1,302 research outputs found

    Selective Resistive Sintering: A Novel Additive Manufacturing Process

    Get PDF
    Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly reduced overhead cost, and increased printing speed scalability. The objective of this thesis is to obtain a proof of concept of this new method. To achieve this objective, we first designed a microheater to operate at temperatures of 600⁰C, with a thermal response time of ~1 ms, and even heat distribution. A packaging device with electrical interconnects was also designed, fabricated, and assembled with necessary electrical components. Finally, a z-stage was designed to control the airgap between the printhead and the powder particles. The whole system was tested using two different scenarios. Simulations were also conducted to determine the feasibility of the printing method. We were able to successfully operate the fabricated microheater array at a power consumption of 1.1W providing significant power savings over lasers. Experimental proof of concept was unsuccessful due to the lack of precise control of the experimental conditions, but simulation results suggested that selectivity sintering nanoparticles with the microheater array was a viable process. Based on our current results that the microheater can be operated at ~1ms timescale to sinter powder particles, it is believed this new process can potentially be significantly quicker than selective laser sintering by increasing the number of microheater elements in the array. The low cost of a microheater array printhead will also make this new process affordable. This thesis presented a pioneering study on the feasibility of the proposed SRS process, which could potentially enable the development of a much more affordable and efficient alternative to SLS

    Reconfigurable laser micro-processing systems: development of generic system-level tools for implementing modular laser micro-manufactoring platforms

    Get PDF
    Laser micro-machining (LMM) is an attractive manufacturing technology for the fabrication of a wide range of micro-components due to its intrinsic processing attributes. In addition, LMM can be integrated in hybrid manufacturing platforms and thus to combine LMM with other complementary processes for the cost effective fabrication of a broader range of miniaturised products. Nevertheless, the broader industrial uptake of LMM is still to come due to system-level issues in designing and implementing LMM systems. In this context, the research reported in this thesis is aimed at improving the system-level performance of reconfigurable LMM platforms and thus to create the necessary pre-requisites for achieving a much better machining accuracy, repeatability and reproducibility (ARR) in different processing configurations. First, a systematic approach for assessing and characterizing the manufacturing capabilities of LMM platforms in terms of ARR is proposed. Then, the development of generic integration tools for improving the system-level performance of reconfigurable LMM platforms in terms of manufacturing flexibility and reliability both as stand-alone machine tool configurations and also as component technologies in multi-process manufacturing solutions is presented. Next, generic software tools are proposed and validated for improving the manufacturing capabilities of LMM systems for realizing complex multi-axis laser processing strategies with a closed-loop manufacturing control. Finally, the integration of LMM in process chains is validated to extend the capabilities of well proven conventional manufacturing routes, i.e. micro milling, for the fabrication of miniaturised products, i.e. Terahertz technology devices, which have complex and challenging-to-fabricate functional features and overall designs

    Applications for FPGA's on Nanosatellites

    Get PDF
    This thesis examines the feasibility of using a Field Programmable Gate Array (FPGA) based design on-board a CubeSat-sized nanosatellite. FPGAs are programmable logic devices that allow for the implementation of custom digital hardware on a single Integrated Circuit (IC). By using these FPGAs in spacecraft, more efficient processing can be done by moving the design onto hardware. A variety of different FPGA-based designs are looked at, including a Watchdog Timer (WDT), a Global Positioning System (GPS) receiver, and a camera interface

    Quantum dots for photonic quantum information technology

    Full text link
    The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. Here, we discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology. In this context, QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers because they can generate single photons on-demand. Moreover, QDs are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then present modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on QDs. Furthermore, we present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.Comment: Copyright 2023 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Modeling and Experimental Techniques to Demonstrate Nanomanipulation With Optical Tweezers

    Get PDF
    The development of truly three-dimensional nanodevices is currently impeded by the absence of effective prototyping tools at the nanoscale. Optical trapping is well established for flexible three-dimensional manipulation of components at the microscale. However, it has so far not been demonstrated to confine nanoparticles, for long enough time to be useful in nanoassembly applications. Therefore, as part of this work we demonstrate new techniques that successfully extend optical trapping to nanoscale manipulation. In order to extend optical trapping to the nanoscale, we must overcome certain challenges. For the same incident beam power, the optical binding forces acting on a nanoparticle within an optical trap are very weak, in comparison with forces acting on microscale particles. Consequently, due to Brownian motion, the nanoparticle often exits the trap in a very short period of time. We improve the performance of optical traps at the nanoscale by using closed-loop control. Furthermore, we show through laboratory experiments that we are able to localize nanoparticles to the trap using control systems, for sufficient time to be useful in nanoassembly applications, conditions under which a static trap set to the same power as the controller is unable to confine a same-sized particle. Before controlled optical trapping can be demonstrated in the laboratory, key tools must first be developed. We implement Langevin dynamics simulations to model the interaction of nanoparticles with an optical trap. Physically accurate simulations provide a robust platform to test new methods to characterize and improve the performance of optical tweezers at the nanoscale, but depend on accurate trapping force models. Therefore, we have also developed two new laboratory-based force measurement techniques that overcome the drawbacks of conventional force measurements, which do not accurately account for the weak interaction of nanoparticles in an optical trap. Finally, we use numerical simulations to develop new control algorithms that demonstrate significantly enhanced trapping of nanoparticles and implement these techniques in the laboratory. The algorithms and characterization tools developed as part of this work will allow the development of optical trapping instruments that can confine nanoparticles for longer periods of time than is currently possible, for a given beam power. Furthermore, the low average power achieved by the controller makes this technique especially suitable to manipulate biological specimens, but is also generally beneficial to nanoscale prototyping applications. Therefore, capabilities developed as part of this work, and the technology that results from it may enable the prototyping of three-dimensional nanodevices, critically required in many applications

    Advanced concepts and functionalities for symmetry-broken photonic bound states in the continuum

    Get PDF

    Field Programmable Gate Arrays (FPGAs) II

    Get PDF
    This Edited Volume Field Programmable Gate Arrays (FPGAs) II is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Computer and Information Science. The book comprises single chapters authored by various researchers and edited by an expert active in the Computer and Information Science research area. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on Computer and Information Science, and open new possible research paths for further novel developments

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic
    corecore