96 research outputs found

    HACMAC: A reliable human activity-based medium access control for implantable body sensor networks

    Get PDF
    Chronic care is an eminent application of implantable body sensor networks (IBSN). Performing physical activities such as walking, running, and sitting is unavoidable during the long-term monitoring of chronic-care patients. These physical activities cripple the radio frequency (RF) signal between the implanted sensor nodes. This is because various body postures shadow the RF signal. Although shadowing itself may be short, a prolonged activity will significantly increase the effect of the RF-shadowing. This effect dampens the communication between implantable sensor nodes and hence increases the chance of missing life-critical data. To overcome this problem, in this paper we propose a link quality-aware medium access control (MAC) protocol called HACMAC, which adapts the access mechanism during different human activities based on the wireless link-quality. Our simulation results show that compared with the access mechanism suggested by the IEEE 802.15.6 standard, the reliability of the wireless communication is increased using HACMAC even while transmitting at a strongly low transmission power of 25µW effective isotropic radiated power (EIRP) set by the IEEE 802.15.6 standar

    Modelling, analysis and design of MAC and routing protocols for wireless body area sensor networks.

    Get PDF
    The main contribution of the thesis is to provide modeling, analysis, and design for Medium Access Control (MAC) and link-quality based routing protocols of Wireless Body Area Sensor Networks (WBASNs) for remote patient monitoring applications by considering saturated and un-saturated traffic scenarios. The design of these protocols has considered the stringent Quality of Service (QoS) requirements of patient monitoring systems. Moreover, the thesis also provides intelligent routing metrics for packet forwarding mechanisms while considering the integration of WBASNs with the Internet of Things (IoTs). First, we present the numerical modeling of the slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) for the IEEE 802.15.4 and IEEE 802.15.6 standards. By using this modelling, we proposed a MAC layer mechanism called Delay, Reliability and Throughput (DRT) profile for the IEEE 802.15.4 and IEEE 802.15.6, which jointly optimize the QoS in terms of limited delay, reliability, efficient channel access and throughput by considering the requirements of patient monitoring system under different frequency bands including 420 MHz, 868 MHz and 2.4 GHz. Second, we proposed a duty-cycle based energy efficient adaptive MAC layer mechanism called Tele-Medicine Protocol (TMP) by considering the limited delay and reliability for patient monitoring systems. The proposed energy efficient protocol is designed by combining two optimizations methods: MAC layer parameter tuning and duty cycle-based optimization. The duty cycle is adjusted by using three factors: offered network traffic load, DRT profile and superframe duration. Third, a frame aggregation scheme called Aggregated-MAC Protocol Data Unit (A- MPDU) is proposed for the IEEE 802.15.4. A-MPDU provides high throughput and efficient channel access mechanism for periodic data transmission by considering the specified QoS requirements of the critical patient monitoring systems. To implement the scheme accurately, we developed a traffic pattern analysis to understand the requirements of the sensor nodes in patient monitoring systems. Later, we mapped the requirements on the existing MAC to find the performance gap. Fourth, empirical reliability assessment is done to validate the wireless channel characteristics of the low-power radios for successful deployment of WBASNs/IoTs based link quality routing protocols. A Test-bed is designed to perform the empirical experiments for the identification of the actual link quality estimation for different hospital environments. For evaluation of the test-bed, we considered parameters including Received Signal Strength Indicator (RSSI), Link Quality Indicator (LQI), packet reception and packet error rate. Finally, there is no standard under Internet Engineering Task Force (IETF) which provides the integration of the IEEE 802.15.6 with IPv6 networks so that WBASNs could become part of IoTs. For this, an IETF draft is proposed which highlights the problem statement and solution for this integration. The discussion is provided in Appendix B

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Study of MAC Protocols for Mobile Wireless Body Sensor Networks

    Get PDF
    Wireless Body Area Networks (WBAN) also referred to as a body sensor network (BSN), is a wireless network of wearable computing devices. It has emerged as a key technology to provide real-time health monitoring of a patient and diagnose many life threatening diseases. WBAN operates in close vicinity to, on, or inside a human body and supports a variety of medical and non-medical applications. The design of a medium access control is a challenge due to the characteristics of wireless channel and the need to fulfill both requirements of mobility support and energy efficiency.  This paper presents a comparative study of IEEE 802.15.6, IEEE 804.15.4 and T-MAC in order to analyze the performance of each standard in terms of delay, throughput and energy consumption. Keywords: Biomedical, IEEE 802.15.6; T-MAC, IEEE 802.15.4, mobility, low-power communication, wireless body sensor networks, implantable sensors, healthcare applications, biosensors

    A comprehensive review of wireless body area network

    Get PDF
    Recent development and advancement of information and communication technologies facilitate people in different dimensions of life. Most importantly, in the healthcare industry, this has become more and more involved with the information and communication technology-based services. One of the most important services is monitoring of remote patients, that enables the healthcare providers to observe, diagnose and prescribe the patients without being physically present. The advantage of miniaturization of sensor technologies gives the flexibility of installing in, on or off the body of patients, which is capable of forwarding physiological data wirelessly to remote servers. Such technology is named as Wireless Body Area Network (WBAN). In this paper, WBAN architecture, communication technologies for WBAN, challenges and different aspects of WBAN are illustrated. This paper also describes the architectural limitations of existing WBAN communication frameworks. blueFurthermore, implementation requirements are presented based on IEEE 802.15.6 standard. Finally, as a source of motivation towards future development of research incorporating Software Defined Networking (SDN), Energy Harvesting (EH) and Blockchain technology into WBAN are also provided

    Reliable and energy efficient scheduling protocols for wireless body area networks (WBAN)

    Get PDF
    Wireless Body Area Network (WBAN) facilitates efficient and cost-effective e-health care and well-being applications. The WBAN has unique challenges and features compared to other Wireless Sensor Networks (WSN). In addition to battery power consumption, the vulnerability and the unpredicted channel behavior of the Medium Access Control (MAC) layer make channel access a serious problem.MAC protocols based on Time Division Multiple Access (TDMA) can improve the reliability and efficiency of WBAN. However, conventional static TDMA techniques adopted by IEEE 802.15.4 and IEEE 802.15.6 do not sufficiently consider the channel status or the buffer requirements of the nodes within heterogeneous contexts. Although there are some solutions that have been proposed to alleviate the effect of the deep fade in WBAN channel by adopting dynamic slot allocation, these solutions still suffer from some reliability and energy efficiency issues and they do not avoid channel deep fading.This thesis presents novel and generic TDMA based techniques to improve WBAN reliability and energy efficiency. The proposed techniques synchronise nodes adaptively whilst tackling their channel and buffer status in normal and emergency contexts. Extensive simulation experiments using various traffic rates and time slot lengths demonstrate that the proposed techniques improve the reliability and the energy efficiency compared to the de-facto standards of WBAN, i.e. the IEEE 802.15.4 and the IEEE 802.15.6. In normal situations, the proposed techniques reduce packet loss up to 61% and 68% compared to the IEEE 802.15.4 and IEEE 802.15.6 respectively. They also reduce energy consumption up to 7.3%. In emergencies, however, the proposed techniques reduce packets loss up to 63.4% and 90% with respect to their counterparts in IEEE 802.15.4 and 802.15.6. The achieved results confirm the significant enhancements made by the developed scheduling techniques to promote the reliability and energy efficiency of WBAN, opening up promising doors towards new horizons and applications

    From Radio Channel Modeling to a System Level Perspective in Body-Centric Communications

    Get PDF
    Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources

    QoS in Body Area Networks: A survey

    Get PDF
    • …
    corecore