4 research outputs found

    Performance and Usability of Various Robotic Arm Control Modes from Human Force Signals

    No full text
    Elaborating an efficient and usable mapping between input commands and output movements is still a key challenge for the design of robotic arm prostheses. In order to address this issue, we present and compare three different control modes, by assessing them in terms of performance as well as general usability. Using an isometric force transducer as the command device, these modes convert the force input signal into either a position or a velocity vector, whose magnitude is linearly or quadratically related to force input magnitude. With the robotic arm from the open source 3D-printed Poppy Humanoid platform simulating a mobile prosthesis, an experiment was carried out with eighteen able-bodied subjects performing a 3-D target-reaching task using each of the three modes. The subjects were given questionnaires to evaluate the quality of their experience with each mode, providing an assessment of their global usability in the context of the task. According to performance metrics and questionnaire results, velocity control modes were found to perform better than position control mode in terms of accuracy and quality of control as well as user satisfaction and comfort. Subjects also seemed to favor quadratic velocity control over linear (proportional) velocity control, even if these two modes did not clearly distinguish from one another when it comes to performance and usability assessment. These results highlight the need to take into account user experience as one of the key criteria for the design of control modes intended to operate limb prostheses

    Performance and usability of various robotic arm control modes from human force signals

    Get PDF
    Elaborating an efficient and usable mapping between input commands and output movements is still a key challenge for the design of robotic arm prostheses. In order to address this issue, we present and compare three different control modes, by assessing them in terms of performance as well as general usability. Using an isometric force transducer as the command device, these modes convert the force input signal into either a position or a velocity vector, whose magnitude is linearly or quadratically related to force input magnitude. With the robotic arm from the open source 3D-printed Poppy Humanoid platform simulating a mobile prosthesis, an experiment was carried out with eighteen able-bodied subjects performing a 3-D target-reaching task using each of the three modes. The subjects were given questionnaires to evaluate the quality of their experience with each mode, providing an assessment of their global usability in the context of the task. According to performance metrics and questionnaire results, velocity control modes were found to perform better than position control mode in terms of accuracy and quality of control as well as user satisfaction and comfort. Subjects also seemed to favor quadratic velocity control over linear (proportional) velocity control, even if these two modes did not clearly distinguish from one another when it comes to performance and usability assessment. These results highlight the need to take into account user experience as one of the key criteria for the design of control modes intended to operate limb prostheses

    Evoked Somatosensory Feedback for Closed-Loop Control of Prosthetic Hand

    Get PDF
    Somatosensory feedback, such as tactile and proprioceptive feedback, is essential to our daily sensorimotor tasks. A lack of sensory information limits meaningful human-machine interactions. Different somatosensory feedback strategies have been developed in recent years. Non-invasive sensory substitutional approaches often evoke sensations that are unintuitive, requiring extensive sensory training. Alternatively, invasive neural stimulation can elicit intuitive percepts that are interpretable readily by prosthetic hand users; however, the invasive nature of the procedure limits wide clinical applications. To overcome these issues, we developed a multimodal sensory feedback approach that delivers tactile and proprioceptive information non-invasively. We used a skin-surface nerve stimulation array to target afferent fibers in the peripheral nerves, which can elicit intuitive tactile feedback at the fingertips. We used a vibrotactile array to deliver proprioceptive percepts encoding kinematic information of prosthetic joints. First, we evaluated whether the peripheral nerve stimulation technique could be used for the recognition of object properties. Evoked tactile sensations were modulated using forces recorded by a sensorized prosthesis not actively controlled by the users. We demonstrated that the elicited tactile sensation at the fingertips can enable recognition of object shape and surface topology. Second, we evaluated how evoked tactile feedback can be integrated into the functional utility of a prosthetic hand. We quantified the benefits of tactile feedback under different myoelectric control strategies, when participants performed an object manipulation task. We showed an improved task success rate and reduced muscle activation effort when tactile feedback was provided. Finally, we investigated whether multimodal (tactile and proprioceptive) feedback can enable the recognition of more complex object properties during active control of a prosthetics hand. We found that integrated tactile and proprioceptive feedback allowed for simultaneous recognition of multiple object properties (size and stiffness) in individuals with and without an arm amputation. Overall, this work demonstrates that artificially evoked somatosensory feedback can be utilized effectively to improve the closed-loop control of prostheses. These outcomes highlight the critical role of somatosensory feedback during human-machine interactions, which can enhance functional utility of prosthetic devices and promote user experience and confidence.Doctor of Philosoph
    corecore