22 research outputs found

    Performance of the sleep-mode mechanism of the new IEEE 802.16m proposal for correlated downlink traffic

    Get PDF
    There is a considerable interest nowadays in making wireless telecommunication more energy-efficient. The sleep-mode mechanism in WiMAX (IEEE 802.16e) is one of such energy saving measures. Recently, Samsung proposed some modifications on the sleep-mode mechanism, scheduled to appear in the forthcoming IEEE 802.16m standard, aimed at minimizing the signaling overhead. In this work, we present a performance analysis of this proposal and clarify the differences with the standard mechanism included in IEEE 802.16e. We also propose some special algorithms aimed at reducing the computational complexity of the analysis

    On the effect of combining cooperative communication with sleep mode

    Get PDF
    Cooperation is crucial in (next-generation) wireless networks as it can greatly attribute to ensuring connectivity, reliability, performance, ... Relaying looks promising in a wide variety of network types (cellular, ad-hoc on-demand), each using a certain protocol. Energy efficiency constitutes another key aspect of such networks, as battery power is often limited, and is typically achieved by sleep mode operation. As the range of applications is very broad, rather than modelling one of the protocols in detail, we construct a high-level model capturing the two essential characteristics of cooperation and energy efficiency: relaying and sleep mode, and study their interaction. The used analytical approach allows for accurate performance evaluation and enables us to unveil less trivial trade-offs and to formulate rules-of-thumb applicable across all potential scenarios

    Performance Analysis of the Sleep Mode in WiMAX 2 Networks with Multimedia Application

    Get PDF
    We consider the sleep mode with multimedia application in WiMAX 2 networks, where the real-time traffic includes the real-time and the best-effort traffic mixed. We present a queueing model with multiple heterogeneous vacations to characterize the system probability behavior in the networks with multimedia application. Taking into account the correlation of the real-time traffic, we assume the arrival process as a discrete-time Markovian arrival process (D-MAP) and analyze this queueing model by using the method of an embedded Markov chain. Then, we present the probability distribution for the number of data packets. Accordingly, we give the formulas for the performance measures in terms of the average response time of data packets, the energy saving ratio, and the standard deviation of the number of data packets. We also develop a cost function to determine the optimal length of the sleep cycle in order to maximize the energy saving ratio while satisfying the Quality of Service (QoS) constraint on the average response time of data packets. Finally, we provide numerical results to investigate the influence of the system parameters on the system performance

    Energy Efficient and Cooperative Solutions for Next-Generation Wireless Networks

    Get PDF
    Energy efficiency is increasingly important for next-generation wireless systems due to the limited battery resources of mobile clients. While fourth generation cellular standards emphasize low client battery consumption, existing techniques do not explicitly focus on reducing power that is consumed when a client is actively communicating with the network. Based on high data rate demands of modern multimedia applications, active mode power consumption is expected to become a critical consideration for the development and deployment of future wireless technologies. Another reason for focusing more attention on energy efficient studies is given by the relatively slow progress in battery technology and the growing quality of service requirements of multimedia applications. The disproportion between demanded and available battery capacity is becoming especially significant for small-scale mobile client devices, where wireless power consumption dominates within the total device power budget. To compensate for this growing gap, aggressive improvements in all aspects of wireless system design are necessary. Recent work in this area indicates that joint link adaptation and resource allocation techniques optimizing energy efficient metrics can provide a considerable gain in client power consumption. Consequently, it is crucial to adapt state-of-the-art energy efficient approaches for practical use, as well as to illustrate the pros and cons associated with applying power-bandwidth optimization to improve client energy efficiency and develop insights for future research in this area. This constitutes the first objective of the present research. Together with energy efficiency, next-generation cellular technologies are emphasizing stronger support for heterogeneous multimedia applications. Since the integration of diverse services within a single radio platform is expected to result in higher operator profits and, at the same time, reduce network management expenses, intensive research efforts have been invested into design principles of such networks. However, as wireless resources are limited and shared by clients, service integration may become challenging. A key element in such systems is the packet scheduler, which typically helps ensure that the individual quality of service requirements of wireless clients are satisfied. In contrastingly different distributed wireless environments, random multiple access protocols are beginning to provide mechanisms for statistical quality of service assurance. However, there is currently a lack of comprehensive analytical frameworks which allow reliable control of the quality of service parameters for both cellular and local area networks. Providing such frameworks is therefore the second objective of this thesis. Additionally, the study addresses the simultaneous operation of a cellular and a local area network in spectrally intense metropolitan deployments and solves some related problems. Further improving the performance of battery-driven mobile clients, cooperative communications are sought as a promising and practical concept. In particular, they are capable of mitigating the negative effects of fading in a wireless channel and are thus expected to enhance next-generation cellular networks in terms of client spectral and energy efficiencies. At the cell edges or in areas missing any supportive relaying infrastructure, client-based cooperative techniques are becoming even more important. As such, a mobile client with poor channel quality may take advantage of neighboring clients which would relay data on its behalf. The key idea behind the concept of client relay is to provide flexible and distributed control over cooperative communications by the wireless clients themselves. By contrast to fully centralized control, this is expected to minimize overhead protocol signaling and hence ensure simpler implementation. Compared to infrastructure relay, client relay will also be cheaper to deploy. Developing the novel concept of client relay, proposing simple and feasible cooperation protocols, and analyzing the basic trade-offs behind client relay functionality become the third objective of this research. Envisioning the evolution of cellular technologies beyond their fourth generation, it appears important to study a wireless network capable of supporting machine-to-machine applications. Recent standardization documents cover a plethora of machine-to-machine use cases, as they also outline the respective technical requirements and features according to the application or network environment. As follows from this activity, a smart grid is one of the primary machine-to-machine use cases that involves meters autonomously reporting usage and alarm information to the grid infrastructure to help reduce operational cost, as well as regulate a customer's utility usage. The preliminary analysis of the reference smart grid scenario indicates weak system architecture components. For instance, the large population of machine-to-machine devices may connect nearly simultaneously to the wireless infrastructure and, consequently, suffer from excessive network entry delays. Another concern is the performance of cell-edge machine-to-machine devices with weak wireless links. Therefore, mitigating the above architecture vulnerabilities and improving the performance of future smart grid deployments is the fourth objective of this thesis. Summarizing, this thesis is generally aimed at the improvement of energy efficient properties of mobile devices in next-generation wireless networks. The related research also embraces a novel cooperation technique where clients may assist each other to increase per-client and network-wide performance. Applying the proposed solutions, the operation time of mobile clients without recharging may be increased dramatically. Our approach incorporates both analytical and simulation components to evaluate complex interactions between the studied objectives. It brings important conclusions about energy efficient and cooperative client behaviors, which is crucial for further development of wireless communications technologies

    QoE Power-Efficient Multimedia Delivery Method for LTE-A

    Full text link

    이동통신 네트워크에서의 QoS 패킷 스케줄러 설계 및 고정 릴레이 관련 주파수 재사용 관리 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 박세웅.The main interest of this paper is to understand a basic approach to provide more efficient method to allocate radio resources in the mobile communication systems, especially in which radio resources could be allocated by both frequency and time division multiple access. So, we consider OFDMA system and the ideas described in this paper could be easily applied to the current and next generation mobile communication systems. This paper studies two basic research themesa QoS packet scheduler design and fixed relay resource management policies based on frequency reuse in mobile networks. This paper considers novel scheduler structures that are executable in the environments of multiple traffic classes and multiple frequency channels. To design a scheduler structure for multiple traffic classes, we first propose a scheduler selection rule that uses the priority of traffic class and the urgency level of each packet. Then we relax the barrier of traffic class priority when a high priority packet has some room in waiting time. This gives us a chance to exploit multiuser diversity, thereby giving more flexibility in scheduling. Our considered scheduler can achieve higher throughput compared to the simple extension of conventional modified largest weighted delay first (MLWDF) scheduler while maintaining the delay performance for QoS class traffic. We also design a scheduler structure for multiple frequency channels that chooses a good channel for each user whenever possible to exploit frequency diversity. The simulation results show that our proposed scheduler increases the total system throughput by up to 50% without degrading the delay performance. This paper also introduces radio resource management schemes based on frequency reuse for fixed relay stations in mobile cellular networks. Mobile stations in the cell boundary experience poor spectral efficiency due to the path loss and interference from adjacent cells. Therefore, satisfying QoS requirements of each MS at the cell boundary has been an important issue. To resolve this spectral efficiency problem at the cell boundary, deploying fixed relay stations has been actively considered. In this paper, we consider radio resource management policies based on frequency reuse for fixed relays that include path selection rules, frequency reuse pattern matching, and frame transmission pattern matching among cells. We evaluate performance of each policy by varying parameter values such as relay stations position and frequency reuse factor. Through Monte Carlo simulations and mathematical analysis, we suggest some optimal parameter values for each policy and discuss some implementation issues that need to be considered in practical deployment of relay stations. We also surveyed further works that many researchers have been studied to tackle the similar problems of QoS scheduling and resource management for relay with our proposed work. We expect that there would be more future works by priority-based approach and energy-aware approach for QoS scheduling. Also current trends such as the rising interest in IoT system, discussion of densification of cells and D2D communications in 5G systems make us expect that the researches in these topics related with relays would be popular in the future. We also think that there are many interesting problems regarding QoS support and resource management still waiting to be tackled, especially combined with recent key topics in mobile communication systems such as 5G standardization, AI and NFV/SDN.Chapter 1 Introduction 1 1.1 QoS Packet Scheduler 4 1.2 Fixed Relay Frequency Reuse Policies 6 Chapter 2 Scheduler Design for Multiple Traffic Classes in OFDMA Networks 10 2.1 Proposed Schedulers 10 2.1.1 Scheduler Structures 12 2.1.2 MLWDF scheduler for Multiple Traffic Classes 13 2.1.3 Joint Scheduler 13 2.2 System Model 18 2.3 Performance Evaluation 19 2.3.1 Schedulers for Multiple Traffic Classes 20 2.3.2 Impact of Scheduler Selection Rule 25 2.3.3 Frame Based Schedulers 27 2.3.4 Impact of Partial Feedback 30 2.3.5 Adaptive Threshold Version Schedulers 33 2.4 Conclusion 36 Chapter 3 Frequency Reuse Policies for Fixed Relays in Cellular Networks 40 3.1 System Model 40 3.1.1 Frame Transmission and Frequency Reuse Patterns among RSs 42 3.1.2 Positioning of RSs and Channel Capacity 44 3.1.3 Area Spectral Efficiency 45 3.2 Radio Resource Management Policies Based on Frequency Reuse 46 3.2.1 Path Selection Rule 46 3.2.2 Frequency Reuse and Frame Transmission Pattern Matchings among Cells 52 3.3 Monte Carlo Simulation and Results 53 3.4 Consideration of Practical Issues 80 3.5 Conclusion 81 Chapter 4 Surveys of Further Works 83 4.1 Further Works on QoS Schedulers 83 4.1.1 WiMAX Schedulers 85 4.1.2 LTE Schedulers 92 4.2 Further Works on Radio Resource Management in Relay Systems 98 4.3 Future Challenges 100 Chapter 5 Conclusion 104 Bibliography 107 초록 127Docto

    System Level Performance Evaluation of Client Cooperation in Wireless Cellular Networks

    Get PDF
    Growing demand for bandwidth dictates the use of smaller wireless cells, which results in increased inter-cell interference. In most contemporary cellular systems, the clients at the cell edge typically have the worst chance of successful uplink transmission due to interference from the neighboring cells using the same frequency. Cooperative communications are believed to be a promising technique to enhance the performance of cell-edge users by allowing them to exploit other users as relay nodes and thus improve their throughput by reducing the number of retransmissions. This thesis presents in-depth system-level evaluation of client relay technique in state-of-the-art wireless cellular networks (IEEE 802.16, LTE release 10). Several important scenarios are considered, including opportunistic client relay behavior and various network layouts. It is demonstrated that client cooperation may considerably improve system performance in terms of cell-edge user performance for the cost of some increase in energy consumption of cell-center user. /Kir1

    Energy efficiency in next generation wireless networks: methodologies, solutions and algorithms

    Get PDF
    Mobile Broadband Wireless Access (BWA) networks will offer in the forthcoming years multiple and differentiated services to users with high mobility requirements, connecting via portable or wearable devices which rely on the use of batteries by necessity. Since such devices consume a relatively large fraction of energy for transmitting/receiving data over-the-air, mechanisms are needed to reduce power consumption, in order to increase the lifetime of devices and hence improve user’s satisfaction. Next generation wireless network standards define power saving functions at the Medium Access Control (MAC) layer, which allow user terminals to switch off the radio transceiver during open traffic sessions for greatest energy consumption reduction. However, enabling power saving usually increases the transmission latency, which can negatively affect the Quality of Service (QoS) experienced by users. On the other hand, imposing stringent QoS requirements may limit the amount of energy that can be saved. The IEEE 802.16e standard defines the sleep mode is power saving mechanism with the purpose of reducing energy consumption. Three different operation classes are provided, each one to serve different class of traffic: class I, best effort traffic, class II real time traffic and class III multicast traffic. Several aspects of the sleep mode are left unspecified, as it is usually done in standards, allowing manufacturers to implement their own proprietary solutions, thus gaining a competitive advantage over the rivals. The work of this thesis is aimed at verifying, the effectiveness of the power saving mechanism proposed into IEEE 802.16e standard, focusing on the mutual interaction between power saving and QoS support. Two types of delay constrained applications with different requirements are considered, i.e., Web and Voice over IP (VoIP). The performance is assessed via detailed packet-level simulation, with respect to several system parameters. To capture the relative contribution of all the factors on the energy- and QoS-related metrics, part of the evaluation is carried out by means of 2k · r! analysis. Our study shows that the sleep mode can achieve significant power consumption reduction, however, when real time traffic is considered a wise configuration of the parameters is mandatory in order to avoid unacceptable degradation of the QoS. Finally, based on the guidelines drawn through the analysis, we extend our contribution beyond a simple evaluation, proposing a power saving aware scheduling framework aimed at reducing further the energy consumption. Our framework integrates with existing scheduling policies that can pursue their original goals, e.g. maximizing throughput or fairness, while improving the energy efficiency of the user terminals. Its effectiveness is assessed through an extensive packet level simulation campaign
    corecore