33 research outputs found

    Power line communications over time-varying frequency-selective power line channels for smart home applications

    Get PDF
    Many countries in the world are developing the next generation power grid, the smart grid, to combat the ongoing severe environmental problems and achieve e�cient use of the electricity power grid. Smart metering is an enabling technology in the smart grid to address the energy wasting problem. It monitors and optimises the power consumption of consumers' devices and appliances. To ensure proper operation of smart metering, a reliable communication infrastructure plays a crucial role. Power line communication (PLC) is regarded as a promising candidate that will ful�l the requirements of smart grid applications. It is also the only wired technology which has a deployment cost comparable to wireless communication. PLC is most commonly used in the low-voltage (LV) power network which includes indoor power networks and the outdoor LV distribution networks. In this thesis we consider using PLC in the indoor power network to support the communication between the smart meter and a variety of appliances that are connected to the network. Power line communication (PLC) system design in indoor power network is challenging due to a variety of channel impairments, such as time-varying frequency-selective channel and complex impulsive noise scenarios. Among these impairments, the timevarying channel behaviour is an interesting topic that hasn't been thoroughly investigated. Therefore, in this thesis we focus on investigating this behaviour and developing a low-cost but reliable PLC system that is able to support smart metering applications in indoor environments. To aid the study and design of such a system, the characterisation and modelling of indoor power line channel are extensively investigated in this thesis. In addition, a exible simulation tool that is able to generate random time-varying indoor power line channel realisations is demonstrated. Orthogonal frequency division modulation (OFDM) is commonly used in existing PLC standards. However, when it is adopted for time-varying power line channels, it may experience signi�cant intercarrier interference (ICI) due to the Doppler spreading caused by channel time variation. Our investigation on the performance of an ordinary OFDM system over time-varying power line channel reveals that if ICI is not properly compensated, the system may su�er from severe performance loss. We also investigate the performance of some linear equalisers including zero forcing (ZF), minimum mean squared error (MMSE) and banded equalisers. Among them, banded equalisers provide the best tradeo� between complexity and performance. For a better tradeo� between complexity and performance, time-domain receiver windowing is usually applied together with banded equalisers. This subject has been well investigated for wireless communication, but not for PLC. In this thesis, we investigate the performance of some well-known receiver window design criteria that was developed for wireless communication for time-varying power line channels. It is found that these criteria do not work well over time-varying power line channels. Therefore, to �ll this gap, we propose an alternative window design criterion in this thesis. Simulations have shown that our proposal outperforms the other criteria

    Distribution dependent adaptive learning

    Get PDF

    Power line communications over time-varying frequency-selective power line channels for Smart Home Applications

    Get PDF
    Many countries in the world are developing the next generation power grid, the smart grid, to combat the ongoing severe environmental problems and achieve e�cient use of the electricity power grid. Smart metering is an enabling technology in the smart grid to address the energy wasting problem. It monitors and optimises the power consumption of consumers' devices and appliances. To ensure proper operation of smart metering, a reliable communication infrastructure plays a crucial role. Power line communication (PLC) is regarded as a promising candidate that will ful�l the requirements of smart grid applications. It is also the only wired technology which has a deployment cost comparable to wireless communication. PLC is most commonly used in the low-voltage (LV) power network which includes indoor power networks and the outdoor LV distribution networks. In this thesis we consider using PLC in the indoor power network to support the communication between the smart meter and a variety of appliances that are connected to the network. Power line communication (PLC) system design in indoor power network is challenging due to a variety of channel impairments, such as time-varying frequency-selective channel and complex impulsive noise scenarios. Among these impairments, the timevarying channel behaviour is an interesting topic that hasn't been thoroughly investigated. Therefore, in this thesis we focus on investigating this behaviour and developing a low-cost but reliable PLC system that is able to support smart metering applications in indoor environments. To aid the study and design of such a system, the characterisation and modelling of indoor power line channel are extensively investigated in this thesis. In addition, a exible simulation tool that is able to generate random time-varying indoor power line channel realisations is demonstrated. Orthogonal frequency division modulation (OFDM) is commonly used in existing PLC standards. However, when it is adopted for time-varying power line channels, it may experience signi�cant intercarrier interference (ICI) due to the Doppler spreading caused by channel time variation. Our investigation on the performance of an ordinary OFDM system over time-varying power line channel reveals that if ICI is not properly compensated, the system may su�er from severe performance loss. We also investigate the performance of some linear equalisers including zero forcing (ZF), minimum mean squared error (MMSE) and banded equalisers. Among them, banded equalisers provide the best tradeo� between complexity and performance. For a better tradeo� between complexity and performance, time-domain receiver windowing is usually applied together with banded equalisers. This subject has been well investigated for wireless communication, but not for PLC. In this thesis, we investigate the performance of some well-known receiver window design criteria that was developed for wireless communication for time-varying power line channels. It is found that these criteria do not work well over time-varying power line channels. Therefore, to �ll this gap, we propose an alternative window design criterion in this thesis. Simulations have shown that our proposal outperforms the other criteria

    Enhanced multi-user DMT spectrum management using polynomial matrix decomposition techniques

    Get PDF
    This thesis researches the increasingly critical roles played by intelligent resource management and interference mitigation algorithms in present-day input multiple output (MIMO) communication systems. This thesis considers the application of polynomial matrix decomposition (PMD) algorithms, an emerging broadband factorisation technology for broadband MIMO access networks. Present DSL systems’ performance is constrained by the presence of interference (crosstalk) between multiple users sharing a common physical cable bundle. Compared to the traditional static spectrum management methods that define their survival to the worst-case scenarios, DSM methods provides some degree of flexibility to both direct channel and noise parameters to improve evolvability and robustness significantly. A novel crosstalk-aware DSM algorithm is proposed for the efficient management of multi-user DSL systems. Joint power allocation procedures are considered for the proposed single-channel equalisation method in DSL access networks. This thesis then shows that DSM can also benefit overdetermined precoding-equalisation systems, when the channel state information (CSI) parameters call for a specific decision feedback criterion to achieve a perfect reconstruction. A reasonable redundancy is introduced to reformulate the original multi-user MIMO problem into the simplest case of power management problem. DSM algorithms are primarily applied to solve the power allocation problem in DSM networks with the aim of maximising the system attribute rather than meeting specific requirements. Also, a powerful PMD algorithm known as sequential matrix diagonalisation (SMD) is used for analysing the eigenvalue decomposition problem by quantifying the available system resource including the effects of the crosstalk and its parameters. This analysis is carried out through joint precoding and equalisation structures. The thesis also investigates dynamic interference mitigation strategies for improving the performance of DSL networks. Two different mitigation strategies through a decision feedback equalisation (DFE) criterion are considered, including zero-forcing (ZF) and minimum mean square error (MMSE) equalisers. The difference between ZF and MMSE equalisations is analysed. Some experimental simulation results demonstrate the performance of both ZF and MMSE equalisation under the DFE equalisation constraint settings. Model reduction on the MMSE equalisation is thus applied to balance the crosstalk interference and enhance the data-rate throughput. Finally, the thesis studies a multi-user MIMO problem under the utility maximisation framework. Simulation results illustrate that the power allocation of multi-user DSL transmission can be jointly controlled and the interference can often be mitigated optimally on a single user basis. Driven by imperfect CSI information in current DSL networks, the research presents a novel DSM method that allows not only crosstalk mitigation, but also the exploitation of crosstalk environments through the fielding of versatile, flexible and evolvable systems. The proposed DSM tool is presented to achieve a robust mitigating system in any arbitrary overdetermined multi-user MIMO environment. Numerical optimisation results show that the mitigation of crosstalk impairment using the proposed DSM strategy. The design and implementation of the proposed DSM are carried out in the environment of MATLAB

    Power line communications over time-varying frequency-selective power line channels for smart home applications

    Get PDF
    Many countries in the world are developing the next generation power grid, the smart grid, to combat the ongoing severe environmental problems and achieve e�cient use of the electricity power grid. Smart metering is an enabling technology in the smart grid to address the energy wasting problem. It monitors and optimises the power consumption of consumers' devices and appliances. To ensure proper operation of smart metering, a reliable communication infrastructure plays a crucial role. Power line communication (PLC) is regarded as a promising candidate that will ful�l the requirements of smart grid applications. It is also the only wired technology which has a deployment cost comparable to wireless communication. PLC is most commonly used in the low-voltage (LV) power network which includes indoor power networks and the outdoor LV distribution networks. In this thesis we consider using PLC in the indoor power network to support the communication between the smart meter and a variety of appliances that are connected to the network. Power line communication (PLC) system design in indoor power network is challenging due to a variety of channel impairments, such as time-varying frequency-selective channel and complex impulsive noise scenarios. Among these impairments, the timevarying channel behaviour is an interesting topic that hasn't been thoroughly investigated. Therefore, in this thesis we focus on investigating this behaviour and developing a low-cost but reliable PLC system that is able to support smart metering applications in indoor environments. To aid the study and design of such a system, the characterisation and modelling of indoor power line channel are extensively investigated in this thesis. In addition, a exible simulation tool that is able to generate random time-varying indoor power line channel realisations is demonstrated. Orthogonal frequency division modulation (OFDM) is commonly used in existing PLC standards. However, when it is adopted for time-varying power line channels, it may experience signi�cant intercarrier interference (ICI) due to the Doppler spreading caused by channel time variation. Our investigation on the performance of an ordinary OFDM system over time-varying power line channel reveals that if ICI is not properly compensated, the system may su�er from severe performance loss. We also investigate the performance of some linear equalisers including zero forcing (ZF), minimum mean squared error (MMSE) and banded equalisers. Among them, banded equalisers provide the best tradeo� between complexity and performance. For a better tradeo� between complexity and performance, time-domain receiver windowing is usually applied together with banded equalisers. This subject has been well investigated for wireless communication, but not for PLC. In this thesis, we investigate the performance of some well-known receiver window design criteria that was developed for wireless communication for time-varying power line channels. It is found that these criteria do not work well over time-varying power line channels. Therefore, to �ll this gap, we propose an alternative window design criterion in this thesis. Simulations have shown that our proposal outperforms the other criteria
    corecore