7 research outputs found

    A Statistical Perspective of the Empirical Mode Decomposition

    Get PDF
    This research focuses on non-stationary basis decompositions methods in time-frequency analysis. Classical methodologies in this field such as Fourier Analysis and Wavelet Transforms rely on strong assumptions of the underlying moment generating process, which, may not be valid in real data scenarios or modern applications of machine learning. The literature on non-stationary methods is still in its infancy, and the research contained in this thesis aims to address challenges arising in this area. Among several alternatives, this work is based on the method known as the Empirical Mode Decomposition (EMD). The EMD is a non-parametric time-series decomposition technique that produces a set of time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry specific statistical properties. The main focus is providing a general and flexible family of basis extraction methods with minimal requirements compared to those within the Fourier or Wavelet techniques. This is highly important for two main reasons: first, more universal applications can be taken into account; secondly, the EMD has very little a priori knowledge of the process required to apply it, and as such, it can have greater generalisation properties in statistical applications across a wide array of applications and data types. The contributions of this work deal with several aspects of the decomposition. The first set regards the construction of an IMF from several perspectives: (1) achieving a semi-parametric representation of each basis; (2) extracting such semi-parametric functional forms in a computationally efficient and statistically robust framework. The EMD belongs to the class of path-based decompositions and, therefore, they are often not treated as a stochastic representation. (3) A major contribution involves the embedding of the deterministic pathwise decomposition framework into a formal stochastic process setting. One of the assumptions proper of the EMD construction is the requirement for a continuous function to apply the decomposition. In general, this may not be the case within many applications. (4) Various multi-kernel Gaussian Process formulations of the EMD will be proposed through the introduced stochastic embedding. Particularly, two different models will be proposed: one modelling the temporal mode of oscillations of the EMD and the other one capturing instantaneous frequencies location in specific frequency regions or bandwidths. (5) The construction of the second stochastic embedding will be achieved with an optimisation method called the cross-entropy method. Two formulations will be provided and explored in this regard. Application on speech time-series are explored to study such methodological extensions given that they are non-stationary

    Localising epileptiform activity and eloquent cortex using magnetoencephalography

    Get PDF
    In patients with drug resistant epilepsy, the surgical resection of epileptogenic cortex allows the possibility for seizure freedom, provided that epileptogenic and eloquent brain tissue can be accurately identified prior to surgery. This is often achieved using various techniques including neuroimaging, electroencephalographic (EEG), neuropsychological and invasive measurements. Over the last 20 years, magnetoencephalography (MEG) has emerged as a non-invasive tool that can provide important clinical information to patients with suspected neocortical epilepsy being considered for surgery. The standard clinical MEG analyses to localise abnormalities are not always successful and therefore the development and evaluation of alternative methods are warranted. There is also a continuous need to develop MEG techniques to delineate eloquent cortex. Based on this rationale, this thesis is concerned with the presurgical evaluation of drug resistant epilepsy patients using MEG and consists of two themes: the first theme focuses on the refinement of techniques to functionally map the brain and the second focuses on evaluating alternative techniques to localise epileptiform activity. The first theme involved the development of an alternative beamformer pipeline to analyse Elekta Neuromag data and was subsequently applied to data acquired using a pre-existing and a novel language task. The findings of the second theme demonstrated how beamformer based measures can objectively localise epileptiform abnormalities. A novel measure, rank vector entropy, was introduced to facilitate the detection of multiple types of abnormal signals (e.g. spikes, slow waves, low amplitude transients). This thesis demonstrates the clinical capacity of MEG and its role in the presurgical evaluation of drug resistant epilepsy patients

    Video-based infant discomfort detection

    Get PDF

    The benefits of an additional practice in descriptive geomerty course: non obligatory workshop at the Faculty of Civil Engineering in Belgrade

    Get PDF
    At the Faculty of Civil Engineering in Belgrade, in the Descriptive geometry (DG) course, non-obligatory workshops named ā€œfacultative taskā€ are held for the three generations of freshman students with the aim to give students the opportunity to get higher final grade on the exam. The content of this workshop was a creative task, performed by a group of three students, offering free choice of a topic, i.e. the geometric structure associated with some real or imagery architectural/art-work object. After the workshops a questionnaire (composed by the professors at the course) is given to the students, in order to get their response on teaching/learning materials for the DG course and the workshop. During the workshop students performed one of the common tests for testing spatial abilities, named ā€œpaper folding". Based on the results of the questionnairethe investigation of the linkages between:studentsā€™ final achievements and spatial abilities, as well as studentsā€™ expectations of their performance on the exam, and how the studentsā€™ capacity to correctly estimate their grades were associated with expected and final grades, is provided. The goal was to give an evidence that a creative work, performed by a small group of students and self-assessment of their performances are a good way of helping students to maintain motivation and to accomplish their achievement. The final conclusion is addressed to the benefits of additional workshops employment in the course, which confirmhigherfinal scores-grades, achievement of creative results (facultative tasks) and confirmation of DG knowledge adaption

    The contemporary visualization and modelling technologies and the techniques for the design of the green roofs

    Get PDF
    The contemporary design solutions are merging the boundaries between real and virtual world. The Landscape architecture like the other interdisciplinary field stepped in a contemporary technologies area focused on that, beside the good execution of works, designer solutions has to be more realistic and ā€œtouchableā€. The opportunities provided by Virtual Reality are certainly not negligible, it is common knowledge that the designs in the world are already presented in this way so the Virtual Reality increasingly used. Following the example of the application of virtual reality in landscape architecture, this paper deals with proposals for the use of virtual reality in landscape architecture so that designers, clients and users would have a virtual sense of scope e.g. rooftop garden, urban areas, parks, roads, etc. It is a programming language that creates a series of images creating a whole, so certain parts can be controlled or even modified in VR. Virtual reality today requires a specific gadget, such as Occulus, HTC Vive, Samsung Gear VR and similar. The aim of this paper is to acquire new theoretical and practical knowledge in the interdisciplinary field of virtual reality, the ability to display using virtual reality methods, and to present through a brief overview the plant species used in the design and construction of an intensive roof garden in a Mediterranean climate, the basic characteristics of roofing gardens as well as the benefits they carry. Virtual and augmented reality as technology is a very powerful tool for landscape architects, when modeling roof gardens, parks, and urban areas. One of the most popular technologies used by landscape architects is Google Tilt Brush, which enables fast modeling. The Google Tilt Brush VR app allows modeling in three-dimensional virtual space using a palette to work with the use of a three dimensional brush. The terms of two "programmed" realities - virtual reality and augmented reality - are often confused. One thing they have in common, though, is VRML - Virtual Reality Modeling Language. In this paper are shown the ways on which this issue can be solved and by the way, get closer the term of Virtual Reality (VR), also all the opportunities which the Virtual reality offered us. As well, in this paper are shown the conditions of Mediterranean climate, the conceptual solution and the plant species which will be used by execution of intensive green roof on the motel ā€œMarkovićā€
    corecore