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collectors in some scenarios, especially with tight heaps. However, for other applications, the costs of
applying subheaps--—-in human effort and runtime overheads--remain daunting.
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ABSTRACT

SUBHEAP-AUGMENTED GARBAGE COLLECTION
Benjamin Karel
Jonathan M. Smith

Automated memory management avoids the tedium and danger of manual techniques.
However, as no programmer input is required, no widely available interface exists
to permit principled control over sometimes unacceptable performance costs. This
dissertation explores the idea that performance-oriented languages should give pro-
grammers greater control over where and when the garbage collector (GC) expends
effort. We describe an interface and implementation to expose heap partitioning and
collection decisions without compromising type safety. We show that our interface
allows the programmer to encode a form of reference counting using Hayes’ notion of
key objects. Preliminary experimental data suggests that our proposed mechanism
can avoid high overheads suffered by tracing collectors in some scenarios, especially
with tight heaps. However, for other applications, the costs of applying subheaps—in

human effort and runtime overheads—remain daunting.
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CHAPTER 1 : Introduction

Most computer programs allocate memory as they run, but memory is a finite re-
source. Reclaiming unused memory safely and efficiently motivates the study of
garbage collection (GC). Functionally correct GC algorithms date to the early years
of computer science [McC60, JHM11]. Yet correctness is not enough: effort over
subsequent decades has focused on various facets of performance, such as low pause
times, high space efficiency, and productive use of available hardware resources. Re-
search in garbage collection has produced designs that work well for most programs,
but every GC embodies tradeoffs and heuristics that may be ill-suited for certain
programs. Thus the goal for GC design is not merely to produce collectors which are

efficient on average, but those which perform well for the widest range of programs.

The quest for efficient execution that avoids the performance pitfalls of GC has also
led to the study of alternatives to GC. Examples include region-based memory man-
agement [TBEHO04] and substructural type systems [Tov12], as well as the continuing
use of unsafe manual memory management techniques. Manual techniques afford
programmers the flexibility to use the most suitable disciplines for their particular
program, boosting efficiency. While unsafe manual techniques can confer speed, their
lack of memory safety contributes to a software ecosystem featuring widespread ex-

ploitation of vulnerabilities. Losing safety is too high a price for performance.

This dissertation investigates subheaps, a novel scheme for allowing programmers to
divide the heap and identify profitable collection points in order to improve the perfor-
mance of garbage collection. These elements respectively constitute the “where” and
“when” of memory reclamation. Subheaps preserve the safety of automatic collection

while seeking to gain some of the benefits of programmer input.



1.1. Motivation: Bridging Language Users and Implementors

The literature has shown that different garbage collectors perform markedly better or
worse with particular programs [FT00, SK07, SBWC07, JCMM16]. One can think of
different GC algorithms as having “rough edges”! that snag on particular allocation
patterns. These rough edges are problematic for both language implementors and
language users. Each algorithm can also be tuned in various ways, but optimal

configurations are often input- or machine-dependent.

The language implementor is faced with the choice of selecting a GC design to suit
the needs of all future users. One approach is to provide several GC implementa-
tions and let the user choose between them. For example, the HotSpot JVM (ver-
sion 7.0) shipped with four separate GCs: serial, parallel, concurrent mark-sweep,
and garbage-first [JDK]. This complexity is a large burden in engineering, doc-
umentation, and testing effort. Most language environments provide a single GC
implementation, and rely on heuristics to get good performance for most programs.
Many problem domains can see significant gains in performance with customized
GC heuristics [Har00, SKB04, NFX*16, DEET16, GGS™15, MHAK15], but language

implementors cannot anticipate the needs of all current and future problem domains.

Meanwhile, users must make do with the tools provided by their language implemen-
tation. A topic near and dear to the hearts of systems programmers is the issue of
control. GCs rely heavily on heuristics, especially for when, where, and how much to
collect. With such heuristics, sophisticated GC implementations can offer excellent
performance to most programs in most circumstances. The cost of a sophisticated

collector comes in opaqueness and loss of predictability. As the GC becomes more

LCredit to Alex Garthwaite for this turn of phrase.



complex, users lose insight into the GC’s rough edges and how to overcome them.

What can be done when pre-chosen heuristics end up poorly suited to one’s program?
Performance problems cropping up due to memory management leave the user in a
tight spot, facing unappealing choices. Using more powerful hardware is expensive at
scale. Tweaking GC configuration parameters can be a slow process because engineers
generally have an indirect understanding of how each setting will interact with their
program. Furthermore, tuning GC parameters often has fragile results. Rewriting
in a different language is expensive and often infeasible. Many developers end up
“fighting” the GC, via dubious tricks like manual object pooling (which undermines
temporal safety) or using “off-heap” allocations (which throws out the benefits of GC

entirely). In most environments, programmers have little recourse.

This dissertation envisions and explores subheaps: a tool to bridge the gap between
language implementors and language users. For users, subheaps provide a way to “cus-
tomize” an off-the-shelf GC to one’s particular program. For implementors, subheaps
represent a simple mechanism that can obviate the necessity of providing multiple
redundant GC implementations in order to provide acceptable GC performance to a
wide range of user programs. One lens on subheaps is as an argument for programmer

control over GC' as a language survival characteristic [Gab].

1.2. The Core Idea Of Subheaps

Subheaps give the programmer an API to guide the garbage collector’s effort. The
programmer’s goal is to divide the heap into multiple pieces which can be collected
independently and efficiently. Each piece is called a subheap. Programmers modify
their programs to dynamically create, activate, and collect subheaps. A key assump-

tion behind the idea of subheaps is that humans can (sometimes) make careful choices



for when and where to collect a subheap, simultaneously increasing efficiency and ef-

ficacy of GC.

To be clear, subheaps are not a new garbage collection algorithm or implementation
in the usual sense. Most designs for new GCs apply to all programs automatically.
Subheaps differ in this aspect. If a particular program does not make use of the
subheap API, the program will not see any benefits from running against a subheap-

enabled GC, and its garbage will have to be collected with some existing GC design.

Subheaps offer two potential benefits to the world at large, at least for those programs
which can make productive use of subheaps. First, increasing program efficiency can
save money by reducing hardware costs and/or software engineering effort. Second,
subheaps offer the potential to eliminate technical factors favoring unsafe languages
stemming from the flexibility and performance potential of manual memory manage-

ment, thereby strengthening defensive cybersecurity.

1.3. Purpose & Contributions

Statement of Purpose Section 1.1 explains why fully-automatic garbage collec-
tion is not yet a completely solved problem. The idea at the core of this document
is that human guidance can (sometimes) improve the performance characteristics of
automatic memory management. Subheaps represent one simple point in the design
space to explore this idea. This dissertation investigates how, and to what degree,

subheaps can be implemented and deployed to achieve their intended benefits.
To fulfill its purpose, this dissertation makes the following contributions:

e A design for a subheap API, with corresponding implementation, to allow the

programmer to influence where and when the collector expends effort.



e Discussion of how subheaps can be applied in practice, especially in how sub-

heaps allow adaptations for applications such as software caches.

e Discussion of the challenges involved in static removal of subheap write barriers,

along with evaluation of a simple scheme for automatic barrier elimination.

e Preliminary evaluation of subheaps, illustrating both potential benefits as well

as costs and drawbacks to the use of subheaps.

e An open source implementation of subheaps made publicly available? for other

researchers to build upon.

e Thorough coverage of how subheaps relate to the literature on garbage collection

and region-based memory management.

Make note of what is not being claimed in this dissertation. In particular, subheaps
are not being presented as a universal improvement upon existing collectors, nor
even as a desirable mechanism to include (in their current minimalist form) in future
languages. Rather, subheaps show promise and work well for small programs, but
results on larger programs indicate that more research is likely to be needed before
(some future variant of ) subheaps will be ready for general programmer consumption.

Section 7 covers these views in more detail.

1.4. Roadmap

The remainder of this chapter introduces basic terminology for garbage collection.
Section 2 lays out the core ideas behind subheaps: the concrete API between the
programmer and the collector, the underlying principles and design constraints behind

the API, prototype uniprocessor implementations, and a variety of extensions to

2Source and documentation for subheaps at https://eschew.org/projects/subheaps/
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the core. Section 3 discusses the practical use of subheaps: why, where, and how
programmers can use the subheap API to reduce collection costs. Section 4 evaluates
subheaps. Section 5 reflects on some of the challenges facing subheaps, and speculates
on future work to address those challenges. Section 6 lays out related work, and

Section 7 concludes.

1.5. Garbage Collection, Briefly

Subheaps occupy a niche in the design space for garbage collection. To understand the
design space for subheaps, it’s useful to have a baseline understanding of concepts and
terminology from the GC literature. What follows is a terse overview; the Garbage
Collection Handbook [JHM11] gives a fuller understanding of the history and practice

of garbage collection. Readers with a background in GC may safely skip ahead.

Garbage collection comprises reference counting and tracing-based techniques, which
are dual to each other [BCR04]. Each alternative aims to reclaim allocated memory
from the heap of allocated objects, starting from the program’s roots: registers, stacks,
and globals. Reference counting tracks how many copies of a given pointer exist in the
heap; when the heap contains zero copies of a pointer, the associated memory is dead
and can be freed for reuse. Tracing computes the transitive closure of references from
the roots; any allocated data not thusly accessible can be reclaimed. Reachability is
the standard approximation to the undecidable property of liveness, and the terms

are often treated synonymously.

The three “elemental” tracing algorithms are mark-sweep, compaction, and semis-
pace collection. Mark-sweep allocates objects from one or more free lists of available
memory, and returns dead objects to the free list(s) in a “sweep” of the heap. Un-

like compacting or semispace collectors, mark-sweep does not copy objects as it runs.



Copying enables a fast allocation scheme called bump allocation in which objects are
allocated from a large chunk of address space by incrementing (or decrementing) a

pointer. These building blocks may be combined to form hybrid collector designs.

The most common hybrid is generational collection, in which the heap is split into
two or more spaces (disjoint sets of objects) termed generations. The simplest gen-
erational design has two spaces. Newly-allocated objects are placed in the youngest
generation, also called the nursery. Objects which remain alive at the next collec-
tion graduate into the oldest generation, called the mature space. By maintaining a
remembered set of generation-crossing references to be used as an additional source
of roots, the young generation can be collected without inspecting the whole heap.
Remembered sets are kept up-to-date by write barriers: small pieces of code emitted
by the compiler that run every time a value in the heap is modified. Write barriers
effectively allow the mutator (the client program relying on the GC) to communi-
cate relevant information to the collector. Generational collection is one example of

partitioned or space-incremental collector design.
1.5.1. Garbage Collection Tradeoffs

One major tradeoff in the design of garbage collectors is time versus space: in general,
the more space is available, the less time must be spent reclaiming memory. Smaller
heaps must be collected frequently. Conversely, with a sufficiently large heap, garbage

collection isn’t needed and thus takes zero time [SJBL10].

Another major tradeoff is latency (pause time) versus throughput (overall time taken).
Large pauses are undesirable for interactive applications such as GUIs or servers. But
techniques that improve latency, such as incremental collection, often degrade overall

performance. A key design choice is amortization: doing work in larger batches



improves throughput and degrades latency.

The latency-vs-throughput tradeoff is also reflected in treatment of fragmentation.
Fragmentation occurs when free space is divided into many pieces, each too small
to be individually useful. This reduces the effective size of the heap and makes
CPU caches less effective. Copying collectors eliminate fragmentation. For a popular
object, one with many references to it throughout the heap, updating all references to
the newly copied object can degrade latency. The effect on throughput of combating
latency is a mixed bag; copying is not free but its cost may be offset by increased

locality for the mutator.

Related to the question of batch sizing is the tension between local operation and
cycle-completeness. To reclaim a given allocation requires a summary of the rest of
the heap. Examples of such summaries include reference counts and remembered sets.
Summaries allow processing smaller portions of the heap at a time, which improves
latency and may even boost throughput. But when a reference cycle crosses a sum-
marized boundary, no purely-local operation can identify the cycle. Global views—
encompassing both sides of the boundary—are needed to handle cyclic garbage. Cyclic
structures, such as doubly-linked lists and trees with back-pointers, are common
enough to warrant consideration. As a result, practical garbage collectors either use

tracing or augment reference counting with dedicated cycle collection routines.

Finally, in block-structured or space-partitioned collectors, there is a tradeoff in the
choice of block size. Small fixed-size blocks reduce the wasteful impact of unallocated
space (also known as internal fragmentation) but produce many inter-block references
that may need to be tracked. Larger blocks reduce such overheads. Subheaps aim to
resolve the tradeoff by supporting a small minimum block size and letting subheaps

grow dynamically rather than imposing a fixed maximum size. This relies crucially



on programmer input to choose advantageous heap partionings.
1.5.2. Concurrent Collection versus Work Reduction

Collectors can take advantage of surplus hardware resources via concurrent and/or
parallel techniques. Such approaches can improve both throughput and latency, but
they do not reduce overall work done. Instead, they increase total work due to

synchronization overhead.

Work reduction can matter for energy constrained environments, such as mobile de-
vices. It is also vitally important for getting robust control over collection costs in
large heaps. A standard machine-independent measurement of work is the mark/-
cons ratio, defined as (allocations or bytes of ) data marked or copied, divided by data
allocated.® The mark/cons ratio approximates the average per-allocation work done

by the collector. Eliminated work will be reflected in a lowered mark/cons ratio.

3The term cons to represent allocated data refers to the Lisp function for allocating pairs.



CHAPTER 2 : Subheaps

The core goal of subheaps is to provide a flexible mechanism to give users control over
the throughput and latency costs of tracing GC by focusing collection effort on high-
yield parts of the heap. The remainder of this chapter discusses the core principles
behind subheaps, illustrates the constraints implied by those principles, introduces a
design for subheaps satisfying the constraints, and details the elements needed for an

efficient implementation of the subheap design.

2.1. Subheap Principles

The fundamental task of a garbage collector is to automatically and safely reclaim
memory for reuse. Although their goal is to find dead space, GCs must waste effort
identifying live data. Tracing GCs expend this effort at collection time, whereas
reference counting operations are performed by the mutator. This wasted effort is

the primary cost of garbage collection.

Subheaps furnish two mechanisms: they enable programmer-controlled subdivisions
of the heap, and allow programmers to collect particular subdivisions. These mech-
anisms correspond to the “where” and “when” of collection. They in turn allow
programmers to influence the performance characteristics of tracing in principled
ways. Collection effort can be redirected “spatially” by biasing collection towards
dead objects and away from live ones. Grouping objects with similar lifetimes can
improve performance by reducing the collector’s wasted effort. Collection effort can

also be shifted “temporally” by explicitly triggering collection.

10



2.1.1. Risks

The mechanisms provided by subheaps are a double-edged sword. Unlike some
schemes for memory management, it is not possible for subheaps to violate type- or
memory safety. However, careless use of subheaps can cause application performance
to degrade rather than improve. The reason is that explicitly triggered collections
can waste effort (re-)examining live objects. With regular garbage collection cycles,
which are usually driven by memory pressure, this effort is limited by the rate of pro-
gram allocation and the amount of memory reclaimed per collection. Unlike regular
garbage collection cycles, the potential overhead of subheaps is disconnected from

such limitations.
2.1.2. Cost Model

The most costly part of garbage collection is tracing through live data, whereas the
benefit of collection is in reclaiming dead space. By using the subheap mechanisms
to exploit knowledge of the lifetimes of (some) objects within their applications, pro-
grammers can reduce the cost or increase the benefit of collection. In the limit, when
every object under collection is dead, the primary cost of collection—that of tracing
live objects—goes to zero. Even when no tracing occurs, collections have non-zero

cost due to scanning stacks and remembered sets.

Most use cases for subheaps will improve performance by reducing the amount of
tracing required, thereby shrinking the performance impact of garbage collection.
Particular configurations of subheaps can, however, have other impacts on overall
program runtime. Mutator performance can be degraded by the execution of write
barriers and remembered set maintenance needed to support subheap collection. More

subtly, use of subheaps can change program locality properties, which could either

11



improve or degrade performance. These second-order costs will be more apparent
when an application of subheaps does not produce large savings in reduced tracing

costs.

2.2. Design Constraints

The core principle behind subheaps—of reducing GC cost by eliminating tracing
work—Tleads to several constraints for an implementation of subheaps. First, subheaps
should optimize for collecting dead space; collecting dead objects should be nearly
free. Second, subheaps must be able to efficiently partition the heap in arbitrary

ways. Third, subheaps must support the collection of arbitrary sets of subheaps.

The desire to make collection cost shrink to zero for all-dead subheaps suggests that
any operation which has cost proportional to the size of a subheap—rather than
the size of the subheap’s live data—is verboten. However, constant factors matter.
Per-object operations, such as eager free-list sweeping, would be unacceptably slow,
but manipulating chunks of space at coarse granularity can reduce the associated
constant factor enough to become an insignificant cost. Thus, subheaps aim to exploit
amortization for efficiency. However, quick reclamation of dead space is not the end
of the story. While tracing live data is the largest cost of collection, it is not the only
cost; finding roots in stacks and remembered sets has non-zero cost. And in many
applications, the cost of allocation outweighs the cost of collection, so care must also

be taken not to degrade allocation for the sake of collection.

Note a non-constraint for this incarnation of subheaps: because subheaps are meant
to exploit human knowledge, we acccept the burden of having source code, rather than
targeting bytecode or object code. Future research on automating use of subheaps

might expand deployment of subheaps to bytecode-only codebases.

12



2.3. Subheap API

Source code is required because programmers must modify their programs to make

use of the subheap API. Here is the low level API for using subheaps:

subheapCreate :: { () => Subheap }
subheapActivate :: { Subheap => Subheap }
subheapCondemn :: { Subheap => () }
subheapCollect :: { () => (O }

The function name is on the left, followed by a type signature. Function types are
delimited by curly braces, with arguments and return types separated by arrows. The

unit type, (), is a placeholder similar to void in the C family of languages.

As the program executes, new allocations go into some subheap, called the active
subheap. The subheapActivate function marks the given subheap as being the new
active subheap. It also returns the previously-active subheap, making it easier to
manipulate subheaps in a cleanly nested way. We refer to the subheap returned by
the program’s first call to subheapActivate as the default subheap. In a program

that ignores the subheap API, all allocations remain in the default subheap.

Condemning a subheap indicates that its contents should be prioritized at the next
collection cycle, but does not initiate reclamation. There are several possible design
choices for the precise semantics of condemnation. We focus on the simplest version,
in which condemned status is associated with subheaps rather than their contents;
thus, condemning does not have “snapshot” semantics. Multiple subheaps can be
condemned before collecting, and condemned status does not persist between collec-
tions. Compared to an interface which collects an explicitly-provided collection of

subheaps, the condemned set abstraction is simpler, more flexible, and more efficient.
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We can define a fifth operation, subheapReclaim, by composing Condemn and Collect.
Why not provide only the convenient wrapper? The issue is that it conflates distinct
elements of the programmer’s knowledge, because it ties together issues of where and
when the GC should run. It is also unnecessarily limiting: by reclaiming only a
single subheap at a time, we lose the ability to bypass stale remembered sets. Still,
subheapReclaim is the more convenient interface to reclamation, and suffices for

many common use cases.

The activation-based, dynamically-scoped execution model for the subheap API was
chosen as a simple point in the design space to begin exploration. It is arguably the
least essential (or least principled) element of the subheap design, and would be the

easiest to experiment with in future iterations of research on subheaps.

2.4. Subheap Implementation

Our prototype subheap-augmented garbage collector is based on the Immix mark-
region [BMOS8] heap design. Mark-region combines the speed benefits of contiguous
allocation with the space efficiency of sweeping. Importantly, given that successful
use of subheaps implies proportionally less tracing and more reclamation, mark-region
also enables rapid reclamation of empty space. Another appealing property of Immix
is that it has been extended with several variants of generational collection, based on
copying, sticky mark bits, and reference counting [BM08, SBYM13]. Subheaps have
been integrated atop two distinct generational baselines: Stickylmmix and ImmixRC.

Details of these extensions may be found in Section 2.5.

The primary implementation of subheaps has been written for an ML-like language
called Foster. The Foster project is (was) an exploration of using language-based

technology to reliably eliminate conventional overheads of type safety. Subheaps
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were developed to address GC costs in this performance-sensitive context. The
Foster compiler targets LLVM and implements both traditional compiler optimiza-
tions such as inlining as well as GC-specific optimizations for stack slot manage-
ment and write barrier elimination. Both the Foster compiler and its subheap-
enabled runtime are freely available for anyone to study, use, or modify, at https:

//eschew.org/projects/subheaps/.

The remainder of this section details the design and implementation of Foster’s

subheap-augmented collector.

Overview The heap is structured into 32 KB frames, which are in turn composed
of 256-byte lines. Each line is associated with a mark byte, a used byte, and a stamp.
The mark byte is standard; the used byte is needed when combining subheaps with
generational collection, and the stamp helps manage remembered sets. Fixed-size
heap metadata is segregated in demand-paged virtual memory, allowing constant-
time lookup of metadata for specific portions of memory [SMB04, Kus15|. Line-based

metadata is used to calculate frame residency statistics.

Remembered Sets To enable independent collection, each subheap maintains a re-
membered set of incoming pointers. The representation of remembered sets is mostly
orthogonal to the design of subheaps. The primary restriction is that for emulated
reference counting (see Section 3.5) to work, remembered sets must record the slots
containing pointers, rather than pointer targets. Foster uses a standard sequential-
store-buffer design. Coarser granularities could also be viable; the literature describes
several potentially relevant optimizations [SMB04, Sjo14, Ada07]. Regardless, the
asymptotic overhead of remembered sets (sometimes referred to as remsets) ulti-

mately depends on the heap division chosen by the programmer.

15


https://eschew.org/projects/subheaps/
https://eschew.org/projects/subheaps/

One unique wrinkle arising from collecting arbitrary sets of subheaps is the need
for the runtime to purge stale remembered set entries. Otherwise, reuse of either
the source or target of a remembered pointer can result in the runtime interpreting
arbitrary bit patterns as a pointer. This issue can be finessed when the runtime
controls, or at least knows about, the future order of collections [Ste99]. But with
subheaps, programmer input controls collection order. Thus the runtime must identify
when lines holding remembered pointers have been reused. This is accomplished with
a per-line timestamp, recorded in remembered sets and incremented upon reclamation
(or reallocation). A 32-bit stamp per 256-byte line imposes space overhead of 1.5%.

Line stamps would not be needed for subheaps atop conservative Immix [SBM14].

Allocation Allocation for subheaps mirrors that of Immix. Allocation requests are
routed through a pointer representing the current subheap. Subheaps grab free line
spans from a cache, falling back to linear inspection of used line marks, and record
the set of lines they own. Activation of a new subheap overwrites this pointer, and
“steals” the unused trailing lines from the previous subheap, to minimize wasted
space. By managing space around groups of lines rather than whole frames, this
scheme enables fine-grained behavior while still preserving efficient amortization for

coarse-grained subheaps.

The main function of reconstructing spans from line metadata, versus keeping an
explicitly-represented pool of available spans, is to combat fragmentation from line
spans being reclaimed piecemeal. The downside is that purely linear sweeps do not
preserve locality in the presence of high-frequency subheap churn. A cache of available

lines permits flexibly combining locality preservation with fragmentation avoidance.

As with the baseline Immix collector, object allocations larger than 8KB are diverted
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to malloc, limiting size-based fragmentation in the block-structured heap to 25%.
Each subheap keeps a list of the large objects it owns, and scans the list at each
collection to find unmarked entries. Due to the minimum size requirement, separate
treatment of large objects does not alter the overall analysis of performance considera-
tions for the block-structured heap. Arraylet techniques [BCR03b, SBFT10, PZM*10]
could be employed by a language runtime or standard library to ensure the data for

large arrays is managed within the block-structured heap.

To support collection of arbitrary partitionings, the subheap implementation must be
able to efficiently find the subheap associated with a given object. This operation is
used “internally” to identify subheap-crossing pointers, both in the write barrier and
during collections. Following Yak [NFX*16], we provide fast mapping from objects to
subheaps by embedding a subheap identifier in object headers. In Foster, this 32-bit

identifier conveniently fits into the unused half of an eight byte object header.!

Per-Frame Metadata Two additional words are associated with each 32 KB of
virtual address space. One word stores a few bytes of statistics: per-frame counts of
available lines and holes; used to prioritize opportunistic evacuation [BMO08], plus a
count of how many lines in that frame belong to the default subheap, used to permit
compaction. Frames containing large allocations are associated with a dynamically
allocated four-element extension, since there can be at most four large objects per 32

KB region of memory.

Condemnation The subheapCondemn function records the given subheap in the
condemned set. It also sets a flag in the given subheap to speed determination of

condemned status for individual objects at collection time. Condemnation is constant

!The other half stores object type information; the header was eight bytes rather than four due
to Foster keeping 16-byte object alignment.
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time; it does not inspect or modify any remembered set entries. Condemnation is

idempotent until the next collection of a given subheap.

Reclamation The first step of a collection cycle is to establish the condemned set,
either from explicit user requests or as selected by the runtime. The next step is to
gather locations of potential incoming pointers from the remembered set, ignoring
entries between condemned objects. The overall set of incoming pointers from non-
condemned objects, plus globals? and stacks, constitutes the root set. If the root set is
empty, the entirety of the condemned set can be reclaimed immediately. Otherwise,
tracing and marking from the roots proceeds as usual, with the proviso that the
collector ignores non-condemned objects. At the start of a collection, the condemned
set’s marked line maps must be cleared (unless the current collection is operating as a
generational nursery). After marking finishes, mark bytes for the condemned set are
copied to the line-used map. After each collection, the condemned set and associated

flags must be reset.

Scanning of line maps is proportional to the size of the condemned set rather than
the size of the live data, but the associated constant is quite small. Measuring the
cost of scanning line maps for an unfragmented subheap of 1 GB revealed a mean cost
of 325 us, implying a reclamation rate of 3 GB/ms. This rate of reclamation applies
to almost entirely empty subheaps. In subheaps with even a small percentage of live
data, the cost of tracing dominates the cost of reclaiming space. Neither cost applies
to subheaps with no incoming pointers, which can be reclaimed without scanning
linemaps. Inspecting line maps is more than two orders of magnitude faster than the

cost of allocation itself.

2Globals are traditionally a source of roots. In Foster, globals are statically allocated and im-
mutable, and thus are never part of the root set.
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When collection occurs without an explicitly-chosen condemned set, the runtime must
choose which subheaps to collect. The simplest heuristic is to collect all subheaps;
this guarantees that any available space will be made available for allocation, with-
out any data being spuriously kept alive by remembered sets. Collecting a smaller
subset of the heap—such as only the default subheap—is possible, and can improve
performance by reducing duplicate tracing of data in long-lived subheaps. Doing so
risks performing duplicate work if the chosen subset yields sufficiently little free space
that fallback collection of the whole heap is eventually needed. Section 2.7.1 explores
how the user can influence the set of implicitly-chosen subheaps in order to improve

performance and avoid wasted work.

Used Bits Non-subheap collectors can maintain a simple invariant: after collection,
used lines are marked, and unmarked lines are not used. This allows used status to be
be derived from mark bits rather than being explicitly represented. With subheaps,
an uncondemned line can be used but not marked. This dissertation’s design, which
combines subheaps with sticky mark bit generational collection, requires separate
metadata for line mark versus used status. Used bits are set during allocation and
cleared post-collection. Mark are set during collection, and only reset before mature
space collections. The relevant state machine is illustrated in Figure 1. By keeping
the invariant that cached spans are marked used, the allocation cache reduces the

overhead from (re)setting used bits.

Subheap Representation and Lifecycle While the semantics for subheap ob-
jects (that is, language values of type Subheap) given so far could be adequately
represented by an opaque integer value, the prototype instead uses heap-allocated
handles to allow the runtime to detect unmarked subheap values. Rather than provide

a means via the API for explicit destruction of subheaps, the runtime automatically
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pool

(

used bit set cache used bit reset

()

active

Figure 1: Per-line state machine for the “used” bit. Note that these are logical states;
the pool is represented implicitly, whereas the line cache is represented explicitly.

destroys subheaps which are both unmarked and empty. Subheaps which are empty
but not unmarked might be activated in the future, whereas non-empty unmarked
subheaps cannot be destroyed until the objects allocated within them die (or are

evacuated).

The backing object for a subheap occupies 360 bytes in the current prototype. This
space cost breaks down into: 24 bytes each for bump allocators devoted to small and
medium-sized objects; 24 bytes for tracking large array allocations; 32 bytes for track-
ing allocated spans; 120 bytes for the subheap remembered set (with timestamps),
104 bytes for a generational remembered set, two bytes to hold “condemned” and
“short-lived” flags, and 30 bytes of padding for alignment. While engineering effort
could reclaim some of this space, there will always be some unavoidable bookkeeping
overhead associated with each subheap. This overhead imposes severe diminishing
returns on the benefit of having subheaps share space at granularities finer than a

single line.
2.4.1. Subtle Elements of Subheap Collection

A common optimization in traditional collectors is to lazily perform GC cleanup ac-

tions, such as mark bit sense flipping. This avoids the cost of resetting all marked
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objects by redefining object mark status from an absolute marked/unmarked status
bit to be defined relative to a global “sense” bit. Doing so permits “unmarking”
the entire heap in constant time, thereby reducing the collector’s workload. Unfor-
tunately, flipping the sense of the mark bit is only possible for full-heap collections;?

flipping the meaning of the mark bit for an individual subheap is not coherent.

To minimize the impact of this foregone optimization, the design for subheaps relies
instead on locality via segregated mark bits for both lines and objects. Long-deployed
hardware tricks, especially prefetching, provide attractive constant factors for linear
walks through memory. Besides having little impact on GC speed, segregated mark
bits also impose low space overhead. With a minimum object size of 16 bytes, one
bit per (potential) object requires only 0.78% space overhead. Using a full byte
per object, which avoids bit-manipulation overhead in a serial collector and ensures
atomicity without the cost of compare-and-swap atomics for concurrent marking,

imposes an additional space overhead of 5.47%.

Another subtlety with subheaps has to do with remembered sets. In particular,
whenever two or more subheaps are collected, their remembered sets must be trimmed
of any stale entries from condemned subheaps. A stale entry is a pointer either from
or to an object left unmarked after collection. This scenario most commonly occurs

for whole-heap collections.

If stale entries are not trimmed from remembered sets, unsoundness can arise from

the following sequence of events:

1. A reference to object Y is stored in slot X, so Y’s space records slot X in its

remembered set.

3In a generational collector, nursery evacuation provides the opportunity to clear mark bits.
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(remembered set)

2. The object owning slot X dies.

Y:[ ]

3. A GC occurs which includes the subheaps for X and Y. Because both sides
are condemned, Y’s remset entry for X is ignored. Y will be left unmarked,

assuming X was the last object referring to Y, because X is dead.

4. Because Y is unmarked, subsequent allocation in Y’s subheap puts an arbitrary

bit pattern in X’s referent (particularly the object header).

Y: [

5. The next collection of Y’s subheap consults the remembered set and finds an
entry for slot X. Assuming that X’s memory has not been reused yet, it still
contains a valid-looking bit pattern for the ghost of Y. Attempts to trace through
this ghostly pointer are erroneous; a GC invariant (the integrity of header words)

has been violated.
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Y [
X: [ ]

(remembered set)

Eagerly zeroing reclaimed memory would prevent the problem, but also drastically
increase the (latency) cost of reclaiming large subheaps with little live data. It is

cheaper to instead lazily detect and remove stale remembered set entries.

A similar situation can arise without simultaneous collection of multiple subheaps.
Suppose after step 2 above, only X’s subheap is collected. Having been reclaimed,
the source slot X can be overwritten with an arbitrary bit pattern, of arbitrary type,

by future allocations.

Y:[ ]
X 1

Yet the subheap containing Y can still find slot X through its remembered set. Thus,
when Y’s subheap is collected, it must treat the bit pattern it reads with caution.
Two possibilities are to either parse the heap to verify that the slot is typed to hold

a pointer, or fall back to conservative [SBM14] treatment of the potential root.

We instead have the collector maintain metadata to help identify stale remset entries.
Lines are timestamped to indicate when they were last initialized; remset entries copy
the stamp. When a remset entry’s stamp disagrees with the line’s stamp, the entry is
stale. By making stamps large enough to avoid wraparound, this mechanism suffices
to identify stale entries. Otherwise, cautious treatment would still be needed to deal

with spurious agreement due to wraparound. A stamp size of four bytes per line
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amounts to space overhead of roughly 1.5%.

These situations do not arise for generational designs because generational collectors
maintain stricter invariants: they disallow collection of the mature space indepen-
dently from the nursery, and they either recompute or clear the nursery’s remembered

set on full-heap collections.
2.4.2. Subheap Write Barriers

Like generational collectors, subheaps require a (compiler-inserted) write barrier to
notify the collector of changes made by the mutator. Specifically, the subheap write
barrier is responsible for identifying all subheap-crossing pointers at program run
time. One source of such pointers, shared with generational collection, is explicit
mutation by the mutator. But the subheap write barrier faces an additional source

of potential subheap-crossing pointers: initializing writes of heap object slots.

Consider the venerable Cons(x,y), which writes the pointers x and y into a freshly
allocated object. A generational write barrier is unconditionally redundant: the cons
cell is by definition the youngest object in the heap, and the generational barrier can
only trigger when storing young pointers in older objects. In contrast, the subheap
barrier is only redundant if the values being written currently reside in the subheap
containing the cons cell (which is to say, the active subheap). This precondition
will be true for some call sites and not others. So to fully eliminate such subheap
barriers, the compiler must generate multiple variants of some functions. Doing so
carries costs, both statically in compilation time, and dynamically at runtime due to

instruction cache pressure.

Conversely, there are situations in which it is easier to eliminate subheap barriers

than generational barriers. One example is array initialization—consisting of an allo-
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cation for the array slots, followed by sequence of allocations and writes for the array
elements. The stores to array slots can often be done barrier-free when evacuation has
been ruled out. Subheaps merely have to prove that no subheap activations occur in
between the array allocation and the stores into the array. A compiler trying to elim-
inate a generational write barrier must prove that none of the allocations preceding
the barrier could have triggered a nursery collection, because generational collectors

usually evacuate the nursery.

A common trick in systems programming is to give separate consideration to the
“fast” and “slow” paths for a potentially-expensive operation. The fast path for the
subheap write barrier simply establishes that the requested write does not create a
subheap crossing pointer. The slow path updates the target subheap’s remembered
set. Static elimination of write barriers can reduce the number of “fast path” barriers
executed, but cannot alter the number of “slow path” barriers, which is a function
of the mutator’s use of the subheap API. Programs which make sparing use of the
subheap API will have the majority of their barrier costs spent in the fast path.
Programs which make very fine-grained use of subheaps will often see the bulk of

their barrier costs absorbed by the write barrier’s slow path.

Barrier Implementation The write barrier for subheaps is listed in Figure 2.
The fast path for the write barrier uses the heap_for helper function to compute the
subheaps associated with the source and target objects. This helper simply reads and
decodes the subheap from each object’s header. For writes between objects within
the same subheap, the subheap write barrier defers to whatever barrier the baseline
collector needs (if any). With the two calls to the helper function inlined, the subheap

barrier code compiles to an 8-instruction fast path on x86-64, presented as Figure 3.
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void write_barrier (voidx* val,

*slot =

val;

if ('val) return;

immix_spacex* hv =
immix_space* ho =
ho) {

else { baseline_

if (hv !=

}

heap_for (v

hv->remember

write_barrier_if_any (val,

void* obj, voidx*x* slot) {

al);

heap_for (obj);

_subheap(slot); 1}

obj, slot); %

void immix_space::remember_subheap (void** slot) {
// This is the slow path.
incoming_ptr_set.insert(slot);

}

movqg
movq
movq
shrq
je
movl
cmpl
je
xorl
testl
sete
movqg
movq
movq
callq

.after_wb:

%rdi, %rax
%rsi, (Yhrax)
%rsi, %rcx
$32, %rcx
.after_wb
-4(%hrsi), %hedx
-4 (%hrax), hedx
.after_wb
%ecx, hecx
%hedx , %hedx

%ecl

hrsi, %rdi
%rax, hrsi
%rax, %rdx

subheap_write_

Figure 2: Subheap write barrier (C++)

# do the write itself

# no barrier for null pointers

# also skip intra-subheap writes

# are we writing to
# the default subheap?

barrier_slowpath

Figure 3: Subheap write barrier (x86-64 asm), sans baseline write barrier
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2.4.3. Subheap Barrier Optimization

The core function of the subheap write barrier is to preserve the invariant that each
subheap can quickly identify incoming pointers from the rest of the heap. Given a
write of object pointer P into slot S, a barrier is necessary if P and S might be located

in different subheaps.

Thus subheap barrier optimization can be cast in terms of alias analysis (aliasing
of objects’ subheaps rather than the objects themselves). Alias analysis has been

thoroughly explored by the static analysis research community:.

The Foster compiler implements a coarser analysis focused on the current subheap;
this obviates the need to symbolically represent subheaps. The core of barrier op-
timization relies on an interprocedural forwards dataflow analysis. Freshly-allocated
objects are (by definition) located in the current subheap; the analysis maintains a
set of objects in the current subheap (V). Values returned from function calls are
added to ¥ when the function only returns values in the current subheap. Stack slots
are inserted to and removed from ¥ to match the values written. Calls which might
activate a new subheap nullify the set of objects in the current subheap. A write of

P into S needs a barrier unless P and S both appear in .

There are several sources of imprecision in the above algorithm, but more sophisti-
cated analyses that would ameliorate some of the algorithm’s shortcomings are well
known. Most obvious is the restriction to the current subheap. Slightly more prob-
lematic are various forms of heap dependence, including closure environments and
mutable heap cells. For closure environments, the challenge is to verify that no sub-
heap activations occur between the creation and invocation of the closure. Mutability,

of course, introduces the challenge of aliasing.
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The return value of functions can be a source of overapproximation. Consider the
example snippet of Figure 4. The function to compute a prefix of a byte sequence
is defined by cases. One of those cases (in which the supposed prefix happens to be
longer than the original sequence) can simply return the input unchanged; all other
cases allocate a fresh object to represent the newly computed sequence. Because
taking “too many” bytes is rare, most programs will only exercise the fresh-allocation
code paths, but since the input could reside in any subheap, the overall function result

is not guaranteed to be located in the current subheap.

Finally, the biggest conundrum for static optimization of subheap barriers is likely
the handling of function arguments. Functions are naturally polymorphic over what
subheap contains each of their arguments. Such polymorphism inhibits barrier elim-
ination. In the general case, code duplication is needed to eliminate this implicit
polymorphism. Unrestricted specialization risks exponential blowup in code size,
even when confined to the special case of current-subheap-or-not. Ultimately, a func-
tion can have very many call sites with unique signatures for its function arguments’
subheaps. Maximally specializing every call site invites large increases in code size,
with negative implications both for compilation time and instruction-cache efficiency
at run time. On the other hand, failing to specialize call sites introduces avoidable

overhead in the form of barriers which will never trigger.

This tradeoff is more naturally handled by just-in-time (JIT) compiler infrastructures,
which can specialize hot functions on demand. Ahead-of-time compilers could incor-
porate user-provided feedback, but relatively few programs are performance-critical

enough to warrant the hassle of feedback-directed optimization.
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bytesTake :: { Bytes => Int64 => Bytes 1I};
bytesTake = { ba => len =>

case ba
of _ if len >=8Int64 bytesLength ba
-> ba
of _ if len ==Int64 O -> BytesEmpty
end

}s

Figure 4: bytesTake may return its input or allocate

Optimization Dilemma For (whole) programs which do not make any use of sub-
heap operations, barriers can be safely disabled en masse. This observation eliminates
superfluous barrier costs for programs which do not use subheaps. There is, however,
a consequential wrinkle: introduction of subheap operations off the mutator’s critical
path can result in added overhead on the critical path, due to barriers inserted by
conservative static analysis. This is an unfortunate dilemma between gratuitously
slowing down programs for the sake of consistency, or introducing a small but silent

potential performance regression from the introduction of subheaps.

2.5. Generational Variants

Generational collection is a widely adopted design point across serial, concurrent,
and parallel collectors. The primary motivation for subheaps is to provide control for
tackling program patterns which generational collectors struggle with. However, the

benefits of subheaps should not come at the cost of sacrificing generational collection.

Generations and subheaps are clearly related: both partition the heap to boost col-
lection efficiency, and both rely on infrastructure such as remembered sets. Yet there
are important differences between generations and subheaps. First, nurseries are usu-
ally evacuated at each collection. Evacuation both enables direct bump allocation and

permits bulk clearing of the remembered set. Copying objects between subheaps com-
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plicates static reasoning about which subheap an object lives in, thereby undermining
barrier optimization for compilers and static reasoning about collection performance
for humans. Movement of objects between frames within the same subheap is less
problematic; it merely imposes overhead to update the target remembered sets of any

subheap-crossing pointers in moved objects.

Second, generational collectors impose a strict collection order: every major collec-
tion must be preceded by a minor collection. This ordering allows for unidirectional
rather than bidirectional remembered sets. In contrast, subheaps use bidirectional
remembered sets and allow collection of arbitrary subheaps in arbitrary orders. (Sec-
tion 2.7.1 describes a scheme which eases this invariant, enforcing a partial collection

order to reduce the cost of remembered set maintenance.)

Luckily, evacuation is merely conventional, not a strict requirement for generational
behavior. Existing research on the Immix heap organization [BM08, SBYM13] shows
that an Immix variant based on the sticky mark bit design of Demers et al [DWH90]
performs “very competitively” with a more traditional evacuating nursery. Shahriyar
et al [SBYM13, Shal5| also describe a scheme for deferred reference counting in an
Immix setting, with performance characteristics strongly reminiscent of a sticky mark

bit design. We describe how both designs interoperate with subheaps.

The idea with sticky mark bits is to implement “nursery” collections by simply not
resetting mark bits between collections. Since tracing ignores marked objects, this
effectively restricts collection to examining only newly-allocated objects. The only re-
maining wrinkle is that a second remembered set must be kept; the barrier must catch
writes of new (unmarked) objects to old (marked) objects. An additional optimiza-
tion when mark state is kept “out of line” is to reflect mark state in object headers,

reducing the working set needed during mutator operation. One bit from the header
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designates “old” objects, with the invariant that all old objects are marked.

The conditions for the subheap barrier and the sticky mark barrier complement each
other. The subheap barrier concerns itself with subheap-crossing pointers, and the
sticky mark barrier need then only catch (a subset of) non-subheap-crossing pointer

writes.

Shahriyar’s reference-counting design for Immix, called RCImmix, also uses header
bits to record object age and coalescing status. An old bit allows RCImmix to avoid
tracking mutations to freshly-allocated objects (along with registers and the stack).
For mutations to old objects, RCImmix uses the other bit to coalesce updates. Rather
than explicitly tracking every overwritten pointer, as a naive reference counting design
does, RCImmix captures snapshots of mutated old objects and sets the logged bit to
avoid repeated captures. Doing so avoids redundant work arising from repeatedly
mutated objects. At collection time, RCImmix: (i) applies increments to the root
set; (ii) processes enqueued increment and decrement operations; and (iii) enqueues
decrements for the root set. Note that step (ii) includes an increment for snapshotted

objects, along with decrements for the captured fields.

In RCImmix, increment operations are recursively applied to new objects. Thus, new
objects end up being traced, much like in the nursery of a generational collector.
Decrements in RCImmix are recursively propagated when an object’s reference count
reaches zero. Rather than Immix’s traditional on-the-side boolean mark byte for lines,
RCImmix uses the mark byte to store a count of live objects within the line, updated
by increments and decrements as new objects are found and old objects die. To deal
with cycles, ImmixRC uses backup tracing, which re-computes reference counts and

permits Immix-style opportunistic compaction.
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ImmixRC’s barrier has the same basic structure as with Sticky Immix; the most

obvious difference is the object snapshot taken in the slow path.

Given that ImmixRC is based on reference counting, do we actually need to augment
it with subheaps to perform well on workloads suited for reference counting, such as
long-lived mutable caches? Indeed we do. The key is that due to deferral, we cannot
immediately reclaim dead cache entries. Without subheaps, we are likely to trigger
collection from heap exhaustion in the middle of allocating a new cache entry’s object
graph. At that point, we will apply the deferred reference counting operations, which
will effectively trace through all newly allocated data since the last collection, as well
as trace through whatever data has died since the last collection. Compared to a
non-RC Immix collector, with or without sticky mark bits, ImmixRC does produce
consistent GC overhead independent of heap size. This is beneficial in tight heaps but
a net loss in more generously sized heaps. However, subheaps provide the possibility
of eliminating GC costs entirely, which ImmixRC cannot. For an example of this

phenomenon, see the evaluation of software caches in Section 4.4.

One ill effect that can be amplified by the combination of generational collection and
subheaps is floating garbage and its repercussions. Floating garbage refers to dead
objects that remain uncollected after a partial collection. Generational collection
reduces total collector work in part by deferring the collection of old objects, thus
giving them more time to die. However, when old dead objects contain subheap-
crossing pointers, their delayed reclamation can retain garbage in other subheaps,
raising costs in both space and time. Given that explicit subheap collections reset
mark bits, programmers do have a tool to reduce or avoid floating garbage, but it is,

admittedly, a blunt one.
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2.6. Further Considerations

The discussion so far has laid the groundwork for an understanding of the pros and
cons of subheaps in a somewhat abstract, simplified context. This section explores
two concerns of relevance for real-world implementations of subheaps: how to deal
with garbage cycles that span subheap boundaries, and how the subheap API should

interact with non-linear control flow.
2.6.1. Subheap-Cyclic Garbage

A key point in space-incremental collectors, which focus on collecting one region at
a time, is how to collect garbage cycles that cross regions. Some collectors (such as
MC [SM03], MC? [SMB04], CBGC [Hir04], and most generational collectors) enforce
a linear or partial order on region collections. This guarantees that cycles will be
isolated within one full collection cycle. Garbage can persist between full collection
cycles; such persistent garbage is referred to as float. The Train algorithm enforces
restrictions on where objects can be evacuated, guaranteeing that garbage cycles will
eventually be isolated to a single train, possibly after many collection cycles. In
Klock’s regional collector, a concurrent process marks logical snapshots of the heap

and removes globally unreachable objects from remembered sets.

In other space-incremental designs, the choice of region granularity is determined
by the algorithm or runtime. With subheaps, control over subheap granularity ul-
timately falls to the programmer. This means that subheaps can be coarsened (by
the programmer) to avoid the problem entirely. Large remembered sets and cyclic
garbage in remembered sets are, in some sense, symptoms of a mismatch between
the structure of the application’s heap and a pre-chosen, application-ignorant heap

structure. Subheaps provide a means by which the runtime’s heap partitioning can
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better reflect the application’s needs.

Second, subheaps give the programmer control over the precise subset of the heap
collected at a given time. If the programmer knows that cyclic garbage has been
created that spans multiple subheaps, the programmer can condemn multiple specific
subheaps to eventually be collected simultaneously. In the (likely?) case that the
overall subheap data doesn’t have the same lifetime as the cyclic portion, the cyclic
portion cannot be quickly and efficiently reclaimed by scanning multiple subheaps

simultaneously.

Maintenance of a points-into set allows cycles to be identified without a whole-subheap

scan. Differentiating garbage cycles versus non-garbage cycles requires a full scan.

This issue—of handling cycles between regions—is one of the key fundamentally hard
problems in garbage collection. Arguably, the solution most in line with the spirit of
subheaps is precisely to let humans shoulder some of this burden, when it makes sense
to do so. Under the view of subheaps as a mechanism driven by human intuition,
appeal to deliberate choice of subheap granularity might be an acceptable (if not ideal)
design tradeoff. However, if one looks to a more automated future, in which subheaps
are more of a reification of an automated analysis, then either the subheap runtime
or the analysis must be prepared to prevent or handle the threat of subheap-cyclic

garbage.
2.6.2. Control Flow Interactions

In a language with only simple control flow constructs (such as loops and func-
tion calls) the subheap API can be used to construct higher level abstractions with
strong guarantees. For example, here is Foster code implementing an operation called

inTempSubheap:
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inTempSubheap = { thunk =>
newSubheap = subheapCreate !;
prevSubheap = subheapActivate newSubheap;
result = thunk !;

subheapActivate prevSubheap;
subheapReclaim newSubheap;

result

};

This code captures the allocations performed by the given function into a fresh sub-
heap, which it collects after the function returns. Cleaning up after a function call
in this manner can be very efficient when few objects survive (like regions or stack
allocation), while still safely allowing for survivors (unlike regions or stack allocation).
More importantly, this code provides a strong invariant: the temporary subheap is
completely encapsulated, so the caller of inTempSubheap will never see the active

subheap change.

However, many languages provide more advanced forms of control low—such as ex-
ceptions, async/await, coroutines, effect handlers, and continuations—which compli-
cate the quest to provide strong abstractions atop the subheap API. For example, if
thunk throws an exception in inTempSubheap, the restoration of the previous sub-
heap may be skipped. This is an instance of a well-known tension: state (such as the

active subheap) is harder to reason about in the presence of complex control flow.

Most languages provide features, such as finally blocks in Java or unwind-protect
in Common Lisp, which can be used to restore robust state management. For some
control primitives, such as continuations and asymmetric coroutines, enforcement

of invariants must be done individually. For others, such as exceptions and effect
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handlers, the language can automatically enforce a scoped discipline on subheap ac-

tivation, thereby lowering the burden on the user of the subheap API.
2.6.3. Whither Withered Pointers

Many languages offer one or more forms of weak reference. The basic idea of a weak
reference is to refer to an object without preventing it from being collected. Weak

4 can give programs improved control over size-adaptive caches, canoni-

references
calization tables, and finalization [JHM11]. How do subheaps interact with weak

references?

Semantics The intent of the condemned set abstraction is to provide programmers
with a clear idea of what subset of the heap will be inspected during a collection.
Some forms of weak reference carry “full heap” semantics that are in tension with
the local nature of subheaps. In particular, Java specifies that when a weak reference
is cleared, all other equal-strength references referring to it must also be atomically
cleared [UJR14]. The purpose of this restriction is to ensure that the mutator cannot

observe inconsistencies in reference state.

Clearing of Soft references in Java is at the behest of the runtime, meaning it would
be legal for an implementation of subheaps to only clear Soft references during full-
heap collections. However, Java also provides Weak references with similar atomicity
requirements and for which clearing is non-optional. Thus, to be in full compliance
with Java’s semantics for Weak references, an implementation of subheaps would need
to track reference strength in remembered sets, as well as keep a Reverse Reference

Table as used by reference-counting collectors [JHM11].

4As a general term, encompassing Java’s Weak, Soft, and Phantom references, plus constructs
such as ephemerons [Hay97] in other languages.
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Performance On the one hand, reference processing requires additional processing
passes, which can inflate the cost of collecting the condemned set. On the other hand,
we would expect most explicit collections to contain mostly or entirely dead objects;

in such situations, the cost of reference processing would be minimal.
2.6.4. An Accounting of Costs

Subheaps come with both direct and indirect costs. These costs are mostly mentioned
elsewhere in this dissertation, but are presented here in a unified list for clarity. This

following considerations are sorted roughly in ascending order of importance:

e The tracing loop must do a little extra work to check objects against the con-
demned set. This is a very small cost in practice; note that on modern proces-

sors, extra instructions do not always result in more cycles.

e Allocating objects becomes (very slightly) slower due to the need to add subheap

identifiers to object headers.

e Subheaps de facto require that the underlying compiler be safe for space com-
plexity [ADM98, SA00] so that dead bindings at the source level—especially
in loops—are translated to dead roots at runtime. The analysis required for
optimal placement of root management requires both forwards and backwards
dataflow information. This makes the problem more technically interesting but
also less amenable to off-the-shelf dataflow analysis infrastructure. Static anal-
ysis and function cloning for subheap barrier removal adds additional compiler

complexity.

e Remembered set processing must account for stale entries, necessitating a choice

between conservatism or line stamps (see Section 2.4).
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The subheap write barrier is more costly than a generational barrier.

Static elimination of write barriers de facto forbids intra-subheap evacuation.

Careless use of subheaps can result in arbitrarily high performance overheads
due to repeatedly performing unexpected tracing work. (Evacuation could re-

duce this overhead in some situations).

The combination of per-object and per-line segregated metadata imposes roughly

8.6% space overhead.

Remembered set maintenance costs (which depend entirely on the user-chosen

subheap configuration) can outweigh the collection-time savings of subheaps.

2.7. Refinements of the Subheap API

The basic subheap API given in Section 2.3 suffices for most uses of subheaps. It
can, however, be extended to reduce reliance on ad-hoc heuristics or reify existing
functionality in order to improve performance. Such seemingly simple supplements

surface surprising subtleties.’®
2.7.1. Subheaps for Temporary Data

Maintenance of remembered sets provides independent collection of subheaps. This
can be broken down into dual benefits. First, data outside of a subheap can be ignored
when collecting the subheap. This improves efficiency when data within the subheap
is dead and data outside of the subheap is live. Conversely, data within a subheap
can be ignored when collecting the remainder of the heap. This permits avoiding

wasted effort in repeated collection of (subheap-internal) data known to be live.

5sadly sometimes sans solutions
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Although their phrasing above is intentionally similar, the applications of these prin-
ciples in practice sees larger differences. The first benefit effectively reduces the
overhead of reclaiming known-dead space; instead of needing to trace the entire heap
to establish deadness, collection can instead examine the (much smaller) set of re-
membered pointers. The second benefit can be obtained by corralling long-lived data
in a separate subheap, avoiding repeated tracing when the main body of the heap is

collected.

The simple presentation of subheaps given so far conflates these two benefits. How-
ever, in some situations, only one of the two benefits is needed for a given subheap.
Consider a subheap created to hold short-lived temporary data. Recording incoming
pointers is needed to allow efficient reclamation of the data within the subheap once it
dies en masse. However, we may have no real need to collect other subheaps indepen-
dently; if that is the case, then any outgoing pointers recorded from the temporary

subheap are superfluous.

Relaxing remembered set maintenance can enhance performance. Given two sub-
heaps, A and B, we need not remember any incoming pointers into A from subheap
B as long as subheap B is always collected whenever subheap A is. Note the asymme-
try: B can still remember pointers from A, and thereby retain support for collecting
B independently of A. Exploiting this asymmetry can improve performance (by re-
ducing remembered set maintenance burdens) in situations such as the temporary
subheap example. In practice, the most important relationship is between the default
subheap and each individual non-default subheap. Extending the precedence relation
to arbitrary pairs of subheaps is possible [Hir04] but we leave such exploration for

subheaps to future work.

To capture this opportunity, we can introduce a new type of subheap, made available
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via an addition to the subheap API, to hold short-lived data. Short-lived subheaps
do not contribute to the default subheap’s remembered set, and in turn must be
collected whenever the default subheap is. Concretely, the subheap write barrier
(see Section 2.4.2) gains one small expansion in the fast path: writes into short-lived

subheaps of values from the default subheap may skip remembered set maintenance.

The addition of short-lived subheaps paves the way for the runtime to make a more
principled selection of “default” condemned set: the active subheap, plus any short-

lived subheaps.®

The remaining subheaps have been implicitly designated by the
programmer as holding long-lived data, and avoiding their repeated collection can

reduce total collector work.
2.7.2. subheapOf and Subheap Equality

When tracing, the subheap associated with each newly-encountered object is looked
up, in order to ascertain the object’s condemned status. Adding this operation to
the core API involves no further implementation burden, and can avoid the need to

explicitly pass around Subheap objects in some cases.

The details of how to best encapsulate the object-to-subheap mapping—and how to
handle edge cases—are not entirely obvious. The root of the issue is a mismatch
of abstraction layers: programming languages deal in values rather than heap ob-
jects. Untyped languages provide values such as nil or undefined, which do not
have any clearly associated subheap. In typed languages (such as Java) which dis-
tinguish between primitive types like int and pointer-represented types like Object,
the subheap0f operation can be given a type that restricts it to values represented

with pointers. But this still leaves the question of how to handle null pointers (or, in

6Programs which do not create any short-lived subheaps can use the full-heap heuristic.
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functional languages, values created from nullary constructors). Returning a default
value such as the empty subheap makes for a more forgiving interface. Enforcing
partiality (such as by throwing an exception or returning a Maybe value) is more

“honest” but makes the operation harder to use robustly.

From the perspective of the GC implementor, either of these choices is reasonable,
and are equally easy to accomodate. The issue is of more concern for compiler writers
and others who care about language semantics and metatheory. In particular, is it
legal for program transformations (which might change the representation of values)
to change which subheap is returned by any given call to subheap0f? Consider the
Maybe type constructor, values of which are either None or Some value. Although
a naive language implementation would heap allocate values of type Maybe, it has
long been recognized that using a null pointer to encode None allows the compiler to
elide allocations. However, the subheapOf operation provides a means to (potentially)
detect this optimization. A very similar issue arises for the question of giving subheaps

observable identities.

The subheap API is defined in terms of values of type Subheap. One question implic-
itly raised by the subheap API is whether it is legal to perform equality comparisons
(such as with the == operator) between subheaps. Forbidding such equality checks
places draconion restrictions on the use of subheaps as first-class values. For example,

it would not be possible to construct a Set of subheaps.

The issue of implementation details (such as object representation) leaking to the lan-
guage semantics is amplified by subheap equality, which provides a direct means to
observe differences between given Subheap values. The combination of subheapOf
and subheap equality also unlocks new opportunities for mischief. For example,

in many languages in the ML family, function values cannot be hashed or com-
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pared for equality. So you cannot write f == g, but with subheaps you could
write subheap0f (f) == subheap0f (g), thereby distinguishing previously indistin-

guishable values.
2.7.3. A Fuiled Experiment

An earlier iteration of the subheap prototype avoided storing subheap identifiers in
object headers and instead associated it with per-frame metadata. In this design,

each frame held objects from only one subheap.

To avoid imposing unavoidable internal fragmentation for small subheaps, this design
was in turn extended with a scheme for a new kind of subheap to allow intermixing
subheap ownership at line granularity. With a line size of 256 bytes, reserving five
lines (1280 bytes) per frame allowed recording a subheap pointer for each line (plus

some extra metadata), for an additional space cost of 3.9%.

The most obvious tradeoff for the increased space efficiency was higher overhead for
collection and allocation, both of which deal with the additional metadata for line-
granularity subheaps. Another shortcoming was that this design for subheaps relied
on the programmer to decide a priori whether a given subheap should optimize for
fast allocation or low space overhead. Implicitly, this assumed that programmers can

identify (at least in hindsight) which subheaps will have low expected space utilization.

A less obvious downside was the potential for induced fragmentation between, rather
than within, subheaps. Because line-granularity subheaps need disjoint space from
“full” subheaps, a program could encounter heap exhaustion even when there is ample

free space available (for line-granularity allocations).
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CHAPTER 3 : Using Subheaps

The previous chapter covered the big-picture principles behind subheaps, and also
explored lower-level details of the subheap API design and implementation. These
are why and what, respectively. This chapter addresses the use of subheaps: where,

when, and how, including concerns such as modularity and debugging.

3.1. “Hello, World”

We begin by illustrating the line-by-line application of subheaps to a venerable garbage
collection microbenchmark. The binarytrees program [Goul8|, a descendent of
Hans Boehm’s GCBench [Boe|, creates and discards a series of binary trees while
also holding a reference to a long-lived tree. It is intended to coarsely approximate a

generic generational-collector-friendly workload.

Figure 5 shows Foster code implementing the core of the binarytrees microbenchmark.
There are four primary allocation sites in this code. Line 7 allocates a “stretch” tree
whose purpose is to avoid any overhead from growing the heap during the remainder
of the microbenchmark. Line 10 allocates a long-lived tree, which increases the tracing
workload for non-generational collectors. Lines 15 and 16 allocate short-lived trees,

which (once fully built) are immediately consumed by the check function.

Even with this simple computation, there are multiple ways to apply subheaps. The
first question to answer is: how many subheaps should be created? The short-lived
and long-lived trees should be kept separate in order to allow minimal-cost reclama-
tion of the short-lived trees’ memory. This can be done with two explicitly created
subheaps, though only one is needed, as the long-lived tree can be kept in the default

subheap. Because the data at hand is self-contained, the difference between these
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type case Tree
of $TNil
of $Node Int32 Tree Tree;

benchmark = { n : Int32 =>
maxN = if n >=SInt32 6 then n else 6 end;
stretchN = maxN +Int32 1;
¢ = check (make O stretchN);
io "stretch tree" stretchN c;
long = make 0 maxN;
minN = 4;
REC depth = { mn => mx =>
REC sumT = { 4 => i => t =>
if i ==Int32 0 then t else
a check (make i d);
b check (make (0 -Int32 i) d);
ans = a +Int32 b +Int32 t;
sumT d (i -Int32 1) ans
end

if mn <=SInt32 mx then

n = bit ((mx -Int32 mn) +Int32 minN);
i = sumT mn n O;
m = 2 *xInt32 n;

iot m "\t trees" mn ij;
depth (mn +Int32 2) mx
end
}s
depth minN maxN;
io "long lived tree" maxN (check long);

};
make = { i =>4 =>
if d ==Int32 0
then Node i TNil TNil
else i2 = i *xInt32 2;
d2 = d -Int32 1;
Node i (make (i2 -Int32 1) d2) (make i2 d2)
end
};
// check :: { Tree => Int32 } computes a checksum of a Tree.
// bit :: { Int32 => Int32 } returns an int with the n’th bit set.

// io and iot are helpers to print tree depth and checksums.

Figure 5: Foster code for binarytrees
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two choices is purely stylistic. In a more realistic application, the opportunity for
isolation in a separate subheap must be weighed against the potential consequences

of creating subheap-crossing pointers.

The second and more consequential decision is: where should explicit collections take
place? One choice would be to collect the short-lived trees once per iteration of the
sumT loop. Colocating allocation and collection points makes it easy for a human
reader to follow along. There are four potential points in the code where a collection
could be added to implement this policy: after lines 13, 14, 16, or 18. Adding code
after line 18 is a non-starter because it would mean that sumT no longer forms a tail-
recursive loop. Adding a collection after line 14 would correspond to collecting before
running each loop iteration. This can ensure that the target subheap is empty before
allocating into it, but it leaves data from the last iteration of the loop un-collected.
Collections on lines 13 or 16 will clean up after each iteration. Putting the collection

after line 16 is arguably clearer.

Another choice would be to separately collect each subtree allocated in sumT. Doing
so may lead to improved mutator cache behavior from keeping a smaller working set,
but those benefits are unlikely to outweigh the doubling of collection costs relative to

the once-per-loop approach.

Alternatively, multiple small trees may be allowed to accumulate between collections.
This policy could be implemented by conditional collection inside the sumT loop, or
by moving the collection point to occur in the (outer) depth loop rather than the

(inner) sumT loop.

Collecting less frequently carries the opposite tradeoff: larger working sets but lower

collection costs. Allowing subheaps to grow before collecting their contents leads to
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fewer collections and thus lower total per-collection fixed overhead. In the extreme
case, explicit collection is never triggered and the benefits of subheaps will not be
realized. The primary risk of less-frequent collection is of inadvertently triggering an

implicit collection and incurring the tracing costs which subheaps are meant to avoid.

This section’s purpose is to highlight the existence of the choices faced by a pro-
grammer looking to apply subheaps to a concrete codebase. In practice, such choices
will be resolved by a combination of intuition and experimental iteration. We defer

examination of the quantitative consequences of these choices to Section 4.3.1.

3.2. Modes of Usage

How will programmers know where to modify their programs to use subheaps? The

answer has to do with the lifetimes and connectivity of program objects.

Viewing the heap as a directed object graph, an efficient subheap configuration will
find one or more partitions which both contain objects of similar lifetimes and form
small cuts with the remainder of the graph. The partitionings need not form strictly
minimal cuts in the graph theoretic sense, but too many subheap-crossing edges will
result in high costs for remembered set maintenance. Note that by definition, any
reachable partition will have one or more incoming references, but it need not have
any outgoing references. Partitions with no outgoing references are prime candidates

for subheap management.

Of course, this is a coarse mental model. The heap evolves over time, as object
references are created and deleted. Even if a small cut exists at the time of collection,
the cost of building the remembered set will have already been paid for by the mutator.
Having objects of similar lifetimes within a subheap makes it easier to find collection

points at which most or all objects within the subheap will be dead. Whenever
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two connected objects have different lifetimes, a choice arises in whether to co-locate
them within a subheap. Putting the objects in different subheaps incurs the cost
of (dynamically) tracking the subheap-crossing references connecting the objects, a
burden paid by the mutator. When co-located, however, the burden falls on the
collector: prompt reclamation of the space for the shorter-lived object comes at the
cost of tracing the longer-lived one. Alternatively, one can “spend” space to delay
reclamation. This is a fundamental space-time tradeoff; subheaps provide tools for

the programmer to make a choice as they see fit, but do not eliminate its existence.

The preceding paragraphs give a somewhat low-level view of the connection between
programs and subheaps. Many programmers might find it easier to identify higher-
level patterns of object usage within their programs. One common and broad category
amenable to improvement with subheaps is phased behavior [WM89]. Phases are a
common phenomenon in real-world programs, and the boundaries between phases are
often where large volumes of objects from the previous phase die [XSaJ07]. Phases
often, but not always, correspond to distinct program constructs like loops or function
calls, which is why previous work has focused on such constructs [Har06, Cor06].
Examples of phases in real-world programs include server response loops [XSaJ08,

XSaJJ07], compiler passes [BVEBO7], and big data processing [NFX"16, BOF17].

The extension for temporary subheaps described in Section 2.7.1 allows additional
knowledge of object lifetimes to be exploited. For example, a program with long-
lived data can segregate that data in a (non-temporary) subheap, thus effectively

instructing the GC to avoid tracing the long-lived data unless absolutely necessary.

Another stategy is to capture domain-driven lifetimes with subheaps. Examples in-
clude tabs in a web browser, entries in a cache, and memoized incremental subcompu-

tations [HAO08]. This category of allocation is particularly challenging for generational
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collectors because object lifetimes are determined by external events and thus rarely
satisfy the weak generational hypothesis. Section 3.5 explores this category, and its

connection to Hayes’ notion of key objects, in more detail.

3.3. Iterative Deployment & Debugging

When applying subheaps to a particular program, having a mental model is useful, but
not always sufficient. The details of object lifetimes and connectivity can be surprising
even when investigating a relatively small and familiar piece of code. Faced with a
larger unfamiliar code base, reading the code itself is an inefficient way to ascertain
the broad strokes of the program’s heap usage. Instead, it is much easier to have the

runtime convey information to help guide the deployment of subheaps.

Such feedback can come in several different forms to answer several corresponding
questions. Omne simple question is: will a given activation of subheaps capture the
majority of a program’s allocations? Object profiling can help identify certain parts
of a codebase as being more allocation-heavy, but higher order code can make it
harder to leverage profiled information with subheaps. A simpler and more direct
mechanism is to have the runtime report what proportion of allocations are captured
by non-default subheaps. This allows the programmer to verify that they are indeed

capturing as much data as they expect to.

Another key question is: will a given deployment of subheaps actually lead to an im-
provement in GC costs? Programmers would appreciate direct feedback on collection
efficiency to confirm or refute their hypotheses about appropriate points to trigger
subheap collection. Even though the end goal is to reduce wall-clock execution times,
direct measurement of this metric has several downsides. Even for deterministic pro-

grams, wall-clock time results are often not deterministic. Hardware performance
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counters can count elapsed cycles with low variance, but even these metrics are usu-
ally not completely deterministic. The cost of such variance is longer iteration loops
due to the need to run programs multiple times to establish statistical significance.
Machine-independent statistics, such as mark/cons ratios and percentage of alloca-
tions captured in (non-default) subheaps, can provide fully deterministic reflections of
the impact a given subheap configuration has, and are thus invaluable in the process

of iteratively applying subheaps.

Note that a mark/cons ratio alone does not account for every GC-related cost. In
particular, remembered set maintenance and stack scanning costs are not reflected in
the mark/cons ratio. The subheap runtime can easily capture and report additional
(deterministic) statistics such as remembered set entries created and traced to help
programmers understand the implications of their chosen subheap usage. Overall,

both deterministic and non-deterministic performance metrics are worth collecting.

Finally, extensions of the subheap API can improve the programming cycle. For
example, when a programmer initiates a collection, they often have an expectation of
whether that collection will need to do any tracing work. When such assumptions are
violated, the performance impact of subheaps can quickly shift from a boon to a bane.
Even with a variety of robust metrics as described above, currently such expectations
must be manually verified in testing. This is both labor-intensive and potentially
fragile as codebases and allocation patterns evolve. A more robust solution would be
to allow the API to capture (and check) such beliefs. A separate improvement would
be to assign human-readable labels to particular subheaps; this would have obvious

benefits for the clarity of debugging feedback.
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3.4. Modularity

Subheaps occupy a middle ground between the fully automated nature of traditional
garbage collection and the fully manual nature of malloc() /free()-style memory
management. Although manual memory management provides a great deal of power
and flexibility to the programmer, it also brings inconvenience and a tendency towards
immodularity. This immodularity comes from the need for disparate pieces of code
to agree on, and cooperatively implement, a division of responsibility for reclaiming
dead objects. A natural question then is: do subheaps bring with them the familiar

drawbacks of manually freeing objects?

Some of the most problematic patterns found with manual memory management are
mitigated with subheaps. For example, the dynamically scoped nature of subheap
activation, combined with the implicit presence of garbage collection, enables callers
to capture and manage the memory allocated by callees. With manual memory
management, deallocation for the callee’s allocations must be baked into either the
caller or callee. With subheaps, the choice of where to direct the callee’s allocations,
and thus implicitly the assignment of responsibility for collecting the chosen subheap,

can be made on a per-call basis.

Another key property of subheaps is that they can be deployed on an as-needed basis.
While subheaps carry a variety of costs (in runtime overhead, programmer effort, code
modification/distortion, etc), these costs need only be paid when the benefits from a

particular use of subheaps outweighs the drawbacks.

However, subheaps are admittedly not inconvenience-free. A module which allocates
objects of disparate lifetimes may need to activate several different subheaps dur-

ing its execution in order to facilitate efficient reclamation of each subheap without
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interference from unrelated objects. This can certainly be inconvenient. In some
situations, a callee must change its signature to be explicitly parameterized by the

subheaps to activate; this blurs the line between inconvenience and immodularity.

Particular uses of subheaps may also be forced to change data representations to
“thread through” subheap handles to the appropriate place in their code. One con-
crete example of this phenomenon is in a cache, which maps keys to values. A natural
data structure to represent this mapping is a hash table in which each bucket holds
either a reference to a value or a null pointer. Each bucket’s value should be held in
a different subheap to allow independent collection. Without subheaps, pseudocode

(in Foster syntax) to update a an entry might look like this:

updateCacheEntry = { table => key => valueGenerator =>

entry HashTable.lookupEntry table key;

value = valueGenerator ();
HashTable.setEntry table key value;

};

In the subheap-enabled version of this code, we must put each generated value into

the subheap for the associated bucket:

updateCacheEntry = { table => key => valueGenerator =>

entry = HashTable.lookupEntry table key;

associatedSubheap = subheapOf entry; //
oldSubheap = Subheap.activate associatedSubheap; //
value = valueGenerator ();

HashTable.setEntry table key value; //

_ = Subheap.activate oldSubheap;
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Of course, segregating the cache entries into separate subheaps is a means to an end,

namely, the ability to efficiently collect the old cache entry when it dies. This requires

explicitly clearing the cache entry reference so that the old value is recognized as being

dead. Collection must be done before the new value is generated, otherwise the new

value will be traced and collection will be inefficient:

updateCacheEntry = { table => key => valueGenerator =>

};

entry = HashTable.lookupEntry table key;
associatedSubheap = subheapOf entry;

oldSubheap = Subheap.activate associatedSubheap;

HashTable.setEntry table key NullEntry; //
= Subheap.collect associatedSubheap; //
value = valueGenerator ();

HashTable.setEntry table key value;

= Subheap.activate oldSubheap;

However, this code is still not correct. The problem was mentioned in 2.7.2: null

entries are represented with a non-allocated value in most mature language imple-

mentations. Thus the call to subheap0f will work for established keys but fail when

first installing a key’s value. (“Fixing” this by heap-allocating null pointer values

would presumably carry catastrophic performance overhead.) Instead, the cache im-

plementation must be augmented to record each entry’s subheap in a separate table:

updateCacheEntry = { table => subheaps =>

key => valueGenerator =>

entry = HashTable.lookupEntry table key;

associated HashTable.lookupEntry subheaps key; //

oldSubheap Subheap.activate associated;
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HashTable.setEntry table key NullEntry,;
_ = Subheap.collect associated;

value = valueGenerator ();
HashTable.setEntry table key value;

_ = Subheap.activate oldSubheap;

};

Alternatively, a single (immutable) table could map keys to pairs of subheap handles
and mutable references to a cache entry. In either case, the need to route allocations

to a particular subheap necessitated changes in the data representation.
3.4.1. Immodular Urges and Barrier Optimization

Some code patterns—see Figure 4 in Section 2.4.3—inherently lead to imprecision in
the static analyses that drive barrier optimization. These sources of imprecision could
be avoided by restructuring code to not violate the invariants that the static analysis
tracks. While often possible in theory, such alterations would have significant costs
in human effort and code clarity. As with most questions of compiler-driven opti-
mization, there is some tension between performance and modularity. This tension

derives from the need to optimize the subheap write barrier.

In contrast, there is little risk of programmers wanting to rearrange code for the sake
of optimizing generational write barriers. The difference can be traced to three root
causes. First, generational barriers are less pervasive, since they are not needed for
initializing writes. Second, generational barriers are more difficult to remove, since
doing so requires reasoning about when and where minor collections can be guaranteed
to not occur. Finally, generational write barriers are significantly cheaper to execute

than subheap write barriers; thus the reward for removing them is much smaller. As
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a consequence of these factors, most work on optimizing generational write barriers
has focused on making barriers cheaper to execute, rather than static optimizations

to remove barriers.

3.5. “Reference Counting” with Key Objects

Prior work on memory management has focused on software caches due to their
wide deployment in performance-sensitive environments, such as web servers and the
cloud [TAV14, NGB16, PVV*17] . Caches are a prime example of how lack of control
over memory management performance drives continued use of unsafe programming

languages: Redis [SN18] and Memcached [Mem18] are both written in C.

Figure 6 illustrates an idealized version of such a software cache. Our cache initially
contains four entries. The first entry references the second entry, but otherwise the
entries are isolated. In Figure 6b, two entries are removed from the cache. The
storage for one of the entries is unreachable by the program (dead), and the program-
mer knows it, but a simple tracing garbage collector cannot prove this fact without
traversing the entirety of the heap—including the other (live) cache entries. When
the cache occupies a large fraction of the heap, this spells disaster, because the small

amount of free space will cause collection to be frequently re-triggered. As cache en-

£ r; oo
A\
Prossos
(b) Cache entries &

deleted
(c) With subheaps

(a) Initial cache state

Figure 6: Simplified cache heap structure
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tries are allocated and removed, the program will spend most of its time re-tracing the
unchanged cache entries, over and over. The work is redundant, but the programmer

cannot convey that knowledge to the garbage collector.

This example is a simplification of the memory management involved for programs
like redis [SN18] and Memcached [Mem18]. Terei, Aiken and Vitek [TAV14] identify
Memcached as representing a common, important class of real-world programs that
pose significant difficulties for tracing collectors. Memcached maintains a set of key-
value cache entries, with a client interface for additions, deletions, and key lookups.
Such programs feature three elements that are difficult to simultaneously reconcile:
large heaps, stringent latency demands, and client-driven object lifetimes that do not
obey the generational hypothesis. Memcached is well suited to reference counting (or,
of course, manual memory management). With reference counting, full-heap scans
are not necessary, and each cache entry can be immediately reclaimed as soon as it

becomes dead.

As in Figure 6¢, when each cache entry is allocated in a separate subheap, all ref-
erences pointing into the subheap will be tracked by the subheap’s remembered set.
Second, before a deletion overwrites or nulls out an entry’s reference, we would first
look up the entry’s associated subheap. After the entry’s reference has been annulled,
the cache’s deletion routine triggers a subheap reclamation. The subheap reclamation
will inspect the remembered set. With a remembered set that retains slots (rather
than pointer values), the first step of collection is to check that the slot contents still
point into the subheap being collected. Since the slot contents were just annulled,
the remembered set will be empty. Given that there are no references to the cache
entry on the stack, the net effect is that the cache entry’s subheap can be reclaimed

without needing to trace the entirety of the heap.
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This example is a special case of the idea of key object opportunism [Hay93]. Hayes
theorized that the lifetimes of groups of objects could be inferred from the lifetime
of a single key object within the group, rather than being tied to program phase
behavior. To find key objects, he considered a variety of heuristics—such as random
selection, stack reachability, and programmer hints—but his primary heuristic was to

focus on those objects appearing in remembered sets.

If collection of a subheap is triggered once all subheap-external copies of the key
object references have been deleted, then the subheap’s contents can be reclaimed
in bulk, and we’ll have behavior somewhat akin to reference counting. Rather than
counting copies of a pointer made as it is copied around the heap, as traditional
reference counting does, we “count” incoming pointers at subheap-collection time,
via the subheap’s remembered set. This scheme resembles Bobrow’s technique for

managing cyclic structures [Bob80].

Immutability The cache example makes inherent use of mutability to establish the
non-liveness of the cache entry in the remembered set. But not all languages support
explicit mutability. Can this trick with subheaps work in pure languages? Let us

re-enact the scenario with an immutable data structure.

In our setup on the right, we have a binding for

S E
node 7', which in turn has a right child R pointing { & @
R

to the cache entry in a separate subheap. (root)

biect .
(objects) (subheaps)

Now, consider what happens when we “remove” the
cache entry from an immutable spine. Instead of overwriting any pointers, we allocate

a new node 7" which does not point to R.

Calling subheapReclaim E will be stymied by the remembered set entry for R, whose
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death remains undiscovered. Perhaps surprisingly, calling subheapReclaim S first
may not help! First, even though the R node is dead, the line it is on may still be
used, preventing the remembered set entry from being trimmed. Second, reclaiming
space does not alter its contents; to do so would shatter our performance goals. We
cannot overwrite dead space without sacrificing the notion that the cost of collection
can be independent of the amount of space reclaimed. Thus, even though R is known

to be dead, its ghost can remain until overwritten by subsequent allocations in S.

If we trigger collection after condemning both

S E

S and FE, the remembered set entry will be ig-

O nored, and both R and the cache entry will be

eligible for reclamation. The downside is that

if we try to reclaim multiple cache entries back-

to-back, we will have to trace through the mostly-live contents of S multiple times.

A better solution is to condemn without immediately and explicitly triggering a col-
lection. Having done so, there are two routes to initiate collections. The first option is
to proactively trigger collections at a later point in time, either on the basis of elapsed
work or elapsed time. The second option is to passively wait for a “regular” collec-
tion (of the condemned set) to be triggered due to heap exhaustion. Collecting on an
as-needed basis minimizes duplicated collector work from re-scanning live condemned
data, whereas proactive collections can schedule GC effort [DEE*16] to minimize in-
terference with latency-sensitive periods of application work. This demonstrates the

benefits from fine-grained control over where and when the GC expends effort.

Compare and Contrast A few differences from traditional reference counting are

worth pointing out. First, the work to inspect remembered sets is less incremental
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than manipulation of reference counts. Also, our “count” ignores intra-subheap point-
ers. One negative consequence is that this scheme, unlike precise reference counting,
cannot be used as dynamic evidence of unique ownership. But we retain the on-
demand reclamation of reference counting, and gain the ability to efficiently reclaim

subheap-internal cycles—a perennial issue for traditional reference counting.

Bacon, Cheng, and Rajan [BCR04] explored the duality between tracing and reference
counting. They observed that generational collectors, due to their remembered sets,
are a hybrid of reference counting and tracing. With subheaps, that hybridization is

put in the programmer’s hands, to potentially significant benefit.
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CHAPTER 4 : Evaluation

Subheaps provide a mechanism for leveraging explicit programmer cooperation to
guide garbage collection effort. The goal of this cooperation is to improve the perfor-
mance of tracing garbage collection on otherwise-problematic programs. This suggests

several facets of evaluation for subheaps:

e Performance can be measured in several different ways, primarily throughput
and latency. Many factors outside our scope—such as processor cache configu-
ration and compiler optimizations—influence end-to-end program performance.
Space usage must also be accounted for due to pervasive space-time tradeoffs.
The core premise of subheaps is that careful usage of subheaps can improve

performance (in some programs) by reducing GC work.

e Usability aids wide adoption; a system that can only be effectively used by
experts will only achieve a small fraction of its potential influence. Usability has
many incarnations: How often does effective usage of subheaps break modular-
ity? Do subheaps interfere with ongoing maintenance of a codebase? How much
background knowledge of GC is required to use subheaps? Does the difficulty
of applying subheaps scale linearly, or perhaps sub-linearly or super-linearly,
with the complexity of the underlying application? Questions of usability are
of great relevance to the success or failure of subheaps “in practice,” but are

mostly outside the scope of this dissertation.

e Applicability: what programs have sufficiently high overheads to make usage
of subheaps worthwhile? Domain-specific GC techniques are less widely useful

than domain-agnostic approaches. Likewise, subbheaps will find wider applica-
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bility if their usage can be encapsulated in libraries or other sub-components of

whole applications.

These categories are not sharply defined. For example, applicability is predicated on
(lack of) performance, which in practice depends on the “baseline” collector chosen.
Other concerns cut across multiple aspects. For example, scaling up application com-
plexity, as reflected in the choice between microbenchmarks and macrobenchmarks,

has elements of both usability and applicability concerns.

Because subheaps are not a fully automated mechanism, there is no singular charac-
terization of their performance. The same program can be modified to use subheaps
in many different ways, with varying degrees of payoff vs. programmer burden. To
shed light on what subheaps can achieve in practice will ultimately require a hu-
man subject research protocol. The evaluation in this section illustrates the potential
performance gains from careful use of subheaps. Careless use of subheaps, on the
other hand, can impose nearly arbitrary performance degradation; it is entirely the

programmer’s responsibility to avoid unprofitable modes of use.

This evaluation focuses on microbenchmarks and small applications, for two reasons.
First, the development of subheaps for Foster impedes the direct reuse of existing
benchmark suites. Second, the manual effort needed to use subheaps suggests that
subheaps will be most successful for non-standard applications—such as big data an-
alytics and caches operating in tight heaps. Traditional benchmark suites do not
encounter the requisite crushing GC overheads. An evaluation of subheaps in a more
traditional setting would of course help shed more light on the mechanism’s strengths
and weaknesses, but even this dissertation’s more limited experiments reveals inter-

esting phenomena.
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4.1. Experimental Platform

Except where otherwise noted, experiments were run on a Core i5 6600K CPU running
at 3.5 GHz! with 32 GB of DDR4-2400 RAM. Heap sizes for Java programs were
specified with both -Xmx and -Xms. To keep cross-language benchmarks as fair as
possible, pointer compression was disabled. Software versions: Ubuntu 16.10 with
kernel 4.8; Go 1.10; OpenJDK 10 (with ZGC; HEAD commit 55¢292c8ab9b); Foster
and C++ code compiled with LLVM 6.0 and -02 -march=native flags. In all cases,

we measure wall clock elapsed time using the perf utility.

4.2. Conway’s Game of Life

Gualandi and Ierusalimschy [GI18] identified a benchmark, based on Conway’s Game
of Life, as being GC-heavy. Its simplicity makes for a good introductory setting to
analyze and dissect the application of subheaps in full detail. The main body of the

benchmark driver is presented in Figure 7.

The benchmark allocates two scratchpads and initializes one, then loops, printing the
current state of the board and updating the next based on the rules of the game.
Building up a printable string is done via concatenation (rather than mutation), and
thus requires substantial allocations to hold intermediate strings. Once the final string

has been printed, the previously allocated strings immediately become garbage.

The size of the game board is configurable, and determines the rate of garbage produc-
tion. However, somewhat counter-intuitively, increasing the size of the game board
decreases the proportion of time spent collecting in minimally-sized heaps. This is

because the amount of live data processed at each collection does not change, so the

1SpeedStep disabled in BIOS, and Turbo Boost disabled via the Linux kernel.
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main = {
luasteps = 2000;
steps = luasteps -Int32 1;

n = 40;

m = 80;

curr_cells = newcanvas n m;
next_cells = newcanvas n m;
glider = prim mach-array-literal

(prim mach-array-literal 0 0 1)
(prim mach-array-literal 1 0 1)
(prim mach-array-literal 0 1 1);

enumRange32 1 9 { i =>
enumRange32 1 17 { j =>
i0 = (5 *Int32 i) +Int32 1 +Int32 (j *Int32 j);
jo = (5 *Int32 j) +Int32 1;
lifespawn n m curr_cells glider i0 jO;
+s
s

lifedraw n m curr_cells;

REC loop { gen => curr => next =>
if gen <=SInt32 steps
then
lifedraw n m curr;
print_text_bare "\n";
lifestep n m curr next;
loop (gen +Int32 1) next curr;
else
O

end

};

loop O curr_cells next_cells;
lifedraw n m curr_cells;

};

Figure 7: Conway’s Game of Life microbenchmark in Foster
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ratio of GC work to mutator work decreases as mutator work increases. Later graphs

will explore this aspect of the microbenchmark’s behavior.

For the configuration listed in Figure 7, with Foster’s baseline Immix collector, the
program triggers one collection per game step and spends 25 ms (5.1% of total exe-

cution time) in garbage collection.

Figure 8 shows how collector workload varies with changes in heap size. The result is
a noisy curve; Figure 9 decomposes those results into the combination of the number
of GCs triggered (a smoothly decreasing curve) and the per-cycle observed live size
(sampled from a periodic distribution). As Figures 8a and 9b show, small increases
in heap size can make collection take more time rather than less. This is due to
the way heap sizes interact with the periodic nature of allocation in this simple

microbenchmark, causing collection to happen (on average) when more data is live.

Figure 11 lists the driver of the Conway benchmark after being modified to use sub-
heaps. Figure 10 shows that using subheaps to consistently trigger collections of
completely dead data, once per loop iteration, eliminates all tracing work regardless

of heap size. Because no marking work is ever done, the mark/cons ratio is zero.

Doing no tracing work does not mean that GC is entirely free. For example, stacks
must still be (repeatedly) scanned, and line marks inspected. However, both latency
and GC work costs on this benchmark are reduced by an order of magnitude with the
use of subheaps. Mean GC pause times decrease from 25.6 microseconds to 2.1 mi-
croseconds, and max pause times decrease from 296 microseconds to 17 microseconds.
The net cost of memory reclamation is 5.4 ms, including the overhead of recording

timing statistics.
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Conway (original): heap size vs GC time
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(a) Observed GC time as heap size varies: a spiky curve.
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(b) Mark/Cons Ratio (Obj/Obj) almost perfectly mirrors observed GC time.

Figure 8: Conway (Foster) baseline results show close correspondence of (machine-
dependent) wall-clock time and (machine-independent) mark/cons ratio.
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Conway (original): heap size vs number of GCs triggered
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(a) Number of GCs monotonically decreases (on log scale) as heap size increases. Note that
the number of GCs is insensitive to changes in the size of very tight heaps.

Conway (original): heap size vs max observed live size
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(b) Max observed live size varies unpredictably with changes to heap size. Note that max
observed live size is quite sensitive to changes in heap size. For a non-copying Immix
collector, max and average live sizes coincide.

Figure 9: Conway (Foster) baseline results illuminating why Figure 8 is a spiky curve.
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Conway (Foster): heap size vs runtime Detail view
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Figure 10: Subheaps eliminate tracing work from the Conway benchmark and produce
a heap-size-insensitive performance profile.

More on Barriers The measurements listed were taken with the Foster compiler’s
subheap barrier optimizations enabled. Without static optimization of GC write
barriers, the benchmark would see an increase of roughly one fifth in the number of
barriers dynamically executed—from 26 million to 32 million. Given the small size of
the benchmark, we can fully characterize the barriers remaining after optimization.

There are twelve barrier sites in the generated executable:

e Six sites arise from text concatenation when building the output string to dis-
play, in the implementation of lifedraw. These barriers are not eliminated
because the output string is built up in a mutable style, with a temporary
string stored in a ref cell. The barrier analysis does not track mutable state and

thus conservatively assumes that the barrier might be needed.?

2Mutable state is not the only challenge to removing these barriers. The optimizer would also have
to switch from an in-current-subheap analysis to a subheap-aliasing analysis, because the long-lived
scratchpads are kept outside the current subheap, which is used to collect temporary allocations.
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main = {

luasteps = 2000;

steps = luasteps -Int32 1;
n = 40;

m = 80;

curr_cells =
next_cells =

newcanvas n m;
newcanvas n m;

glider =

(prim
(prim
(prim
enumRange32 1 9 { i =>
enumRange32 1 17 { j =>

i0 = (56 *Int32 i) +Int32
jo = (5 *Int32 j) +Int32
lifespawn n m curr_cells
s
s

sh =
old =
lifedraw n m curr_cells;

foster_subheap_collect sh;

foster_subheap_create !

foster_subheap_activate sh; //

prim mach-array-literal

mach-array-literal 0 0 1)
mach-array-literal 1 0 1)
mach-array-literal 0 1 1);

1 +Int32 (j *Int32 j);
1;
glider i0 jO;

; //

New subheap for
short-lived data.

// Clean up after lifedraw.

REC loop = { gen => curr => next =>
if gen <=SInt32 steps
then

lifedraw n m curr;
print_text_bare "\n";
lifestep n m curr next
foster_subheap_collect

)

sh; //

Clean up for next 1loop.

loop (gen +Int32 1) next curr;

else

O

end

};

loop O curr_cells next_cells
lifedraw n m curr_cells;

};

’

Figure 11: Conway’s Game of Life microbenchmark in Foster, using subheaps.

Added lines are commented.
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e One site traces back to a special case for concatenation of small strings, which
copies data to increase locality and decrease pointer chasing. In this case, the
issue is not mutable state but rather overapproximation due to a helper function.
The helper function for array concatenation special-cases copying of zero-length
arrays, and conditionally returns either a fresh array (which is guaranteed to
be in the current subheap) or one of the input arrays (which is not). Thus
the return value of the helper is not guaranteed to be allocated in the current
subheap, and a barrier must be emitted in case the input array was not allocated

in the current subheap.
e Two sites correspond to one-time initialization of a nested array (glider).

e Two sites arise from initialization of a closure’s environment; the analysis driv-
ing barrier optimization is unable to prove that two objects closed over in the
function’s environment will be located in same subheap as the freshly-allocated

environment record (namely, the current subheap).

e One site arises from initialization of a nested array in a loop (in the body of

newcanvas).

It would be possible to extend the barrier optimization analysis to track properties,
in limited cases, of objects stored in mutable state, albeit at significant cost in com-
plexity. Code that tried to avoid the shortcomings of the barrier analysis in the face
of mutable state might find itself stymied by another difficulty: tracking properties
of higher-order functions. Faced with a loop combinator, a first-order analysis will
note that it calls an unknown function—the loop body—and conservatively assume
that any usage of the combinator could invalidate the set of known-current values

by activating a new subheap. Thus, a robust analysis would have to handle both
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mutable state and higher order functions. Finally, the overapproximation due to use

of a function helper is even more difficult to resolve with enhanced static analysis.

Generational Collection To determine the difference in efficacy between Fos-
ter’s baseline Immix collector and a generational collector, I implemented a simple
copying-nursery generational collector for Foster (in addition to the sticky mark bits

implementation used elsewhere).

Surprisingly, for the original version of the Conway microbenchmark, generational
collection performs worse overall than the non-generational Immix baseline. The
primary reason is that almost no objects survive multiple collections, as illustrated in
Figure 9b, meaning the baseline Immix collector does not repeatedly trace many long-
lived objects. Second, the cost of evacuating arrays is higher than simply marking
them. Figure 12 examines the data in more detail, showing how performance varies
with heap size for the generational collector plus three other Immix variants. This

graph conveys several interesting pieces of information.

At the bottom of the graph is a line, labeled , showing the ideal performance
without any GC-related overhead. Next, shows the performance of subheaps. In
both cases, garbage collection is arranged to occur when no objects are live, and thus
both lines are flat: heap size does not affect their performance. The delta between the
two lines reflects the higher mutator costs from subheap allocation, primarily from
the extra instructions from expanding objects headers from 4 bytes to 8 bytes, and

from the requirement to set “used” line marks at allocation time.

The behavior of a copying generational nursery is exhibited with data points labeled
and @ The lower line, , isolates the performance impact of resizing the

generational nursery itself. It shows only the cost of copying data out of the nursery,
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not including the necessary full-heap collections. The nursery can be smaller than
the benchmark’s live size, which is why this is the only line that starts at a heap ratio
of zero rather than one. The upper line, @, shows the combined cost of nursery and
full-heap collections when the nursery is fixed at one fourth of the total heap. The
generational collector has a larger minimum heap size due to the requirement that

the mature space keep a (conservatively-sized) free reserve for the nursery.

Finally, the behavior of the Immix collector, labeled , shows the unusual saw-tooth
behavior seen in Figure 8a. Note that the width of each tooth is equal to the minimum
heap size, with the lowest (lowest overhead) points being at (or just beyond) integer

multiples of the minimum heap size.

This phenomenon occurs because the microbenchmark does its work—including its
allocation—in a loop. The difference between the smooth curve of the generational
nursery and the spiky curve of the non-copying collector reflects how each loop iter-
ation influences the next. With a copying nursery, any data live at collection time is
evacuated, so the amount of available space left in the nursery is fixed. Mismatches in
the size of the nursery and the per-loop allocation load give rise to periodic behavior
in the triggering of nursery collections and, crucially, the amount of data copied out
in each nursery collection. The net effect is that the many “modular remainders”
induced by the delta between nursery size and loop workload produce a per-collection
load average that is mostly insensitive to the size of the nursery. Thus the total cost
of nursery evacuation, which is the average cost per event multiplied by the num-
ber of events, smoothly rises as the nursery shrinks because the number of (nursery)

collections needed grows.

In contrast, the sawtooth pattern for the Immix collector reflects a different phe-

nomenon. With the Immix collector, live data at collection time remains in place,
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Conway (original): heap ratio vs Runtime
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Figure 12: Detailed impact of generational collection on Conway.
Generational Immix provides no improvements over the non-generational baseline (but see
Figure 13 for a more complete story). Note the restricted range of the y-axis.

thereby reducing the amount of remaining space to be used for the next loop’s allo-
cations. The pattern then repeats, until the amount of remaining space is a multiple
of the loop’s allocation load. At that point, a “stable attractor” has been reached,
and the synchronization produces a consistent per-collection tracing load with little
variation. This explains why each sawtooth’s width is equal to the minimum heap
size: because that is also the amount of data allocated in each loop iteration. The
“excess” space beyond each multiple of the loop workload produces a consistent per-
collection tracing burden. It also explains why the most efficient sizes are multiples of
the minimum heap size. Regardless of the heap size chosen, the per-collection tracing

load stabilizes quickly, usually within six collection cycles.

Ambient Heap Size In a variant of this benchmark, we keep a forest of objects

live for the course of the program’s execution. Doing so increases the benchmark’s
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realism, since most programs deal with a mix of short- and long-lived data. It also
accentuates the difference in how subheaps enable a qualitative change in behavior in

tight heaps.

There are now two input variables of interest: program heap size and ambient live
data size. The larger the ambient data size, the greater the cost of each collection.
The greater the proportion of heap size devoted to ambient data, the more frequently
collection will be triggered. Figure 13 illustrates these effects. It shows that gen-
erational GC (whether in-place with sticky mark bits, or evacuating with a copying
nursery) outperforms plain Immix with moderate amounts of live data, but does not
avoid the trend of exponential increase in total GC cost. The fluctuation in the Sticky
Immix results are not random variation or measurement error; they capture the same
sensitivity to heap sizing as in Figure 12. These fluctuations are obscured for the
non-generational Immix results by the log scale of the Y-axis and the higher costs
incurred by repeated tracing of the ballast. As before, subheaps are unaffected by

the presence of long-lived data.

Adding 5 MB of long-lived data significantly impacts both latency and throughput:
mean per-GC latency for Immix rises to 3.02 milliseconds (from 12.1 microseconds
before). Figure 15 shows bounded mutator utilization [SMB04] curves for three col-
lector configurations on the Conway benchmark. These plots show the worst-case
GC efficiency at varying time scales. The z-intercept, where mutator utilization first
creeps above zero, indicates the largest observed pause. The y-intercept at the right
of the graph shows the proportion of time spent on GC over the course of the whole
program run. The shape of the curve in between these two points reflects the distri-
bution of pauses incurred by the GC. Figure 15 illustrates how this benchmark sees

a much larger impact on latency from subheaps than from generational collection.
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Conway (modified): live size vs GC time
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Figure 13: Impact of ballast on Conway.

Increasing ambient live data quickly produces exponentially increasing GC time bur-
dens for both the plain and generational Immix collectors. Subheaps maintain a flat
profile. The leftmost data points, with no ambient live data, correspond to the “original”

configuration.
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Conway (modified, 5 MB ambient): heap size size vs mark-cons ratio
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(a) Mark/Cons ratio drastically rises due to long-lived data (compare to Figure 8b).

Conway (modified, 5 MB ambient): heap size size vs runtime
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(b) Subheaps eliminate repeated tracing, producing large speed (and latency) gains. Im-
portantly, the runtime with subheaps (and generational collection) is not merely faster, it
is also consistent—the benchmark’s runtime is no longer sensitive to choice of heap size.

Figure 14: Adding 5 MB of long-lived “background” data significantly changes the
benchmark’s results in comparison to Figure 8.
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Figure 15: Bounded Mutator Utilization curves for the Conway benchmark.
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As Figure 14b shows, due to the increased cost of each GC, total runtime depends even
more strongly on selection of heap size. Generational collection improves throughput
with moderate amounts of ballast, but does not improve worst-case latency, since
full-heap collections are still orders of magnitude more expensive than before. With
subheaps, the long-lived data can be fully segregated and is never traced by the
collector. As a result, the max observed GC pause is 11 microseconds.® Unlike
with either the baseline or generational Immix implementations, the performance of

subheaps does not vary with the amount of long-lived data.

Conclusion This benchmark reflects the potential for subheaps to corral a set of
allocations with lifetimes scoped to a loop body. Its simplicity enables exploration of
the impact of subheaps and subheap barrier optimizations in detail. Subheaps deter-
ministically reduce the amount of marking required, producing large improvements
to GC latency, and moderate throughput improvements compared to a generational
collector. In the presence of long-lived allocations, subheaps enable both faster and
heap-size-independent runtime. Subheaps eliminate more work than generational col-

lection.

4.3. Tree Microbenchmarks

To explore the behavior of collection in a simplified setting, garbage collection re-
searchers have long used microbenchmarks based on tree structures. This section
examines how subheaps can be used to improve the performance of two such venera-

ble microbenchmarks: binarytrees and reynolds2.

3Figure 15¢ shows a worst-case pause of 26 microseconds due to the overhead of printing statistics
for computing mutator utilization.
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Figure 16: Binary-trees results for Java and Foster

4.3.1. Binarytrees

To explore the costs and benefits of aggressive reclamation, we ported the binarytrees
microbenchmark [Goul8] discussed in Section 3.1 and modified it to make use of sub-
heaps. The basic structure of the program is: a single large binary tree is allocated,
which remains live for the duration of the program. In turn, increasing numbers of
smaller trees are generated and traversed, after which they become garbage. Non-
generational tracing collectors spend significant effort tracing the long-lived tree in
the course of reclaiming the garbage generated by the smaller trees. But generational
collectors still face a subtle problem: they are likely to evacuate the nursery in the
middle of allocating a tree, thus prematurely promoting the already-allocated portion.
On a longer-running program, such as a web server, such leakage would eventually
trigger full-heap collection if not dealt with by concurrent collection of the mature
space. Intermittent full-heap collections may have little effect on throughput, but

they wreak havoc with tail latencies in distributed systems [MAHK16].

A key benefit of binarytrees is that it has been implemented by many people in a
wide variety of languages. This makes it feasible to compare Foster’s experimental
collector against production-quality collectors on an identical workload. For exam-

ple, Ferreiro et al [FCJH16] carefully investigate the impact of varying the size of a

7



generational nursery on collector performance for binarytrees in the context of the

GHC implementation of Haskell.

Figure 16 plots the impact of varying heap size for several collector implementations
in Java and Foster. Generational collection with Stickylmmix closely matches the
performance of Java’s (generational) serial collector. The non-subheap collectors ex-
hibit space-time tradeoff curves, and use of subheaps produces a flat performance

profile, removing the program’s sensitivity to heap size.

Two configurations for subheaps were measured, varying in how frequently short-lived
trees were collected. Reclaiming every tree individually triggers 669,041 collections.
Most of the collections happen with a subheap containing only a few frames, resulting
in an average cost per collection of less than one us. While the per-collection cost is
low, the sheer number of collections results in lower performance than generational
collection in generously-sized heaps. Fortunately, the programmatic nature of the
subheap API—in contrast to schemes linked to inflexible entities like program scope—
allows the programmer to trigger subheap collections on some rather than all loop
iterations, thereby reducing GC costs below the cost of generational collection at all

heap sizes.

This benchmark exhibits a second interesting phenomenon: .
unpredictable collector costs with Java’s G1 concurrent col- . B ST I T I
lector. Most collectors exhibited low variance and we display Figure 17: binarytrees
their results as an average of five runs, connected with lines. ©1 GL

x-axis: heap size
The throughput results from Java’s G1 collector, displayed as y-axis: time
raw data points in Figures 16 and 17, show high variance. At several heap sizes, the

G1 collector is on the brink of being unable to satisfy mutator demand. In some exe-

cutions, the program runs to completion with only young pauses. In other executions,
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the collector falls behind and starts triggering full-heap collections. This demonstrates

the potential for concurrent collectors to hit “performance cliff” behavior.
4.3.2. Reynolds?2

Figure 18 lists the source code for the Reynolds2 microbenchmark, ported from the
code in Tofte & Talpin’s paper on region-based memory management [TT97]. As
with binarytrees, the code constructs a complete binary tree, then walks over it. The
twist here is that the tree walk itself allocates closures for the predicate provided to
the search function, on lines 17 and 19.% In effect, as the tree is explored, a list of

values to search for is accumulated in the form of a chain of predicate functions.

The code as written is compatible with region-based memory management, meaning
that region inference does not result in exponentially-growing regions. (Tofte & Talpin
note that a seemingly innocuous change—representing the list of values to search for
as an explicit list, instead of via functions—destroys this behavior). Of course, space
efficiency is not the same as time efficiency. Region-based memory management does
not amortize the costs of reclamation for this workload. With MLKit 4.3.18, regions
are 4.6x slower than non-generational GC. Subheaps offer more flexibility than region-
based memory management in dealing with such granularity issues. The remainder

of this subsection investigates how that flexibility affects performance.

For the size-24 input in a 1 MB heap, the baseline code allocates 67.1 M closure
objects (32 bytes each; 2.1 GB total) and triggers 2335 collections, which takes 157
ms out of 1.9 s total runtime. The mark/cons ratio with plain Immix collection® is

2.417e-3, and in total 273k potential root values are examined.

4The functions passed to oror are reliably eliminated by inlining.

5 Use of sticky mark bits degrades performance versus plain Immix on this benchmark, because
every value that survives a nursery collection immediately becomes floating garbage, thus increasing
the number of collections occurring.
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type case Tree
of $Lf
of $Br Int32 Tree Tree;

mktree = { n =>
if n ==Int32 0 then Lf else
t = mktree (n -Int32 1);

0O Ut Wi+

Br n t t
9 end
10 3;
11
12 search = { p => t =>
13 case t
14 of $Lf -> False
15 of $Br x t1 t2 ->
16 {px } ‘oror‘ {
17 { search { y => { y ==Int32 x } ‘oror‘ { py } } t1 }
18 ‘oror ¢
19 { search { y => { y ==Int32 x } ‘oror‘ { py } } t2 }
20 }
21 end
22 3},
23

24 reynolds2 = { search { x => False } (mktree 24) };

Figure 18: Reynolds2 source code in Foster.

Note that, like Haskell, Foster supports the use of regular identifiers as infix binary operators
using the ‘ident‘ lexical syntax. The oror function is a functional implementation of the
lazily evaluted | | operator in C, or Standard ML’s orelse keyword. An expression wrapped
in curly brackets, with no arrow parameters, denotes a zero-argument function (a thunk).
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One approach to using subheaps would be to segregate the tree being traversed from
the closures allocated while traversing it. The intuition here is that the benchmark
allocates one (short-lived) closure per (long-lived) tree node traversed, so perhaps the
program’s allocations can be split in order to (implicitly) focus collection effort only
on closures and not on nodes. However, the original code takes a clever shortcut: on
line 8, the left and right subtrees, which represent identical values, are in fact pointers
to the same value. Thus what is conceptually a complete binary tree is implemented
with a redundantly linked list, so the tree occupies less than one kilobyte out of the
multiple gigabytes allocated by the benchmark. As a result, segregating the list-

represented tree produces no savings at all.

We can, however, explicitly focus collection effort on the closures. Each closure’s
lifetime is scoped precisely to the activation of search that uses it. In the extreme,
each closure could be allocated in a fresh subheap and collected precisely when it dies.
As with regions, this scheme would suffer high overheads from rapid creation and
disposal of subheaps. The minimum space expenditure for a subheap (one Immix line
for the subheap contents, plus the backing subheap object) is an order of magnitude
larger than a single closure; thus, storing each closure in a separate subheap would

increase GC pressure by a corresponding amount.

A better idea is to capture groups of closures. Since complete trees have most of
their nodes near the leaves, a simple approach is to capture subtrees near the leaves
(or more precisely, the closures allocated while searching through said subtrees) and
ignore the intermediate nodes nearer the root of the tree. We can modify the recursive
calls to search to occur in fresh subheaps only at a particular level using a helper
akin to inTempSubheap from Section 2.6.2. Doing so produces interesting results with

a Goldilocks-style phenomenon, captured in Table 1.
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Table 1: Effect of varying granularity of subheap collection on Reynolds2 (input 24).

Subheap GC time Mark/Cons Explicit Implicit

@ Depth  (ms)  Ratio Collections  Collections

None 157 2.42e-3 0 2335
1.6 165 2.13e-3 05k 2048

15 166  2.15e-3 1 k 2048

14 168 2.17e-3 2 k 2048

13 29 0 4 k 0

12 46 0 8.1k 0

11 115 1.06e-6 16.3 k 1

10 197  2.13e-6 32.7k 2

9 279  4.35e-6 65 k 4

8 420 9.40e-6 131 k 9

With the “right” choice of granularity for subheaps, all marking work is eliminated
and no involuntary collections occur. When capturing large groups, the heap itself is
too small to accommodate the data being routed into the active subheap, resulting
in a net increase in collections (and GC time). When capturing smaller groups,
the savings from reduced tracing (as reflected by a drop in mark/cons ratio) are
outweighed by the cost of stack scanning, leading to a net increase in GC time. For
example, compare the base configuration to subheaps at depth 8: the mark/cons
ratio falls by two orders of magnitude, yet the GC time jumps almost threefold. The
culprit is the cost of stack scanning, the per-collection cost of which did not change,
even as the number of collections grew exponentially. In addition, as less total data
is contained within subheaps, enough garbage accumulates to trigger (infrequent)

collections, leading to non-zero mark/cons ratios.

After accounting for stack scanning, recording of runtime statistics, and the like, each
non-marking collection takes roughly 5.5 pus. This benchmark clearly shows that even

such miniscule costs add up when executed frequently enough.
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Figure 19: Minicache (B=1000, N=700, K=300) results

4.4. Software Caches

As discussed in Section 3.5, programs with large data caches pose a challenge for
tracing garbage collectors. 1 wrote a small cross-language microbenchmark, called
minicache, to quantify the cost of tracing GC for such caches. The structure of the
minicache heap is illustrated in Figure 6 (minus the pointer between entries). There
is an array containing B binary trees comprised of N nodes each. The minicache
workload is to make K passes over the array, allocating and inserting one replacement
subtree at a time. The results of running minicache (B = 1000, N = 700, K = 300)
are presented in Figure 19. The left plot shows the behavior of a variety of collectors
(parallel, serial, and concurrent) for the benchmark running on several widely used
Java virtual machines. The right plot shows, with the same axes, the behavior for
the same benchmark written in Go (using a concurrent collector) and Foster (with
and without subheap augmentation). Each program was run five times per heap size.

The plots show raw datapoints, not averages. Run-to-run timing variance was low.

Figure 20 explores different Immix variants on the Minicache workload. Generational
collection with sticky mark bits performs worse than plain Immix—unsurprising, be-

cause the lifetime of cached data does not follow the generational hypothesis. Mean-
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Minicache (512-512-100): heap size vs Run time
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Figure 20: Comparison of Foster’s Immix variants on minicache.

while, ImmixRC’s behavior is independent of heap size. It is faster than non-RC
Immix in small heaps and slower in larger heaps. While both ImmixRC and sub-
heaps have flat profiles, ImmixRC is slower by a large constant factor. The difference
is that subheaps reduce the benchmark’s workload by making sure objects need not be
traced, whereas ImmixRC merely enforces a heap-size independent workload: every
allocation is effectively traced twice with little amortization (once each for recursive

marking and unmarking).

What makes these graphs interesting is the shape of the results: the tracing collec-
tors exhibit classic space-time tradeoff curves, which reference counting—even when
“emulated” with subheaps—avoids. By putting each subtree in a separate subheap
we combine the low cost of region-based reclamation with a reliably flat performance

profile.

The authors of M? [TAV14] were partially motivated by the poor performance of a

Memcached-like system written in Go, which at the time offered only a serial collector.
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Recent versions of Go offer a state of the art concurrent collector. Would it have have
avoided their woes? The results in Figure 19b suggest not. Especially in tight heaps,
concurrent collection cannot overcome the sheer amount of work generated by the

minicache workload.
4.4.1. memcached & ghost thereof

Minicache is designed to throw the memory management issues of a cache into stark
relief. These effects are muted in a real cache for several reasons. First, minicache
simulates a cache’s workload with no superfluous influences: the workload involves
no hashing, nondeterminism, or I/O. A real cache must do this extra work, which
obscures the costs of GC. Second, minicache stores large, pointer-dense object graphs,
which amplify GC work. Many caches store data like strings or binary blobs which
do not need tracing. Thus, while caches are not GC-friendly, most caches will not

observe the severe (exponential decay) throughput impacts illustrated.

However, throughput is not the only relevant performance metric for a cache. Latency
is often a more critical concern for network-enabled cache servers. The minicache
benchmark cannot realistically measure end-to-end latency. To demonstrate the effect
of subheaps on a more realistic server, I implemented mcd: a minimal network-enabled
clone of Memcached in Foster. Using a lexer compiled from C into Foster, plus
bindings to the POSIX sockets API, mcd parses and implements the GET and SET

commands in the memcached wire protocol.

The mutilate program [LK14, Lev14]| was used to generate memcached wire traffic
with a mix of 90% reads and 10% updates. Three configurations for mcd were tested.
Since our workload induces 166 MB of allocation, a 170 MB heap is large enough to

avoid GC entirely. Reducing the heap size to 130 MB results in one garbage collection
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Figure 21: End-to-end memcached workload latency

cycle, which subheaps avoid. The results of testing these variants of mcd, along with
memcached itself, are shown in Figure 21. Reading left to right: When the heap
is large enough to avoid garbage collection, mcd shows max latencies comparable to
memcached.® In a smaller heap, the cost of GC is reflected in severe degradation of max
read request latency. The application of subheaps, in the smaller heap, successfully
replaces one costly GC with almost thirty thousand cheap GCs, each of which costs
barely more than a microsecond. This effectively eliminates the latency impact of
garbage collection for the mcd server. The GC-induced throughput degradation for
mcd-130 is 1.8%, increased to 4.2% with subheaps. Most of the lost throughput for

subheaps is due to repeated stack scans.

Experience Although the mcd server loop is relatively simple, it still highlights
four interesting phenomena surfaced by applying subheaps in practice. Some of these

findings have also been explored in Section 3.4.

First, when the goal is to not merely reduce but entirely eliminate full GCs, we

6 memcached’s throughput is roughly four times that of mcd; like most functional languages,

idiomatic Foster makes heavier use of allocation, indirection, and bounds checking than does C.
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must capture all allocated data within the server loop, not merely the subset of data
allocated within each cache bucket. Otherwise, the un-captured data will accumulate
and eventually trigger a collection. When data of varying lifetimes is interleaved,

proper separation can increase the subheap annotation burden.

Second: circumstances sometimes force allocation to occur before the “proper” des-
tination subheap is known. The Memcached protocol has clients send servers lines
with a command name, followed by a key, followed by command-specific fields. There
is a bit of a catch-22 with the key’s memory management: it must be allocated in
a bucket’s subheap to detect hash collisions, but the choice of what bucket—and
therefore what subheap—to use can only be made after it has been extracted from
the network, and thus allocated in some other subheap. To resolve the mismatch
in object lifetimes, the programmer must store a fresh copy of the key in the cho-
sen bucket’s subheap. Failure to do so creates a long-lived subheap-crossing pointer,

destroying the potential for subheaps to improve performance.

Third, there can be tension between separation of concerns in code versus data. Cache
buckets can be empty, and each non-empty cache bucket needs an associated subheap.
One scheme for this is to create subheaps on demand, as each bucket transitions from
empty to non-empty. This allows the use of subheapOf (see Section 2.7.2) without
needing any changes in data representation, but it mixes unrelated concerns in the
server response loop. Alternatively, creating a subheap in advance for each bucket
leads to better separation of concerns in code, but it no longer suffices to use a null
pointer to represent an empty cache bucket. Some change in data representation is

needed for the web server to map empty buckets to their respective subheaps.

Finally, care must be taken not to capture too much data in a subheap. Interleaved

with the allocations that must go in each bucket, the server also generates some short-
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lived garbage. Sticking this garbage in the long-lived cache entries inflates the amount
of space needed to store cache entries in subheaps. Whether this is acceptable or not

depends on the amount of provisioned heap space.

4.5. Self-Adjusting Computation

Self-adjusting computations (also known as incremental computations) are those
which can efficiently re-compute results as inputs change. This genre of programs
is known to be problematic for tracing GCs [HAO08]. Self-adjusting computations vi-
olate many of the heuristics employed by garbage collectors, especially generational
collectors. In particular, self-adjusting computations tend to have a large amount
of long-lived data, with frequent mutatations to point to young data. Furthermore,
object lifetimes do not satisfy the weak generational hypothesis because memoized
computations are kept alive until made irrelevant by changed inputs. To avoid the
inflated costs of garbage collection for self-adjusting computations, researchers have

explored options ranging from custom compilers [LW10] to custom language exten-

sions [HACO09] to rewriting libraries in different languages [HKHF14, HDH*18].

On paper, subheaps appear to be a promising technique for managing the memory
used by self-adjusting computations. First, the closures representing invocations of
self-adjusting computations own the data allocated in their dynamic extent, minus
the dynamic extent of their callees. This behavior—of capturing allocations within
a dynamic extent—precisely matches the activation-based usage model for subheaps.
Second, the deactivation of a closure is an explicit operation, suggesting a natural
place to hook in a call to subheapCollect. Third, the fine granularity of self-adjusting
closures—which often allocate only a few dozen bytes—suggests that subheaps can

be applied with lower space overheads than systems with multi-kilobyte minimum
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region sizes. The SAC library [Aca05, ABBTO06] for self-adjusting computation in
Standard ML provides a concrete example. The gsort test case allocates just shy of
50,000 modifiable references. Because a single subheap is lightweight—Iless than 600
bytes—the net cost with subheaps would be only 28 MB. If each modifiable reference
were given a subheap with a full 32 KB frame, the net memory usage for the program

would explode to 1.6 GB.

As with previously covered benchmarks, there are multiple means by which subheaps
might be applied to SAC-using code. As it turns out, in the test suite and benchmarks
exercising the SAC library, the incremental subsystem is often not the source of most
allocations. For example, in the gsort benchmark, 78% of allocated bytes come
from the verification step of the SAC test harness, which serializes incremental state
and compares against a non-incremental implementation. Tackling these temporary
allocations is an easy first step, but is a relatively trivial target for subheaps. Much

more interesting is to manage the incremental computations themselves.

To apply subheaps to SAC requires some background on how the library works. The
SAC library tracks a dependence graph of memoized computations and their input
sources; when an input is updated, memoized computations are recursively re-run
until reaching quiescence. Specialized memory management for SAC [HA08] hooks
into this change-propagation process. In short, the library’s correctness criterion is
that incrementally computed results do not differ from their non-incremental equiva-
lents. This consistency theorem implies that subcomputations—and their associated
allocations—which have been invalidated are guaranteed to be garbage when change
propagation completes. Even with a guiding principle for how to associate subheaps
with domain elements, the details of how to multiplex the dozen-plus allocations aris-

ing from each call to Modref .read (see Figure 26) across subheaps remains somewhat
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SAC gsort: heap size vs Mark-Cons ratio
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Figure 22: Mark/Cons Ratios for SAC gsort-500 example
(subheaps for temporary data only)

subtle.

To evaluate the impact of subheaps on self-adjusting programs written against the
SAC library, I modified the MLton compiler [Wee06] to emit its SSA-based interme-
diate representation (augmented with new source-level subheap primitives) as Foster
code. This enabled automated translation of whole SML programs, extended to use
subheaps, into Foster.” Because the application of subheaps targets the SAC library
rather than the programs written using the SAC library, we focus our examination

on the gsort benchmark highlighted by Hammer et al [HAO0S].

Figure 22 shows how the amount of tracing work performed is affected by Foster’s

various Immix collectors. The baseline Immix collector is the slowest in moderate

7 Applying subheaps to MLton itself is tempting, but MLton is a 32 MB binary, and its bootstrap
produces more than 700 MB of Foster source—too large for Foster’s prototype compiler to process
in reasonable time.
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SAC gsort: heap size vs GC time
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Figure 23: GC runtime for SAC gsort-500 example
(subheaps for temporary data only)
(< 5x minimal) sized heaps, but for oversized heaps it becomes slightly more effi-
cient than ImmixRC, which spends effort incrementing and decrementing individual
objects. Sticky Immix becomes more efficient than ImmixRC at a 1.7x heap. Using
subheaps to corral temporary data produces uniform savings in tracing work. For
example, with a 54 MB heap, Sticky Immix triggers 11 collections; using subheaps

reduces that to a single GC.

However, tracing work alone does not tell the full story. Figure 23 shows that while
GC time follows similar curves as does tracing work, it only varies by two orders of
magnitude rather than four. The figure also shows that the GC time exhibited by
Foster’s GC backends is comparable to the MLton runtime’s GC. Finally, subheaps
also add costs to the mutator for executing write barrier checks and maintaining

remembered sets (in general; this configuration does not add any cross-subheap re-
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SAC gsort: heap size vs run time
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Figure 24: Program runtime for SAC gsort-500 example
(subheaps for temporary data only)
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Figure 25: Impact of augmenting the Sticky Immix collector with compaction.
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Compaction provides greater benefit than subheaps, particularly in tight heaps.
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membered set entries). Figure 24 shows that in larger heaps, the mutator costs of
subheaps outweigh the reduced tracing load. Reductions in program runtime from
using subheaps for temporary data appear only in small heap sizes. Meanwhile, Fig-
ure 25 shows that the difference in Figure 24 between Sticky Immix and ImmixRC
is almost entirely due to the latter’s use of compaction, which permits execution in
smaller heaps and leads to savings in mutator time. With compaction enabled, Sticky
Immix produces very similar results as ImmixRC. Overall, using subheaps to manage
the temporary data generated by the testing harness successfully reduces GC work

but shows only modest improvements to program runtime.

What about using subheaps to manage the allocations of individual memoized com-
putations? A primary challenge is that, as mentioned previously, self-adjusting com-
putation involves intricate management of higher-order stateful functions. Even when
looking at a single page of code, it is difficult to determine the optimal placement
for subheap primitives. Consider the definition of Modref.read in Figure 26. We
can walk through a few factors influencing how this code might take advantage of

subheaps:

e On line 34, the definition of run silently allocates a closure that captures two
variables. Likewise, calls to delete on lines 45 and 11 allocate a closure that

will only be invoked at a statically-unknown later time.

e The new value captures the run closure and may capture previous definitions;
the delete closure gets stored within the TimeStamps module as time stamp

invalidators.

e A subheap activated after line 1 would not necessarily be activated when line 3

eventually executes. Long-lived closures use the subheap active at their invoca-
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fun read modr f =
fun delete node =

let
fn () =>

case node of

val
fun
val
val
val
val
val

val
in

modr
end

WRITE (v,rs) =
run () =

t1

t2

WRITE(v,rs) =

ne

ONE _ =>
let val WRITE (v,
case rs of
ONE => modr :=
| FUN (p,
let
val new = ONE reader
val _ = TimeStamps.setInv (t,
in

rs) = !modr in

WRITE (v, ZERO)
reader as (_,t,_),

case next of
ZERO => modr :=
| FUN(pofn,_,_)

WRITE (v,
=> (pofn :=
modr :=
| _ => raise InternalError
end

new)
new;
WRITE

end
FUN (p as ref prev,
case (prev,next) of
(ONE _, ZERO) =>
let val WRITE (v,_) = !modr
in modr := WRITE (v,prev) end
| (FUN (_,_, nofp), ZERO) => nofp := ZERO
| (ONE _, FUN (pofn, _,_)) =>
let val WRITE(v,_) = !modr val
modr := WRITE (v,next) end
| (FUN(_, _, nofp), FUN(pofn,_,_)) =>
(nofp := next; pofn := prev)
| _ => raise InternalError

n as ref next ) =>

-

pofn

'modr

let val WRITE(v,_) =
= insertTime ()

=f v

= insertTime ()

'modr

w = case rs of

ZERO => ONE (run,
| ONE => FUN (ref
| FUN (prev,_,next)

let val new = FUN

prev := new;

WRITE (v,new)

TimeStamps.setInv (t1,

£2)
(run,

t1,
rs,
=>
(ref (!prev),
new end

tl, t2),
(run,

delete new)

(v,

n as ref next) =>

delete new)

next))

:= prev in

'modr in f v end

ref ZERO)

t1,

Figure 26: Definition of Modref.read

94

t2),

ref rs)

in



tion sites, not their definition site. This is a downside of using dynamic scope

instead of lexical scope.

The calls to insertTime on lines 35 and 37 allocate timestamp nodes with

lifetimes not clearly bound to other allocated data in the read function.

Time stamp invalidation is stateful; the SAC library happens to call a times-
tamp node’s invalidator before removing the reference to the node via mutation.
This implies that timestamp nodes will be considered live for garbage collection
purposes when invalidators run. The choice of how to order removal and in-
validation cannot be distinguished by a non-subheap-aware client, but a client

using subheaps can detect the difference in tracing performance.

The various dereferences of modr can see values allocated in different calls to
read; this complicates both reasoning about where it might be profitable to

trigger subheap collections, and where it is sound to eliminate subheap barriers.

Allocations occur on lines 7, 10, 11, 14, 16, 24, 28, 33, 34, 36, 39, 40, 42, 44,
46, and possibly 35. Data may become unreachable on lines 7, 14, 15, 16, 24,
25, 27, 28, 30, 43, and 46. Frequently only a portion of a a data structure will
be rendered unreachable by any given mutation. In contrast to the Conway
benchmark, there are no clear and obvious points in the code where any given

subheap can be most profitably collected.

Another distinguishing feature of the SAC library is that it makes intricate use of

recursion. It turns out that, even with only a single user-created subheap S, there

are three—not two!l—choices for where to put allocations in the body of a recursive

function. The three possible “destination” subheaps are S, the default subheap,

or the active subheap. The same call site can see different bindings for the active
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subheap. While these decisions must be made for both recursive and non-recursive

code, experience with SAC shows that recursion can easily obscure the correct choice.

Selectively enabling subheaps for portions of Modref .read allows us to measure the
amount of allocation performed by various portions of the implementation. The
simplest approach is to wrap the whole function definition with a subheap activation;
this captures 48.29 MB out of the 451.0 MB allocated on the gsort-500 benchmark.
Due to the dynamic scoping of subheaps, this does not capture allocations made by
delete on lines 3-29, nor in the execution of f within run. Fixing these omissions

nearly doubles the amount of subheap-captured data, to 90.15 MB.

However, maximizing the number of subheap-allocated bytes is not our only concern.
To minimize remembered set maintenance costs, we should also find subheap bound-
aries that produce few remembered pointers, as discussed in Section 3.2. Figure 27
illustrates why minimal cuts are difficult to find for the SAC library. The timestamp
nodes t1 and t2 are elements of a complex linked data structure maintained by the
TimeStamps module. The t1 node is additionally circularly linked, as its invalidator—
the thunk produced by delete new—indirectly refers back to t1. The new node is
also an element of a mutable circularly linked list of readers. These allocations are

repeated for every read of each modifiable reference in the program.

Capturing a partial subset of these nodes in subheaps would produce poor perfor-
mance: the arrows illustrated in Figure 27 are all immutable references. This means
that, as discussed in Section 3.5, minimal subheap collection will be unable to identify
dead data, and we will be forced to wastefully inspect the sources of subheap-crossing
pointers as well. But capturing the entire cycle in a subheap (for each modifiable
read) also produces problematic subheap-crossing pointers, this time within the guts

of the TimeStamps module. Meanwhile, shunting all this data to a single subheap (or
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TimeStamps

delete new

Figure 27: Partial heap structure allocated by Modref.read

even one subheap per modifiable reference) would avoid the burden of remembered

pointers, but would also fail to effectively separate dead from live data.

There is one source of seemingly well-isolated data: the payloads generated by execut-
ing memoized closures. These payloads originate from lines 32 and 34 in Figure 26,
and have no obvious ties to the surrounding code or data structures, which is why they
are illustrated as a cloud around run () in Figure 27. On gsort-500, these payloads
account for almost exactly half of all data allocated by Modref .read. Unfortunately
the payload data turns out not to be isolated. Capturing run’s data within per-read
subheaps ends up doubling mutator time by causing 1.76 M subheap write barriers
to trigger. The reason for this is made clearer by inspection of the definition of the
incremental quicksort function in Figure 28: due to higher-order usage of the SAC li-
brary API, the memoized closures (on lines 9, 11, and 18) reference data from external

subheaps and allocate new data that will be manipulated in other subheaps.

Figure 29 illustrates the disappointing results from trying to use subheaps in a fine-
grained way to manage memory for the SAC gsort/500 benchmark. The leftmost
bar illustrates a rough limit cost for the program without influence from garbage

collection, obtained by measuring the program runtime in a sufficiently large heap

97



O O UL W N+

DD NN DN DNNDN e e
N U WINN R OO0 Uk WwNn R~ OO

Cycles Elapsed (M)

fun sort 1 =
let
val 1ift = C.mkLift2 (ML.eq, ML.eq)

fun gsortM (l,cr, prev,next) =
1 ==> (fn c =>
case c¢ of
ML.NIL => ML.write cr
| ML.CONS(h,t) => t ==> (fn ct =>
1lift ([Box.indexOf h, Box.index0f prev,
Box.index0f next],ct,cr)
(fn (t,rest) =>
let

val (_,hv) = h
fun fg (_,kv) = (Poly.evalOsgn(Key.compare (kv,hv)))
val (les,grt) = ML.split fg t

val bh = Box.fromOption (SOME h)
val mid = C.modref (rest ==> (fn cr =>
gsortM (grt,cr,bh, next)))
in
gsortM (les,ML.CONS(h,mid),prev, bh)
end)))
in
C.modref (gsortM (1, ML.NIL, Box.fromOption NONE,
Box.fromOption NONE))
end

Figure 28: Definition of SAC’s gsort implementation
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Figure 29: Cycle timings for fine-grained subheaps on SAC gsort/500
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that GC does not occur.

The next bar shrinks the heap such that collection does occur; it suggests that GC
accounts for more than a third of program runtime. Thus there is potential for
subheaps to improve performance by reducing GC costs. The middle bar, labeled
“Lg+cap”, isolates the cost of mutator overhead from write barriers and remembered
set maintenance when using fine-grained subheaps. In this configuration, the heap
is again large enough that collections do not occur. Because of the intricate internal
structure of the SAC data structures discussed previously, the mutator overhead from
subheaps is nearly as expensive as the cost of collection without subheaps, suggesting

that subheap collection must be very nearly free to produce a net win.

Unfortunately, the next bar shows that subheap collection is not free; in fact, it is
very slightly more expensive than non-subheap collection. The final bar shows that,
in a small heap, application of fine-grained subheaps produces a large degradation in

runtime compared to not using subheaps at all.

These results show that, counter to my expectations when first considering the mar-
riage of self-adjusting computation and subheaps, the potential for subheaps to man-
age memory in a fine-grained way is stymied by the intricate, higher-order nature of

the SAC library’s implementation.
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CHAPTER 5 : Challenges & Future Work

This dissertation explores a bare-bones proof of concept incarnation of subheaps.
There are several aspects of subheaps as they would likely appear in practice—ranging
from curious to critical—that have been heretofore ignored for clarity of focus. This

chapter explores a few of these “missing pieces.”

5.1. Concurrency

Shared-memory concurrency impedes high-frequency reclamation of subheaps. The
key issue is: to collect a given subheap, we must know whether or not there are
pointers into the subheap from other threads’ stack frames. When answering this
question involves coordination between threads, the cost of such coordination limits

the maximum frequency of collection.

A key premise of subheaps is that the cost of reclaiming dead space should be pro-
portional to the amount of live space traversed. This premise is violated in a setting
with concurrent threads that share memory, because the cost of scanning all stack

frames is proportional to the number of outstanding threads.

The constant factors at hand also matter: in traditional concurrent collectors, stack
scanning is often done in a brief cooperative stop-the-world pause lasting roughly
one millisecond. In contrast, reclamation of a mostly empty subheap operates at
megabytes per microsecond—and processing completely empty subheaps is even faster.
If every reclamation of every subheap is forced to do a full scan of all stacks, the

gains from moderately sized! subheaps would be mostly lost. Yak [NFXT16] forces

IThat is, subheaps containing moderate amounts of allocated data. For an allocation rate of
N MB/ms, reclamation of kN MB of allocated space need happen no more often than once per k
milliseconds.
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thread synchronization in this manner. The impact of this choice is acceptable in
part because their domain (Big Data) implies large regions with relatively infrequent

collections.

We can avoid stack scans if the runtime can statically or dynamically guarantee
isolation between threads. Some collectors enforce such isolation dynamically by
copying the transitive closure instead of recording a thread-crossing remembered set
entry. However, such copying can be expensive in space, time, and latency, and
often ends up being wasted work [Mol15]. When such copies are done silently by the
runtime, it becomes more difficult for the programmer to reason about when and why
certain collection points might be inefficient. As discussed in Section 2.4.3, it also

curtails the effectiveness of static optimizations for write barriers.

Another possibility for combining subheaps with concurrency would be to revisit
the basic semantics of the subheap API. The API in Section 2.3 is fundamentally
synchronous in its treatment of collection requests. An alternative design could make
condemnation record logical snapshots, which would be processed asynchronously.
In this model, the collection API furnishes requests rather than commands. This
change would complicate the implementation of subheaps, but would provide the

runtime more flexibility in scheduling collections, potentially reducing wasted work.

One potential downside of subheaps in a concurrent setting—especially with a syn-
chronous API—is of running into bottlenecks that do not affect single-threaded pro-
grams. The amortization of subheaps fundamentally depends on allowing garbage to
accumulate, so as to reduce the average cost per reclaimed byte. Inoue et al [IKN09]
illustrated this risk in the context of a web server. Their study revealed two interest-
ing phenomeona. First, they showed that using region-based memory management

reduced the cost of collection yet produced an overall slowdown due to degraded
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mutator behavior. Second, they showed that the mutator regression was due to old
dead objects being flushed from processor caches, instead of being reused as with
traditional malloc/free systems. This produced contention on the memory subsystem

that was not exhibited by the same system running in single-threaded mode.

The simplest route to achieving static isolation is to entirely forsake shared-memory
multithreading. Such restrictions are often indepedently appealing for avoiding the
conceptual complexity of concurrent mutation, weak memory models, etc. Subheaps
may end up being most easily justified in the context of more restrictive programming

models (such as message passing actors) that forgo shared-memory concurrency.

5.2. Untrusted Code

The bulk of our discussion around subheaps has assumed a non-adversarial runtime
environment. Extending subheaps to work robustly in the presence of potentially-
malicious code remains an unexplored problem. Two aspects deserve elaboration:

structured use of subheaps and enforcing space limits.

First, it should not be possible for an untrusted callee to alter which subheap is active
for its caller. In other words, whereas trusted code may benefit from free-form use of
the subheap API, untrusted code must obey a stricter discipline of scoped subheap
activation. Well-scoped primitives can be easily supplied, reducing the problem to
constraining access to the full subheap API. Fortunately, restricting access to sen-
sitive APIs has been a topic of much research from both the language and systems

communities.

The second aspect is space limits. Examples in which untrusted code must be run
in a partially isolated way include: auto-grading systems which must run code from

students; web browsers running downloaded scripts; and cloud providers running
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customer binaries. Similar issues (of excessive resource usage) also arise when code

may allocate based on untrusted inputs, such as with decompressors and deserializers.

Systems software—both operating systems and virtual machines—provides virtual-
memory-based mechanisms for limiting space usage. Unfortunately, such solutions
also come with large overheads compared to language-based mechanisms. Building

support for space limits atop subheap infrastructure may lead to lower runtime costs.

However, introducing space limits would also mandate a change in the trust model
for subheaps. In particular, if subheap limits are used to limit untrusted code’s
resource usage, the API as described in this document is too permissive: it fails
to restrict untrusted code from activating a non-limited subheap. There are also
semantic changes implied by subheap limits (e.g. child subheaps must inherit their
creator’s limits). We would, in short, require a more capability-oriented API design for
subheap management, with stronger notions of principals and trust. The connection
is neither accidental nor subheap-specific: Yang and Mazieres [YM14] observe that
their design for a resource container API closely mirrors that of an information flow

control API.

5.3. Stack Scanning Costs

The cost of scanning even a single stack can be a significant portion of GC effort.
The garbage collection literature has explored how to minimize the cost of repeatedly
scanning the program stack, using techniques such as stack markers [CHL98|. Such
techniques implicitly assume a monolithic heap design, not an arbitrarily-partitioned
one. Reducing the cost of stack scanning by extending stack markers to work with

multiple subheaps would be a useful extension to the subheap implementation model.
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5.4. Automation

The subheap design relies on the programmer to make good decisions about the
creation, activation, and reclamation of subheaps. This raises two questions for future
work to tackle: first, is reliance on the programmer a significant liability; second, can

the computer help identify productive use of subheaps?

Reliance on non-experts On the one hand, the vast majority of programmers—
those who currently ignore the GC—will be able to ignore subheaps. That is a key
motivator for subheaps compared to alternatives such as memory management with
substructural type systems. On the other hand, the programmers who do eventually
use subheaps will almost certainly not be experts on garbage collection. It is unclear

to what degree non-experts will be able to make effective use of subheaps.

Improper use of subheaps can degrade performance, for example if collection requests
are triggered for large subheaps full of live data. It is easy to give the programmer
concrete feedback about collection efficiency (data traced vs data reclaimed), which
can reassure programmers that the collection points they’ve chosen are neither wasted

work (due to low reclamation) nor inefficient (due to large amounts of tracing).

Inferring use of subheaps Computer assistance for using subheaps could take
many forms. The ideal instantiation would be a fully automatic tool. Such a tool
would take as input a codebase, perhaps augmented with a set of traces [HBM™06,

Ric16], and identify where in the codebase to insert subheap API calls.

It is unclear whether such a tool is feasible. Analyzing object lifetimes [JR08, Xul3,
BPSa™19] to give suggestions about where to collect or when to create new subheaps

appears promising but challenging [VG17, JCMM16, BOF17]. One key technical

104



challenge is the cyclic dependence between collection efficiency and subheap decom-
positions: the value of a specific partitioning is determined by the (careful) choice of
collection points it enables, and the usefulness of a given set of collection points is in

turn dependent on the choice of subheap decomposition.

A particularly promising intermediate point for automation would be to focus on
automation of subheap activation. This would have the human choose how to create
and collect subheaps, while leaving the details of routing allocations into the right
subheap to the runtime. Such automation would allow more fine-grained usage of sub-
heaps without increasing programmer burden. The reason this division of labor seems
promising is that connecting lifetime-related events—such as a browser tab closing,
or a self-adjusting library’s quiescence—with the idea of certain allocations becoming
obsolete often relies on very high-level, often domain-specific, proof sketches. In con-
trast, disentangling an “interleaved” sequence of subheap-destined allocations seems

more amenable to machine intervention.

Automation or assistance could take less extreme forms as well. Heap visualiza-
tion [PGO2] could help programmers decide which portions of the heap would be
most amenable to subheap management. Subheaps work best when they reflect a
human’s understanding of heap structure; visualization could help programmers gain
such understanding. Visualization could also help programmers evaluate the effec-

tiveness of a particular configuration of subheaps.
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CHAPTER 6 : Related Work

Chapter Contents

6.1 Region-Based Memory Management . . . . . . . ... ... ... ... 108
6.1.1 Unsafe Region Hybrids . . . . . ... ... ... ... ..... 113
6.2 Garbage Collection . . . . . . . .. ... 115
6.2.1 Phase-Aware GC . . . . . . . .. ... 115
6.2.2 Generational Collectors . . . . . ... ... ... ... ... .. 122
6.2.3 Partitioned Collectors . . . . . . ... ... ... 126
6.2.4 Static Analysis for GC . . . . ... ... ... ... ... 134
6.2.5 Program-Specific Garbage Collection . . . . . .. . ... ... 135
6.2.6 Widening the GC Interface . . . . . . . ... ... ... .... 138
6.2.7 Others . . . . . . . . 142
6.2.8 GC Scheduling . . ... ... ... ... 144

Subheaps sit at the intersection of many strands of the research literature. The
insight that program allocation patterns can be exploited to improve GC efficiency is

not new, but the design for subheaps synthesizes these insights in a novel way.

The literature has explored the benefits of program-tailored garbage collection [F'T00,
SK07, SBWC07, MZS09, CP15], selective choice of collection points [BVEDBO5,
XSaJ07, DEET16, JCMM16], static partitioning [HDHO03, GM04, XSaJJ07], dynamic
partitioning [SHB+02, DFHP04, SMB04, DGK*+02, UOO11, KC11, CM15], regions
[Att94, Gay98, HMGJ04, CR04], and hybrids of tracing and regions [HET02, Cor06,
Har06, SWB+15, XGD*15, RMAB16, NFX*16, VG17, BOF17, MHKS09] or refer-
ence counting [DB76, AP03, BM03, TAV14].
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This chapter compares and contrasts subheaps with related research efforts. We begin

by covering the most closely related work, highlighting how subheaps differ:

e Region-based memory management [TT97, HET02, GMJ*02, TBEH04] uses
static analysis, usually in the form of a type system, to eliminate the need for
garbage collection entirely. Subheaps rely on programmer guidance to avoid
some pitfalls of RBMM, such as having tail calls and loop-carried dependencies
without space leaks. Future work might combine the flexibility of subheaps with

automation driven by static analysis.

e Generational garbage collection [LH83, Ung84, Moo84| heuristically focuses col-
lection effort on the youngest data to gain efficiency by reducing tracing work.
Older-first [SMM99] techniques use a different heuristic to efficiently handle
some programs that are problematic for youngest-first collection. Subheaps
give programmers non-heuristic control over heap partitioning, allowing them

to focus GC effort on known-dead data or away from live data.

e M3 [TAV14] and DSA [CP15] exhibit gains from widening the GC interface.
Both rely on programmer annotations, attached to types, to improve GC effi-
ciency. Subheaps give programmers more fine-grained control via a dynamically-

executed API rather than static annotations on types.

e Yak [NFXT16] combines tracing collection and regions. Yak’s regions corre-
spond closely to subheaps. Yak’s interface is more limited than subheaps, due
to their differing aims: Yak aims to improve the efficiency of GC for big data
applications, whereas subheaps seek to allow programmers to improve perfor-
mance for a wider selection of problem domains. Both Yak and subheaps can

in turn be seen as extensions of Leaky Regions [Har06].
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Subheaps Static Regions Generational GC

9 ” Extra copying & pressure Extra copying & pressure
Worst Case
. on tenured space, and/or  Space Leaks on tenured space, and/or
Behavior
remembered set blowup remembered set blowup
At statically inferred
When does Upon programmer Whenever the nursery

(or checked) points,

S fill deterministi
deterministically s up (nondeferministic)

reclamation happen? request (deterministic)

Granularllty of Coarse Fine Coarse
reclamation
Almost always statically

fixed, usually two

Arbitrary, determined

Arbitrary, inferred
by programmer

Number of spaces

P . . . . .
“iigeffi;r;g}er Modify source to use API  Rewrite problematic code Command line flag tuning
Don’t add use of subheaps
(rely on GC instead)

Automatic? No Yes Yes

Avoiding bad cases Forced to rewrite code Forced to rewrite code

Table 2: Comparison Matrix for Various Memory Management Approaches

e Hayes [Hay93] proposed the idea of key object opportunism, observing that clus-
ters of objects often die all at once. Subheaps can emulate some of the beneficial
properties of reference counting—in particular, immediate reclamation—by re-
lying on programmers to identify key objects. The work of Hayes was mostly

theoretical; subheaps provide an implementation and evaluation.

Table 2 provides an overview of how subheaps compare to regions and generational
GC. The following sections examine in more detail the relationship between subheaps

and specific variants of regions and GC.

6.1. Region-Based Memory Management

Tofte and Talpin provided the canonical instance of memory management based on
regions [TT97]. Tofte’s insight was that an integer-typed expression (in a pure lan-
guage) might allocate arbitrary amounts of memory, but all of it could be deallocated

once the result was computed.

In the Tofte/Talpin system, the heap was replaced by a stack of regions. Individual
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results could be allocated into any in-scope region, and the choice of regions to use was
made via type inference. When a region went out of scope, the type system guaranteed
that all values allocated within the region were dead, and could be reclaimed in
bulk. Thanks to this stack discipline, regions known to contain a statically bounded
number of objects—so-called “finite” regions—were backed by memory allocated on

the program’s call stack.

Overall results, after several years of effort from Tofte and others [HET02], showed
promise. In particular, the combination of region inference and GC reduced bootstrap
compilation time for the ML Kit compiler from 2441 seconds to 1053 seconds, and

regions often relieved the GC of 80-90% of its total workload.

Retrospectives from some of the flagship region-based projects showed mixed success;
regions seemed to complement GC well, and there were occasional efficiency gains,

but primarily regions were useful to reduce the load on the GC:

e The RBMM retrospective [TBEH04] says “it is not clear that infinite regions
are such a good idea [...] and the experience with the garbage collector suggests
that it is better to use garbage collection for objects that region inference puts

into infinite regions, due to fragmentation problems.”

e The authors of the Cyclone project observed [SHM™06] that while their mech-
anisms for safe memory management (building upon regions) usually reduced
program working set sizes, there was only one instance in which overall program

performance improved versus a conservative garbage collector.

Ad-hoc extensions to Tofte’s region calculus, such as storage mode analysis [BTV96]
and multiplicity inference analysis [Vej94|, improved asymptotic performance and/or

constant factors in certain circumstances. Even so, memory management based on
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compiler-inferred lexically-scoped regions has well-known shortcomings, as discussed

in Tofte et al’s retrospective [TBEHO04]:

e Data allocated within a loop and passed between iterations often must be kept
live until the loop terminates. Similar problems occur for data allocated in

compiler phases.
e Not all programs are amenable to region inference.
e Inference of lightly-used infinite regions can lead to (internal) fragmentation.
o Inferred letregion expressions can interfere with tail call optimization.
e Minor refactorings can result in large performance changes.

Much as with subheaps, Tofte and Talpin proposed region-based memory management
as a compromise between fully-automatic garbage collection and fully-manual memory
management. Many of region-based memory management’s limitations derive from
the decision to rely on automatic, compiler-driven region inference, and the decision to
force region deallocation in stack order. Reliance on programmer input and arbitrary
collection ordering allows subheaps to avoid some limitations of region-based memory
management. In particular, subheaps can accomodate patterns of overlapping or
non-lexically-scoped lifetimes, and any interference with tail calls is made explicit.
However, even with programmer input, subheaps do carry limitations on the patterns
of data that can be easily managed. For example, subheaps struggle to efficiently
collect portions of circularly linked structures, for which the cost of remembered set

maintenance can easily outweigh the reductions in tracing workload.
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Usage Scoping Features
Model Model beyond TT

Tofte/Talpin [TTI7] Static Type inference Static, lexical -
Static, TT-based Multiplicity Inference

Static/Dyn

ML Kit [HET02] + GC backstop Type inference Static, lexical and Region Resetting
AFL [AFL95] Static, TT-based Type inference Static, non-lex  Early dealloc, no MI
WCM [WCMO00] Static, not TT Explicit CPS IR Static, non-lex  all?

Inferred IR (only

HMN [HMNO1] Static, not TT Hybrid, non-lex Subsumes Kit & AFL
first order source)
Inference, explicit

FMA [FMAO06], Fluet [Flu07] Static, not TT monadic src, Hybrid, non-lex all?
sub-structural IR

Subheaps Dynamic Explicit source Dyn, non-lex n/a

Comparing RBMM Approaches

Gay & Aiken also propose explicit regions for use in C programs, via a language called
C@ and a compiler called RC [GA98, GAO1]. They use reference counting (of regions,
rather than objects) to provide safety. In their original system, deleteregion()
applied to a non-empty region is a no-op (which means it does not reclaim any space
at that point; arguably, a space leak). RC changed the semantics to be a fatal error.
The equivalent operation applied to a subheap will reclaim any available space, at

line granularity, for reuse.

Their paper on RC [GA01] points out that some patterns exhibited by the real pro-
grams (such as the lcc compiler) in their benchmark suite cannot be represented
accurately by the purely-static systems, which are forced to either leak space or force
the programmer to rewrite their code. They also note that it is the programmer’s
responsibility to break region-crossing cycles before deleting regions. With the RC
system, failure to break a region-crossing cycle is a fatal error. With subheaps,
region-crossing cycles can be severed on an as-needed basis, and condemned sets can
obviate the need to break cycles manually. The tradeoff for this flexibility is that

subheaps make it easier for unexpected cyclic garbage to degrade the performance of
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explicitly-invoked collections.

Gay & Aiken [GA98] studied the difficulty of programming with explicit regions, and
found that the programs they studied “required only modest recoding to use regions,

9

and the needed region organization was straightforward to derive.” They observed
that even when programs manipulated data in complex ways, it was not difficult to
find simple and effective ways to organize that data in regions. Carrying over this

line of reasoning to subheaps is straightforward; the primary extra cost incurred by

subheaps is that of checking for, and recording, subheap-crossing pointers.

Cyclone [GMJT02, HMGJ04, SHMT06] had a heap region, stack regions, and growable
regions, plus unique pointers and reference-counted pointers. Growable regions did
not need to have nested lifetimes. While Cyclone’s machinery was powerful, it’s
not clear what the performance impact was. In his dissertation [Gro03], Grossman
admitted that “simply using a garbage-collected heap is often as fast or faster than

using growable regions.”

Other Type Systems

It has long been known that substructural type systems (in particular, with linear of
affine types) can reduce or eliminate the need for garbage collection. For example,
Lafont [Laf88] described an abstract machine which could produce only acyclic heaps,

and therefore needed no garbage collection.

Schemes to avoid garbage collection by static enforcement of rules tend to eliminate
useful flexibility, such as circular data structures. Thus, general-purpose languages
(such as Rust) that make use of substructural types usually retain the need for some

form of automated garbage collection, either via tracing or reference counting.
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Recent research has also explored the benefits of co-designing a concurrent language’s

type system and garbage collector, such as with the Orca project [CFD*17, FCD*18].
6.1.1. Unsafe Region Hybrids

Many programs written in unsafe languages like C can benefit from the bulk deal-
location behavior of regions. In part because C does not provide memory safety or
any portable way of mandating write barriers, such attempts often make it the user’s

responsibility to avoid use-after-free bugs.

Hanson proposed a C library for arena allocation and evaluated its benefits in the
context of the 1cc compiler [Han90]. In his scheme, as with subheaps, the programmer
had to identify allocations of similar lifetimes to place within arenas. Barrett and
Zorn [BZ93] extended Hanson’s scheme, using profiling to automate the segregation

of short-lived objects.

Berger, Zorn, & McKinley [BZMO02] investigated folklore about the performance
impact of custom memory allocation. They found that most custom allocators failed
to outperform a well-tuned general purpose allocator. The exception was an allocator
based on regions (arenas), which performed substantially better on certain applica-
tions, but suffers excess memory usage for common programming patterns such as
dynamic arrays and producer-consumer designs. The same patterns cause difficulty
for region-based memory management, for the same reason: a sequence of finite but
overlapping lifetimes means that the region/arena is never completely empty. Sub-
heaps avoid this pitfall, and as the experiments in Section 4 show, can still achieve

equivalent performance to unsafe arena allocation for some programs.

Informed by their investigation of the efficacy of custom memory allocation schemes,

Berger, Zorn, & McKinley proposed adding flexibility to arena allocation regions
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with individual object deallocation, yielding reaps. Unlike reaps, subheaps seek to
preserve memory safety and thus do not provide the flexibility of individual object

deallocation.

Inoue et al [IKN09] also produced a hybrid of regions with manual deallocation. Their
investigation of request-oriented region allocation in a multithreaded web server con-
text revealed that both malloc/free and pure regions suffered from overheads. Deal-
locating individual objects raised the cost of allocation and reclamation, with a signif-
icant contribution being the cost of object coalescing and splitting, intented to avoid
defragmentation. Meanwhile, use of traditional regions caused memory bandwidth
contention as caches flushed dead objects back to RAM. Their proposed solution was
to augment the malloc/free interface with a freeAll function to perform bulk recla-
mation, thereby producing a defrag-dodging malloc (DDmalloc). As with reaps,

DDmalloc did not seek to preserve memory safety.
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6.2. Garbage Collection

Generational garbage collectors have enjoyed huge success. They are effectively the
baseline against which other memory management schemes are compared. However,
it is well-known in the GC community that medium-lived data can be problematic for
standard generational collectors: it raises copying costs when it leaves the nursery,
then bloats the mature space and causes expensive full-heap collections. The litera-
ture on garbage collection has explored many ideas for how to build a better garbage

collector, and many of these ideas are reflected in various facets of subheaps.
6.2.1. Phase-Aware GC

One category of related work is on garbage collectors that improve their efficiency by
taking advantage of program phases. Hybrids of tracing GC and region-based memory
management also fall into this category, because regions correspond to (statically

identifiable) phases.

The work of Buytaert et al [BVEDB05, BVEB07] on Garbage Collection Hints
uses profile-guided offline analysis to identify favorable collection points. Their ex-
perimental evidence shows that “garbage collection hints work well for long running
applications that show some recurring phase behavior in the amount of live data. [...]
Applications that do not exhibit a phased live/time function are not likely to benefit
from GCH.”

Subheaps aim to capture the same benefits, trading the engineering cost and com-
plexity of profile-guided offline analysis with programmer burden. Both subheaps and
GCH will trigger a subheap/nursery reclamation at the end of a phase or iteration,

when live data is low. The most salient difference between the run-time behavior
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of subheaps and GCH is that the latter can only trigger a collection of the nursery,
which will include whatever unrelated data was present at the start of the phase
(and its associated remembered set). In contrast, with careful activation of multiple
subheaps, subheaps can focus effort solely on the data allocated within the dynamic

extent of a phase itself, ignoring superfluous data in the rest of the heap.

Obviously, the analysis for GCH could be used to suggest potentially-beneficial points
to insert subheap reclamation primitives. Determining how and where to place sub-
heap creation and activation primitives in order to further improve the efficiency of
reclamation—and avoid costly remembered set maintenance—would be an interesting

avenue for future work.

In the SEHMM project, Stancu et al [SWBT15] explored a hybrid region/GC ap-
proach for Java. They only region-allocated objects that were provably dead at region
exit. They found that roughly three quarters of memory could be region-managed.
This means a smaller generational nursery can be used without sacrificing perfor-
mance. With a large nursery, end-to-end speedups were small because baseline GC
time was only 3.6% of total time. Subheaps identify dead data dynamically rather
than statically; this brings flexibility but imposes program-dependent costs for re-

membered sets.

Leaky Regions proposed annotating method calls to indicate that their allocations
would be garbage at method return [Har06]. Nested method calls lead to scoped re-
gion behavior. The evaluation showed that judicious annotation placement resulted
in savings that outweighed the cost of the write barrier needed to prevent incorrect
deallocations. Use of Leaky Regions produced significant heap size footprint reduc-
tions, and significant reductions in overhead for small nursery sizes. However, only

in a few selected cases did the best annotations outperform a large nursery in total
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throughput. Harris observes that the work of Buytaert is complementary to his: GCH
is coarse grained, applying nursery collections to maximize reclamation yield; leaky
regions are fine grained, minimizing heap footprints and maximizing memory reuse
within a single collection cycle. Subheaps provide more general functionality, without
the limitation to scoped regions. However, our experimental analysis showed similar
tensions between improved collection efficiency and degraded mutator performance

due to write barriers and locality effects.

Xian et al [XSaJJ07] observed that local and remotable objects in Java application
servers have different lifetimes. These observations are mirrored by the study of Java
object demographics conducted by Jones & Ryder [JR08]. The work on GC for ap-
plication servers (AS-GC) investigated the possibility of using two nurseries in a
generational collector, to avoid interference between the different sorts of allocations.
Their heuristic was simple: any objects allocated during the execution of a remote
method (that is, one that extends java.rmi.Remote) would be placed in the remote
nursery. They found that AS-GC led to more frequent reclamations and higher ef-
ficiency as measured by nursery object survival rate, pause times, application-level
workload sustained, and overall program throughput. A variant of subheaps with
support for cross-subheap evacuation would be capable of encapsulating the domain-

specific AS-GC heuristic within a library.

Xian et al [XSaJ08] also studied the correlation between server load and GC over-
head. They found that increasing load on a Java application server caused the pro-
portion of time spent on GC to spike to nearly 50%, even when running with a gen-
erational collector. The culprit was a combination of objects (such as for database
connections) living longer under load, thus reducing the efficiency of minor collections,

combined with paging triggered by a heap growing to accommodate the longer living
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objects. Subheaps combat the former problem: they use programmer knowledge to
perform “minor” collections with maximal efficiency. The paper also studied where
collection could be performed most efficiently during server execution. They found
that collecting when the heap was full worked well under light loads (when most ob-
jects had had sufficient time to die) but did not work well under heavy loads (due
to object longevity). Under heavy loads, the most efficient time to collect was when
the nursery was mostly—but not completely—full. Again, this perfectly matches the

intuition for appropriate use of subheaps.

Phase-Adaptive Garbage Collection identifies program phases and preferentially
invokes collection at phase boundaries [RKP09]. PAGC proposes to automatically
partition the heap by dynamically monitoring application phases. They relocate ob-
jects by connectivity to form connected clusters (like the Train algorithm). They pay
the cost of runtime analysis and relocation, in order to relieve the programmer of
management concerns. Like GCH, they evaluate against SPECjvm98 and find that
javac benefits the most. Across all benchmarks, their improvements to mark/cons
ratios vary from —3.3% to 49.7% (average 19.9%), but some benchmarks suffer de-
graded performance from the extra copying done to dynamically aggregate objects
by connectivity. Again, users of subheaps can face similar dilemmas. PAGC reduces
time spent on GC by -4% to 41%, which translates to overall runtime improvement of
-0.6% to 5.3%; GC was at most 12% of execution time to start. PAGC had relatively

little effect on mutator utilization.

Preventative Memory Management [DZSOO05] initiates collection at the start
of program phases. In contrast to subheaps, it was based on statically modify-
ing program binaries rather than source code. MicroPhase [XSaJ07], like GCH,

reaps benefits from triggering deallocation at phase boundaries. They studied sim-
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ilar benchmarks (SPECjvm98, SPECjbb2000, DaCapo) as many of the other listed
works, and found closely matched results: some benchmarks are slightly degraded
(their runtime monitor imposes 2% baseline overhead); others see moderate perfor-

mance improvements; average speedup is 5% for SPECjbb2000.

Short-Term Memory for Self-Collecting Mutators [AHKS10, AHK*11] has
programmers mark objects with logical expiration timestamps, allowing the runtime
to collect expired objects en masse. As with subheaps, programmers must identify
quiescent points in program execution and add code annotations to manage memory.
Unfortunately, their approach sacrifices safety when applied to a GCed language.
Their technical report specifies performance improvements in total execution time

ranging from approximately +5% to -0.5%.

Yak [NFXT16] focuses on improving efficiency of GC for Big Data applications.
It separates the heap into a Control Space, managed generationally, and a Data
Space, managed with dynamically-sized regions. Arguably, Yak can be seen as an

independently-developed multi-threaded version of Leaky Regions.

Yak bears quite some similarity to subheaps. The CS corresponds to the default sub-
heap, and non-default subheaps are akin to DS regions. Like subheaps, Yak requires
program modification to establish region boundaries and lifetimes. Yak’s authors ob-
serve that (unlike traditional non-distributed applications) the programs they target

effectively already identify phase structure and therefore region boundaries.

In contrast to subheap’s general-purpose API, Yak adopts a simpler but more lim-
ited domain-specific interface. In particular, Yak’s epoch_begin() combines subheap
creation and activation, while epoch_end () combines collection, deactivation, and de-

struction. This slightly simpler interface limits Yak’s expressiveness. First, because
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there is no way to activate existing subheaps, it is impossible to separate out allo-
cations that are known to be longer-lived than their brethren. With subheaps, such
manual “pretenuring” has the potential to improve efficiency with reduced memory
budgets. Instead, Yak relies on lattice-based evacuation to reduce wasteful object
movement. Second, because the epoch-based API provides no way to trigger col-
lection of an arbitrary region, Yak lacks the power of reference counting with key
objects. Thus Yak cannot improve the efficiency of programs in which object life-
times are well-known but neither generational nor nested. Important examples of

such lifetimes include cache entries in memcached and tabs in a web browser.

Another difference from subheaps is that DS regions are collected only once; evac-
uation and region destruction go hand in hand. As a result of this restriction, Yak
can use a (very slightly) simpler bump-pointer allocation scheme instead of the mark-
region structure adopted for subheaps. However, the decision to collect each region
exactly once also implies that Yak must evacuate. This in turn means that Yak,
unlike subheaps, does not have a straightforward story for application in a conser-
vative environment. It also poses difficulties for minimizing pauses in a concurrent
implementation. The key is that marking can be done incrementally, unlike updating

incoming references.

Broom also combines GC and RBMM, targeting distributed data processing sys-
tems based on message-passing actors [GGST15]. Rather than using remembered
sets, Broom proposes to use three types of regions (temporary, actor-scoped, and
transferable) with restrictions on pointer destinations. Enforcement of the associated
restrictions was left to future work. Like subheaps and Yak, Broom exposes an API
that programs must be modified to use. Unlike Yak, Broom’s API separates region

(de)activation and destruction.
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Hierarchical Memory Management for Parallel Programs applies to purely-
functional fork-join parallel code [RMAB16]. The restriction to fork-join structured
parallelism opens the opportunity to automatically use nested heap regions, without
the need for programmer annotations. In an amusing coincidence, they refer to their
heap structure as “superheaps”. Memory is structured as a tree of heaps, mirroring
the tree of parallel tasks. A parallel task join induces the unioning of a heap with
its parent. To support bump-pointer allocation and efficient unioning, heaps are

structured as a list of contiguous pages. Task stealing from a subtree is disabled

while it is being GCed.

The restriction to purely functional programs brings other benefits. Unlike Yak,
collections need not pause all thread stacks; only the subset of processors evaluating
within a given task subtree must be scanned. Thanks to the lack of mutation implied
by a (strict) purely functional language, and age-order collection between related
heaps, there’s no need for remembered sets or a write barrier. Also, parallel collection

between and within subtrees is greatly simplified.

Subheaps support most of the operations provided by superheaps (and more). Hierar-
chical Memory Management (HMM) could mostly be implemented as a library atop
subheaps. However, such an encoding would suffer from two sources of additional
overhead. First, because subheaps lack the structured lifetimes and collection-order
constraints of superheaps, they’d need the cost of write barriers and remembered
sets. Under the reasonable assumption that subheaps would be joined more often
than collected, work to track subheap-crossing pointers would be redundant. Second,
subheaps would not enjoy the benefits of selective synchronization, which allows some
threads to be entirely ignored during collection. This would hurt throughput, latency,

and scalability.
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So subheaps could extend HMM to impure programs, at some cost. This is mod-
erately interesting; of more interest would be exploring ways to improve the work
efficiency of GC in parallel code. HMM aims to allow parallel collection with min-
imal synchronization, but since it provides no interface to control where allocations
end up nor when or where collections occur, HMM doesn’t improve efficiency on a
uniprocessor. The authors acknowledge that the questions of when and where to trig-
ger GC are open issues. Heuristics targeting parallel code are not well explored, and
heuristics developed in a serial setting may not be as effective. Letting programmers

override heuristics with subheaps might then be even more compelling.
6.2.2. Generational Collectors

Rather than taking advantage of phases in particular (types of) programs, genera-
tional collection relies on an even more common property: most objects have short
life spans. Generational collectors improve throughput by focusing their effort on
the youngest objects. Generational garbage collection is usually co-credited to Un-
gar [Ung84], Moon [Moo84], and Lieberman & Hewitt [LH83]. Earlier partitioned
schemes included work by Hanson, Ripley, and Griswold [Han77, RGHT7S|.

In Lieberman & Hewitt’s system, space was divided into multiple generations com-
posed of multiple regions, each with a version number. Rather than the modern
notion of a transparently-maintained remembered set, they forbade direct pointers
from older to newer generations, insisting on indirection via an entry table. They
suggested two possible treatments of the stack. If it is considered part of the oldest
generation, it would require indirections for all its references. Alternatively, it can
be included in the youngest generation, with the tradeoff that the stack must be
scanned at every collection. Their paper draws the connection between entry tables

and reference counts; both have trouble with cyclic garbage. However, because gener-
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ations were not under programmer control, there was no possibility of emulating the
benefits of reference counting. Lieberman & Hewitt raised the possibility of benefits
from programmer influence over region sizing and object placement. They did not
suggest programmer-triggered reclamation of individual regions/generations, nor did
they explore the details of how programmers might influence generational collection

or what magnitude of benefit might be obtained.

Moon’s collector [Moo84] distinguished between static, ephemeral, and dynamic ob-
ject lifetimes. Ephemeral objects correspond to a nursery with aging spaces (called
levels), and dynamic objects to the old space. Objects were partially separated by
assumed lifetime at creation, and information about an object’s space and level was
encoded in its address (similarly to our scheme for block metadata). However, objects
were not strictly space-partitioned; objects of different lifetimes could be interleaved

within a space.

Ungar [Ung84] divided the heap into a nursery, an aging semispace, and the old
space. In Berkeley Smalltalk II, the old space was backed with offline storage. Ungar
identified the tenuring problem, of data that dies after reaching the old space, as a
potential impediment to the efficiency of a generational collector. One of the proposed

solutions, left as future research, was “hints from the executing program.”

Appel [App89] proposed a flexible nursery sizing policy, in which all space not used
by the mature generation is devoted to a semispace nursery. The nature of a semis-
pace nursery means that half of the remaining heap must be reserved as tospace.
However, this is a very pessimistic assumption; the entire premise of generational GC
is that most of the time, a significant fraction of the nursery will be dead! This, in
turn, means that most of the tospace reserve will be wasted, reducing GC efficiency.

Measured nursery survival rates in the literature vary from 20% to less than 3% for
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allocation-heavy code in the SML/NJ compiler.

Guan, Srisa-an, & Jia [GSaJ09] measured several nursery sizing policies for a gener-
ational collector, and found that performance varied widely in some cases. Through-
put varied by up to 36%, and MMU graphs showed widely divergent profiles for some
benchmarks. Even the same benchmark can “prefer” different policies depending
on workloads. For example, jbb2005-23whs achieved 30% MMU at two orders of
magnitude finer granularity with an Appel nursery (HA) versus the other policies.
In contrast, for jbb2005-8whs, at roughly 1 second granularity, the default adaptive
policy achieved roughly 85% MMU versus roughly 15% MMU for the HA policy.

One approach to avoid the overhead of the tospace reserve is to simply reduce its size.
This gives objects more time to die and makes minor collection more efficient. If the
reserve turns out to be too small, a backup strategy is needed, such as compacting
collection. Velasco, Olcoz, & Tirado [VOT04] measured average GC time reduction of
17% for a 2x heap, and a reduction of heap usage ranging from 19% to 40%. Overall

execution time speedup was 2% on average for SPECjvm98.

Similar approaches have been explored by McGachey & Hosking [MHO06], as well as
Tong & Lau [TL10].

Demers et al [DWH"90] detailed schemes for obtaining some of the benefits of gen-
erational collection in the context of a conservative collector. They also note the
possibility of using application-provided hints (in the form of a logical timestamp) to
guide collector effort. Their chosen example is to do a partial collection between two
compiler phases. On that benchmark, they observed that hints produced a speedup
relative to the baseline generational collector, but the non-generational collector was

still faster. Their conclusion was that “with the right hints, at no loss of working set,
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collection time can be greatly improved.” Subheaps would enable compiler authors
to experiment with domain-specific collection heuristics, such as inter-pass partial

collections.

Demers et al also introduced the possibility of leaving objects marked between collec-
tions. The implementation in this dissertation uses this “sticky mark bits” technique
to implement generational collection for subheaps. Subsequent work has leveraged
the same idea to either reduce redundant tracing [CM15, Ricl6] or improve parallel

tracing [CP15, RN13].

The Mapping Collector [WKO08| uses virtual memory to compact the tenured
space in a generational collector without copying or updating pointers. This re-
lies on the same basic phenomenon that subheaps take advantage of: objects tend
to die in clumps. The Mapping Collector (MC) identifies completely-dead pages,
and remaps the underlying storage to permit indefinite bump-pointer allocation. Ad-
dress space is never reused, but with 64-bit pointers, virtual memory is not a scarce
resource. Reclaiming chunks of memory with little live data is a trick shared by
G1 and C4 [DFHP04, TIW11]; MC adopts the simpler approach of reclaiming only
completely-dead pages. Their experimental evaluation shows this causes only mild
fragmentation. Because MC doesn’t modify live objects, it need not synchronize with
the mutator to reclaim space. Concurrent marking is demarcated by stop-the-world
root scans. MC provides significant improvements to throughput and MMU com-
pared to alternative compaction algorithms such as the Compressor [KP06]. Max

pause times for the concurrent MC were roughly 1 ms per 3 MB of heap.
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6.2.3. Partitioned Collectors

Another category of collectors partitions the heap in ways beyond the standard gen-
erational design. These designs generally use fixed, automated, program-independent
partitioning schemes, whereas subheaps provide arbitrary partionings but require

programmer guidance.

Bishop developed a partitioned collector for an early capability system with a single
paged linear address space, called ORSLA [Bis77]. Bishop’s design had the program-
mer place objects into separate “areas” which served as both the basis for efficient
paging of small objects and of incrementalizing garbage collection in a large address
space. Areas also supported space quotas. Each process owned multiple areas, includ-
ing an area for activation records. In ORSLA, the user bore ultimate responsibility for
invoking GC. However, the system implemented automatic inter-area reference track-
ing (with hardware assistance), and inter-area object movement was handled by the
collector. An “object mover” helped maintain cycle-completeness without requiring

simultaneous collection of cyclically linked areas.

In ORSLA, direct references between areas were normally forbidden; instead, an ex-
plicit indirection called an inter-area link served as the equivalent of a remembered
set. However, Bishop observed that maintenance of inter-area links (and its asso-
ciated overhead) was unnecessary for short-lived computations; for such situations,
Bishop proposed “cables” between areas to permit direct linkage (and, of course, force
simultaneous collection). Cables were automatically constructed from short-lived to
long-lived areas. Users could also explicitly create cables between areas. The design
for temporary subheaps from Section 2.7.1 is a simpler, less-general reinvention of

Bishop’s notion of cables.

126



Bishop suggested that directing collection effort towards pages seeing the highest rate
of modification could improve the efficiency of collection. Given ORSLA’s context
as an operating-system level solution, combined with the collector’s integration with
hardware and virtual memory, made this an attractive point in the design space.
Subheaps instead rely on user input to redirect collector effort, on the assumption

that “regular” garbage collection provides sufficient performance in most situations.

The core mechanisms of subheaps bear striking resemblance to ORSLA’s scheme for
garbage collection. Novel elements of this dissertation include: the subheap API,
including dynamically-scoped subheap activation and the design for condemned sets;
integration of subheaps with generational garbage collection; investigation of write
barriers and compiler-driven barrier optimization; lessons learned from deployment
of subheaps; careful design for efficient amortization of both allocation and collec-
tion costs; and a full implementation, with performance analysis of subheaps across

multiple programs and collector reference points.

The Mark-Copy collector by Sachindran & Moss [SM03] reduces the space overhead
associated with semispace collection. Because of the standard space-time tradeoff
with GCs, this also translates to faster collections in size-constrained heaps. The
core idea is to divide the heap into numbered blocks, which can be evacuated, in-
order, incrementally. To do this, MC constructs (at collection time) unidirectional
remembered sets between blocks, using a full-heap scan. This scheme brings both
lower space overhead and the potential for smaller pauses, at the cost of extra redun-
dant work. When used in lieu of mark-sweep in a generational collector, MC usually

brings small performance advantages due to increased mutator locality from copying.

The Memory-Constrained Copying collector (MC?) [SMB04] enhances MC with

incremental marking, logical block numbering, and interleaved nursery & generational
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collection. By carefully scheduling its collection effort, MC? provides throughput

comparable to mark-sweep while achieving significantly reduced pause times.

Generational GC designs focus on the youngest objects, but this risks promoting ob-
jects too soon. Focusing on the oldest objects is worse: they are often immortal,
meaning tracing them is wasted effort. Older-First [SMM99] garbage collection fo-
cuses effort on the middle class. It does so by rotating a fixed-size collection increment
through the heap, moving in turn from older to younger objects. Like subheaps, this

means that its write barrier must remember more pointers.

Stefanovi¢ et al’s [SHBT02] analysis of (Deferred) Older-First versus Appel-style gen-
erational collectors illuminated several trends that also apply to subheap collectors.
The three biggest factors for Older-First were: more frequent collections, leading to
higher costs for stack scanning; lowered pause times due to avoiding whole-mature-
space collection; and lower total execution time, mainly due to reduction of GC work

as evidenced by lower mark/cons ratio.

At the obvious cost of requiring programmer intervention, subheaps offer the fol-
lowing potential improvements upon Older-First collection. First, because subheaps
are flexibly-sized instead of fixed-size, they may require fewer remembered pointers.
Second, because subheap collection can be triggered based on specific program be-
havior, rather than on the weak generational hypothesis [JHM11], fewer objects need

be unnecessarily copied out prematurely.

The Beltway framework [BJMMO02] generalizes multi-space collectors, including semis-
pace, generational, and Older-First designs. A Beltway design has one or more belts,
each composed of an ordered sequence of increments. Allocations are directed into

the last increment of a particular belt. Increments are collected in-order per belt.
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Promotion policies determine where evacuated objects end up. Remembered sets

must track pointers from old to young belts, and from young to old increments.

Jones & Ryder advocated for lifetime-aware garbage collection in the LACE [JRO6,
JRO8| project. They observed that individual allocation sites almost always allocate
objects with predictable lifetimes, and suggested orienting the heap towards object
deaths rather than births. Doing so would avoid wasting effort on live objects, and
speed the collection of dead objects: precisely the benefits conferred by subheaps.
Unlike subheaps, LACE was envisioned primarily as an automatic system, driven by

traces and/or static analysis.

The Train algorithm [HM92, SG95, Gar05] was designed to incrementally collect the
mature space in a generational collector. Use of subheaps does not preclude use of
the Train (or any other sophisticated design) for the default/mature space. Ideally,
there would be little benefit in using the Train to collect other subheaps—if there is
enough live data at the point of collection to make the Train worthwhile, the subheap
is probably being activated and/or collected at the wrong time. I haven’t yet thought
about the possible complications of applying Train-like techniques within individual

subheaps.

The Train algorithm works by dividing the mature space into fixed-size frames (cars)
organized into ordered lists called trains. Any set of prefixes of cars within trains
can be collected independently, thus bounding the work needed for a single round of
collection. Subheaps, in contrast, are about making collection more efficient, reducing
total GC work to be done, rather than limiting the amount of work to be done in any
particular increment. Reduced GC pause times are simply a beneficial consequence

of efficient collection.

129



A subtle but important difference between the Train algorithm and subheaps is that
the former, used in its intended role as the Mature Object Space for a generational
collector, has an invariant that roots are processed and redirected into young space

before scavenging. Subheaps have no such invariant.

Like Beltway, each car/increment has a remembered set. (Subheaps, which also have
remembered sets, are more akin to trains than cars). A key challenge for both Train
and Beltway is handling cyclic structures which span cars/increments. In Beltway,
the solution is to add an unbounded-size fallback space to hold such structures —
which implies sacrificing incrementality. In Train, once a cyclic structure is confined
to a single (unreferenced) train, the whole train can be collected. However, it can take
many repeated object copies to arrange that state of affairs. There is a fundamental
tension between the size of a car: smaller cars bring smaller pauses, but larger cars
incur less recopying to handle cyclic structures. The way subheaps resolve this tension
is to observe that, when a space is known to be nearly all dead objects, cost of

collection is almost entirely independent of the size of the space.

Another traditional challenge for the Train algorithm is to limit the size of remem-
bered sets. With subheaps, the programmer has the power and the responsibility to
use subheaps in ways that do not lead to remembered set blowups. Garthwaite [Gar05]

tackled this and similar issues of scalability.

Klock [KC11, KI11] presented an alternate take on scalable garbage collection. Un-
like the Train algorithm, Klock’s regional garbage collector provides provable,

mutator-independent bounds on pause times.

Klock and Garthwaite tackled many similar issues. One common theme was estab-

lishing careful bounds on the cost of remembered set management, especially in the
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presence of popular objects. Another was pacing garbage collector work to match

mutator activity.

Klock notes that “exposing the notion of regions at a level visible to the applica-
tion programmer” would be an interesting avenue for future research. His discussion
touches on RBMM, pre-tenuring, and (implicitly) CBGC. Subheaps might provide a

flexible framework for capturing the suggested benefits.

The Garbage-First (G1) design [DFHPO04] shares common elements with sub-
heaps, Klock’s regional collector, and the Train algorithm. All three feature a space-
partitioned heap with non-unidirectional remembered sets. Like Klock’s regional
collector, G1 uses a concurrent snapshot-at-the-beginning (SATB) marking pass to
avoid retaining circular garbage in remembered sets. In G1, the results of concurrent
marking are also used to prioritize collection of regions that are mostly-garbage. The
less live data in a given region, the faster it will be to collect. This is the same basic

insight that subheaps rely on to boost the efficiency of collection.

Subheaps differ from G1 in several ways. First is the granularity of regions vs sub-
heaps. Regions (or blocks) are a fixed, physical division of the heap. Subheaps are a
logical division; their granularity varies according to programmer-specified directives.
When subheaps comprise multiple regions, they need not record remembered sets
between those regions. This can potentially decrease time and space costs for both

mutator and collector.

A subtle but closely related distinction concerns allocation destination. With GI,
allocation switches to a new region when the previous one fills up. Subheaps have
no maximum size, and allocation destination is under programmer control. This can

also lead to smaller remembered sets.
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G1 uses a points-into remembered set structure (in Klock’s terminology), which has
the downside of potentially quadratic space usage. In the paper’s tests with SPECjbb,
even after specialized handling to reduce the impact of popular objects, more than
one fifth of the heap was devoted to storing remembered sets. This roughly matched
the total volume of live objects. This suggests that space savings from shrinking

remembered sets could be significant for some programs.

NG2C [BOF17] augments G1 with user-controlled fine grained pretenuring, and pro-
vides a profile-based analysis for automatically suggesting annotations. The most fun-
damental difference with subheaps is NG2C’s lack of support for explicit reclamation.
Explicit reclamation of arbitrary subheaps enables features like emulated reference
counting. NG2C omits explicit reclamation, and in return naturally integrates with a
highly concurrent collector. Because NG2C’s “generations” do not maintain indepen-
dent remembered sets, the underlying collector’s write barrier applies as-is. A third
difference is whether allocations are implicitly or explicitly directed to user-defined
generations/subheaps. NG2C’s decision to only pretenure at explicitly-annotated al-
location sites arguably reduces modularity; it means, for example, that the client of

a library cannot capture the library’s allocations.

Several papers have observed that object lifetime and mutation patterns are corre-
lated. Young objects are more heavily mutated, while older objects are more stable.
Copying collection is well-suited to young objects, and reference counting suits older
objects. Ulterior Reference Counting [BM03] combines a copying nursery with
a reference-counted mature space. Pointers into the nursery must be remembered as
usual. Pointers from the nursery to the mature RC space can be deferred or reference
counted. Mutations in the RC space are logged. Object counts in the RC space are

only reconciled when the nursery is collected. URC’s willingness to scan the nursery’s
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live space stands in sharp contrast to subheaps, which strive to avoid making the cost

of collection strongly dependent on the size of live data.

Morad et al [MHKS09] also combined generations and regions, augmenting an Appel-
style generational collector with a region-based heap. In their scheme, long-lived
objects were pretenured into regions to avoid the cost of repeated tracing in the
mature space. Profiling was chosen over manual control or static analysis for choosing
which objects to region-allocate. Each region held (all) objects from a single “nested”
allocation site. Reference counts were maintained for regions rather than objects
within regions; unlike subheaps, they forbade partial reclamation of regions. Their
scheme required an additional write barrier only to keep accurate reference counts
on minor collections. Major collections traced the whole heap, thereby also dealing
with cyclic garbage across regions. In their terminology, the generational heap and

region-based heap were each called “sub-heaps.”

The Age-Oriented Concurrent Collector [PPB05] and the generational slid-
ing views collector [AP03] both use a mark-sweep nursery with a reference-counted
mature space, each concurrently collected. A mark-sweep nursery was chosen to avoid
the complexities of concurrent copying. This dissertation only explores homogeneous
subheaps; exploring heterogeneous memory management schemes such as these ex-

amples could be interesting future work.

Baecker [Bae72] explored the possibility of augmenting Algol 68’s garbage collector
with a region-like construct he called areas. The core benefits of such a scheme over-
lap with those of subheaps: efficient bulk reclamation and the ability to collect the
most relevant subset of the heap. Baecker’s work predates the development of gener-
ational collection. His paper identifies safe independent collection as a key problem

(which would eventually be addressed by the invention of remembered sets and write
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barriers). He also raised the potential for the cost of area management to outweigh
the savings in garbage collection costs, a concern which has been borne out by our

experimental analysis with subheaps.
6.2.4. Static Analysis for GC

Most work on garbage collection relies on generic heuristics and runtime interposi-
tioning. Some work relies on static analysis of particular programs to make garbage

collection more efficient.

Deca aims to reduce GC overhead in distributed data processing pipelines [LSZ16].
It applies a code transformation, supported by static analysis, to enable bulk man-
agement of data, similar to region-based memory management. Rather than modify
the garbage collector, their system represents objects in data processing pipelines via
packed byte arrays. This brings three benefits: decreased GC cost, due to reduced
object count and elimination of read/write barriers; increased data density and cache
behavior, due to removal of pointers; and reduced serialization costs, because objects

are represented in serialized form.

Deca’s experimental evaluation exhibited exhilarating results: compared with the G1
garbage collector, Deca reduced GC costs from 8.8x to 90.5x, and improved end-
to-end performance from 2.2x to 346x. The authors do not break down how much
of their performance improvements originate from hardware effects or serialization
avoidance versus reduced GC pressure. Comparing subheap’s performance on similar

programs would be quite interesting.

Connectivity-Based Garbage Collection uses a static analysis to determine a

conservative partitioning of runtime objects, such that certain partitions are known
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to never point to other partitions [HHDHO02]. This permits sound collection of subsets
of the heap without needing to record every partition-crossing reference. By forcing
some partitions to be collected together, a connectivity-based collector can elide all
write barriers and remembered sets entirely. This is precisely akin to a generational
collector’s requirement to collect the nursery before the old space in exchange for a

unidirectional remembered set.

Viewed through the lens of their work, subheaps allow the programmer to exploit
some of the benefits of connectivity-based collection. Programmers get the task of
identifying fruitful partitions, while the implementation repurposes well-researched
infrastructure for generational garbage collection. CBGC uses topological ordering
to avoid the need for write barriers or remembered sets, which are potentially costly
in time and space, respectively. Subheaps make it the programmer’s responsibility to
choose productive and efficient partitionings of the heap. CBGC uses static analysis
to determine allocation placement; subheaps extend programmer choices through

dynamic slices of program execution.

Ruggieri & Murtagh proposed a static analysis to identify object lifetimes which
could be linked to procedure activation records [RM88]. They relied on inter- and
intra-procedural data-flow analysis rather than the type-based approach of Tofte &
Talpin. In their scheme, each procedure call could create a “sub-heap” to hold objects

which would have been statically shown to die before the procedure call returns.
6.2.5. Program-Specific Garbage Collection

Some collectors discussed thus far have been designed to work well with particular
classes of programs (such as distributed big data computations with Yak) or program

features (such as phase recognition in MicroPhase). Some collectors go a step further,
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and provide ways to customize their behavior to an individual program. In contrast to
work such as subheaps that proposes a richer interface between the programmer and
the collector, program-specific GC works without human interaction, usually driven

by static analysis or data collected from GC traces.

Object colocation [GM04] is related to pretenuring [Har00] and connectivity-
based collection. The common idea is to allocate objects to different spaces in order
to improve GC efficiency. Such techniques could be applied to subheaps which contain
a mix of live and dead objects, reducing the live data size at collection time. Both

are, effectively, forms of program-specific garbage collection.

In the context of a generational collector, pretenuring [Har00] uses static or dynamic
analysis to decide, on a per-call-site basis, whether to allocate into the nursery or the
mature space. Intuitively, allocating long-lived objects into the mature space avoids
both the cost of write barriers and the cost of copying out of the nursery. Coloca-
tion [GMO04] makes the decision on a per-object-allocated basis; the same call site can
allocate into the mature space or nursery, depending on what other objects it will be
connected to. Viewed through the lens of colocation, subheap allocation allows call
sites to vary allocation choices, but generally in a more coarse-grained way. Similarly
to colocation, and unlike regions or CBGC, the only negative consequence of “bad”

subheap usage is degraded performance and not compromised program correctness.

In the ideal case, colocation selects exactly those objects that would survive a nursery
collection. With subheaps, the goal is to select only those objects that will not
survive subheap reclamation. In either case, the effect in the limit is the same:

subheap /nursery reclamations can be free because everything they contain is dead.

The use of coalloc imposed a 1% average baseline performance penalty. Colocation
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generally reduced the volume of data copied out of the nursery by 50-75%. However,
the total benefits obtained were mixed. When augmenting a bounded-size nursery,
colocation shaved an average of 30% from GC time in a 3x heap, and consistently im-
proved total performance by about 3%. In an Appel-style nursery, the performance
gain from colocation was drowned out by a slowdown caused by degraded locality
in a mark-sweep mature space. With a copying old space, colocation had no ap-
preciable net performance impact. Colocation required heuristics to prevent certain

benchmarks from severely degrading performance.

Marion, Jones, & Ryder [MJRO7] suggest a method for driving pretenuring: they
combine a simple program analysis to identify coding idioms, and a database matching
idioms to object lifetimes. Examples of such idioms include (i) classes with only
final fields; (ii) immutable objects; or (iii) classes encoding reference cells. Observed

reductions in GC time for some SPECjvm98 programs ranged from 6-77%.

Rather than building a novel collector to be more responsive to a range of pro-
grams, several authors have advocated for automatic switching between a diverse
collection of off-the-shelf implementations. Proposed criteria for selecting the most
appropriate design include profiling [FT00], machine learning [SBWC07], automated
heuristics or explicit annotations [Pri01, SKB04, SK07], and accounting for program
inputs [MZS09]. Less drastically, one might “customize” a single off-the-shelf collector

by automatic parameter tuning, as done by Lengauer and Méssenbock [LM14].

Jacek et al [JCMM16] investigated the potential for collection schedule to optimize
GC performance, using traces of the DaCapo benchmark suite. Their model showed
average improvements of 10% in a 2x heap, with overall improvements between 5%
and 20% for a generational collector. Since they did not consider customized heap

partitioning schemes, the efficiency of their collections are limited by the live heap
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(nursery) size at the time of collection, generally between 9MB and 11MB. Follow-
on work by Jacek & Moss [JM19] investigated the potential for machine learning to

improve the selection of GC collection trigger points.
6.2.6. Widening the GC' Interface

The concept of augmenting the GC interface is not new to this work. However, the
possibility is under-explored in the literature. This subsection covers the few projects

which have experimented with user input to guide the garbage collector’s actions.

Hayes proposed key object opportunism [Hay93], theorizing that the lifetimes of
groups of objects could be tied to the lifetime of a single key object within the
group, rather than being tied to program phase behavior. His primary heuristic for
identifying key objects was those that appeared in remembered sets; other possibilities
he considered included random selection, stack reachability, or programmer hints.

Subheaps provide a means for programmers to take advantage of key objects.

Multi-Memory-Management (M?) by Terei, Aiken, & Vitek [TAV14] was a signif-
icant spiritual inspiration. In particular, their proposed idea of widening the memory
management interface to boost the efficiency of garbage collection is clearly reflected
in subheaps. Their focus was to combine tracing and reference counting, relying on
the programmer to identify a productive division of labor between the two schemes.
Like subheaps, they argued for an opt-in approach, augmenting rather than replacing
the underlying garbage collector. However, the details of the two efforts widely differ.
Whereas subheaps use a dynamically-scoped runtime API to focus collection effort
on logical subsets of the heap, they use a statically-scoped, type-driven approach to

choose between collection strategies (tracing vs reference counting).

Customizable Memory Management [Att94, AF198] (CMM) supported multiple
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heaps with an interface roughly isomorphic to the basic interface sketched in Sec-
tion 2.3 (sans the distinction between condemn and collect). Because CMM was
implemented as a library-only solution, it did not—could not—make use of write
barriers. Due to the limits of working without compiler support, CMM had to rely
on either (fallible) user input or (expensive) cross-heap tracing to identify cross-heap
pointers. Use of write barriers for subheaps improves safety, reduces programmer

burden, and enables the hybrid tracing/reference-counting scheme of Section 3.5.

This dissertation explores homogeneous subheaps, in contrast to the heterogenous
heaps explored by CMM. An earlier implementation of subheaps mirrored CMM’s
usage of C++ classes to implement multiple types of (sub)heap, specifically “coarse
grained” subheaps which managed memory at the granularity of frames rather than
lines. This scheme was abandoned in part because it produced significant fragmenta-
tion issues on the SAC benchmarks due to the inability for different granularities of

subheap to share memory.

Project Snowflake [PVV™17] augmented a concurrent garbage collector with safe
deletion of individual objects. The Snowflake programming model guarantees type
and memory safety by making attempted use of a deleted object result in a thrown
exception. However, careless use of delete can result in a program encountering
unexpected exceptions. In contrast, the subheap API only affects performance, and

cannot by itself alter program control flow.

Data Structure Aware collection, proposed by Cohen & Petrank [CP15], also gave
the programmer a wider interface to GC. Their design brings together sticky mark
bits! and BiBoP-style [DEB94, JHM11] type-segregated allocation. Programmers

must identify data structure node types with annotations; node instances are then

IThe sticky mark bit is called the member-bit in their work.
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allocated on segregated pages, and stickily marked until the programmer signals their
removal. Two major benefits accrue from this scheme. First, segregated contiguous
allocation enhances locality for mutator and collector alike. Second, and more im-
portantly, sticky-marked nodes can be treated as roots, providing a rich source of

mostly-independent work packets for a parallel tracer.

Subheaps provide a flexible mechanism to segregate data structure nodes. In DSA,
payloads are not segregated. With subheaps, the programmer could segregate all
nodes together, or pursue a finer granularity of heap decomposition with nodes and
payloads combined into many small subheaps. However, the interaction of subheaps,

sticky marking, and parallel tracing remains entirely unexplored.

The Deferred Collector by Ricci [Ric16] makes GC more efficient by letting the pro-
grammer identify key objects. Ricci adds one function, collectInfrequently(obj),
to the runtime. The transitive closure of objects passed to that API are labeled as
deferred. When the GC runs, it ignores deferred objects. Thus, when a large sub-
graph is protected by a deferred key object, the cost of tracing the subgraph can
be amortized over many collections. Instead of adding a second API to notify the
collector that a key object is about to die, Ricci simply ignores the deferred bits on

every n” collection.

Subheaps can provide similar benefits in theory, with two important disclaimers.
First, subheaps currently provide no direct analogue of Ricci’s infrequent collections;
in practice, programmers would likely need to find points at which to (perhaps con-
ditionally) trigger collection for designated objects. Second, the allocation-oriented
nature of the subheap API may not be as convenient as Ricci’s direct transitive-
closure semantics. With Ricci’s API, objects allocated from many places, at many

different times, can be managed uniformly with a single API call. In contrast, the
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subheap API might require much more careful management of subheap activations

in order to physically segregate the objects that a transitive closure would identify.

Deallocation Hints by Reames and Necula [Real3, RN13], focuses the collector’s
attention on objects that should soon die. This is in stark contrast to the prior two
designs, which instead identify long-lived objects. Reames targets C and C++, in
which most code already identifies (likely!) object lifetime end points with the free ()

function call.

In Reames’s Hinted Collector, objects passed to free() are labeled as condemned
but not immediately reclaimed. At collection time, every non-condemned object is
assumed to be live and treated as a root. Like the Data Structure Aware collector,
the root set is thus greatly expanded. A primary benefit of Deallocation Hints is
to improve the performance of parallel marking. The key insight is that marking
has serial complexity proportional to the reachable volume of live data, but parallel

complexity proportional to the depth of the object graph.

As with DSA, subheaps (with the extension for short-lived subheaps from 2.7.1) can
in theory provide similar abilities to redirect collector effort away from presumed-
live data, but the interaction of subheaps and parallel marking has not yet been

investigated.

These three collector designs can all be cast in a unified framework of programmer-
controlled mark bits. The Hinted Collector allocates objects as marked, and allows
the user to unmark candidates for reclamation. The Data Structure Aware collector
segregates data structure nodes and stickily marks them. The Deferred Collector
stickily marks the transitive closure of programmer-identified key objects. Note that

while they use the same underlying mechanism, there is a distinction in purpose:
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the Deferred collector speeds serial reclamation by amortizing the cost of marking
stable subgraphs, while the other two improve parallel marking by providing a greatly

expanded root set.
6.2.7. Others

Compact Regions [YCAT15] are a runtime-backed library for the Glasgow Haskell
Compiler environment. Programmers modify their programs to make use of the li-
brary’s API, which copies immutable objects to be arranged contiguously in memory.
The stated purpose is to enable efficient network transmission of serialized data by
avoiding the pointer-chasing of traditional serialization. To do so, compact regions
must be self-contained; objects within a region can refer to other objects within the
region, but cannot refer to objects outside of the region. As a pleasant side effect,
this means that the garbage collector can skip over compact regions when processing

the rest of the heap.

Like with subheaps, moving long-lived data from the mature space to a compact region
can reduce GC costs. However, subheaps and compact regions differ in two important
aspects. First, compact regions cannot contain mutable references (since mutation
could introduce region-crossing pointers). Second, like Tofte/Talpin-style regions,
objects within a compact region are only collected en masse with their containing
region; unlike subheaps, there is no reclamation of space from dead objects within a

compact region.

The Clustered Collector [CM15] dynamically identifies “head” objects along with
disjoint sets reachable from each head. Head objects are similar to key objects, in
that reachability of the head implies reachability of the cluster. However, unlike key

objects, non-reachability of the head does not imply non-reachability of the cluster.
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The Clustered Collector intermittently runs a dynamic analysis to identify clusters. In
their prototype, cluster identification is several times more expensive than a full heap
trace. Clusters do not grow once identified, but can be dissolved by writes that would
shrink the cluster. Undissolved clusters need not be re-traced at each collection. In
a sense, the Clustered Collector dynamically identifies fine-grained sub-generations.
Like generations, clusters have remembered sets and can reduce tracing effort wasted

on stable data.

Some key differences with subheaps include: automated runtime analysis vs pro-
grammatic source-embedded API; dissolving clusters for reduced floating garbage vs
deferring subheap collection for efficiency; size-limited clusters vs dynamically-scoped

swathes of allocations.

Firefox partitions its JavaScript heap into “compartments” [WGW*11, WLBF16].
Segregation of objects into compartments is done automatically, via script document
origin, and cross-compartment references are handled via wrappers (which help en-

force web-specific access policies) instead of remembered sets.

Contaminated GC [CPC00] focuses on object death points rather than age. It

essentially dynamically determines the appropriate region to own each object.

Baker [Bak92] proposed a scheme called lazy allocation. The idea is to do all
allocation on the runtime stack, evacuating live objects at method return and heap
writes. Subheaps apply a similar principle, but at coarser programmer controlled
granularity, and reserve stack allocation for allocations with statically-known lifetime.
This avoids the need for evacuation or read/write barriers for the stack (assuming

stacks are not themselves heap-allocated).

Corry extends on Baker’s ideas in several ways with Optimistic Stack Alloca-
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tion [Cor06, Cor04]. Corry splits the traditionally unified Algol-like stack into sep-
arate control and data stacks. He suggests triggering deallocation (from the data
stack) at loop boundaries instead of at call/return. Doing so provides better support
for factory methods and constructors, and reduces the need for inlining. Corry also

avoids the need for Baker’s read barrier by scanning stack frames.
6.2.8. GC Scheduling

Subheap collection is usually explicitly invoked. This touches on the subfield of
garbage collection scheduling, results from which suggest the potential for subheaps

to improve the performance of garbage collected systems.

Perhaps the simplest and most widely-available API for programmers to influence
GC is the System.gc() API found in Java. However, it provides the programmer
no guarantees or even mental model for what portion of the heap it will collect. An
application that intends to trigger a minor collection but instead gets a major col-
lection is unlikely to achieve its performance goals. This uncertainty and imprecision

severely limits the usefulness of System.gc() in practice.

Terei & Levy explored the impact of programmatic GC scheduling with Blade [TL15].
They extended the garbage collector with a very simple API: a callback for the user
to request deferral of garbage collection, and a function to trigger a (whole-heap)
GC. Deferred GC allows domain-specific coordination logic to run, improving system
performance. HT'TP servers can notify load balancers that they will be temporarily
out of service while GC takes place. In a distributed system, follower nodes can
coordinate with the leader to avoid correlated pauses that can prevent the system
from reaching consensus. Their evaluation showed huge improvements in worst-case

request latency, on the order of 100x, without degrading throughput. Other big
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data systems such as Cayuga [DGP107] have also found benefits from the ability to

explicitly kick off GC on a per-thread basis.

There is also work on having the runtime pick opportune moments to trigger garbage
collection. Prior coverage of related work on generational collectors touched on some
examples, mostly focused on improving overall work efficiency by collecting when
the nursery is mostly-dead. Some work has investigated scheduling GC collections to
avoid interference and reduce overheads in Big Data workloads [MAHK16, MHAK15].

Their results show improvements in both throughput and tail latencies.

Finally, some work has looked at GC scheduling with an eye towards latency rather
than throughput. For example, to maintain responsiveness and avoid dropped frames,
V8 schedules increments of collection work to occur in the spare milliseconds between
frame rendering [DEE*16]. Subheaps give programmers more control over when
to start collections, but do not yet allow programmers to schedule partial collection
increments, as would likely be required to explore this sort of latency oriented domain-

specific optimization.
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CHAPTER 7 : Conclusion

Tracing garbage collection and manual memory management seem to be diametrically
opposed: one provides safety, modularity, and decent performance without human
input; the other provides control and performance for a wider range of programs.
Subheaps represent one particular hybrid between these two extremes, for enhancing

programmer control over tracing garbage collection without sacrificing safety.

Of course, the concrete design for subheaps explored in this dissertation is only an
early foray into the design space. Subheaps are more broadly an idea about how
to expand the “range” of a GC by careful focusing of collection effort. The imple-
mentation and evaluation sections have revealed both strengths and weaknesses of the
concrete design explored in this dissertation. The future work section casts some light
on how the underlying idea might evolve—in design and implementation—to amelio-
rate those shortcomings. These threads may now be joined to support an informed
perspective on subheaps. We begin by summarizing the benefits and drawbacks to

the implemented version of subheaps.

Benefits For certain important classes of programs, such as software caches, sub-
heaps can provide large reductions in GC overhead and divorce GC costs from heap
size. Subheaps allow programmers to treat garbage collection costs as partially de-
terministic (with important caveats) rather than completely nondeterministic. A
consequence of such control is that minor alterations to source programs—such as
the insertion or removal of a call to subheapCollect—can produce drastic changes
to GC costs, for better or worse. Finally, by managing space at the granularity of
lines, subheaps can be used in situations where other region-flavored allocators would

fail due to excessive space overhead.
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The reasons behind the sharp division in performance on caches between subheaps and
non-augmented tracing GC, illustrated in Section 4.4, are worth exploring. Caches
have several features that make them well-suited to subheap management. First,
isolation between cache entries minimizes remembered set maintenance costs and
eliminates the possibility of creating subheap-cyclic garbage. Second, the lifetime of
a cache entry is well-defined; this makes it relatively obvious how and where to modify
the cache to use subheaps. Third, cache entry lifetimes are not statically predictable,
which makes it difficult for traditional heuristic approaches like generational collection
to work efficiently. Fourth, the line-based granularity of subheaps minimizes space
overheads for cache entries that may vary widely in size. Caches also have aspects
favoring subheaps which are not related to their heap structure. Traditional workloads
have fixed heap requirements, so the only effect of overprovisioning the heap is to
reduce GC throughput overhead. In contrast, extra space can be used to improve
the behavior of the cache itself, creating an impetus to operate with a tight heap.

Subheaps thus resolve the tension between GC throughput and cache hit rate.

Costs Subheaps impose a variety of costs for the four primary constituents of a
language ecosystem: language designers, language implementors, library authors, and
programmer-users. Designers must account for the tensions between subheaps and
certain language features, particularly mutable globals, shared-memory multithread-
ing, and sophisticated control flow. Language implementors face extra costs, such
as being forced to adopt data flow analysis to scrub stack slots before reclamation,
and to implement the static analysis and optimizations needed for subheap write bar-
riers. While sometimes inconvenient, these costs must be paid only once, and can
be amortized over all users of subheaps. In contrast, some costs recur for all users.

Both library authors and their consumers must contend with the runtime costs of the
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subheap write barrier and the potential costs in human effort of deciding how and
where to make use of subheaps. Any design and implementation for a subheap-like
system must carefully balance best-case versus common-case costs and overheads.
In particular, making “regular” tracing collection slower to speed up user-triggered

collections is a very risky proposition.

There is also a cost in human effort to measure the benefit (or lack thereof) for en-
visioned usages of subheaps. For example, the Reynolds2 benchmark (Section 4.3.2)
exhibits a “sweet spot” of subheap sizing. It would currently be the human’s respon-
sibility to experimentally find this favorable configuration. Lastly, subheaps require
that programs be modified to use the subheap API. Through the API, the choice
of when, where, and whether to collect can be driven by arbitrary Turing-complete
code fragments. The burden of wisely applying this power, in trading off performance

versus clarity, modularity, and maintainability, rests on programmers.

In contrast to the success of subheaps for software caches, it is instructive to con-
sider the failure of subheaps to improve the SAC library for self adjusting computa-
tion. SAC features heap structures—cyclic data structures with heterogeneous object
lifetimes—that prevent subheaps from operating with minimal overhead. SAC also
involves code features, such as intricate use of higher-order recursive functions, that

complicate the task of orchestrating the proper intended usage of the subheap API.

Alternatives Subheaps do not exist in a vacuum. Individual performance problems
that might be solved with subheaps can be resolved, or at least ameliorated, with
other approaches. Examples include overprovisioning the heap to reduce throughput
costs, or reducing latency via concurrent collection. Part of the appeal of subheaps

is to provide a single principled mechanism rather than relying on a collection of
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disparate approaches. The tradeoff for such generality is that subheaps are often not

the lowest-effort solution to any particular isolated GC problem:

e Throughput problems caused by GC thrashing are exacerbated by small heap
sizes. Often, the cheapest and easiest solution to reduce the runtime cost of GC

is to simply provision more memory.

e Subheaps must conservatively update remembered sets; thus even if subheap-
crossing pointers die by the time collection is triggered, the cost of recording
intermediate states can outweigh the savings from cheaper collections. In con-
trast, memory management techniques based on static analysis need not dy-

namically monitor intermediate program states.

e Finally, latency issues with a stop-the-world GC model tend to be binary: par-
tial reductions in GC load imply that unacceptable pauses merely occur less
often, rather than not at all. While subheaps can eliminate GC work for very
simple programs, doing the same for large and complex programs does not seem
feasible. In contrast, concurrent collectors can more easily control latency by

pacing the mutator.

An interesting direction for future work would be to combine subheaps with comple-
mentary approaches. For example, a system that relies primarily on substructural
types for memory management, such as Rust, might find it easier to gain benefits
from use of subheaps because superfluous short-lived data would be “filtered out” by

the language’s static discipline.

A Snapshot of Opinion This dissertation has explored the ideas behind, the im-
plementation of, and the consequences from using subheaps. Subheaps were developed

in pursuit of an ambitious goal: a general-purpose GC augmentation to make safe
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languages performance-competitive with their unsafe counterparts. While subheaps
have demonstrated strong results for some important classes of programs, it remains
unclear whether the crown has yet been won. I believe that most implementors of new
languages, given the costs and benefits outlined above, would make an engineering
decision not to adopt subheaps in their current form. This is in no small part due
to the minimialist focus of the design for subheaps explored in this dissertation. Of
more interest to potential adopters is whether a spiritual successor to subheaps might
prove sufficiently useful. Here I remain optimistic that future research could alter the

tradeoffs involved to make usage in practice, well, practical.

The Future Expansions of the subheap API might lead to improvements for pro-
grams not examined in this dissertation. One example would be to experiment with
support for evacuation between subheaps. This could reduce instances of wasted
work in repeated collection of a subheap with mixed-lifetime objects. Such exten-
sions would also enable more direct comparisons of the efficacy of subheaps versus

related work such as Yak.

The desire to better model or duplicate existing GC designs could also motivate other
API variants. The model of subheaps discussed so far is “flat” in that subheaps are
each separate entities, with no notion of heirarchy or grouping. The related work sec-
tion pointed out that many pieces of related work depend on known relations between
different pieces of the heap. Future work might provide a way to encode such rela-
tions to increase subheap’s flexibility, allowing higher level policies like generational
collection to be composed and configured as needed. Extending the API to make sub-
heap management easier, such as by declaring logical groupings of subheaps, would
likewise have the potential to improve flexibility, performance, and debuggability. A

key challenge would be to balance the dynamic flexibility offered by subheaps with

150



the desire to reduce overhead by leveraging statically-known invariants.

Another interesting point for future exploration would concern how objects are routed
into different subheaps. A key design point of the current design for subheaps is to
establish a regime of dynamic scoping for the active allocator. This makes it easy for
the client of a library to capture allocations made by an oblivious library in a coarse-
grained manner. Future work might investigate how to better leverage knowledge
held by library authors, and how to coordinate knowledge across boundaries in a

minimally invasive way.

The version of subheaps presented in this document is type-agnostic, meaning that the
subheap mechanism is unaffected by the types assigned to (or inferred for) program
values. This is in contrast to work on region-based memory management, which drives
allocation decisions through the type system, or work like M3, which derives allocation
decisions from (programmer annotations on) types. Future work on subheaps might
explore variants which are not type-agnostic. Relying on type information to drive
subheaps could reduce programmer burden and increase the analyzability of specific
subheap configurations. In contrast to type inference for region-based memory man-
agement, which must generally compute conservative static approximations to value
lifetimes, subheaps could make use of best-effort data from dynamic observations to

help identify profitable subheap configurations.
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APPENDIX

Segregated-Metadata Write Barrier An earlier iteration of the subheap proto-
type, discussed in Section 2.7.3, represented the object-to-subheap mapping in per-
line metadata instead of storing subheap identifiers in object headers. This produced

a significantly more costly barrier, commemorated in Figure 30.

A.1. The Fundamental Bottleneck of Garbage Collection

Computer systems get huge speedups on common-case workloads via clever tricks
such as caching, branch prediction, and speculative execution. Likewise, garbage
collectors speed up common-case workloads via clever tricks such as parallel marking
and generational collection. Sadly, these tricks are not complementary: when tracing

happens, it tends to be slow.

The heart of any garbage collector is the marking loop.! A recursive exploration
of most object heaps generates an “unfriendly” pattern of memory accesses: un-
cacheable, hard to prefetch [CHV04, GBF07], and only sometimes amenable to paral-
lel speedups. Marking shows significant degradation in instruction-level throughput
under high-frequency profiling [YBM15]. Allocation, in contrast, has an easy-to-
handle sequential write pattern. The specific penalty for tracing relative to allocation
depends on details of hardware and heap layout, but historically it has been nearly

an order of magnitude slower [BCR03a, BCM04a, BCMO04b, XSaJ08].

This asymmetry is partially counterbalanced by smarter heuristics, such as gener-

ational collection, which decouple GC throughput from tracing throughput in the

!Even in reference counting collectors, pause times are dominated by recursive unmarking of large
structures.
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Figure 30: Costlier subheap write barrier (asm).
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common case. When a generational nursery is collected with little live data, the ratio
of reclaimed data to traced data can be quite large. In one study, nursery survival
rates for Java application benchmarks averaged 8.5% [BGH'06]. This low survival
rate effectively permits GC throughput to be 12 times faster than the limit imposed

by the cost of tracing.

On the flip side, repeated tracing of long-lived objects can lead to asymptotic slow-
downs. This is most often seen in tight heaps [BMO08]. Absolute mark/cons ratios can
vary by orders of magnitude (0.03 to 19.44) in standard benchmark suites [SMS*12].
Observed GC time usually tracks variation in mark/cons ratios [SHB*02, FMBO03,

BHM™07]; Section 4 explores this connection, and how it can fail, in more detail.

When it comes time to collect the mature space, and concerns over latency come into
play, nursery survival rates are irrelevant. With a simple stop-the-world collector,
tackling the mature space incurs pause times proportional to the live data in the
heap. Since a significant fraction of the mature space tends to remain live, the cost

of a full-heap collection is proportional to heap size.

The precise cost depends on both tracing rate and heap residency statistics. But an
estimate of one second pauses per gigabyte of heap space seems to be supported
by experimental results from the last decade; in practice, things are rarely better and
often worse [AS16, DSaC02, GTSS11, GKS06, KC11, LP06, Miil14, NFX*16, SMB04,
SHB*02].

Meanwhile, heap sizes have grown just as furiously as allocation rates. The reason
is simple: RAM sizes have grown exponentially. In 2019, desktops have dozens of
gigabytes of RAM, and servers can have hundreds of gigabytes or even terabytes.

Pauses to fully collect such heaps can destroy interactivity in desktops and interfere
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with distributed algorithms in the cloud, since a multi-minute pause is not appreciably
different than a crashed node. And yet, even as heap sizes rise, there is simultaneous
pressure to expand the reach of garbage collection into latency-sensitive domains,

demanding ever more stringent pause limits of milliseconds or even microseconds.

A great deal of great work in the literature has gone into addressing pause times.
Incremental collection can spread out the work of a major collection into multiple
smaller pauses. Concurrent collection can perform work on a background thread,
hopefully allowing the mutator to go about its business unimpeded by garbage collec-
tion pauses. However, such techniques generally impose significant losses in through-
put. And they do not erase the fundamental tension: allocating is much easier than

tracing. This tension creates a lurking performance cliff.

Given some amount of spare resources, in the form of extra cores and memory, a
concurrent collector will be able to recycle memory at some particular sustainable
rate. By dint of the space-time tradeoff, either increasing allocation rate or decreasing
heap size will increase collector workload. When the collection workload pushes past
the collector’s throughput limit, the collector has no choice but to pause the mutator
until memory can be reclaimed. If this occurs, the illusion of “free” garbage collection
is shattered. So the worst-case performance of concurrent collection is difficult to
reason about in a principled way, because small shifts in heap size or allocation
rate can raise pause times by orders of magnitude [KC11, PD00]. Some concurrent
collectors will “pace” the mutator to ensure that it doesn’t overwhelm the collector.

This avoids the latency cliff in exchange for accentuating throughput overhead.
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