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ABSTRACT
In wireless telecommunication networks, there is a strong
interest in energy efficiency. Sleep-mode mechanisms, which
temporarily switch off mobile devices or base stations, are
popular means to attain this goal. We look at the per-
formance of different sleep-mode mechanisms with large-
deviations tools. These allow us to look at a general multi-
user model, for which we obtain a sample path large-deviations
principle. As the system equations exhibit discontinuous
boundaries, there are some mathematical obstacles to over-
come. The results shed light on the trade-off between buffer
overflow and energy consumption. We illustrate the results
in scenarios with one and multiple mobile stations.

1. INTRODUCTION
Energy-saving mechanisms in wireless communications are
currently a hot topic. Short battery life is one of the main
impediments to a more widespread use of wireless devices.
Hence, understandably, a lot of research is directed at solv-
ing or at least mitigating this problem. Evidently, this can
be done by improving on battery efficiency, but lately there
is also a lot of interest in reducing the energy consumption of
the wireless devices by including energy-saving measures in
the communication protocols themselves. On that account,
it is no wonder that two major standardization efforts for
next-generation wireless communications that is, the IEEE-
backed 802.16 committee (also known as WiMAX), and the
so-called long-term evolution (LTE) of UMTS have opted
to incorporate various energy-saving elements which are re-
ferred to as ‘sleep mode’ and ‘idle mode’ in the WiMAX
context and as discontinuous reception (DRX) in LTE ter-
minology. Power saving in WiMAX is achieved by turning
off parts of the MS (mobile station) in a controlled manner
when there is neither traffic from the MS (uplink traffic) nor
to the MS (downlink traffic). Whereas a MS in sleep mode
is still registered to a BS (base station) and still performs
hand-off procedures, idle mode operation (which is optional
in current WiMAX standards) goes further and allows the
MS to be completely switched off and unregistered with any

BS, while still receiving broadcast traffic. In LTE, similar
functionality is present, with user equipment (UE) fulfilling
the role of MSs and evolved Node-Bs (eNB) as the BSs.

A considerable number of scientific papers have been de-
voted to the performance evaluation of sleep-mode mecha-
nisms in the context of wireless networks. A wide variety of
tools have been employed: simulations [7] or Markov-chain
based (with or without transform-domain methods) [5, 6].
A feature which sets our paper apart is that we look at the
impact of sleep mode in a multiple mobile stations scenario.
The scenario with multiple mobile stations is too complex
to be solved with transform-based or matrix-analytic tech-
niques, therefore we rely on large-deviations tools [?, 10],
which allow the asymptotic computation of small probabil-
ities on an exponential scale. The rather specific nature of
the results (only rare events are considered) is compensated
by the broad generality in which the results can be devel-
oped. Furthermore, in telecommunication networks, rare
events may have a larger impact on performance than ‘av-
erage behavior’, as it is rare events which cause huge delays
and subsequently user discomfort and loss of perceived per-
formance.

The model in this paper is not continuous at the boundaries,
a condition which complicates large-deviations analyses by
a fair amount. Various techniques to work around these dis-
continuities have been applied, such as the idempotent prob-
ability method of Puhalski [8], or the contraction-mapping
framework of [10]. In this paper, we opt for an adaptation
of the latter (see also [15, 16, 13] for other papers that fit
within the same paradigm). Its main idea is the transfor-
mation of a large deviation principle of the arrival process
into a large-deviations principle of the process of interest by
means of the powerful contraction mapping theorem.

Finally, we would like to note that although (the first part
of) this article is fairly theoretical in nature, its aim is a
practical one: we investigate whether large-deviations tech-
niques can offer quantitative recommendations to network
engineers as to how to organize sleep mode in wireless de-
vices. For example, we would like to determine which sleep
mechanism is superior from a rare-event overflow probabil-
ity point of view, the one as defined in the 802.16e protocol
[1] or the newly proposed [3]. The examples in Section 5
indeed offer a starting point for such suggestions to the pro-
tocol designer.
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The outline of the remainder of this paper is as follows. In
Section 2, we expound on the modelling assumptions used in
this paper. Section 3 contains the main result and its proof.
We detail on a numerical computation scheme in Section 4
and illustrate important special cases in Section 5. Finally,
we draw conclusions in Section 6.

2. SETTING
Consider a number M of mobile stations (MS) operating
under the same base station. As is common in wireless
protocols, all operations occur in a slotted (discrete-time)
manner. Packets arrive at the base station destined for
a specific MS m according to a stationary arrival process
{Xm(t)}, t ∈ N, 1 ≤ m ≤ M , and are temporarily buffered
at the base station while awaiting transmission, in a dedi-
cated buffer for each MS. In the following, we will assume
that the arrival streams Xm to the different mobile stations
are mutually independent but possibly distributed accord-
ing to a different law. We denote the mean rate of Xm by
λm.

For energy-saving purposes, mobile stations may reside in
so-called sleep mode. The MS then consumes less energy,
but is unable to receive packets from the BS. When not in
sleep mode, the MS is said to be active. We assume that the
BS can send packets at a constant maximum rate C which
is shared over all active MS. The transmission rate as seen
by a single MS is thus greater if fewer stations are active.
A number of possible mechanisms of how to organize sleep
and active periods in the different MSs have been proposed.
We will take a closer look at two of these mechanisms.

S1: When the buffer dedicated to an MS, say MS m, gets
empty, then MS m goes into sleep mode, and a timer is
started. The content of the buffer dedicated to traffic for MS
m is checked at the end of a series of instants ti, with service
being resumed at the first such instant that the buffer con-
tent is non-empty. This is a generalization of the sleep-mode
mechanism described in WiMAX. In the WiMAX standard
[1], there are three possible sleep-mode classes, of which the
most commonly researched is class III, for which the ti sat-
isfy the following relation:

ti = max(2i−1tmin, tmax),

where tmin and tmax are parameters negotiated between the
mobile station and the base station. In LTE, the DRX mech-
anism is slightly different, resulting in a different sequence
of ti parameters: at first, there is a so-called close-down pe-
riod, in which the antenna and decoding device is not yet
turned off, then a series of short sleep periods of identical
length take place, followed by a series of long sleep periods
of identical length.

S2: Sleep and active periods are organized in cycles of a
fixed length L. When the buffer of a certain MS m gets
empty, it goes into sleep mode for the rest of the ongoing
cycle. The technological advantage of this scheme is that
it decreases signaling overhead. It has been proposed for
the forthcoming IEEE802.16m wireless standard [2, 3]. To
the best of our knowledge, no equivalent mechanism has yet
been considered for the LTE framework, although it seems
as reasonable for this standard as it is in the WiMAX case.

Note that for both mechanisms the system is stable under
the natural condition

P

m λm < C. Before we develop a
mathematical formulation of this model, we introduce some
notation.

Let X denote the space of discrete-time R
M -valued pro-

cesses. Let X denote a process in X and its truncation to
[0, t) is denoted by X[0, t). Also, X(t) denotes the value of
the process at time t, and X[0, t)

.
=

Pt−1
i=0 Xi, with X[0, 0) =

0. We are mainly interested in two things: (1) the distribu-
tion of the buffer content (and its close relative the packet
delay) and (2) the expected energy consumption of an MS
station. We develop a set of recursive equations which relate
the arrival process to the buffer content process and to the
status (active or in sleep mode).

The two mechanisms S1 and S2 satisfy the following system
equations:

Qm(t + 1) = (Qm(t) + Xm(t) − rm(S1(t), · · · , SM (t)))+ .
(1)

where Qm and Xm denote the buffer content process and
the input process of MS m respectively. Also, the auxiliary
processes Sm, 1 ≤ m ≤ M indicate when MS m is sleep-
ing. The functions rm determine the rate at which the BS
sends to the MS m depending on the state of the other
MS. This is a versatile description that allows to model a
variety of situations: (1) schemes in which the MS always
send at the same rate, regardless of the status of the other
MS (no bandwidth redistribution); (2) schemes with band-
width redistribution. For example, the available bandwidth
is divided in equal parts among the active MSs; (3) priority
mechanisms where some MS only get bandwidth when other
MSs are not working. This setup is of course more general
than what we can reasonably explore in Section 5, hence we
will only highlight a few scenarios. We just aim to develop
a large-deviation result with a natural generality. Note that
a setup with no bandwidth redistribution effectively ‘uncou-
ples’ the queues, so that the single MS case is sufficient for
assessing performance.

For S1 we define another auxiliary process S̃m which counts
how long the system has the system been residing consecu-
tively in sleep mode. Its evolution is as follows (we denote
by ∨ and ∧ denote logical ‘or’ and ‘and’ respectively):

S̃m(t + 1) = (S̃m(t) + 1)1
“

S̃m(t) /∈ T ∨ Qm(t) > 0
”

(2)

where T denotes the set of time instants ti (i.e. on which
the dedicated buffer is checked). The sleep process Sm for
S1 is then defined as:

Sm(t) = 1
“

S̃m(t) > 0
”

(3)

For sleep mechanism S2, new cycles start for mobile station
m at time instants belonging to the set LN+δm

.
= {Ln+δm :

n ∈ N} (hence δm ∈ {1, · · · , M} denotes the offset of MS m).
The sleep process Sm for S2 satisfies the following recursion:

Sm(t + 1) = 1 (Qm(t) = 0 ∨ (t /∈ LN + δm ∧ Sm(t))) (4)

Finally we make some assumptions on the energy consump-
tion. Each MS consumes a fixed amount Ea during a slot



in which it is active, and an amount Ei during an idle slot.
At the end of each sleep interval, an additional amount Eℓ

is consumed (ℓ stands for listening).

3. LARGE DEVIATIONS ANALYSIS
3.1 Motivation
The scenario with multiple mobile stations is too complex
to be solved with transform-based or matrix-analytic tech-
niques. Therefore, we opt for a large-deviations analysis.
The so-called many-sources or many-flows scaling [10] yields
the most interesting results in this context, and hence we
adopt this scaling throughout this paper. We consider a
sequence of processes XL, which are interpreted as the av-
erage of L independent processes each distributed like X
and speed up the transmission rate by a factor L as well.
The many-flows large-deviations limit describes what hap-
pens when the number of flows is very large. In particular,
it provides the exponential decay of rare events associated
with this limit.

The choice of the many-flows scaling requires some justi-
fication. Indeed, in contrast to for example traffic in the
backbone of a network, the number of different flows that
an individual user sees may not be very large. However, we
believe that this modelling choice is justified for the following
reasons: (1) Next-generation platforms such as WiMAX aim
to operate at a larger, metropolitan area scale, and hence
aggregate more traffic; (2) it is one of the few modeling
techniques that can still provide answers in the rather gen-
eral framework of this paper. Fast-time scaling, the other
frequently used large-deviations scaling is too crude, as it
filters away the effects of sleep-mode. Indeed, if the oper-
ation of the system is sped up, then sleep periods are also
shortened, and vanish in the limit. It is worth noting that if
we try to fix this, by scaling the sleep periods with a factor
L as we speed up time L times, then we essentially get a
simplified many-flows scaling (with no time correlation in
the traffic flows).

Let us briefly recall the notion of a large-deviations principle
(LDP). We refer the reader to a.o. [9] and [10] for references
on large deviations. A sequence of random variables XL in
a Hausdorff space X with Borel sigma algebra B is said to
satisfy a large deviations principle with good rate function I
if for any B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
L→∞

1

L
log Pr(XL ∈ B)

≤ lim sup
L→∞

1

L
log Pr(XL ∈ B) ≤ − inf

x∈B̄
I(x)

where I : X → R∪ {∞} has compact level sets, and Bo and
B̄ denote the interior and closure of the set B respectively.
This is called a sample path LDP when X is a space of
processes.

In the following, we will be concerned with the buffer con-
tent of one mobile station (say, without loss of generality,
MS 1). We denote by qSi

, i = 1, 2 two functions which
map the arrival processes onto the buffer content of MS 1
at time instant 0 under sleep-mode mechanism Si. Analo-
gously, mappings wSi

: X → R, i = 1, 2 denote the energy
consumption of MS 1 during time instant 0.

3.2 Limiting process
It is useful at this point to investigate the behavior of the
sleep-mode mechanisms in the many-flows fluid limit. The
difference with the large-deviations limit should be clear:
whereas the limiting process concerns itself with the almost
sure behavior when the number of flows approaches infin-
ity, large deviations aims to quantify the (small) probabil-
ities that the system deviates from this almost sure path.
Consider the sequence of processes QL

m(t) which result from

plugging XL
m(t) = 1

L

PL

ℓ=1 X
(ℓ)
m (t) into (1), where X

(ℓ)
m , 1 ≤

ℓ ≤ L are independent and identically distributed versions
of the arrival process.

For many queueing systems, this limiting process (for L →
∞) converges to a deterministic process which moreover con-
verges almost surely to zero in finite time [14]. The sleep-
mode models considered in this paper are peculiar in that
they reduce to periodic deterministic processes. We will
show this without being entirely rigorous. Indeed, as the
number of flows approaches infinity, under certain regular-
ity conditions we can apply a law of large numbers argument,
which says that

XL
m(t) → λ, a.s., for L → ∞.

Thus, the amount of traffic arriving at the system during
a slot approaches λ, almost surely. For mechanism S1, we
thus find a periodic behavior in which each mobile station
goes to sleep for the duration of t1 slots, collect an amount
of λt1 of traffic, which subsequently decreases again; see
Figure 1. The sleep periods of the different MSs do not
necessarily coincide, and depend on the initial conditions of
the system. This already highlights a problem we will meet
later on, namely that the system does not ‘forget’ completely
its past state. We omit the proof that the limiting process is
necessarily periodic. Note that for this mechanism the sleep
periods have in the limit a fixed length while the lengths
of the working periods depend on the initial condition. We
therefore explicitly keep track of the offsets with which the
MSs go into sleep mode in the limiting process in the random

variables D
(1)
m ∈ {0, · · · , t1−1}. More precisely, D

(1)
m denotes

the last time that MS m goes from active mode to sleep
mode, relative to the last time MS 1 went into sleep mode.

Obviously, D
(1)
1 = 0. Note that this choice keeps the Dm

time-invariant for the limiting process Q∞

m ().

For the mechanism S2, the situation is slightly different in
that the sleep periods in the limit do not have a fixed length
but the combined sleep and working periods are fixed to the
cycle length or a multiple thereof (see Figure 2). Also for this
mechanism we need to keep track of the periodic cycle starts,

which we summarize into the variables D
(2)
m ∈ {0, · · · , L−1}.

3.3 Outline
In this section, we formulate assumptions under which a
large-deviations principle for the arrival processes can be
transformed by means of the contraction principle [10] into
a large-deviations principle of the queue content process.

The contraction principle pushes through LDPs from one
topological space to another, under the condition that the
mapping between the spaces is continuous. The usual pro-
gramme (as elucidated for example in [10]) for deriving an



Figure 1: The limiting process Q∞

m for the mecha-
nism S1. The parameter t1 and the random variable
D2 are illustrated. Remark that as Q∞

m is a discrete-
time process, the straight lines should in fact be re-
placed by discrete dots.

LDP for a new situation is thus as follows:

1. Take the LDP for the input processes (arrival pro-
cesses).

2. Define a mapping between the inputs and the output
of interest. Examples of the latter are buffer content
at time 0, the buffer content sample path is a possible
output as well, but a bit harder to obtain.

3. Tweak the topology and/or the mapping such that the
mapping is indeed continuous. Recall that a mapping
f : X → Y is continuous if the inverse image of every
open set of Y is an open set in X . A possible choice is
the so-called initial topology [9].

4. Strengthen the LDP such that it holds for the topol-
ogy found in the previous point. We often observe a
trade-off: the stronger the topology for X , the more
mappings that are continuous, but the harder it is to
strengthen the LDP. In essence, we must establish ex-
ponential tightness of the sequences of measures under
the topology.

5. Application of the contraction principle gives us the
desired LDP in the topological space Y.

For the LDP results presented here, we need the following
assumption on the scaled arrival processes XL

m.

Condition 1. (Finite-time characteristics) For θ ∈
R

t, define

ΛL
t (θ) =

1

L
log E exp(Lθ · XL(0, t]).

Figure 2: The limiting process Q∞

m for the mecha-
nism S2. The parameters L and δ are illustrated.
Also here, as Q∞

m is a discrete-time process, the
straight lines should in fact be replaced by discrete
dots.

Assume that for each t and θ, the limiting cumulant gener-
ating function

Λt(θ) = lim
L→∞

ΛL
t (θ)

exists as an extended real number, and that the origin belongs
to the interior of the effective domain of Λt, and that Λt is
an essentially smooth, lower-semicontinuous function.

Due to the Gärtner-Ellis Theorem [9], the finite-time trun-
cations over [0, t) satisfy an LDP with good rate function

I(x) = sup
θ

θ · x − Λt(θ). (5)

Some useful further assumptions include (which simplify
matters for example in the numerical computations of Sec-
tion 4):

1. The arrival process has (asymptotically) independent
increments, that is, the rate function I(x) can be writ-
ten as:

I(x) =
X

k

I(xk), (6)

for a certain good rate function I : R
M → R

+. Ex-
amples include (but are not limited to) the case that
the original arrival process is indeed time-independent
and identically distributed.

2. Asymptotically ‘Markov’ increments: there exists a
space Z and good rate functions K0(.), K(.|z), I(.|z) :
Z → R

+, such that

I(x) = inf{K0(y0)+
X

j

I(xj |zj)+
X

j

K(zj |zj−1)|zj ∈ Z}.

(7)



This kind of structure arises for example when taking
the many-flows limit for many Markovian arrival flows,
see eg. [12].

3.4 Main Result
Let X be the set of arrival processes to the M buffers over
a finite interval [0, T ], let Y0 be the set representing the
possible initial states (buffer content plus time spent in sleep
mode), and let Y be the set of the ‘output process’: the
combined buffer content and energy consumption evolutions
in interval [0, T ]. The function q : Y0 × X → Y maps the
input process together with the initial condition to to the
output process. Assume that Y0 and X satisfy LDPs over
the Euclidean topology with good rate functions J0(.) and
I(.) respectively.

Theorem 1. An LDP holds for the queue content and
energy consumption processes over finite time interval [0, T ]
and finite buffer content b, with good rate function J : Y →
R

+,

J(y) = inf{J0(y0) + I(x)|y = q(y0, x), x ∈ X, y0 ∈ Y0} (8)

Proof. Let τ1 be the initial topology over Y0 × X with
respect to the mapping q, that is, the weakest topology that
makes the function q(., .) continuous. We first establish an
LDP over Y0 ×X under this topology, and then the desired
LDP over Y follows by the contraction principle. In contrast
to similar proofs, the initial topology τ1 is neither weaker
nor stronger than the Euclidean topology. Hence we must
take a detour via their intersection topology τI . This is the
topology whose set of open sets is the intersection of the open
sets of the other two topologies. To push the LDP from the
Euclidean topology τe down the coarser τI , an application of
the contraction principle with the identity function suffices.
To push it back up to the stronger topology τ1 with the
help of the inverse contraction principle takes a little more
work. The identity function is again the mapping of choice,
but now we must also show that the sequence (Y L

0 , XL)
is exponentially tight. This is automatically fulfilled if the
space (Y0 × X, τ1) is compact. While this is not the case
(consider a sequence with the queue content approaching
zero while the MS stays active), we instead compactify the
space and prove that the rate function is infinite in the added
points. As (Y0 × X, τ1) is a semimetric topology, we may
verify compactness by showing that any sequence in Y0 ×X
has a convergent subsequence. We do so inductively: prove
that we can find a subsequence that is convergent for the first
time instant. If T = 1 then the proof is complete, otherwise
we have reduced the problem to a shorter interval.

4. NUMERICAL METHOD
Relatively few publications on large deviations (especially in
telecommunications) have a focus on the numerical solution
of the LDP as a variational problem. In the domain of sta-
tistical physics, such numerical methods have been investi-
gated among others in [11]. This is partly understandable as
it runs counter to the often cited promise of large-deviations
to provide solutions where other methods fall short, espe-
cially numerical methods suffering from the curse of dimen-
sionality. In this work however, we have implemented a few
algorithms that solve a discretized version of the variational

problem (8), partly in order to check the optimal solutions
that were obtained by purely analytical means, and partly
in order to extend the range of scenarios that we can tackle.
The results we find are generally promising.

In order to stratify the discussion we focus on a specific
large deviation event, namely the case that one specific MS
overflows (i.e. reaches an overflow level b). Also, we restrict
our attention to arrival processes satisfying either (6) or (7).
In the former case, we start out by discretizing the state
space X into a discrete set X̃ with the help of a discretizing
function δ : X → X̃ . It is to be expected (but hard to prove
rigourously) that a sufficiently fine grid leads to a solution
that is close to the solution of the original problem. The
variational problem then reduces to the problem of finding
the shortest path in a graph with an edge from node v to
node v′ having a cost inf{I(x) : v′ = δ(q(v, x))}.

In case of (7), we discretize the space Z of the arrival process

as well leading to a discretized space X̃ × Z̃.

This can be solved by means of various existing shortest-
path algorithms, of which Dijkstra’s algorithm is perhaps the
most famous. The time complexity of this class of algorithms
is typically O(E +V log V ), while space complexity is O(V ),
where E is the number of edges and V is the number of
vertices. Keeping the number of edges reasonably small is
key to a reasonably low computation time. In the numerical
examples, we restricted the rate function I of the arrival
process to a finite region D when the state space got too
large (e.g. for scenarios with multiple mobile stations):

Î(x) =



I(x), if x ∈ D
∞, otherwise.

(9)

We can also replace the standard Dijkstra algorithm by the
so-called A∗ algorithm or a variant thereof. This algorithm
can exploit heuristic bounds on the path length. Especially
in structured problems such as the one at hand, huge gains
can be made.

Note that even if we resort to numerical techniques to solve
the variational problem (8), its computational cost is cheaper
than the more straightforward method of extracting infor-
mation from a Markov chain: direct computation of the sta-
tionary vector has (in absence of further structural proper-
ties) a O(V 3) time complexity.

5. PRACTICAL APPLICATION
The LDP as described in Theorem 1 involves a variational
problem that is in general hard to solve. In this section, we
look at a number of specific situations. For reasons of an-
alytical tractability, we limit ourselves to time-independent
(uncorrelated) arrival processes. Of course, the variational
formulation also holds for a broader class of both short-
range and long-range dependent arrival processes, but in
those cases analytical expressions are more scarce.

We attempt to find the optimal (i.e. least unlikely) path for
the buffer associated with MS 1 to reach a certain level b.
The state of the system at time instant 0 is given by the



buffer contents Qm(0), 1 ≤ m ≤ M .

There are a couple of heuristic rules to which an optimal
path often adheres. Of course, the buffer of MS 1 overflows
because there temporarily is a higher amount of traffic than
can be served. But by the presence of multiple MSs and
by sleep mode, this principal event can be strengthened or
weakened. For example, in case of mechanism S1, it may
be ‘cheaper’ to have an interval in which no arrivals occur
first, such that a longer sleep interval will be initiated during
which the buffer content can increase faster. Secondly, there
is the role of the other MSs. If there are many MSs active,
the service rate as seen by MS 1 is lower, so it may be
beneficial to have more MSs active than average during the
overflowing path. A last feature that will help us is that
because of the time-independence of the arrival processes,
optimal paths are usually piecewise linear (linear geodesics).
We will illustrate the various scenarios by making use of the
Brownian motion arrival process, as this typically leads to
nice closed form solutions. The reason for this is that the
rate function has a quadratic form:

I(x) =
(x − λ)2

2V
. (10)

[I must add some more info on the discrete-time Brownian
motion arrival process.]

5.1 Single Mobile Station under S1

We take a look at the relatively simple system with one
mobile station. First, we look at mechanism S1. We are
given the buffer content Q(0) at time instant 0 and S(0),
the amount of slots that MS 1 is in sleep mode at time
instant 0, and T , the interval in which the overflow to level
b must take place. Let us first assume that Q(0) = 0 and
S(0) = 0. It is intuitively clear that an optimal path must
have a form as shown in Figure 3. It consists of three linear
segments, a first of length τi−1 :=

Pi−1
k=1 tk during which the

arrival rate is zero. Secondly, a segment of length ti during
which the MS resides in the ith sleep interval and the arrival
rate is given by the unknown x, and lastly a segment where
the MS is active and during which the buffer content b is
reached, and which has an unknown length t.

The rate function associated with this path is equal to:

Iq(b) = inf
i,x,y

τi−1I(0) + tiI(x) + tI(y). (11)

From the figure we see the following relation between the
different variables:

b = xti + (y − C)t,

so that we can eliminate t. It is noteworthy that the optimal
slopes x∗ and y∗ generally do not depend on the optimal
value i∗. Indeed, as the rate function I is differentiable, we
can find the optimum by differentiating the above expression
to x and y. We find:

(

ti

“

I ′(x) − I(y)
y−C

”

= 0
b−xti

(y−C)2
((y − c)I ′(y) − I(y)) = 0.

(12)

from each of which ti vanishes. For the special case of Brow-
nian motion, with mean λ and variance V , we find explicitly
the following simple expressions for x∗ and y∗:

x∗ = y∗ = 2C − λ.

It is interesting to note that the optimal arrival rate y∗ in
the last segment is the same as predicted in a normal single
server queue. Our analysis also shows that when overflow
level b is very large, the last segment will dominate and
we get the same tail behavior as in a system without sleep
mode. This agrees with our intuition about large buffer
asymptotics. Of course, in wireless systems with lots of
delay-intolerant data, we expect buffers to be rather small.
The optimization problem is thus reduced to finding the
minimum among the i, which is a finite number for most
practical situations.

Figure 3: The optimal path for a single MS situation
under mechanism S1.

5.2 Single Mobile Station under S2

Next, we investigate the situation in which a single mobile
station operates under mechanism S2. We assume that the
buffer is empty at the beginning of the excursion and the
current sleep cycle is projected to end during slot L0. There
are two candidate optimal paths, both shown in Figure 4.
For path A, there are no arrivals during the first L0 slots, so
that the buffer can fill during an entire sleep cycle. For path
B, the buffer immediately starts to fill. It is intuitively clear
that when L0 is small, path A will be better, and when L0

is close to L, then path B will be better. The rate functions
of the paths are respectively

IA(b) = inf
x,y

L0I(0) + LI(x) + tI(y),

where b = xL + (y − C)t, and

IB(b) = inf
x,y

L0I(x) + tI(y),

where b = xL0 + (y − C)t. The optimal arrival rates are
again independent of b, L and L0, and take the same values
for Brownian motion as in the previous scenario. Having
found the optimal values x∗ and y∗, we easily derive that
path A is the optimal path if

L0

L
≤

x∗I(y∗) − (y∗ − C)I(x∗)

(y∗ − C)(I(0) − I(x∗)) + x∗I(y∗)
,

and otherwise path B is better.

5.3 Scenarios with Two Mobile Stations (un-
der mechanism S2)

Now we move on the situation with 2 MS competing for
the same bandwidth. As we will see, the path to overflow
is considerably more complex than in the single MS case.



Figure 4: The optimal paths for a single MS situa-
tion under mechanism S2.

We especially pay attention to the influence of the offset δ
between the two sleep cycles. The excursion starts with two
empty buffers. We discern again a buildup during a sleep
period and then a second phase in which the MS actually
reaches level b. The difference is that there is now a second
MS that can help make the overflow more probable by being
more active than average. The unknowns x1 and x2 denote
the arrival rates during the different phases of MS 1, and
y1, y2 denote the arrival rates for MS 2. Unknown s denotes
the fraction of the time that the MS 2 is in sleep mode
during the last phase (which has length t). As MS 1 is
continuously active in this last phase, MS 2 sees a service
rate C/2, and hence it will be active for a fraction 1 − s if
the total traffic during this period is a fraction (1 − s) of
the amount of traffic that the system can consume during
this period (namely β+ 1

2
Ct). Because of the linear geodesic

property, this rate must be constant. Hence we have

Iq(b) = δI(y1)+(L−δ)I(y2)I((1−s)(β+
1

2
Ct)/t)+LI(x1)+tI(x2).

(13)
We can derive two further relationships between the un-
knowns: b = x1L + t(x2 − C + 1

2
sC) and β = δy1 + (y2 −

C)(L − δ).

It is possible to find closed-form expressions for the case of
Brownian motion also in this case, but the expressions get
dauntingly large. We can however see the impact of the
offset δ: if the two cycles would be synchronized, then the
‘expensive’ segment corresponding to rate y2 (it is expensive
because the BS is serving at full rate C) vanishes, which
results in more likely overflows.

5.4 Energy consumption
What does the large-deviations analysis tell us about the
other factor in the trade-off, namely the energy consumption
? Firstly, there is the (quite crude) law-of-large-numbers
result, that says that the average energy consumption for a
large number of sources will be as observed in the limiting
paths.

Secondly, information can also be drawn from the large devi-
ations on the average energy consumption over a long period
of time. This measures how likely it is to deviate from the
energy consumption as predicted by the limit results.

Figure 5: The optimal path for a scenario with 2 MS
under mechanism S2.

5.5 Numerical illustrations
In this section, we show some of the results we obtained by
numerical means. The first example we look at considers
a 1 MS scenario, with ti = i for i ≤ C and ti = C +
(i − C)L for i > C. This boils down to having a closedown
period of length C followed by a possibly infinite series sleep
periods of the same length L. We assume Brownian arrival
processes with λ = 0.7 and V = 1.0. The plots are in
accordance with the analytically computed optimal paths in
the last section. In case of a non-empty starting condition,
we observe a behavior that is quite different from systems
without energy-saving mechanism: instead of approaching
the overflow level directly, a cheaper path is chosen that
visits the boundary and thus profits from the sleep mode
mechanism. Of course, if the initial level is very close to the
final level, then the direct path may be optimal.
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Figure 6: The optimal path for a scenario with 1 MS
under mechanism S1. S1.



In Figure 7, we plot the decay rate I associated with optimal
paths to level b = 128 against the length L of the final
sleep periods, for different closedown period lengths C. We
observe three different regimes. Firstly, for small L, the
closedown period is too large for optimal overflow paths to
go through a sleep mode phase and hence the direct path is
better, resulting in a decay rate that is independent of the
C and L. Next, there is a region in which is it profitable to
go into sleep mode, but overflow is reached after the sleep
period. For the final regime, the length L is sufficiently large
for the system to reach overflow during one sleep period of
length L, which cause the curves to flatten out for large L.
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Figure 7: The decay rate I of reaching level b = 128
against L for C = 2, 8, 16.

Next, in Fig. 8 we look at the most probable overflow path
for a 2 MS scenario with sleep mechanism S1 and bandwidth
redistribution. We observe an interesting synchronization
phenomenon: before travelling to overflow, the sleep peri-
ods of the two MSs first synchronize their work and sleep
cycles, so that we have a longer period of shared bandwidth,
which makes overflow of one buffer more likely. This syn-
chronization phase is quite messy to analyze in closed form.
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Figure 8: An optimal path for the two MS case with
sleep mechanism S2.

This synchronization phenomenon is much less effective in

the 2 MS system with mechanism S2 (at least when the
offset parameters δm are chosen in a dispersed manner, for
example 0 and L/2).

6. GENERAL OBSERVATIONS AND CON-
CLUSIONS

The paths to overflow get progressively more complex as
the number of MS increases. There are however a number
of interesting observations which we can extract from the
variational formulation, even though we either cannot solve
it explicitly or the explicit solution is too complex to be
useful.

In the previous subsection, we already touched upon the fact
that the offset with which the sleep modes of the different
MS arise are a very important factor. We see significantly
worse performance when the different MS have synchronized
sleep and active periods, both in terms of energy consump-
tion and in terms of overflow probability. This is an area
where mechanism S2 has a marked advantage compared with
mechanism S1, as in the former the offsets are fixed and can
be chosen by the base station so as to guarantee a good
spread. For mechanism S1, the sleep periods might drift
and end up more or less synchronized (although this drift is
a rare event under the many-sources limit), thus making the
overflow more likely. There is another feature that can be
exploited under S1 but not under S2, namely the fact that
we can have a long stretch without arrivals, so that the MS
enters a long sleep interval, during which the buffer content
can rise to high levels. This effect plays an even larger role
for bursty traffic.

Although we cannot yet draw definitive conclusions, it ap-
pears that from a many-sources point of view, mechanism
S2 seems preferable over the other.
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