255 research outputs found

    Leveraging Single Rate Schemes in Multiple Rate Multicast Congestion Control Design

    Full text link

    Application-Oriented Flow Control: Fundamentals, Algorithms and Fairness

    Get PDF
    This paper is concerned with flow control and resource allocation problems in computer networks in which real-time applications may have hard quality of service (QoS) requirements. Recent optimal flow control approaches are unable to deal with these problems since QoS utility functions generally do not satisfy the strict concavity condition in real-time applications. For elastic traffic, we show that bandwidth allocations using the existing optimal flow control strategy can be quite unfair. If we consider different QoS requirements among network users, it may be undesirable to allocate bandwidth simply according to the traditional max-min fairness or proportional fairness. Instead, a network should have the ability to allocate bandwidth resources to various users, addressing their real utility requirements. For these reasons, this paper proposes a new distributed flow control algorithm for multiservice networks, where the application's utility is only assumed to be continuously increasing over the available bandwidth. In this, we show that the algorithm converges, and that at convergence, the utility achieved by each application is well balanced in a proportionally (or max-min) fair manner

    Fast-response Receiver-driven Layered Multicast

    Get PDF
    In this paper, a new layered multicast protocol, called Fast-response Receiver-driven Layered Multicast (FRLM), is proposed. The differences between our FRLM and the original RLM are only at the receivers. Our design allows the receivers to track the available network bandwidth faster; this enables the receivers to converge to their optimal number of subscribed layers quicker, and to respond to the network congestion prompter. An early trigger mechanism for shortening IGMP leave latency is also designed. We show that FRLM can avoid several potential problems with the original RLM, which have been overlooked previously. Last but not the least, FRLM is a practical scheme that can be readily implemented in today's best-effort Internet.published_or_final_versio

    Scalable reliable on-demand media streaming protocols

    Get PDF
    This thesis considers the problem of delivering streaming media, on-demand, to potentially large numbers of concurrent clients. The problem has motivated the development in prior work of scalable protocols based on multicast or broadcast. However, previous protocols do not allow clients to efficiently: 1) recover from packet loss; 2) share bandwidth fairly with competing flows; or 3) maximize the playback quality at the client for any given client reception rate characteristics. In this work, new protocols, namely Reliable Periodic Broadcast (RPB) and Reliable Bandwidth Skimming (RBS), are developed that efficiently recover from packet loss and achieve close to the best possible server bandwidth scalability for a given set of client characteristics. To share bandwidth fairly with competing traffic such as TCP, these protocols can employ the Vegas Multicast Rate Control (VMRC) protocol proposed in this work. The VMRC protocol exhibits TCP Vegas-like behavior. In comparison to prior rate control protocols, VMRC provides less oscillatory reception rates to clients, and operates without inducing packet loss when the bottleneck link is lightly loaded. The VMRC protocol incorporates a new technique for dynamically adjusting the TCP Vegas threshold parameters based on measured characteristics of the network. This technique implements fair sharing of network resources with other types of competing flows, including widely deployed versions of TCP such as TCP Reno. This fair sharing is not possible with the previously defined static Vegas threshold parameters. The RPB protocol is extended to efficiently support quality adaptation. The Optimized Heterogeneous Periodic Broadcast (HPB) is designed to support a range of client reception rates and efficiently support static quality adaptation by allowing clients to work-ahead before beginning playback to receive a media file of the desired quality. A dynamic quality adaptation technique is developed and evaluated which allows clients to achieve more uniform playback quality given time-varying client reception rates

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    A Multirate MAC Protocol for Reliable Multicast in Multihop Wireless Networks

    Get PDF
    Many multicast applications, such as audio/video streaming, file sharing or emergency reporting, are becoming quite common in wireless mobile environment, through the widespread deployment of 802.11-based wirelessnetworks. However, despite the growing interest in the above applications, the current IEEE 802.11 standard does not offer any medium access control (MAC) layer support to the efficient and reliable provision of multicast services. It does not provide any MAC-layer recovery mechanism for unsuccessful multicast transmissions. Consequently, lost frames cannot be detected, hence retransmitted, causing a significant quality of service degradation. In addition, 802.11 multicast traffic is sent at the basic data rate, often resulting in severe throughput reduction. In this work, we address these issues by presenting areliablemulticastMACprotocol for wirelessmultihopnetworks, which is coupled with a lightweight rate adaptation scheme. Simulation results show that our schemes provide high packet delivery ratio and when compared with other state-of-the-art solutions, they also provide reduced control overhead and data delivery dela

    Reliable Multicast Transport for Heterogeneous Mobile IP environment using Cross-Layer Information

    Get PDF
    Reliable multicast transport architecture designed for heterogeneous mobile IP environment using cross-layer information for enhanced Quality of Service (QoS) and seamless handover is discussed. In particular, application-specific reliable multicast retransmission schemes are proposed, which are aimed to minimize the protocol overhead taking into account behaviour of mobile receivers (loss of connectivity and handover) and the specific application requirements for reliable delivery (such as carousel, one-to-many download and streaming delivery combined with recording). The proposed localized retransmission strategies are flexible configured for tree-based multicast transport. Cross layer interactions in order to enhance reliable transport and support seamless handover is discussed considering IEEE 802.21 media independent handover mechanisms. The implementation is based on Linux IPv6 environment. Simulations in ns2 focusing on the benefits of the proposed multicast retransmission schemes for particular application scenarios are presented
    corecore