9,258 research outputs found

    Automated Verification of Practical Garbage Collectors

    Full text link
    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness

    Subheap-Augmented Garbage Collection

    Get PDF
    Automated memory management avoids the tedium and danger of manual techniques. However, as no programmer input is required, no widely available interface exists to permit principled control over sometimes unacceptable performance costs. This dissertation explores the idea that performance-oriented languages should give programmers greater control over where and when the garbage collector (GC) expends effort. We describe an interface and implementation to expose heap partitioning and collection decisions without compromising type safety. We show that our interface allows the programmer to encode a form of reference counting using Hayes\u27 notion of key objects. Preliminary experimental data suggests that our proposed mechanism can avoid high overheads suffered by tracing collectors in some scenarios, especially with tight heaps. However, for other applications, the costs of applying subheaps---in human effort and runtime overheads---remain daunting

    Garbage Collection of Linked Data Structures: An Example in a Network Oriented Database Management System

    Get PDF
    A unified view of the numerous existing algorithms for performing garbage collection of linked data structure has been presented. An implementation of a garbage collection tool in a network oriented database management system has been described

    A fast analysis for thread-local garbage collection with dynamic class loading

    Get PDF
    Long-running, heavily multi-threaded, Java server applications make stringent demands of garbage collector (GC) performance. Synchronisation of all application threads before garbage collection is a significant bottleneck for JVMs that use native threads. We present a new static analysis and a novel GC framework designed to address this issue by allowing independent collection of thread-local heaps. In contrast to previous work, our solution safely classifies objects even in the presence of dynamic class loading, requires neither write-barriers that may do unbounded work, nor synchronisation, nor locks during thread-local collections; our analysis is sufficiently fast to permit its integration into a high-performance, production-quality virtual machine

    Declassification: transforming java programs to remove intermediate classes

    Get PDF
    Computer applications are increasingly being written in object-oriented languages like Java and C++ Object-onented programming encourages the use of small methods and classes. However, this style of programming introduces much overhead as each method call results in a dynamic dispatch and each field access becomes a pointer dereference to the heap allocated object. Many of the classes in these programs are included to provide structure rather than to act as reusable code, and can therefore be regarded as intermediate. We have therefore developed an optimisation technique, called declassification, which will transform Java programs into equivalent programs from which these intermediate classes have been removed. The optimisation technique developed involves two phases, analysis and transformation. The analysis involves the identification of intermediate classes for removal. A suitable class is defined to be a class which is used exactly once within a program. Such classes are identified by this analysis The subsequent transformation involves eliminating these intermediate classes from the program. This involves inlinmg the fields and methods of each intermediate class within the enclosing class which uses it. In theory, declassification reduces the number of classes which are instantiated and used in a program during its execution. This should reduce the overhead of object creation and maintenance as child objects are no longer created, and it should also reduce the number of field accesses and dynamic dispatches required by a program to execute. An important feature of the declassification technique, as opposed to other similar techniques, is that it guarantees there will be no increase in code size. An empirical study was conducted on a number of reasonable-sized Java programs and it was found that very few suitable classes were identified for miming. The results showed that the declassification technique had a small influence on the memory consumption and a negligible influence on the run-time performance of these programs. It is therefore concluded that the declassification technique was not successful in optimizing the test programs but further extensions to this technique combined with an intrinsically object-onented set of test programs could greatly improve its success
    corecore