3,016 research outputs found

    Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation

    Full text link
    This paper compares two important downlink multicell interference mitigation techniques, namely, large-scale (LS) multiple-input multiple-output (MIMO) and network MIMO. We consider a cooperative wireless cellular system operating in time-division duplex (TDD) mode, wherein each cooperating cluster includes BB base-stations (BSs), each equipped with multiple antennas and scheduling KK single-antenna users. In an LS-MIMO system, each BS employs BMBM antennas not only to serve its scheduled users, but also to null out interference caused to the other users within the cooperating cluster using zero-forcing (ZF) beamforming. In a network MIMO system, each BS is equipped with only MM antennas, but interference cancellation is realized by data and channel state information exchange over the backhaul links and joint downlink transmission using ZF beamforming. Both systems are able to completely eliminate intra-cluster interference and to provide the same number of spatial degrees of freedom per user. Assuming the uplink-downlink channel reciprocity provided by TDD, both systems are subject to identical channel acquisition overhead during the uplink pilot transmission stage. Further, the available sum power at each cluster is fixed and assumed to be equally distributed across the downlink beams in both systems. Building upon the channel distribution functions and using tools from stochastic ordering, this paper shows, however, that from a performance point of view, users experience better quality of service, averaged over small-scale fading, under an LS-MIMO system than a network MIMO system. Numerical simulations for a multicell network reveal that this conclusion also holds true with regularized ZF beamforming scheme. Hence, given the likely lower cost of adding excess number of antennas at each BS, LS-MIMO could be the preferred route toward interference mitigation in cellular networks.Comment: 13 pages, 7 figures; IEEE Journal of Selected Topics in Signal Processing, Special Issue on Signal Processing for Large-Scale MIMO Communication

    Enhanced Inter-Cell Interference Coordination Challenges in Heterogeneous Networks

    Full text link
    3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.Comment: 12 pages, 4 figures, 2 table

    Spatial DCT-Based Channel Estimation in Multi-Antenna Multi-Cell Interference Channels

    Get PDF
    This work addresses channel estimation in multiple antenna multicell interference-limited networks. Channel state information (CSI) acquisition is vital for interference mitigation. Wireless networks often suffer from multicell interference, which can be mitigated by deploying beamforming to spatially direct the transmissions. The accuracy of the estimated CSI plays an important role in designing accurate beamformers that can control the amount of interference created from simultaneous spatial transmissions to mobile users. Therefore, a new technique based on the structure of the spatial covariance matrix and the discrete cosine transform (DCT) is proposed to enhance channel estimation in the presence of interference. Bayesian estimation and Least Squares estimation frameworks are introduced by utilizing the DCT to separate the overlapping spatial paths that create the interference. The spatial domain is thus exploited to mitigate the contamination which is able to discriminate across interfering users. Gains over conventional channel estimation techniques are presented in our simulations which are also valid for a small number of antennas.Comment: Submitted for possible publication. arXiv admin note: text overlap with arXiv:1203.5924 by other author

    Implementação e avaliação no system generator de um sistema cooperativo para os futuros sistemas 5G

    Get PDF
    With the arrival of 5G it is expected the proliferation of services in the different fields such as healthcare, utility applications, industrial automation, 4K streaming, that the former networks can not provide. Additionally, the total number of wireless communication devices will escalate in such a manner that the already scarce available frequency bandwidth won’t be enough to pack the intended objectives. Cisco’s Annual Internet Report from 2018 predicts that by 2023 there will be nearly 30 billion devices capable of wireless communication. Due to the exponential expiation of both services and devices, the challenges upon both network data capacity and efficient radio resourse use will be greater than ever, thus the urgency for solutions is grand. Both the capacity for wireless communications and spectral efficiency are related to cell size and its users proximity to the access point. Thus, shortening the distance between the transmitter and the receiver improves both aspects of the network. This concept is what motivates the implementation of heterogeneous networks, HetNets, that are composed of many different small-cells, SCs, overlaid across the same coexisting area of a conventional macro-cell, shortening the distance between the cell users and its access point transceivers, granting a better coverage and higher data rates. However, the HetNets potential does not come without any challenges, as these networks suffer considerably from communication interference between cells. Although some interference management algorithms that allow coexistence between cells have been proposed in recent years, most of them were evaluated by software simulations and not implemented in real-time platforms. Therefore, this master thesis aims to give the first step on the implementation and evaluation of an interference mitigation technique in hardware. Specifically, it is assumed a downlink scenario composed by a macro-cell base station, a macro-cell primary user and a small cell user, with the aim of implementing an algorithm that eliminates the downlink interference that the base station may cause to the secondary users. The study was carried out using the System Generator DSP tool, which is a tool that generates code for hardware from schematics created in it. This tool also offers a wide range of blocks that help the creation, and fundamentally, the simulation and study of the system to be implemented, before being translated into hardware. The results obtained in this work are a faithful representation of the behavior of the implemented system, which can be used for a future application for FPGA.Com a chegada do 5G, espera-se a proliferação de serviços nas mais diversas áreas tal como assistência médica, automação industrial, transmissão em 4k, que não eram possíveis nas redes das gerações anteriores. Além deste fenómeno, o número total de dispositivos capazes de conexões wireless aumentará de tal maneira que a escassa largura de banda disponível não será suficiente para abranger os objetivos pretendidos. O Relatório Anual de 2018 sobre a Internet da Cisco prevê que até 2023 haverá quase 30 bilhões de dispositivos capazes de comunicação sem fio. Devido ao aumento exponencial de serviços e dispositivos, os desafios sobre a capacidade de dados da rede e o udo eficiente dos recursos de rádio serão maiores que nunca. Por estes motivos, a necessidade de soluções para estas lacunas é enorme. Tanto a capacidade da rede e o uso eficiente do espectro de frequências estão relacionados ao tamanho da célula e à proximidade dos usuários com o ponto de acesso da célula. Ao encurtar a distância entre o transmissor e o recetor ocorre um melhoramento destes dois aspetos da rede. Este é o principal conceito na implementação de redes heterogéneas, HetNets, que são compostas por diversas células pequenas que coexistem na área de uma macro célula convencional, diminuído a distância entre os utilizadores da célula e os pontos de acesso, garantindo uma melhor cobertura e taxa de dados mais elevadas. No entanto, o potencial das HatNets não vem sem nenhum custo, pois estas redes sofrem consideravelmente de interferência entre as células. Embora nos últimos anos foram propostos alguns algoritmos que permitem a coexistência das células, a maioria destes foi só testado em simulações de software e não em plataformas em tempo real. Por esse motivo, esta dissertação de mestrado visa dar o primeiro passo na implementação e a avaliação de uma técnica de mitigação de interferência em hardware. Mais especificamente no cenário de downlink entre uma estação base de uma macro célula, um utilizador primário da macro célula e um utilizador secundário de uma célula pequena, com o principal objetivo de cancelar a interferência que a estação base possa fazer ao utilizador secundário. O estudo foi realizado utilizando a ferramenta System Generator DSP, que é uma ferramenta que gera código para hardware a partir de esquemáticos criados na mesma. Esta ferramenta também oferece uma vasta gama de blocos que ajudam a criação, e fundamentalmente, a simulação e o estudo do sistema a implementar antes de ser traduzido para hardware. Os resultados obtidos neste trabalho são uma fiel representação do comportamento do sistema implementado. O quais podem ser utilizados para uma futura aplicação para FPGA.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Universal Intelligent Small Cell (UnISCell) for Next Generation Cellular Networks

    Get PDF
    Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the next generation of wireless communications. In this context, this paper proposes a novel concept of Universal Intelligent Small Cell (UnISCell) for enabling the densification of the next generation of cellular networks. The proposed novel concept envisions an integrated platform of providing a strong linkage between different stakeholders such as street lighting networks, landline telephone networks and future wireless networks, and is universal in nature being independent of the operating frequency bands and traffic types. The main motivating factors for the proposed small cell concept are the need of public infrastructure re-engineering, and the recent advances in several enabling technologies. First, we highlight the main concepts of the proposed UnISCell platform. Subsequently, we present two deployment scenarios for the proposed UnISCell concept considering infrastructure sharing and service sharing as important aspects. We then describe the key future technologies for enabling the proposed UnISCell concept and present a use case example with the help of numerical results. Finally, we conclude this article by providing some interesting future recommendations
    corecore