroy a virtual link between two LSIs
port ∗createPortOnLSI(lsi,technology) Create a (SF) port with a specific technology on an LSI
void destroyPort(port) Destroy a specific (SF) port
sap ∗createSAPOnLSI(lsi, description) Create a SAP on an LSI, according to a specific description
void destroySAP(sap) Delete a specific SAP

Table 3: Control interface.

Function Description

void createTSRule(lsi,rule) Insert a traffic steering rule in the LSI
void deleteTSRule(lsi,rule) Remove a traffic steering rule from the LSI

controls the forwarding table of the LSI itself2. In the current prototype we opted to support440

OpenFlow for traffic steering; thus, each technology-dependent controller is actually a minimal
OpenFlow controller exploiting OpenFlow flowmod messages to set up the traffic steering rules.
Similarly to the management interface, further technologies to program the forwarding table(s) of
the vSwitch can be supported by writing the corresponding driver implementing the primitives of
Table 3.445

5.4.1. Translating SF-FG Flow Rules for Traffic Steering

In order to implement the network paths described in the SF-FG, the network manager has to
map the flowrules requested by the SF-FG on the traffic steering model defined in Section 5.2.
Particularly, this model requires that, for each SF-FG to be deployed, the network manager: (i)
connects the new LSI with LSI-0 through a number of virtual links, and that, (ii) starting from450

the flowrules section of the SF-FG, originates two sets of traffic steering rules to be installed
respectively in LSI-0 and in the new graph-LSI.

According to Table 4, some flow rules can be implemented on a single LSI, because both the
match and the action involve ports/SAPs that are connected to the same LSI, while other rules
must be split in one traffic steering rule for the LSI-0 and in another for the graph-LSI. While the455

former flow rules do not require any virtual link, as they keep traffic local to one LSI, the latter
need virtual links to transfer packets between the two LSIs.

2Also in this case, only one technology at a time is supported, i.e., all the LSIs are controlled through the same
technology.

Table 4: LSIs involved in implementing flow rules with specific match/action.

ACTION: output to
Interface/vlan SAP SF port/GRE SAP/host stack

MATCH
Interface/vlan SAP only LSI-0 (no vlink needed) LSI-0 and graph-LSI
SF port/GRE SAP/host stack LSI-0 and graph-LSI only graph-LSI (no vlink needed)
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Particularly, as shown in Algorithm 1, we chose to create a different virtual link for each different
SAP/SF port that appears in the action of rules involving both LSIs (Table 4), which is then used to
move all traffic that must be sent on that specific SAP/SF port from one LSI to another. According460

to the pseudocode, in order to minimize the number of virtual links, the same virtual link can be
used both to send towards the graph-LSI all traffic for a specific SF port/GRE SAP/host stack
SAP, and to send towards LSI-0 all traffic for a specific interface or vlan SAP.

Algorithm 1 Virtual links creation.

1: procedure createVlinks(first id,sffg,lsi0,graphLsi)
2: vlink to lsi0 ← vlink to graphlsi ← first id
3: vlinks ← ∅
4: for all r ∈ sffg.flowrules do
5: if vlink needed[r.match.port][r.action.out] and vlinks[r.action.out] ∈ ∅ then
6: if r.action.out ∈ sf port or r.action.out ∈ gre sap or r.action.out ∈ hoststack sap then
7: vlinks[r.action.out] ← vlink to graphlsi
8: vlink to graphlsi ← vlink to graphlsi+1
9: else if r.action.out ∈ interface sap or r.action.out ∈ vlan sap then

10: vlinks[r.action.out] ← vlink to lsi0
11: vlink to lsi0 ← vlink to lsi0+1
12: end if
13: end if
14: end for
15: N ← max(vlink to lsi0,vlink to graphlsi)−first id

16: return connectLSIs(lsi0,graphLsi,N)

Transforming a SF-FG flowrule that can be implemented on a single LSI in a traffic steering
rule for such an LSI does not require any operation (an example is provided by the SF-FG flowrule465

#3 of Figure 8). Algorithm 2 shows how the network manager derives the traffic steering rules
corresponding to SF-FG flowrules involving both LSIs, after that the SF ports/SAPs have been
associated with one of the virtual links just created. Particularly, according to lines #4-#12 of
Algorithm 2, rules whose output port is connected to the graph-LSI generate two traffic steering
rules as follows. The match of the LSI-0 rule corresponds to the match of the original rule (line #7),470

while the action differs from the original action only in the output port field; in fact, it forwards
packets on the virtual link that transfers to the graph-LSI all packets towards the original port
(line #8). Consequently (lines #11-#12) the rule for the graph-LSI just matches the proper virtual
link and forwards traffic on the output port of the original rule. This behavior can be observed in
the SF-FG flowrule #1 of Figure 8, where port 1 of the NAT is associated with the virtual link475

vlink1.
Lines #13-#21 of Algorithm 2 manage flow rules whose action sends packets on a port connected

to LSI-0. Unlike in the previous case, now it is the match of the graph-LSI rule that corresponds
to the match of the original rule (line #19), as well as it is the action of the rule on such an LSI that
is equal to the original action except for the output port field, that corresponds to the virtual link480

that brings to LSI-0 all the packets towards the original output port. Finally, lines #16-#17 show
that the rule created for LSI-0 just matches the proper virtual link. An example of this procedure
is shown for the SF-FG flowrule #2 in Figure 8, where the virtual link used to transfer traffic to
eth1 is the same one used to bring traffic to the port of the NAT.
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Figure 8: Example of transformation of SF-FG flowrules in traffic steering rules.
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Algorithm 2 Traffic steering rules creation.

1: procedure splitRules(vlinks,sffg)
2: for all r ∈ sffg.bigswitch do
3: if vlink needed[r.match.port][r.action.out] then
4: if r.action.out ∈ sf port or r.action.out ∈ gre sap or r.action.out ∈ hoststack sap then
5: {The rule brings traffic from LSI-0 to the graph-LSI}
6: {Create the rule for LSI-0}
7: rule-LSI0.match ← r.match
8: rule-LSI0.action.out ← vlinks[r.action.out]
9: rule-LSI0.action.other ← r.action.other

10: {Create the rule for the graph-LSI}
11: rule-graphLSI.match.port ← vlink[r.action.out]
12: rule-graphLSI.action.out ← r.action.out
13: else if r.action.out ∈ interface sap or r.action.out ∈ vlan sap then
14: {The rule brings traffic from the graph-LSI to LSI-0}
15: {Create the rule for LSI-0}
16: rule-LSI0.match.port ← vlink[r.action.out]
17: rule.LSI0.action.out ← r.action.out
18: {Create the rule for the graph-LSI}
19: rule-graphLSI.match ← r.match
20: rule-graphLSI.action.out ← vlink[r.action.out]
21: rule-graphLSI.action.other ← r.action.other
22: end if
23: end if

24: end for

5.5. Compute Manager485

The compute manager interacts with the available execution environments to manage the SF
lifecycle, including operations needed to attach SF ports already created on the vSwitch (by the
network manager) to the SF itself. The compute manager module can interact with different
execution engines, and can thus manage SFs based on different technologies, through the compute
interface defined in Table 5.490

As shown in Figure 3, this abstraction is implemented by a set of drivers, each one in charge of
a specific execution environment technology. Currently, COMPOSER supports the QEMU/KVM
hypervisor, Docker containers, processes based on the DPDK framework [42], and native network
functions. Particularly, the KVM driver interacts with the QEMU/KVM hypervisor through the
Libvirt API, while the Docker driver uses the CLI defined by Docker to manage SFs executed in495

Table 5: Compute interface.

Function Description

sf ∗createSF(ports,other parameters) Allocate the resources needed by a SF; create a local copy
of/download the SF image

void destroySF(sf) Release the resources allocated to the SF
void startSF(sf) Start a SF previously created
void stopSF(sf) Stop a SF, without deallocating resources
void updateSF(sf,. . . ) Update a running SF (e.g., remove/add network interfaces)
void pause(sf) Suspend the execution of the SF (e.g., for a possible migration)
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containers. Multiple technologies are supported at the same time. For instance, c-orch can deploy
a service including a first SF executed in a Docker container and a second SF running inside a VM.

5.6. SF resolver

The SF resolver is the part of c-orch that interacts with the SF repository in order to select the
SF images to be instantiated. The SF resolver is used when the SF-FG requirements (e.g., firewall500

with 3 ports) can be satisfied by multiple SF images. In this case, it selects the best image through
the following steps. First, it asks to the SF repository the templates of all SF implementing the
function (e.g., firewall). Subsequently, it selects the best SF that, according to the template, satisfies
the constraints/attributes associated with the function in the SF-FG (e.g., 3 ports), matches an
execution environment supported by COMPOSER and requires resource levels (e.g., RAM, CPU)505

available in COMPOSER.
Notably, the selected SF may consist of a single image or it can be a new service graph composed

of a number of other functions arbitrarily connected. In other words, the template may describe
the SF as another SF-FG, according to the principle of hierarchical decomposition. In this case,
the SF resolver recursively repeats the operations described above for each function that is part of510

the new sub-SF-FG, until all required SF images have been selected.

5.6.1. SF Repository

The SF repository contains the templates and images of the available SFs. The SF template
describes a specific SF image in terms of functionality implemented (e.g., firewall, storage server),
amount of physical resources required on the node in order to execute such an image (e.g., CPU,515

memory), required execution environment (e.g., KVM hypervisor, Docker engine, etc.), number
of virtual interfaces and associated technology, and more. The SF image varies according to the
technology implementing the SF; as an example, it is the VM disk in case of virtual machines.

5.7. Internal Message Bus

As shown in Figure 3, COMPOSER includes an internal message bus implemented by Dou-520

bleDecker (DD) [44]. Although in the picture only c-orch, the monitoring manager and the mon-
itoring functions (Section 5.8) are connected to such a bus for the sake of clarity, SFs may be
connected to the DD bus as well, for instance in order to receive monitoring alarms or configuration
parameters.

The connection between SFs and the internal message bus can be defined through the host stack525

SAP, since the DD broker (namely the module actually implementing the bus) is a process waiting
for messages on a specific TCP port of the device where COMPOSER is executed.

5.8. Monitoring Manager

The monitoring manager is in charge of managing the modules that (i) measure some metrics of
the deployed service (e.g., CPU/memory consumed by SFs), and (ii) generate alarms when specific530

events occur or thresholds are exceeded. The monitoring manager can be configured in order to
measure specific metrics through an instruction string specified in the SF-FG and written according
to the MEASURE monitoring language [46].

After the deployment of the SF-FG, the monitoring manager instantiates and configures the
proper monitoring functions (MFs) (e.g., Google cAdvisor [52] and Ramon [53]) that monitor the535

required metrics and generate alarms on the COMPOSER internal bus.
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The monitoring manager, in addition to starting and configuring the proper MFs, receives
alarms through DD, aggregates the received information as required by the MEASURE instructions,
and propagates them again on the DD bus. This way, the aggregated information can reach the
interested SFs. For instance, a SF may exploit the monitoring results to require an update of the540

SF-FG, so that it can properly react to the received event.

6. COMPOSER data plane features

According to Section 5, the c-orch is the main component of the COMPOSER control plane,
as it takes care of satisfying all the requests received through its northbound API (e.g., deploy
a new service graph). However, COMPOSER also brings together in a unique platform several545

innovations related to the data plane, making them seamlessly usable in real deployments. Main
data plane features, described in the remainder of this section, are the following: (i) the possibility
to exploit native (software and hardware) modules to execute SFs with reduced overhead; (ii) the
possibility to dynamically create a direct communication channel between two VMs, which bypasses
the virtual switch, in case the service to be deployed satisfies some constraints; and (iii) the support550

for the Ericsson Research Flow Switch, which targets high-speed packet networks.
Before detailing these aspects of the COMPOSER data plane, it is worth mentioning that such

features, although implemented and validated in COMPOSER, are orthogonal to our platform,
whose main novelty consists in the control plane. In addition, the last two are almost all compart-
mentalized and implemented in the vSwitch and require little support for an orchestrator, although,555

so far, COMPOSER is the only platform that integrates them in a usable prototype.

6.1. Native Service Functions

Unlike VMs and Docker containers that are well-known virtual execution environments, the
COMPOSER concept of Native Service Functions (NSFs) [38] enables the deployment of service
graphs on current, resource-constrained CPEs, which are then fully integrated in the programmable560

carrier infrastructure, as opposed to requiring their own silo for control and management. In fact,
as shown later in Section 8.6, NSFs have a significantly reduced image size with respect to other
virtualization environments, which makes them well suited to be executed on resource-constrained
devices.

We define NSF as a data plane processing component that exploits capabilities natively present565

on the platform, which are instantiated as software or hardware modules. Each NSF is executed
directly on the host. In practice, a NSF can be implemented as a tgz archive containing a set of
bash scripts that are called by the NSF driver (see Figure 3) to implement the functions defined in
Table 5, required in the SF lifecycle management.

Obviously, to be able to execute a particular NSF, all required modules, or dependencies, must570

be available on the node. Then, besides all information required for the execution of a generic SF
(e.g., number of ports), the template associated with a NSF also includes a list of dependencies,
which might refer to software packages (e.g., executable, libraries) that must already be installed
and that are required by the NSF to operate. The SF resolver also considers these dependencies
when selecting the best implementation for the required function.575

Differently from virtualization technologies such as VMs and Docker, which support an isolation
model for the instantiated SFs, NSFs rely on scripts executed in the host operating system. As
such, the NSF driver needs to explicitly implement a layer that provides some form of isolation of
the NSF against the rest of the system. Particularly, the NSF driver creates a network namespace
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before starting the NSF, adds to that namespace the virtual ports required to connect the NSF to580

the LSI (we use virtual Ethernet (veth) interfaces), and then starts the NSF within the namespace.
Launching a NSF, i.e. a script running on bare hardware, offers less protection than starting

software in a VM or in a container, which can leverage the additional protection shield provided by
the hypervisor or the container execution engine. However, it is worth noting that, in any case,
no protection exists that prevents a SF, which is expected to provide a given service (e.g., firewall,585

captive portal), to behave differently, e.g., to launch an attack toward a remote host and the current
solution is simply to trust the creator of the application or the entity (e.g., app marketplace owner)
that markets it. Therefore, although we acknowledge that the problem of determining whether a
SF is malicious is emphasized in case of NSF because of their inferior degree of isolation, we feel
that the problem is rather general and should require a more generic solution that guarantees, a590

priori, the “goodness” of the SF. In the context of the UNIFY project, such operational aspects
have been considered in [54, 46].

6.2. Direct SF-to-SF communication

Figure 9 illustrates a service graph and one of its possible implementations in COMPOSER:
all SFs are executed inside VMs interconnected through the vSwitch. While point-to-multipoint595

connections actually require the vSwitch in order to classify and send traffic to the proper next SF,
point-to-point (p-2-p in the following) links could be implemented with a direct communication
path, hence taking the vSwitch out of that portion of the data plane. This may result in higher
throughput, lower latency, and lower resource consumption thanks to the CPU cycles saved by
avoiding a further pass through the vSwitch.600
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Figure 9: Traffic crossing SFs: the service graph (up); its implementation on COMPOSER (down).

COMPOSER supports an extended version of OvS-DPDK that can accelerate transparently and
dynamically packet exchanges between two VMs, by creating a direct connection between them in
case of p-2-p links [39][55]. Transparency in this context refers to the possibility for a SF to exploit
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direct communication without any knowledge of this optimization, and for an OpenFlow controller
to attach to OvS as usual. Dynamicity refers to the capability to either create a direct VM-to-VM605

channel or return to a traditional VM-to-vSwitch-to-VM path on the fly, based on the runtime
analysis of the service graph that is being instantiated or modified.

The framework to create direct connections between SFs has been designed to operate in case
of SFs implemented as DPDK-based applications executed inside VMs and connected to the OvS
forwarding engine through dpdkr ports. The OvS forwarding engine processes packets according610

to the content of its forwarding table, which can be configured with OpenFlow flowmods messages.
dpdkr ports are implemented using shared memory and are exposed to the VM through ivshmem

devices; moreover, SFs access dpdkr ports using a poll mode driver (PMD).
As shown in Figure 10, dpdkr ports have been modified to include a standard channel connected

to the OvS forwarding engine, while the optional bypass channel is directly connected to another615

VM. The PMD has been modified too, so that the same instance can manage both channels and
expose them as a single dpdkr port to SFs, which are not aware of the actual implementation of
that port. Moreover, a new p-2-p link detector module has been added to OvS, which analyses each
flowmod received by the vSwitch and dynamically detects the creation/destruction of a p-2-p link
between two dpdkr ports.620
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Figure 10: Implementing direct channels between VMs in OvS. Components marked with ‘*’ have been modified to
support transparent inter-SF communication.

When the VM is created (e.g., by c-orch), it is connected to dpdkr ports that have only the
standard channel. Then, when the vSwitch detects the creation of a p-2-p link, it creates a new
pair of bypass channels mapped on the same piece of memory, shared by both the communicating
VMs. This way, the two VMs are directly connected and able to exchange packets without the
intervention of the OvS forwarding engine.625

The new bypass channels must be plugged into the proper VMs, and assigned to the proper
PMD instance. To this purpose, the vSwitch has to rely on c-orch, which receives requests from
OvS to: (i) plug the bypass channel (as an ivshmem device) into the VM by interacting with QEMU;
(ii) configure the PMD instance to use the bypass channel by means of a control mechanism based
on a virtio-serial device.630

Notably, in case of dpdkr port involved in a p-2-p link, the PMD can still receive packets
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from the standard channel. In fact, it may happen that the OpenFlow controller sends to OvS an
OpenFlow packet-out message containing a packet that must be sent through such a port; in this
case, OvS uses the standard channel to provide the packet to the VM.

To keep compatibility with external components (e.g., the OpenFlow controller), OvS exposes635

the standard and bypass channels as a single (standard) dpdkr port, so that the above entities can
continue to issue commands involving those ports as they usually do (e.g., get statistics, turn them
on/off). For the same reason, the PMD has been extended so that, when a packet is sent through
the bypass channel, it increases the counters associated to that OpenFlow rule and port, which are
stored in a shared memory area. When the vSwitch needs to export statistics, it reads the proper640

values from that memory.

6.3. Ericsson Research Flow Switch

The Ericsson Research Flow Switch (ERFS) [40] is an optimized OpenFlow pipeline built directly
for supporting the OpenFlow 1.3 specification without any legacy support for earlier versions. ERFS
uses a novel switch architecture that capitalizes on the observation that OpenFlow pipelines are645

sufficiently structured to admit efficient machine code representations, constructed out of simple
packet processing and classification templates.

High performance is the main focus; to achieve this goal, the two main optimizations that
ERFS uses are the real-time and per-table optimization for classification/lookup and the just-in-
time building of the packet processing code, as detailed in the following.650

Lookup/classification. In ERFS the lookup algorithm is selected optimally on a per table
basis. This means that based on the incoming rules to a given table a real-time decision takes place
that tries to find the best possible classification algorithm for that table.

JIT - ERFS uses just-in-time linked code for executing parsing, (some) lookup algorithms and
the actions that are to be executed in the given table or group. This means that the packet655

processing code is generated dynamically from code templates for the most widely used OpenFlow
actions - regardless whether they are mandatory, optional or experimental.

The resulting specialized data paths is shown to give major gains over flow-caching-based al-
ternatives, with several times higher raw packet rates, much smaller latency, and, perhaps most
importantly, robust and predictable performance even with widely varying, or straight-out border-660

line malicious, workloads. The ERFS switch architecture easily scales to hundreds of flow tables
and hundreds of thousands of traffic flows, while supporting updating the fast path at similar, or
higher intensity.

7. Domain-specific services

Thanks to its flexibility and generality, COMPOSER supports different service models, which665

range from pure OpenFlow-based services to NFV services defined according to the ETSI MANO
architecture. In order to exemplify how COMPOSER can be used to implement such services,
the remainder of this section will first discuss how our platform can provide SDN services, then it
will compare COMPOSER with the ETSI model and show how it can be integrated into an ETSI
MANO architecture in order to deliver NFV services.670

7.1. Support for Pure OpenFlow Deployments

In a Software Defined Network (SDN), applications running on top of OpenFlow controllers
such as OpenDaylight [56] and ONOS [57] “program” the forwarding tables of different (physical
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and/or virtual) OpenFlow switches in order to implement traffic steering and some more advanced
functionalities (e.g., NAT, firewall). While controllers can be deployed in some virtualized environ-675

ments (e.g., VM or Docker), the switch is usually deployed on the bare metal, as it should provide
high performance [58].

In order to implement a “pure” OpenFlow deployment with COMPOSER, both the controller
and the vSwitch(es) must be considered as SFs that are part of a service graph. Specifically, this
requires the definition of a service graph that includes the OpenFlow controller (specified through680

the proper template that maps the NF with a specific image/implementation) connected to a generic
OpenFlow switch (Figure 11).

This allows c-orch to select the most efficient implementation for the vSwitch. Particularly, if
COMPOSER uses an OpenFlow-based switch to implement connectivity among SFs (Section 5.4),
c-orch can deploy the OpenFlow switch as a NSF by creating an additional LSI in the vSwitch, but685

executed in a separate network namespace. Obviously, unlike LSI-0 and the graph-LSIs, the new
LSI is completely controlled by the OpenFlow controller SF and hence implements the behavior
required by the deployed service graph.

Using the infrastructure vSwitch to implement a SF may lead to performance improvements
because of the lighter virtualization layer and the reduced resources required by NSFs with respect690

to, e.g., VMs. In addition, the vSwitch may even implement some algorithm to optimize the
interconnections among LSIs, in case some conditions on the traffic steering rules are identified.

7.2. COMPOSER and ETSI NFV

The European Telecommunications Standards Institute (ETSI) has defined a reference model
for the NFV architecture [59], which is reproduced in Figure 12 [21]. The main functional blocks695

include an orchestrator (NFVO) that handles the lifecycle of the services, a (set of) VNF manager
(VNFM) in charge of managing one or more VNFs (i.e., start/stop, configure, scale in/out), a
Virtual Infrastructure Manager (VIM) that actually implements the commands triggered by the
NFVO and/or the VNFMs on the physical infrastructure. In addition, the NFV infrastructure
(NFVI) includes both physical and virtual resources (hypervisor, vSwitch, etc.) and actually ex-700

ecutes the service. Finally, the ETSI reference model defines reference points between functional
blocks, and descriptors (e.g., service descriptors, VNF descriptors, etc.).

Although the COMPOSER architecture is not explicitly designed for NFV (in fact, in the
paper we always referred to generic service functions, which may include cloud computing services,
OpenFlow services as described in Section 7.1, and VNFs), at first look COMPOSER resembles705
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Figure 12: ETSI NFV architecture.
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an ETSI infrastructure node as it includes both a vSwitch and a set of execution engines with
its VIM, which can be driven by an external NFVO sitting on top of many COMPOSER nodes.
However, viewed in this way, much of our proposal potential is left untapped by such an external
orchestrator. In fact, as shown in Figure 13, which maps the functional blocks and reference points
of the ETSI NFV architecture to the COMPOSER components, our node includes also an NFVO710

and can support VNFMs.
Notably, the NFVO inside COMPOSER does not preclude the existence of one (or more) or-

chestrators on top of many COMPOSER nodes. Indeed, it provides the additional benefit of further
optimizing service deployment, e.g., by selecting the best available implementation for a VNF, and
at the same time provides more scalability, since an external orchestrator does not need to know715

the intricate details (e.g., the VNF images actually implementing a NF) which are only known to
c-orch.

While COMPOSER implements the NFVO, VIM and NFVI, VNFMs are not actually part of
the COMPOSER architecture. Such VNFMs are in fact VNFs themselves and therefore part of the
SF-FG, as shown in the example of Figure 14 (this example is discussed below); this is the reason720

why the dashed box in the picture is extended to include both the VNFs and the VNFMs. It is
worth mentioning that from the c-orch point of view, there is no difference between data plane VNFs
and VNFs implementing the VNFM functionality, as both types are executed in some execution
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environment and are connected to the vSwitch with a number of vNICs.
Finally, the SF-FG represents an implementation of the ETSI network service descriptor (NSD),725

as it describes the service in its whole, i.e., both the compute (VNFs) and network (links) parts.

7.2.1. Deploy a VNFM in COMPOSER

Figure 14 shows an example of service graph that includes a VNFM that manages two firewalls
and two load balancers operating on the traffic in transit between the end user and the Internet. In
fact, if one (or more) VNFM is needed for the service to operate, COMPOSER requires that such730

a component is defined as any other VNF in the service description, as well as such a description
must indicate how the VNFM is connected with the other modules of the service itself. In the
example of Figure 14 the VNFM is connected with the two firewalls, with the two load balancers,
and with the Internet; this last connection allows in fact the VNFM to contact the c-orch in order
to require modifications to the service. For instance, it may ask the deployment of a third firewall735

between the two load balancers, together with the requirement of adding a new vNIC to such VNFs
needed to establish the new connection. After that the c-orch added the new vNICs to the load
balancer VNFs, the VNFM interacts again with such functions in order to configure them to use
the new network interface.

Finally, the L2 switch VNF is required to dispatch the traffic coming from the Internet either740

to the VNFM in case it is a packet directed to such a component (e.g., an answer from the c-orch),
or to the load balancer if it is traffic to be processed by the service data plane.

8. Experimental evaluation

COMPOSER, whose source code is available at [1], was used as a validation platform for the
FP7 projects UNIFY [30], SECURED [60], and the H2020 project 5GEx [32]; in addition, we carried745

out an extensive set of tests that are reported in the reminder of this section. Particularly, at the
best of the author’s knowledge COMPOSER has been successfully installed and executed on the
hardware platforms shown in Table 6, which feature very different characteristics (also in terms
of operating system and software build mechanisms) and represent the huge variety of hardware
running in carrier network deployments3. Although portability of C/C++ software does not seem750

a big challenge nowadays, in fact the portability of a complex software, relying on many external
components/libraries is still a major issue as far as embedded platforms are concerned, due to many

3The exact hardware used to get the reported results will be specified during the description of each specific test.
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Table 6: Hardware platforms known to be able to execute COMPOSER.

Machine Specification

Residential gateway #1
Netgear R6300v2, 800 MHz dual-core ARM Cortex A9 CPU,
128 MB flash 256 MB RAM, 4GbE LAN ports, IEEE 802.11
b/g/n 2.4GHz, IEEE 802.11 a/n/ac5.0GHz, 1 GbE WAN port

Residential gateway #2
Banana Pi R1, A20ARM Cortex-A7 dual-core CPU, 1 GB RAM,
5 GbE ports

Professional CPE #1
Hawkeye HK-0910, Freescale QorIQ T1040, 1.2GHz (quad e5500
cores), 64MB NORFlash, 2GB RAM DDR3L-1600

Professional CPE #2
Tiesse Imola 5, Ikanos Fusiv Core Vx185, single core MIPS 34Kc
V5.4 CPU @ 500MHz, 256MB RAM, 256MB flash memory, xDSL
acceleration

Mid-range server #1
Intel Core i5-3450S @ 2.8 GHz,
8GB RAM, 200GB SSD

Mid-range server #2
Intel Core i7-4770 @ 3.40 GHz (4 cores + hyperthreading),
32GB RAM, 500GB HD

High-end server
Intel Xeon E5-2690 v2 @ 3 GHz (10 cores + hyperthreading),
64 GB RAM, two 10G Intel 82599ES NICs

limitations such as having a custom version of the operating system, proprietary drivers, dedicated
hardware components, stripped-down software (e.g., the operating system does not contain all the
features, tools and libraries of the full-fledged version), and more.755

In the remainder of this section we will first show the resource consumption (memory and
CPU) of COMPOSER, including also the vSwitch and the execution engine(s); such results are
compared with OpenStack, as it represents one of the leading platform used to execute virtualized
services, being them either VNFs (e.g., firewall, NAT) and more traditional cloud-oriented services
(e.g., storage server, web server). We will then consider the scalability of COMPOSER, as well760

as we demonstrate the advantages, in terms of performance, of the creation of direct connections
between SFs, and of the usage of the ERFS vSwitch in comparison with vanilla OvS-DPDK. Next,
we demonstrate how COMPOSER can deploy network services on a residential CPE thanks to
the NSFs, which are well suited for resource constrained environments. We will then present,
from a functional point of view, the Elastic Router service, namely a service that adapts itself765

based on information gathered by monitoring functions dynamically started and configured by
the COMPOSER framework. Finally, we terminate our validation campaign by discussing the
portability of our prototype, and by highlighting some limitations that we have experienced when
building and running COMPOSER on specific hardware platforms.

8.1. Empirical Evaluation of Resource Consumption770

This section presents the amount of RAM and disk consumed by different COMPOSER deploy-
ments and compares them with the requirements of an OpenStack compute node supporting VMs,
as it the most widespread technology for running SFs as of this writing.

Starting from a clean installation of Ubuntu server 14.04 LTS with default settings on the high-
end server (Table 6), we set up, one at a time, the configurations shown in Table 7, where each line775

reports the additional resources required with respect to the case with the clean operating system
running. Note that the reported numbers consider all components needed to execute NFs, including
the vSwitch; particularly, OvS was used for the tests reported in this section.

As reported in Table 7, COMPOSER compiled only with support for NSFs represents the
lightest configuration, requiring less than 20% of RAM and less than 15% of disk space than an780
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Table 7: Resources consumed by COMPOSER and OpenStack.

Configuration RAM (MB) Disk (MB)

COMPOSER- only NSF enabled 31 71
COMPOSER- only Docker enabled 46 189
COMPOSER- only KVM enabled 44 131
COMPOSER- all env. enabled 63 249
OpenStack compute node 160 494

OpenStack compute node, as NSFs are executed natively by a compute manager which launches
shell scripts. As expected, KVM and Docker are more resource demanding than NSFs because they
need to install and run the respective execution engines (KVM, QEMU and Libvirt in the first
case, Docker engine in the latter). COMPOSER with Docker only enabled, for example, uses less
that 29% RAM and less than 38% of the disk space required by our OpenStack compute node. As785

expected, the most resource consuming configuration for COMPOSER is when all the (currently)
supported execution environments are enabled. Still, even in this case, COMPOSER requires less
than 40% of RAM and about half of the disk space that an OpenStack compute node.

Our empirical measurement of actual resources used confirm the advantages, in terms of resource
requirements, for COMPOSER when compared to OpenStack; moreover, this also shows how NSFs790

are well-suited for resource constrained environments such as CPEs.
To conclude, it is worth mentioning that the Revised OpenFlow Library (ROFL) [61], which is

currently employed to handle the OpenFlow messages between c-orch and the vSwitch, requires
49MB of disk space. We expect that in the future further optimization in this direction, e.g. by
using a lighter OpenFlow library, is possible.795

8.2. Service Deployment Time

This section compares the time required by COMPOSER and OpenStack to deploy the two
service graphs shown in Figure 15(a), which include SFs that will be instantiated with dedicated
VMs. Notably, the two SAPs of the graph (i.e., ext0 and ext1) correspond to physical interfaces
in COMPOSER, and to external networks in case of OpenStack.800

Tests are executed on the mid-range server #2 (Table 6) with a clean Ubuntu server 14.04
LTS image, where we added all the components involved in the service deployment, namely: (i)
the COMPOSER software and the SF repository in case of COMPOSER; the Nova, Neutron and
Glance (i.e., the compute/network services, and VM repository) servers, and the compute node
actually running the VMs in case of OpenStack. Both COMPOSER and OpenStack use OvS as805

vSwitch; moreover, the VM image is already cached by the OpenStack software in order to avoid
downloading it from the image server4.

Tests are repeated 100 times and averaged; results are reported in Figures 15(b) and 15(c). In
case of COMPOSER (Figure 15(b)), the picture reports the total time (average value, plus the
minimum and the maximum values of the the margin of error calculated at 95% confidence level)810

required by c-orch to serve the request, which is then broken into: (i) the time used by the network
manager to create the new LSI and the SF ports, and to set up the traffic steering rules into the

4Installing the VM repository and the compute node on the same physical machine does not prevent OpenStack
to download the VM image through the repository REST API, in case it is not in cache yet; this would have a huge
(negative) impact on the overall service deployment time.
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vSwitch; (ii) the time required by the compute manager to create and start the SF(s) as a VM(s).
In the case of OpenStack, we report the total time (again the average value, plus the minimum and
the maximum values of the the margin of error calculated at 95% confidence level) needed for the815

service deployment, which includes the time spent to interact with Neutron and Nova so that they
fulfill the service request. It is worth mentioning that the results do not include the time needed
by the application in the VM(s) (e.g., the firewall) to actually start, which depends on the software
executed in the VM itself and not from the orchestration framework and is anyway equivalent in
all the tests, given that we used exactly the same VMs for, e.g., the firewall.820

As shown, the time required by COMPOSER is nearly an order of magnitude lower than the one
needed by OpenStack to deploy the same service graph, for both the considered services; this is due
to the interactions between the various OpenStack components involved in the service deployment
(i.e., Nova/Neutron servers, compute/network agents), which is based on either REST or distributed
message bus (RabbitMQ) calls, and that is much more complicated due to the necessity to support825

a datacenter-wide environment.

8.3. COMPOSER scalability

This section evaluates the scalability of COMPOSER, both in terms of time required to deploy
a service and in terms of aggregated throughput supported by the service itself. To this purpose,
we first instantiate the graph depicted at the top of Figure 16, where no SF is actually deployed on830

COMPOSER. Then, as shown in the picture, we deploy service graphs with an increasing number
of personal firewalls, where each SF operates on the traffic to/from a different device identified
through the MAC address of the device itself. In our opinion, this represents a concrete use case
for COMPOSER when installed at the edge of the network and used as an Internet gateway, e.g.,
in a public building/at a public event.835

Tests are executed on the mid-range server #2 (Table 6) equipped with a clean Ubuntu server
14.04 LTS image and all the components involved in the service deployment (i.e., the COMPOSER
software and the SF repository); OvS is used as a vSwitch, while SFs are deployed as Docker
containers. Tests are repeated 100 times and the average value of the samples, together with the
margin of error calculated at 95% confidence level, is reported in Figure 17 (deployment time) and840

Figure 18 (throughput).
According to the former picture, the time needed to deploy a graph grows with the number of

SFs, starting from an average value of less than 1s when the service does not include any SF, to
almost 6min and half when the graph includes 500 SFs. It is worth to point out that the results do
not include the time needed by the firewall application inside the docker container to actually start,845

which depends by the application itself and not by the orchestration framework. This growing trend
may be due to some locking mechanism implemented by the Docker engine, since the c-orch, in
order to run the SFs, starts N threads in parallel (where N is the number of SFs to be instantiated),
each one interacting with the Docker engine using its command line interface.

Figure 18 shows instead the aggregate throughput provided by COMPOSER, measured using the850

iperf tool installed on two servers used respectively as traffic source/sink, and directly connected
to COMPOSER through a 10Gbps link. The iperf client generates TCP streams at maximum
speed, exploiting the maximum allowed MTU. As reported in the picture, the throughput is almost
constant regardless of the number of SFs (and then Openflow rules) deployed, since in our test each
packet always traverse a single SF (i.e., firewall) in each direction. Throughput scalability in case855

more SFs are chained will be discussed in Section 8.4.
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Figure 16: Service graphs with an increased number of SFs (firewalls in this case) deployed in parallel.
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Figure 17: Time required by COMPOSER to deploy service graphs with a growing number of SFs.
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8.4. Direct SF-to-SF communication

We validated our idea of creating direct channels between SFs (Section 6.2) on an Intel Xeon
(Table 6), comparing our approach with the vanilla OvS-DPDK. To this purpose, we use chains of
VMs connected only through p-2-p links, where each VM has two dpdkr ports and runs a single860

core DPDK SF that forwards packets between them. Notably, due to the transparency of the direct
SF-to-SF communication, we were able to use the same VM in all tests (with/without the bypass
channel).

Figure 19 shows the throughput measured with chains of different length. In detail, Figure 19(a)
refers to the case in which the first and the last SF of the chain act as traffic source/sink; this test865

validates our proposal without the overhead introduced by NICs and the PCI-e bus. Figure 19(b)
refers instead to the case in which traffic is provided/drained to/from the chain through a couple
of 10Gbps NICs. Both graphs show that a chain of SFs executed in VMs exploiting our technology
provides far better throughput than the same chain based on the vanilla OvS-DPDK.

Figure 20 shows the latency measured with traffic coming from/delivered to the 10Gbps NICs,870

tuning the TX speed in order to avoid packet loss in the chain. Particularly, the picture reports
the median value of the samples; the margin of error is of ±0.4µs in the worst case at the 95%
confidence level and hence not visible in the graph. According to the graph, latency introduced by
both approaches is almost the same until 5 chained VMs; then the values start to diverge, resulting
in an improvement of about 80% in the case of 8 chained VMs. This is due to the inferior number of875

CPUs required to forward traffic with the SF-to-SF approach, which avoids the pass in the vSwitch
and hence saves precious CPU cores that are still available when deploying longer chains.

To conclude, the set up of a direct channel between two VMs, from the moment in which the
vSwitch identifies a p-2-p link, to the moment in which the PMD starts to use the bypass channel,
is about 100 ms.880

8.5. ERFS Forwarding Performance

When using the same technology to implement traffic steering among SFs (e.g., OvS), both
COMPOSER and an OpenStack compute node provides the same performance from the point
of view of the network traffic (e.g., throughput). However, several vSwitches are supported by
COMPOSER; particularly, unlike the current OpenStack release, it can implement traffic steering885

through the high-speed ERFS.
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In order to show the advantages of ERFS with respect to (vanilla) OvS-DPDK, we measured
the throughput when the vSwitch implements the L2 switching on the high-end server of Table 6.
During the test, a traffic source machine generating 64B packets at 10 Gb/s was directly connected
to the high-end server, in turn connected through a second 10 Gb/s Ethernet interface to a traffic890

receiver machine. Tests were repeated with a different number of MAC addresses in the vSwitch
forwarding table; for each number, we generated, in round robin, packets with different destination
MAC addresses in order to match all the entries of the forwarding table.

Measured throughput is reported in Figure 21, which shows how ERFS outperforms OvS-DPDK
regardless of the number of MAC address stored in the forwarding table and matched by generated895

packets.

8.6. Native Service Functions

This section validates the NSF idea from the point of view of throughput, CPU load, image
size and time required to start the SF. To this purpose, we consider a transparent VPN access use
case in which a user client located in a trusted local network (e.g., home) needs to connect to its900

corporate VPN server. In order to avoid to install the VPN client software on all his devices (e.g.,
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Table 8: Different implementations of the IPSec client SF.

IPsec client SF implementation
Bidirectional
Throughput (Mb/s)

CPU Load SF Image Size (MB)

Mid-range Server #1 - KVM/QEMU 796 100% 522
Mid-range Server #1 - Docker 1095 80% 240
Mid-range Server #1 - NSF 1094 80% 5
Residential gateway #1 - NSF 57.2 100% 2
Professional CPE #1 - NSF 617 90% 3.7

laptop, smartphone, etc.), the user deploys the VPN client as a SF on the CPE, which provides
secure access to the corporate network independently of the specific user terminal.

Our testbed, shown in Figure 22, includes two devices acting both as traffic source and sink,
a CPE executing the IPsec client SF in charge of encrypting/decrypting the traffic, and a VPN905

server with the corresponding duty. All four boxes are connected with point-to-point full-duplex
1Gbps Ethernet links; faster speed were not available due to the limitations of the current hardware.
Three powerful workstations were used respectively as traffic source/sink (two machines) and VPN
server, in order to avoid those machines to become a bottleneck in our test setup, while different
flavors of CPEs were used, namely a mid-range server (Intel i5), a professional CPE based on the910

Freescale T1040 and a residential gateway (Netgear) (Table 6), all with the same COMPOSER
version compiled for the respective platform. The use of different hardware platforms was coupled
with different implementations of the same SF, whenever possible, as shown in Table 8.

The experiments leveraged the iperf tool installed on the two source/sink machines, each
one configured to generate unidirectional TCP streams at maximum speed; all experiments were915

repeated 10 times and averaged. According to Table 8, NSFs and Docker bring significant perfor-
mance improvements compared to VMs because of the simplified architecture that requires neither
the hypervisor nor the guest OS. As expected, NSFs and Docker show the same level of perfor-
mance, because they are based on the same technology (i.e., kernel-based processing in the host
plus namespaces).920

The last column of Table 8 reports the SF image size5, which confirms the advantages of the
NSF approach in resource-constrained environments. In fact, the reason for not testing VMs and

5In the VM case, we created a guest OS with the default installation of a Ubuntu server 14.04 LTS plus the only
packages required for our SF to work.
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Docker on the residential gateway and on the professional CPE is the disk size limitation of these
platforms. Moreover, the SF image size also impacts on the time required to download the SF from
a remote location, which is critical when the CPE is connected to the Internet through slow links925

(e.g., xDSL).
Finally, we measured the time to make the IPsec client fully operational on the mid-range

server, being the only environment supporting all SF types. Averaged results show 3016 ms with
VM (which requires to start the entire VM), 350 ms with Docker, and 727 ms with NSF (i.e., with
the IPsec client running in a separate network namespace); the baseline, i.e., the time required to930

launch the IPsec client on the base system without wrapping it in any virtualization environment,
was 154 ms. The (relatively) high number of the NSF is due to some implementation-dependent
timeouts required to attach the network ports to the NSF, which still need to be optimized.

8.7. Dynamic Service Adaptation: the Elastic Router Example

This section provides a functional validation of the support of COMPOSER to services that935

dynamically adapt themselves based on metrics gathered by MFs deployed along with the service.
To this purpose, we consider the Elastic Router [41, 62], a service that routes traffic between SAPs
and that can automatically scale in/out according to the amount of traffic to be processed by the
service.

Figure 23 depicts data gathered during the execution of the Elastic Router service. As shown,940

two metrics are used to detect conditions that make the service to scale: the CPU load (gathered
by the cAdvisor MF ) and the overload risk of the data plane components (evaluated by the Ramon
MF ). The labels A, B, C, D in the picture correspond to the main life-cycle events of the service,
which are described in the following.

In A, the SF-FG shown in Figure 24(a) is provided to the c-orch, which starts both the Ctrl945

App and the switch functions as Docker containers (although the switch may be implemented as
a NSF (i.e., LSI) using the infrastructure vSwitch, as detailed in Section 7.1); notably, while the
former represents the control plane of the router, the latter implements the data path and forwards
traffic according to the rules inserted by the Ctrl App. According to the picture, the Ctrl App is
also connected to the internal bus in order to receive alarms generated by the monitoring system,950

since such a SF is also responsible to determine how to scale in/out data plane components, basing
its decision on the information coming from the monitoring functions. This is why the SF-FG
describing the Elastic Router service also includes instructions on how to deploy and configure
monitoring components, expressed according to the MEASURE monitoring language and used by
the monitoring manager of the c-orch. Particularly, as mentioned above, the provided MEASURE955

string requires the c-orch to configure the cAdvisor and the Ramon MFs, which respectively gather
metrics related to the CPU load and bandwidth utilization.

In B, a traffic generator is started and packets are sent to the four SAPs of the service; initially,
the single switch is enough to handle all the packets flowing through the service itself.

Then, starting from C, the traffic generator gradually increases the packet rate, until a threshold960

for the aggregated overload risk is reached. At this point, the MFs generate alarms on the message
bus, which are received by the monitoring manager of COMPOSER; in turn, this component sends
a scale out message on the message bus, which is then received by the Ctrl App. Such a SF then
generates the new SF-FG shown in the right of Figure 24, which includes the number of switches
required to handle the increased load, and provides it to the c-orch. It is worth mentioning that,965

while the scale-out is executed, the monitoring is put on hold, as shown by the gap in the graph of
Figure 23 between points C and D.
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Figure 23: The monitored service data that leads to automated scaling. Main events are indicated with labels from
A to D.

In D the scale out operation finally terminates, the MFs start again collecting data, and the
switch SFs start forwarding traffic between the four SAPs; as depicted in Figure 23, four stream
are now being generated, one for each switch.970

8.8. COMPOSER portability

The portability of COMPOSER has been demonstrated by installing and running the software
on all the hardware platforms shown in Table 6. It is worth to mention that, while many of them
have been used as validations platforms for different aspects of our prototype as reported earlier
in this section, others have only been exploited in order to showcase the prototype in the context975

of the FP7 project UNIFY [30], or have been used either by project members or third parties for
their own purposes.

For instance, a residential gateway (Netgear R6300v2) has been demonstrated to execute COM-
POSER compiled for the OpenWrt operating system. Given the limited hardware capabilities of
this box, at the time of this writing c-orch was able to launch only NSFs with OvS used as a980

vSwitch. However, since service access points such as tunnels (e.g., GRE) and VLANs were fully
supported, we were able to instantiate services connecting COMPOSER to external domains and to
create complex services requiring the stitching of multiple sub-graphs spanning across multiple do-
mains [63]. Another example is the use of COMPOSER on CarOS, an embedded Linux distribution
targeting carrier networks, running on a Banana Pi R1.985
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Two professional CPEs were used as well. First, we targeted the Freescale Hawkeye HK-0910,
featuring also IPsec and L2 switch hardware acceleration. The software environment was based on
the Linux Yocto project, which uses recipes to assemble together the required packages and create
the software image that will be executed on the hardware platform. The overall software setup
was very similar to the previous boxes, hence only NSFs are enabled, although the platform could990

support also virtualization.
The second professional CPE was a Tiesse Imola 5 with customized OpenWrt as operating

system. However we had to use an old version of the Linux kernel (3.10.49) because it was the
latest version supported by the drivers needed to control the xDSL interface. This prevented us
from terminating GRE tunnels in OvS, due to a known incompatibility with that kernel version.995

The workaround solution consisted of modifying the OvS driver in the network manager so that,
when executed on this platform, it first creates a GRE tunnel port through the Linux command ip

link, and then adds this port to the proper graph-LSI.
According to Table 6, in addition to the aforementioned limited-resource boxes, COMPOSER

was tested on several standard Intel servers, ranging from single CPU i5 machines to dual-processor1000

Xeon platforms running Ubuntu 14.04 LTS. All features, including the several supported vSwitches,
were turned on and tested.

9. Conclusion

This paper presents COMPOSER, a versatile and high-performance service platform that can
execute several types of SFs on multiple hardware architectures and virtualization/execution envi-1005

ronments at high speed.
COMPOSER takes advantage of a wide range of hardware and software combinations, including

low-cost equipment, covering the entire spectrum from subscriber premises to carrier-grade data
centers across the entire network deployment. COMPOSER has been demonstrated to run efficiently
on hardware platforms such as ARM and x86, but there are no real limitations that prevent the1010

COMPOSER software to be executed even on more specialized hardware platforms. Moreover,
COMPOSER can run functions in multiple environments, ranging from “native” execution on bare
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metal to fully-fledged virtual machines — with the full set of virtual ports and links to fine-tune
performance as needed.

Finally, from a performance point of view, COMPOSER is superior to other current virtu-1015

alization solutions in part because of the possibility to seamlessly employ, for instance, a high-
performance underlying software switches (such as ERFS) as real-world deployment needs dictate,
while at the same time retaining all the benefits of domain-oriented orchestration.
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