376 research outputs found

    Modelling Load Balancing and Carrier Aggregation in Mobile Networks

    Full text link
    In this paper, we study the performance of multicarrier mobile networks. Specifically, we analyze the flow-level performance of two inter-carrier load balancing schemes and the gain engendered by Carrier Aggregation (CA). CA is one of the most important features of HSPA+ and LTE-A networks; it allows devices to be served simultaneously by several carriers. We propose two load balancing schemes, namely Join the Fastest Queue (JFQ) and Volume Balancing (VB), that allow the traffic of CA and non-CA users to be distributed over the aggregated carriers. We then evaluate the performance of these schemes by means of analytical modeling. We show that the proposed schemes achieve quasi-ideal load balancing. We also investigate the impact of mixing traffic of CA and non-CA users in the same cell and show that performance is practically insensitive to the traffic mix.Comment: 8 pages, 6 figures, submitted to WiOpt201

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Indoor Radio Measurement and Planning for UMTS/HSPDA with Antennas

    Get PDF
    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator\u27s point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product\u27s response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work

    Comparison of Picocell and DAS Configuration with HSPA Evolution

    Get PDF
    As demand of mobile data services has grown exponentially, it has increased pressure on mobile operators to enhance capacity in dense urban areas. Usage of internet and services related to mobile network has grown up. UMTS specification has been updated in order to cope with an increased amount of mobile data traffic. These upgrades and releases are based on international standards. HSDPA and HSUPA technologies are previous upgrades of UMTS network but now HSPA Evolution (HSPA+) is the upgraded version for UMTS. HSPA+ improves performance of mobile data transmission in downlink direction. Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators. It has been forecasted that amount of data users will increase in future and this will set new challenges for mobile operators. The network is planned in such a way that more capacity is provided to places where more users are present. Most of the network traffic in dense urban area is generated by indoor users. Indoor planning is mostly done with multiple picocells or DAS configuration. The main differences between these two configurations are interference, total capacity, cost of the equipment and implementation. In this Master’s thesis, the main focus is to compare picocells and DAS configuration for HSPA+ by simulations and measurements. Several mobile terminals were used to generate low and high loads for HSPA+ network. These comparisons were made by analyzing the results for signal to interference ratio, total network throughput and several other indicators. The results showed that DAS outperforms picocells in low/high load conditions in terms of SIR, cell throughput and modulation technique. DAS is good choice for medium sized building due to handover free regions and smooth coverage. /Kir1

    IST-2000-30148 I-METRA: D6.2 Implications in re-configurable systems beyond 3G (Part 2)

    Get PDF
    This activity evaluates the extension of the bandwidth of the UTRA MIMO HSDPA concept to 20 MHz, which is precisely the bandwidth of HIPERLAN/2. This would allow a fair comparison between the performance of UTRA MIMO HSDPA and the enhanced HIPERLAN/2. The bandwidth expansion would be the consequence of multiplying the chip rate of the W-CDMA spreading by four, i.e., 3.84 x 4 = 15.36 Mcps. A higher bandwidth MIMO channel model is necessary and this will be developed based on the channel model already developed in WP2. High data rates are required to satisfy the ever-increasing application requirements in future wireless communication systems. Recent investigations have indicated that a peak data rate of up to 20Mbps per user in the DL may be required for satisfactory reception of bursty traffic. As the transmission powers (of both mobile terminals and base stations) are limited, higher data rates lead to the reduction of the effective coverage area of a cell. That is, only users that are close to the base station will be able to communicate with high data rates, while users far away from the base station will only be able to use low data rates.Preprin

    IST-2000-30148 I-METRA: D6.1 Implications in re-configurable systems beyond 3G (Part 1)

    Get PDF
    In this activity MIMO HSDPA is evaluated as the UMTS evolution that could allow a combination of high bit rate services, coverage and mobility with a good trade-off between cost and performance. This evaluation requires the definition of an objective framework for comparison between competing air interface technologies for Systems beyond 3G, and should be carried out in cooperation with other IST projects. The deliverable is complemented by analytically assessing channel capacity in flat Rician- and Rayleigh fading when ideal proportional fast scheduling, optimal rate adaptation, and various transmit diversity techniques are used.Preprin
    • …
    corecore