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ABSTRACT

SUBHEAP-AUGMENTED GARBAGE COLLECTION

Benjamin Karel

Jonathan M. Smith

Automated memory management avoids the tedium and danger of manual techniques.

However, as no programmer input is required, no widely available interface exists

to permit principled control over sometimes unacceptable performance costs. This

dissertation explores the idea that performance-oriented languages should give pro-

grammers greater control over where and when the garbage collector (GC) expends

effort. We describe an interface and implementation to expose heap partitioning and

collection decisions without compromising type safety. We show that our interface

allows the programmer to encode a form of reference counting using Hayes’ notion of

key objects. Preliminary experimental data suggests that our proposed mechanism

can avoid high overheads suffered by tracing collectors in some scenarios, especially

with tight heaps. However, for other applications, the costs of applying subheaps—in

human effort and runtime overheads—remain daunting.
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CHAPTER 1 : Introduction

Most computer programs allocate memory as they run, but memory is a finite re-

source. Reclaiming unused memory safely and efficiently motivates the study of

garbage collection (GC). Functionally correct GC algorithms date to the early years

of computer science [McC60, JHM11]. Yet correctness is not enough: effort over

subsequent decades has focused on various facets of performance, such as low pause

times, high space efficiency, and productive use of available hardware resources. Re-

search in garbage collection has produced designs that work well for most programs,

but every GC embodies tradeoffs and heuristics that may be ill-suited for certain

programs. Thus the goal for GC design is not merely to produce collectors which are

efficient on average, but those which perform well for the widest range of programs.

The quest for efficient execution that avoids the performance pitfalls of GC has also

led to the study of alternatives to GC. Examples include region-based memory man-

agement [TBEH04] and substructural type systems [Tov12], as well as the continuing

use of unsafe manual memory management techniques. Manual techniques afford

programmers the flexibility to use the most suitable disciplines for their particular

program, boosting efficiency. While unsafe manual techniques can confer speed, their

lack of memory safety contributes to a software ecosystem featuring widespread ex-

ploitation of vulnerabilities. Losing safety is too high a price for performance.

This dissertation investigates subheaps, a novel scheme for allowing programmers to

divide the heap and identify profitable collection points in order to improve the perfor-

mance of garbage collection. These elements respectively constitute the “where” and

“when” of memory reclamation. Subheaps preserve the safety of automatic collection

while seeking to gain some of the benefits of programmer input.

1



1.1. Motivation: Bridging Language Users and Implementors

The literature has shown that different garbage collectors perform markedly better or

worse with particular programs [FT00, SK07, SBWC07, JCMM16]. One can think of

different GC algorithms as having “rough edges”1 that snag on particular allocation

patterns. These rough edges are problematic for both language implementors and

language users. Each algorithm can also be tuned in various ways, but optimal

configurations are often input- or machine-dependent.

The language implementor is faced with the choice of selecting a GC design to suit

the needs of all future users. One approach is to provide several GC implementa-

tions and let the user choose between them. For example, the HotSpot JVM (ver-

sion 7.0) shipped with four separate GCs: serial, parallel, concurrent mark-sweep,

and garbage-first [JDK]. This complexity is a large burden in engineering, doc-

umentation, and testing effort. Most language environments provide a single GC

implementation, and rely on heuristics to get good performance for most programs.

Many problem domains can see significant gains in performance with customized

GC heuristics [Har00, SKB04, NFX+16, DEE+16, GGS+15, MHAK15], but language

implementors cannot anticipate the needs of all current and future problem domains.

Meanwhile, users must make do with the tools provided by their language implemen-

tation. A topic near and dear to the hearts of systems programmers is the issue of

control. GCs rely heavily on heuristics, especially for when, where, and how much to

collect. With such heuristics, sophisticated GC implementations can offer excellent

performance to most programs in most circumstances. The cost of a sophisticated

collector comes in opaqueness and loss of predictability. As the GC becomes more

1Credit to Alex Garthwaite for this turn of phrase.
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complex, users lose insight into the GC’s rough edges and how to overcome them.

What can be done when pre-chosen heuristics end up poorly suited to one’s program?

Performance problems cropping up due to memory management leave the user in a

tight spot, facing unappealing choices. Using more powerful hardware is expensive at

scale. Tweaking GC configuration parameters can be a slow process because engineers

generally have an indirect understanding of how each setting will interact with their

program. Furthermore, tuning GC parameters often has fragile results. Rewriting

in a different language is expensive and often infeasible. Many developers end up

“fighting” the GC, via dubious tricks like manual object pooling (which undermines

temporal safety) or using “off-heap” allocations (which throws out the benefits of GC

entirely). In most environments, programmers have little recourse.

This dissertation envisions and explores subheaps: a tool to bridge the gap between

language implementors and language users. For users, subheaps provide a way to “cus-

tomize” an off-the-shelf GC to one’s particular program. For implementors, subheaps

represent a simple mechanism that can obviate the necessity of providing multiple

redundant GC implementations in order to provide acceptable GC performance to a

wide range of user programs. One lens on subheaps is as an argument for programmer

control over GC as a language survival characteristic [Gab].

1.2. The Core Idea Of Subheaps

Subheaps give the programmer an API to guide the garbage collector’s effort. The

programmer’s goal is to divide the heap into multiple pieces which can be collected

independently and efficiently. Each piece is called a subheap. Programmers modify

their programs to dynamically create, activate, and collect subheaps. A key assump-

tion behind the idea of subheaps is that humans can (sometimes) make careful choices

3



for when and where to collect a subheap, simultaneously increasing efficiency and ef-

ficacy of GC.

To be clear, subheaps are not a new garbage collection algorithm or implementation

in the usual sense. Most designs for new GCs apply to all programs automatically.

Subheaps differ in this aspect. If a particular program does not make use of the

subheap API, the program will not see any benefits from running against a subheap-

enabled GC, and its garbage will have to be collected with some existing GC design.

Subheaps offer two potential benefits to the world at large, at least for those programs

which can make productive use of subheaps. First, increasing program efficiency can

save money by reducing hardware costs and/or software engineering effort. Second,

subheaps offer the potential to eliminate technical factors favoring unsafe languages

stemming from the flexibility and performance potential of manual memory manage-

ment, thereby strengthening defensive cybersecurity.

1.3. Purpose & Contributions

Statement of Purpose Section 1.1 explains why fully-automatic garbage collec-

tion is not yet a completely solved problem. The idea at the core of this document

is that human guidance can (sometimes) improve the performance characteristics of

automatic memory management. Subheaps represent one simple point in the design

space to explore this idea. This dissertation investigates how, and to what degree,

subheaps can be implemented and deployed to achieve their intended benefits.

To fulfill its purpose, this dissertation makes the following contributions:

• A design for a subheap API, with corresponding implementation, to allow the

programmer to influence where and when the collector expends effort.

4



• Discussion of how subheaps can be applied in practice, especially in how sub-

heaps allow adaptations for applications such as software caches.

• Discussion of the challenges involved in static removal of subheap write barriers,

along with evaluation of a simple scheme for automatic barrier elimination.

• Preliminary evaluation of subheaps, illustrating both potential benefits as well

as costs and drawbacks to the use of subheaps.

• An open source implementation of subheaps made publicly available2 for other

researchers to build upon.

• Thorough coverage of how subheaps relate to the literature on garbage collection

and region-based memory management.

Make note of what is not being claimed in this dissertation. In particular, subheaps

are not being presented as a universal improvement upon existing collectors, nor

even as a desirable mechanism to include (in their current minimalist form) in future

languages. Rather, subheaps show promise and work well for small programs, but

results on larger programs indicate that more research is likely to be needed before

(some future variant of) subheaps will be ready for general programmer consumption.

Section 7 covers these views in more detail.

1.4. Roadmap

The remainder of this chapter introduces basic terminology for garbage collection.

Section 2 lays out the core ideas behind subheaps: the concrete API between the

programmer and the collector, the underlying principles and design constraints behind

the API, prototype uniprocessor implementations, and a variety of extensions to

2Source and documentation for subheaps at https://eschew.org/projects/subheaps/
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the core. Section 3 discusses the practical use of subheaps: why, where, and how

programmers can use the subheap API to reduce collection costs. Section 4 evaluates

subheaps. Section 5 reflects on some of the challenges facing subheaps, and speculates

on future work to address those challenges. Section 6 lays out related work, and

Section 7 concludes.

1.5. Garbage Collection, Briefly

Subheaps occupy a niche in the design space for garbage collection. To understand the

design space for subheaps, it’s useful to have a baseline understanding of concepts and

terminology from the GC literature. What follows is a terse overview; the Garbage

Collection Handbook [JHM11] gives a fuller understanding of the history and practice

of garbage collection. Readers with a background in GC may safely skip ahead.

Garbage collection comprises reference counting and tracing-based techniques, which

are dual to each other [BCR04]. Each alternative aims to reclaim allocated memory

from the heap of allocated objects, starting from the program’s roots : registers, stacks,

and globals. Reference counting tracks how many copies of a given pointer exist in the

heap; when the heap contains zero copies of a pointer, the associated memory is dead

and can be freed for reuse. Tracing computes the transitive closure of references from

the roots; any allocated data not thusly accessible can be reclaimed. Reachability is

the standard approximation to the undecidable property of liveness, and the terms

are often treated synonymously.

The three “elemental” tracing algorithms are mark-sweep, compaction, and semis-

pace collection. Mark-sweep allocates objects from one or more free lists of available

memory, and returns dead objects to the free list(s) in a “sweep” of the heap. Un-

like compacting or semispace collectors, mark-sweep does not copy objects as it runs.
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Copying enables a fast allocation scheme called bump allocation in which objects are

allocated from a large chunk of address space by incrementing (or decrementing) a

pointer. These building blocks may be combined to form hybrid collector designs.

The most common hybrid is generational collection, in which the heap is split into

two or more spaces (disjoint sets of objects) termed generations. The simplest gen-

erational design has two spaces. Newly-allocated objects are placed in the youngest

generation, also called the nursery. Objects which remain alive at the next collec-

tion graduate into the oldest generation, called the mature space. By maintaining a

remembered set of generation-crossing references to be used as an additional source

of roots, the young generation can be collected without inspecting the whole heap.

Remembered sets are kept up-to-date by write barriers : small pieces of code emitted

by the compiler that run every time a value in the heap is modified. Write barriers

effectively allow the mutator (the client program relying on the GC) to communi-

cate relevant information to the collector. Generational collection is one example of

partitioned or space-incremental collector design.

1.5.1. Garbage Collection Tradeoffs

One major tradeoff in the design of garbage collectors is time versus space: in general,

the more space is available, the less time must be spent reclaiming memory. Smaller

heaps must be collected frequently. Conversely, with a sufficiently large heap, garbage

collection isn’t needed and thus takes zero time [SJBL10].

Another major tradeoff is latency (pause time) versus throughput (overall time taken).

Large pauses are undesirable for interactive applications such as GUIs or servers. But

techniques that improve latency, such as incremental collection, often degrade overall

performance. A key design choice is amortization: doing work in larger batches

7



improves throughput and degrades latency.

The latency-vs-throughput tradeoff is also reflected in treatment of fragmentation.

Fragmentation occurs when free space is divided into many pieces, each too small

to be individually useful. This reduces the effective size of the heap and makes

CPU caches less effective. Copying collectors eliminate fragmentation. For a popular

object, one with many references to it throughout the heap, updating all references to

the newly copied object can degrade latency. The effect on throughput of combating

latency is a mixed bag; copying is not free but its cost may be offset by increased

locality for the mutator.

Related to the question of batch sizing is the tension between local operation and

cycle-completeness. To reclaim a given allocation requires a summary of the rest of

the heap. Examples of such summaries include reference counts and remembered sets.

Summaries allow processing smaller portions of the heap at a time, which improves

latency and may even boost throughput. But when a reference cycle crosses a sum-

marized boundary, no purely-local operation can identify the cycle. Global views—

encompassing both sides of the boundary—are needed to handle cyclic garbage. Cyclic

structures, such as doubly-linked lists and trees with back-pointers, are common

enough to warrant consideration. As a result, practical garbage collectors either use

tracing or augment reference counting with dedicated cycle collection routines.

Finally, in block-structured or space-partitioned collectors, there is a tradeoff in the

choice of block size. Small fixed-size blocks reduce the wasteful impact of unallocated

space (also known as internal fragmentation) but produce many inter-block references

that may need to be tracked. Larger blocks reduce such overheads. Subheaps aim to

resolve the tradeoff by supporting a small minimum block size and letting subheaps

grow dynamically rather than imposing a fixed maximum size. This relies crucially

8



on programmer input to choose advantageous heap partionings.

1.5.2. Concurrent Collection versus Work Reduction

Collectors can take advantage of surplus hardware resources via concurrent and/or

parallel techniques. Such approaches can improve both throughput and latency, but

they do not reduce overall work done. Instead, they increase total work due to

synchronization overhead.

Work reduction can matter for energy constrained environments, such as mobile de-

vices. It is also vitally important for getting robust control over collection costs in

large heaps. A standard machine-independent measurement of work is the mark/-

cons ratio, defined as (allocations or bytes of) data marked or copied, divided by data

allocated.3 The mark/cons ratio approximates the average per-allocation work done

by the collector. Eliminated work will be reflected in a lowered mark/cons ratio.

3The term cons to represent allocated data refers to the Lisp function for allocating pairs.
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CHAPTER 2 : Subheaps

The core goal of subheaps is to provide a flexible mechanism to give users control over

the throughput and latency costs of tracing GC by focusing collection effort on high-

yield parts of the heap. The remainder of this chapter discusses the core principles

behind subheaps, illustrates the constraints implied by those principles, introduces a

design for subheaps satisfying the constraints, and details the elements needed for an

efficient implementation of the subheap design.

2.1. Subheap Principles

The fundamental task of a garbage collector is to automatically and safely reclaim

memory for reuse. Although their goal is to find dead space, GCs must waste effort

identifying live data. Tracing GCs expend this effort at collection time, whereas

reference counting operations are performed by the mutator. This wasted effort is

the primary cost of garbage collection.

Subheaps furnish two mechanisms: they enable programmer-controlled subdivisions

of the heap, and allow programmers to collect particular subdivisions. These mech-

anisms correspond to the “where” and “when” of collection. They in turn allow

programmers to influence the performance characteristics of tracing in principled

ways. Collection effort can be redirected “spatially” by biasing collection towards

dead objects and away from live ones. Grouping objects with similar lifetimes can

improve performance by reducing the collector’s wasted effort. Collection effort can

also be shifted “temporally” by explicitly triggering collection.
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2.1.1. Risks

The mechanisms provided by subheaps are a double-edged sword. Unlike some

schemes for memory management, it is not possible for subheaps to violate type- or

memory safety. However, careless use of subheaps can cause application performance

to degrade rather than improve. The reason is that explicitly triggered collections

can waste effort (re-)examining live objects. With regular garbage collection cycles,

which are usually driven by memory pressure, this effort is limited by the rate of pro-

gram allocation and the amount of memory reclaimed per collection. Unlike regular

garbage collection cycles, the potential overhead of subheaps is disconnected from

such limitations.

2.1.2. Cost Model

The most costly part of garbage collection is tracing through live data, whereas the

benefit of collection is in reclaiming dead space. By using the subheap mechanisms

to exploit knowledge of the lifetimes of (some) objects within their applications, pro-

grammers can reduce the cost or increase the benefit of collection. In the limit, when

every object under collection is dead, the primary cost of collection—that of tracing

live objects—goes to zero. Even when no tracing occurs, collections have non-zero

cost due to scanning stacks and remembered sets.

Most use cases for subheaps will improve performance by reducing the amount of

tracing required, thereby shrinking the performance impact of garbage collection.

Particular configurations of subheaps can, however, have other impacts on overall

program runtime. Mutator performance can be degraded by the execution of write

barriers and remembered set maintenance needed to support subheap collection. More

subtly, use of subheaps can change program locality properties, which could either
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improve or degrade performance. These second-order costs will be more apparent

when an application of subheaps does not produce large savings in reduced tracing

costs.

2.2. Design Constraints

The core principle behind subheaps—of reducing GC cost by eliminating tracing

work—leads to several constraints for an implementation of subheaps. First, subheaps

should optimize for collecting dead space; collecting dead objects should be nearly

free. Second, subheaps must be able to efficiently partition the heap in arbitrary

ways. Third, subheaps must support the collection of arbitrary sets of subheaps.

The desire to make collection cost shrink to zero for all-dead subheaps suggests that

any operation which has cost proportional to the size of a subheap—rather than

the size of the subheap’s live data—is verboten. However, constant factors matter.

Per-object operations, such as eager free-list sweeping, would be unacceptably slow,

but manipulating chunks of space at coarse granularity can reduce the associated

constant factor enough to become an insignificant cost. Thus, subheaps aim to exploit

amortization for efficiency. However, quick reclamation of dead space is not the end

of the story. While tracing live data is the largest cost of collection, it is not the only

cost; finding roots in stacks and remembered sets has non-zero cost. And in many

applications, the cost of allocation outweighs the cost of collection, so care must also

be taken not to degrade allocation for the sake of collection.

Note a non-constraint for this incarnation of subheaps: because subheaps are meant

to exploit human knowledge, we acccept the burden of having source code, rather than

targeting bytecode or object code. Future research on automating use of subheaps

might expand deployment of subheaps to bytecode-only codebases.
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2.3. Subheap API

Source code is required because programmers must modify their programs to make

use of the subheap API. Here is the low level API for using subheaps:

subheapCreate :: { () => Subheap }

subheapActivate :: { Subheap => Subheap }

subheapCondemn :: { Subheap => () }

subheapCollect :: { () => () }

The function name is on the left, followed by a type signature. Function types are

delimited by curly braces, with arguments and return types separated by arrows. The

unit type, (), is a placeholder similar to void in the C family of languages.

As the program executes, new allocations go into some subheap, called the active

subheap. The subheapActivate function marks the given subheap as being the new

active subheap. It also returns the previously-active subheap, making it easier to

manipulate subheaps in a cleanly nested way. We refer to the subheap returned by

the program’s first call to subheapActivate as the default subheap. In a program

that ignores the subheap API, all allocations remain in the default subheap.

Condemning a subheap indicates that its contents should be prioritized at the next

collection cycle, but does not initiate reclamation. There are several possible design

choices for the precise semantics of condemnation. We focus on the simplest version,

in which condemned status is associated with subheaps rather than their contents;

thus, condemning does not have “snapshot” semantics. Multiple subheaps can be

condemned before collecting, and condemned status does not persist between collec-

tions. Compared to an interface which collects an explicitly-provided collection of

subheaps, the condemned set abstraction is simpler, more flexible, and more efficient.
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We can define a fifth operation, subheapReclaim, by composing Condemn and Collect.

Why not provide only the convenient wrapper? The issue is that it conflates distinct

elements of the programmer’s knowledge, because it ties together issues of where and

when the GC should run. It is also unnecessarily limiting: by reclaiming only a

single subheap at a time, we lose the ability to bypass stale remembered sets. Still,

subheapReclaim is the more convenient interface to reclamation, and suffices for

many common use cases.

The activation-based, dynamically-scoped execution model for the subheap API was

chosen as a simple point in the design space to begin exploration. It is arguably the

least essential (or least principled) element of the subheap design, and would be the

easiest to experiment with in future iterations of research on subheaps.

2.4. Subheap Implementation

Our prototype subheap-augmented garbage collector is based on the Immix mark-

region [BM08] heap design. Mark-region combines the speed benefits of contiguous

allocation with the space efficiency of sweeping. Importantly, given that successful

use of subheaps implies proportionally less tracing and more reclamation, mark-region

also enables rapid reclamation of empty space. Another appealing property of Immix

is that it has been extended with several variants of generational collection, based on

copying, sticky mark bits, and reference counting [BM08, SBYM13]. Subheaps have

been integrated atop two distinct generational baselines: StickyImmix and ImmixRC.

Details of these extensions may be found in Section 2.5.

The primary implementation of subheaps has been written for an ML-like language

called Foster. The Foster project is (was) an exploration of using language-based

technology to reliably eliminate conventional overheads of type safety. Subheaps
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were developed to address GC costs in this performance-sensitive context. The

Foster compiler targets LLVM and implements both traditional compiler optimiza-

tions such as inlining as well as GC-specific optimizations for stack slot manage-

ment and write barrier elimination. Both the Foster compiler and its subheap-

enabled runtime are freely available for anyone to study, use, or modify, at https:

//eschew.org/projects/subheaps/.

The remainder of this section details the design and implementation of Foster’s

subheap-augmented collector.

Overview The heap is structured into 32 KB frames, which are in turn composed

of 256-byte lines. Each line is associated with a mark byte, a used byte, and a stamp.

The mark byte is standard; the used byte is needed when combining subheaps with

generational collection, and the stamp helps manage remembered sets. Fixed-size

heap metadata is segregated in demand-paged virtual memory, allowing constant-

time lookup of metadata for specific portions of memory [SMB04, Kus15]. Line-based

metadata is used to calculate frame residency statistics.

Remembered Sets To enable independent collection, each subheap maintains a re-

membered set of incoming pointers. The representation of remembered sets is mostly

orthogonal to the design of subheaps. The primary restriction is that for emulated

reference counting (see Section 3.5) to work, remembered sets must record the slots

containing pointers, rather than pointer targets. Foster uses a standard sequential-

store-buffer design. Coarser granularities could also be viable; the literature describes

several potentially relevant optimizations [SMB04, Sjö14, Ada07]. Regardless, the

asymptotic overhead of remembered sets (sometimes referred to as remsets) ulti-

mately depends on the heap division chosen by the programmer.
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One unique wrinkle arising from collecting arbitrary sets of subheaps is the need

for the runtime to purge stale remembered set entries. Otherwise, reuse of either

the source or target of a remembered pointer can result in the runtime interpreting

arbitrary bit patterns as a pointer. This issue can be finessed when the runtime

controls, or at least knows about, the future order of collections [Ste99]. But with

subheaps, programmer input controls collection order. Thus the runtime must identify

when lines holding remembered pointers have been reused. This is accomplished with

a per-line timestamp, recorded in remembered sets and incremented upon reclamation

(or reallocation). A 32-bit stamp per 256-byte line imposes space overhead of 1.5%.

Line stamps would not be needed for subheaps atop conservative Immix [SBM14].

Allocation Allocation for subheaps mirrors that of Immix. Allocation requests are

routed through a pointer representing the current subheap. Subheaps grab free line

spans from a cache, falling back to linear inspection of used line marks, and record

the set of lines they own. Activation of a new subheap overwrites this pointer, and

“steals” the unused trailing lines from the previous subheap, to minimize wasted

space. By managing space around groups of lines rather than whole frames, this

scheme enables fine-grained behavior while still preserving efficient amortization for

coarse-grained subheaps.

The main function of reconstructing spans from line metadata, versus keeping an

explicitly-represented pool of available spans, is to combat fragmentation from line

spans being reclaimed piecemeal. The downside is that purely linear sweeps do not

preserve locality in the presence of high-frequency subheap churn. A cache of available

lines permits flexibly combining locality preservation with fragmentation avoidance.

As with the baseline Immix collector, object allocations larger than 8KB are diverted
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to malloc, limiting size-based fragmentation in the block-structured heap to 25%.

Each subheap keeps a list of the large objects it owns, and scans the list at each

collection to find unmarked entries. Due to the minimum size requirement, separate

treatment of large objects does not alter the overall analysis of performance considera-

tions for the block-structured heap. Arraylet techniques [BCR03b, SBF+10, PZM+10]

could be employed by a language runtime or standard library to ensure the data for

large arrays is managed within the block-structured heap.

To support collection of arbitrary partitionings, the subheap implementation must be

able to efficiently find the subheap associated with a given object. This operation is

used “internally” to identify subheap-crossing pointers, both in the write barrier and

during collections. Following Yak [NFX+16], we provide fast mapping from objects to

subheaps by embedding a subheap identifier in object headers. In Foster, this 32-bit

identifier conveniently fits into the unused half of an eight byte object header.1

Per-Frame Metadata Two additional words are associated with each 32 KB of

virtual address space. One word stores a few bytes of statistics: per-frame counts of

available lines and holes, used to prioritize opportunistic evacuation [BM08], plus a

count of how many lines in that frame belong to the default subheap, used to permit

compaction. Frames containing large allocations are associated with a dynamically

allocated four-element extension, since there can be at most four large objects per 32

KB region of memory.

Condemnation The subheapCondemn function records the given subheap in the

condemned set. It also sets a flag in the given subheap to speed determination of

condemned status for individual objects at collection time. Condemnation is constant

1The other half stores object type information; the header was eight bytes rather than four due
to Foster keeping 16-byte object alignment.
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time; it does not inspect or modify any remembered set entries. Condemnation is

idempotent until the next collection of a given subheap.

Reclamation The first step of a collection cycle is to establish the condemned set,

either from explicit user requests or as selected by the runtime. The next step is to

gather locations of potential incoming pointers from the remembered set, ignoring

entries between condemned objects. The overall set of incoming pointers from non-

condemned objects, plus globals2 and stacks, constitutes the root set. If the root set is

empty, the entirety of the condemned set can be reclaimed immediately. Otherwise,

tracing and marking from the roots proceeds as usual, with the proviso that the

collector ignores non-condemned objects. At the start of a collection, the condemned

set’s marked line maps must be cleared (unless the current collection is operating as a

generational nursery). After marking finishes, mark bytes for the condemned set are

copied to the line-used map. After each collection, the condemned set and associated

flags must be reset.

Scanning of line maps is proportional to the size of the condemned set rather than

the size of the live data, but the associated constant is quite small. Measuring the

cost of scanning line maps for an unfragmented subheap of 1 GB revealed a mean cost

of 325 µs, implying a reclamation rate of 3 GB/ms. This rate of reclamation applies

to almost entirely empty subheaps. In subheaps with even a small percentage of live

data, the cost of tracing dominates the cost of reclaiming space. Neither cost applies

to subheaps with no incoming pointers, which can be reclaimed without scanning

linemaps. Inspecting line maps is more than two orders of magnitude faster than the

cost of allocation itself.

2Globals are traditionally a source of roots. In Foster, globals are statically allocated and im-
mutable, and thus are never part of the root set.
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When collection occurs without an explicitly-chosen condemned set, the runtime must

choose which subheaps to collect. The simplest heuristic is to collect all subheaps;

this guarantees that any available space will be made available for allocation, with-

out any data being spuriously kept alive by remembered sets. Collecting a smaller

subset of the heap—such as only the default subheap—is possible, and can improve

performance by reducing duplicate tracing of data in long-lived subheaps. Doing so

risks performing duplicate work if the chosen subset yields sufficiently little free space

that fallback collection of the whole heap is eventually needed. Section 2.7.1 explores

how the user can influence the set of implicitly-chosen subheaps in order to improve

performance and avoid wasted work.

Used Bits Non-subheap collectors can maintain a simple invariant: after collection,

used lines are marked, and unmarked lines are not used. This allows used status to be

be derived from mark bits rather than being explicitly represented. With subheaps,

an uncondemned line can be used but not marked. This dissertation’s design, which

combines subheaps with sticky mark bit generational collection, requires separate

metadata for line mark versus used status. Used bits are set during allocation and

cleared post-collection. Mark are set during collection, and only reset before mature

space collections. The relevant state machine is illustrated in Figure 1. By keeping

the invariant that cached spans are marked used, the allocation cache reduces the

overhead from (re)setting used bits.

Subheap Representation and Lifecycle While the semantics for subheap ob-

jects (that is, language values of type Subheap) given so far could be adequately

represented by an opaque integer value, the prototype instead uses heap-allocated

handles to allow the runtime to detect unmarked subheap values. Rather than provide

a means via the API for explicit destruction of subheaps, the runtime automatically
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Figure 1: Per-line state machine for the “used” bit. Note that these are logical states;
the pool is represented implicitly, whereas the line cache is represented explicitly.

destroys subheaps which are both unmarked and empty. Subheaps which are empty

but not unmarked might be activated in the future, whereas non-empty unmarked

subheaps cannot be destroyed until the objects allocated within them die (or are

evacuated).

The backing object for a subheap occupies 360 bytes in the current prototype. This

space cost breaks down into: 24 bytes each for bump allocators devoted to small and

medium-sized objects; 24 bytes for tracking large array allocations; 32 bytes for track-

ing allocated spans; 120 bytes for the subheap remembered set (with timestamps),

104 bytes for a generational remembered set, two bytes to hold “condemned” and

“short-lived” flags, and 30 bytes of padding for alignment. While engineering effort

could reclaim some of this space, there will always be some unavoidable bookkeeping

overhead associated with each subheap. This overhead imposes severe diminishing

returns on the benefit of having subheaps share space at granularities finer than a

single line.

2.4.1. Subtle Elements of Subheap Collection

A common optimization in traditional collectors is to lazily perform GC cleanup ac-

tions, such as mark bit sense flipping. This avoids the cost of resetting all marked
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objects by redefining object mark status from an absolute marked/unmarked status

bit to be defined relative to a global “sense” bit. Doing so permits “unmarking”

the entire heap in constant time, thereby reducing the collector’s workload. Unfor-

tunately, flipping the sense of the mark bit is only possible for full-heap collections;3

flipping the meaning of the mark bit for an individual subheap is not coherent.

To minimize the impact of this foregone optimization, the design for subheaps relies

instead on locality via segregated mark bits for both lines and objects. Long-deployed

hardware tricks, especially prefetching, provide attractive constant factors for linear

walks through memory. Besides having little impact on GC speed, segregated mark

bits also impose low space overhead. With a minimum object size of 16 bytes, one

bit per (potential) object requires only 0.78% space overhead. Using a full byte

per object, which avoids bit-manipulation overhead in a serial collector and ensures

atomicity without the cost of compare-and-swap atomics for concurrent marking,

imposes an additional space overhead of 5.47%.

Another subtlety with subheaps has to do with remembered sets. In particular,

whenever two or more subheaps are collected, their remembered sets must be trimmed

of any stale entries from condemned subheaps. A stale entry is a pointer either from

or to an object left unmarked after collection. This scenario most commonly occurs

for whole-heap collections.

If stale entries are not trimmed from remembered sets, unsoundness can arise from

the following sequence of events:

1. A reference to object Y is stored in slot X, so Y’s space records slot X in its

remembered set.

3In a generational collector, nursery evacuation provides the opportunity to clear mark bits.
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X:
Y:

(remembered set)

2. The object owning slot X dies.

X:
Y:

3. A GC occurs which includes the subheaps for X and Y. Because both sides

are condemned, Y’s remset entry for X is ignored. Y will be left unmarked,

assuming X was the last object referring to Y, because X is dead.

4. Because Y is unmarked, subsequent allocation in Y’s subheap puts an arbitrary

bit pattern in X’s referent (particularly the object header).

X:
Y: !!!!!

5. The next collection of Y’s subheap consults the remembered set and finds an

entry for slot X. Assuming that X’s memory has not been reused yet, it still

contains a valid-looking bit pattern for the ghost of Y. Attempts to trace through

this ghostly pointer are erroneous; a GC invariant (the integrity of header words)

has been violated.
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X:
Y: !!!!!

(remembered set)

Eagerly zeroing reclaimed memory would prevent the problem, but also drastically

increase the (latency) cost of reclaiming large subheaps with little live data. It is

cheaper to instead lazily detect and remove stale remembered set entries.

A similar situation can arise without simultaneous collection of multiple subheaps.

Suppose after step 2 above, only X’s subheap is collected. Having been reclaimed,

the source slot X can be overwritten with an arbitrary bit pattern, of arbitrary type,

by future allocations.

X: !!!!!
Y:

Yet the subheap containing Y can still find slot X through its remembered set. Thus,

when Y’s subheap is collected, it must treat the bit pattern it reads with caution.

Two possibilities are to either parse the heap to verify that the slot is typed to hold

a pointer, or fall back to conservative [SBM14] treatment of the potential root.

We instead have the collector maintain metadata to help identify stale remset entries.

Lines are timestamped to indicate when they were last initialized; remset entries copy

the stamp. When a remset entry’s stamp disagrees with the line’s stamp, the entry is

stale. By making stamps large enough to avoid wraparound, this mechanism suffices

to identify stale entries. Otherwise, cautious treatment would still be needed to deal

with spurious agreement due to wraparound. A stamp size of four bytes per line
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amounts to space overhead of roughly 1.5%.

These situations do not arise for generational designs because generational collectors

maintain stricter invariants: they disallow collection of the mature space indepen-

dently from the nursery, and they either recompute or clear the nursery’s remembered

set on full-heap collections.

2.4.2. Subheap Write Barriers

Like generational collectors, subheaps require a (compiler-inserted) write barrier to

notify the collector of changes made by the mutator. Specifically, the subheap write

barrier is responsible for identifying all subheap-crossing pointers at program run

time. One source of such pointers, shared with generational collection, is explicit

mutation by the mutator. But the subheap write barrier faces an additional source

of potential subheap-crossing pointers: initializing writes of heap object slots.

Consider the venerable Cons(x,y), which writes the pointers x and y into a freshly

allocated object. A generational write barrier is unconditionally redundant: the cons

cell is by definition the youngest object in the heap, and the generational barrier can

only trigger when storing young pointers in older objects. In contrast, the subheap

barrier is only redundant if the values being written currently reside in the subheap

containing the cons cell (which is to say, the active subheap). This precondition

will be true for some call sites and not others. So to fully eliminate such subheap

barriers, the compiler must generate multiple variants of some functions. Doing so

carries costs, both statically in compilation time, and dynamically at runtime due to

instruction cache pressure.

Conversely, there are situations in which it is easier to eliminate subheap barriers

than generational barriers. One example is array initialization—consisting of an allo-

24



cation for the array slots, followed by sequence of allocations and writes for the array

elements. The stores to array slots can often be done barrier-free when evacuation has

been ruled out. Subheaps merely have to prove that no subheap activations occur in

between the array allocation and the stores into the array. A compiler trying to elim-

inate a generational write barrier must prove that none of the allocations preceding

the barrier could have triggered a nursery collection, because generational collectors

usually evacuate the nursery.

A common trick in systems programming is to give separate consideration to the

“fast” and “slow” paths for a potentially-expensive operation. The fast path for the

subheap write barrier simply establishes that the requested write does not create a

subheap crossing pointer. The slow path updates the target subheap’s remembered

set. Static elimination of write barriers can reduce the number of “fast path” barriers

executed, but cannot alter the number of “slow path” barriers, which is a function

of the mutator’s use of the subheap API. Programs which make sparing use of the

subheap API will have the majority of their barrier costs spent in the fast path.

Programs which make very fine-grained use of subheaps will often see the bulk of

their barrier costs absorbed by the write barrier’s slow path.

Barrier Implementation The write barrier for subheaps is listed in Figure 2.

The fast path for the write barrier uses the heap_for helper function to compute the

subheaps associated with the source and target objects. This helper simply reads and

decodes the subheap from each object’s header. For writes between objects within

the same subheap, the subheap write barrier defers to whatever barrier the baseline

collector needs (if any). With the two calls to the helper function inlined, the subheap

barrier code compiles to an 8-instruction fast path on x86-64, presented as Figure 3.
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void write_barrier(void* val , void* obj , void** slot) {

*slot = val;

if (!val) return;

immix_space* hv = heap_for(val);

immix_space* ho = heap_for(obj);

if (hv != ho) { hv->remember_subheap(slot); }

else { baseline_write_barrier_if_any(val , obj , slot); }

}

void immix_space :: remember_subheap(void** slot) {

// This is the slow path.

incoming_ptr_set.insert(slot);

}

Figure 2: Subheap write barrier (C++)

movq %rdi , %rax

movq %rsi , (%rax) # do the write itself

movq %rsi , %rcx

shrq $32 , %rcx

je .after_wb # no barrier for null pointers

movl -4(%rsi), %edx

cmpl -4(%rax), %edx

je .after_wb # also skip intra -subheap writes

xorl %ecx , %ecx

testl %edx , %edx # are we writing to

sete %cl # the default subheap?

movq %rsi , %rdi

movq %rax , %rsi

movq %rax , %rdx

callq subheap_write_barrier_slowpath

.after_wb:

Figure 3: Subheap write barrier (x86-64 asm), sans baseline write barrier
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2.4.3. Subheap Barrier Optimization

The core function of the subheap write barrier is to preserve the invariant that each

subheap can quickly identify incoming pointers from the rest of the heap. Given a

write of object pointer P into slot S, a barrier is necessary if P and S might be located

in different subheaps.

Thus subheap barrier optimization can be cast in terms of alias analysis (aliasing

of objects’ subheaps rather than the objects themselves). Alias analysis has been

thoroughly explored by the static analysis research community.

The Foster compiler implements a coarser analysis focused on the current subheap;

this obviates the need to symbolically represent subheaps. The core of barrier op-

timization relies on an interprocedural forwards dataflow analysis. Freshly-allocated

objects are (by definition) located in the current subheap; the analysis maintains a

set of objects in the current subheap (Ψ). Values returned from function calls are

added to Ψ when the function only returns values in the current subheap. Stack slots

are inserted to and removed from Ψ to match the values written. Calls which might

activate a new subheap nullify the set of objects in the current subheap. A write of

P into S needs a barrier unless P and S both appear in Ψ.

There are several sources of imprecision in the above algorithm, but more sophisti-

cated analyses that would ameliorate some of the algorithm’s shortcomings are well

known. Most obvious is the restriction to the current subheap. Slightly more prob-

lematic are various forms of heap dependence, including closure environments and

mutable heap cells. For closure environments, the challenge is to verify that no sub-

heap activations occur between the creation and invocation of the closure. Mutability,

of course, introduces the challenge of aliasing.

27



The return value of functions can be a source of overapproximation. Consider the

example snippet of Figure 4. The function to compute a prefix of a byte sequence

is defined by cases. One of those cases (in which the supposed prefix happens to be

longer than the original sequence) can simply return the input unchanged; all other

cases allocate a fresh object to represent the newly computed sequence. Because

taking “too many” bytes is rare, most programs will only exercise the fresh-allocation

code paths, but since the input could reside in any subheap, the overall function result

is not guaranteed to be located in the current subheap.

Finally, the biggest conundrum for static optimization of subheap barriers is likely

the handling of function arguments. Functions are naturally polymorphic over what

subheap contains each of their arguments. Such polymorphism inhibits barrier elim-

ination. In the general case, code duplication is needed to eliminate this implicit

polymorphism. Unrestricted specialization risks exponential blowup in code size,

even when confined to the special case of current-subheap-or-not. Ultimately, a func-

tion can have very many call sites with unique signatures for its function arguments’

subheaps. Maximally specializing every call site invites large increases in code size,

with negative implications both for compilation time and instruction-cache efficiency

at run time. On the other hand, failing to specialize call sites introduces avoidable

overhead in the form of barriers which will never trigger.

This tradeoff is more naturally handled by just-in-time (JIT) compiler infrastructures,

which can specialize hot functions on demand. Ahead-of-time compilers could incor-

porate user-provided feedback, but relatively few programs are performance-critical

enough to warrant the hassle of feedback-directed optimization.
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bytesTake :: { Bytes => Int64 => Bytes };

bytesTake = { ba => len =>

case ba

of _ if len >=SInt64 bytesLength ba

-> ba

of _ if len ==Int64 0 -> BytesEmpty

...

end

};

Figure 4: bytesTake may return its input or allocate

Optimization Dilemma For (whole) programs which do not make any use of sub-

heap operations, barriers can be safely disabled en masse. This observation eliminates

superfluous barrier costs for programs which do not use subheaps. There is, however,

a consequential wrinkle: introduction of subheap operations off the mutator’s critical

path can result in added overhead on the critical path, due to barriers inserted by

conservative static analysis. This is an unfortunate dilemma between gratuitously

slowing down programs for the sake of consistency, or introducing a small but silent

potential performance regression from the introduction of subheaps.

2.5. Generational Variants

Generational collection is a widely adopted design point across serial, concurrent,

and parallel collectors. The primary motivation for subheaps is to provide control for

tackling program patterns which generational collectors struggle with. However, the

benefits of subheaps should not come at the cost of sacrificing generational collection.

Generations and subheaps are clearly related: both partition the heap to boost col-

lection efficiency, and both rely on infrastructure such as remembered sets. Yet there

are important differences between generations and subheaps. First, nurseries are usu-

ally evacuated at each collection. Evacuation both enables direct bump allocation and

permits bulk clearing of the remembered set. Copying objects between subheaps com-
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plicates static reasoning about which subheap an object lives in, thereby undermining

barrier optimization for compilers and static reasoning about collection performance

for humans. Movement of objects between frames within the same subheap is less

problematic; it merely imposes overhead to update the target remembered sets of any

subheap-crossing pointers in moved objects.

Second, generational collectors impose a strict collection order: every major collec-

tion must be preceded by a minor collection. This ordering allows for unidirectional

rather than bidirectional remembered sets. In contrast, subheaps use bidirectional

remembered sets and allow collection of arbitrary subheaps in arbitrary orders. (Sec-

tion 2.7.1 describes a scheme which eases this invariant, enforcing a partial collection

order to reduce the cost of remembered set maintenance.)

Luckily, evacuation is merely conventional, not a strict requirement for generational

behavior. Existing research on the Immix heap organization [BM08, SBYM13] shows

that an Immix variant based on the sticky mark bit design of Demers et al [DWH+90]

performs “very competitively” with a more traditional evacuating nursery. Shahriyar

et al [SBYM13, Sha15] also describe a scheme for deferred reference counting in an

Immix setting, with performance characteristics strongly reminiscent of a sticky mark

bit design. We describe how both designs interoperate with subheaps.

The idea with sticky mark bits is to implement “nursery” collections by simply not

resetting mark bits between collections. Since tracing ignores marked objects, this

effectively restricts collection to examining only newly-allocated objects. The only re-

maining wrinkle is that a second remembered set must be kept; the barrier must catch

writes of new (unmarked) objects to old (marked) objects. An additional optimiza-

tion when mark state is kept “out of line” is to reflect mark state in object headers,

reducing the working set needed during mutator operation. One bit from the header
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designates “old” objects, with the invariant that all old objects are marked.

The conditions for the subheap barrier and the sticky mark barrier complement each

other. The subheap barrier concerns itself with subheap-crossing pointers, and the

sticky mark barrier need then only catch (a subset of) non-subheap-crossing pointer

writes.

Shahriyar’s reference-counting design for Immix, called RCImmix, also uses header

bits to record object age and coalescing status. An old bit allows RCImmix to avoid

tracking mutations to freshly-allocated objects (along with registers and the stack).

For mutations to old objects, RCImmix uses the other bit to coalesce updates. Rather

than explicitly tracking every overwritten pointer, as a naive reference counting design

does, RCImmix captures snapshots of mutated old objects and sets the logged bit to

avoid repeated captures. Doing so avoids redundant work arising from repeatedly

mutated objects. At collection time, RCImmix: (i) applies increments to the root

set; (ii) processes enqueued increment and decrement operations; and (iii) enqueues

decrements for the root set. Note that step (ii) includes an increment for snapshotted

objects, along with decrements for the captured fields.

In RCImmix, increment operations are recursively applied to new objects. Thus, new

objects end up being traced, much like in the nursery of a generational collector.

Decrements in RCImmix are recursively propagated when an object’s reference count

reaches zero. Rather than Immix’s traditional on-the-side boolean mark byte for lines,

RCImmix uses the mark byte to store a count of live objects within the line, updated

by increments and decrements as new objects are found and old objects die. To deal

with cycles, ImmixRC uses backup tracing, which re-computes reference counts and

permits Immix-style opportunistic compaction.
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ImmixRC’s barrier has the same basic structure as with Sticky Immix; the most

obvious difference is the object snapshot taken in the slow path.

Given that ImmixRC is based on reference counting, do we actually need to augment

it with subheaps to perform well on workloads suited for reference counting, such as

long-lived mutable caches? Indeed we do. The key is that due to deferral, we cannot

immediately reclaim dead cache entries. Without subheaps, we are likely to trigger

collection from heap exhaustion in the middle of allocating a new cache entry’s object

graph. At that point, we will apply the deferred reference counting operations, which

will effectively trace through all newly allocated data since the last collection, as well

as trace through whatever data has died since the last collection. Compared to a

non-RC Immix collector, with or without sticky mark bits, ImmixRC does produce

consistent GC overhead independent of heap size. This is beneficial in tight heaps but

a net loss in more generously sized heaps. However, subheaps provide the possibility

of eliminating GC costs entirely, which ImmixRC cannot. For an example of this

phenomenon, see the evaluation of software caches in Section 4.4.

One ill effect that can be amplified by the combination of generational collection and

subheaps is floating garbage and its repercussions. Floating garbage refers to dead

objects that remain uncollected after a partial collection. Generational collection

reduces total collector work in part by deferring the collection of old objects, thus

giving them more time to die. However, when old dead objects contain subheap-

crossing pointers, their delayed reclamation can retain garbage in other subheaps,

raising costs in both space and time. Given that explicit subheap collections reset

mark bits, programmers do have a tool to reduce or avoid floating garbage, but it is,

admittedly, a blunt one.
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2.6. Further Considerations

The discussion so far has laid the groundwork for an understanding of the pros and

cons of subheaps in a somewhat abstract, simplified context. This section explores

two concerns of relevance for real-world implementations of subheaps: how to deal

with garbage cycles that span subheap boundaries, and how the subheap API should

interact with non-linear control flow.

2.6.1. Subheap-Cyclic Garbage

A key point in space-incremental collectors, which focus on collecting one region at

a time, is how to collect garbage cycles that cross regions. Some collectors (such as

MC [SM03], MC2 [SMB04], CBGC [Hir04], and most generational collectors) enforce

a linear or partial order on region collections. This guarantees that cycles will be

isolated within one full collection cycle. Garbage can persist between full collection

cycles; such persistent garbage is referred to as float. The Train algorithm enforces

restrictions on where objects can be evacuated, guaranteeing that garbage cycles will

eventually be isolated to a single train, possibly after many collection cycles. In

Klock’s regional collector, a concurrent process marks logical snapshots of the heap

and removes globally unreachable objects from remembered sets.

In other space-incremental designs, the choice of region granularity is determined

by the algorithm or runtime. With subheaps, control over subheap granularity ul-

timately falls to the programmer. This means that subheaps can be coarsened (by

the programmer) to avoid the problem entirely. Large remembered sets and cyclic

garbage in remembered sets are, in some sense, symptoms of a mismatch between

the structure of the application’s heap and a pre-chosen, application-ignorant heap

structure. Subheaps provide a means by which the runtime’s heap partitioning can
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better reflect the application’s needs.

Second, subheaps give the programmer control over the precise subset of the heap

collected at a given time. If the programmer knows that cyclic garbage has been

created that spans multiple subheaps, the programmer can condemn multiple specific

subheaps to eventually be collected simultaneously. In the (likely?) case that the

overall subheap data doesn’t have the same lifetime as the cyclic portion, the cyclic

portion cannot be quickly and efficiently reclaimed by scanning multiple subheaps

simultaneously.

Maintenance of a points-into set allows cycles to be identified without a whole-subheap

scan. Differentiating garbage cycles versus non-garbage cycles requires a full scan.

This issue—of handling cycles between regions—is one of the key fundamentally hard

problems in garbage collection. Arguably, the solution most in line with the spirit of

subheaps is precisely to let humans shoulder some of this burden, when it makes sense

to do so. Under the view of subheaps as a mechanism driven by human intuition,

appeal to deliberate choice of subheap granularity might be an acceptable (if not ideal)

design tradeoff. However, if one looks to a more automated future, in which subheaps

are more of a reification of an automated analysis, then either the subheap runtime

or the analysis must be prepared to prevent or handle the threat of subheap-cyclic

garbage.

2.6.2. Control Flow Interactions

In a language with only simple control flow constructs (such as loops and func-

tion calls) the subheap API can be used to construct higher level abstractions with

strong guarantees. For example, here is Foster code implementing an operation called

inTempSubheap:
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inTempSubheap = { thunk =>

newSubheap = subheapCreate !;

prevSubheap = subheapActivate newSubheap;

result = thunk !;

subheapActivate prevSubheap;

subheapReclaim newSubheap;

result

};

This code captures the allocations performed by the given function into a fresh sub-

heap, which it collects after the function returns. Cleaning up after a function call

in this manner can be very efficient when few objects survive (like regions or stack

allocation), while still safely allowing for survivors (unlike regions or stack allocation).

More importantly, this code provides a strong invariant: the temporary subheap is

completely encapsulated, so the caller of inTempSubheap will never see the active

subheap change.

However, many languages provide more advanced forms of control flow—such as ex-

ceptions, async/await, coroutines, effect handlers, and continuations—which compli-

cate the quest to provide strong abstractions atop the subheap API. For example, if

thunk throws an exception in inTempSubheap, the restoration of the previous sub-

heap may be skipped. This is an instance of a well-known tension: state (such as the

active subheap) is harder to reason about in the presence of complex control flow.

Most languages provide features, such as finally blocks in Java or unwind-protect

in Common Lisp, which can be used to restore robust state management. For some

control primitives, such as continuations and asymmetric coroutines, enforcement

of invariants must be done individually. For others, such as exceptions and effect
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handlers, the language can automatically enforce a scoped discipline on subheap ac-

tivation, thereby lowering the burden on the user of the subheap API.

2.6.3. Whither Withered Pointers

Many languages offer one or more forms of weak reference. The basic idea of a weak

reference is to refer to an object without preventing it from being collected. Weak

references4 can give programs improved control over size-adaptive caches, canoni-

calization tables, and finalization [JHM11]. How do subheaps interact with weak

references?

Semantics The intent of the condemned set abstraction is to provide programmers

with a clear idea of what subset of the heap will be inspected during a collection.

Some forms of weak reference carry “full heap” semantics that are in tension with

the local nature of subheaps. In particular, Java specifies that when a weak reference

is cleared, all other equal-strength references referring to it must also be atomically

cleared [UJR14]. The purpose of this restriction is to ensure that the mutator cannot

observe inconsistencies in reference state.

Clearing of Soft references in Java is at the behest of the runtime, meaning it would

be legal for an implementation of subheaps to only clear Soft references during full-

heap collections. However, Java also provides Weak references with similar atomicity

requirements and for which clearing is non-optional. Thus, to be in full compliance

with Java’s semantics for Weak references, an implementation of subheaps would need

to track reference strength in remembered sets, as well as keep a Reverse Reference

Table as used by reference-counting collectors [JHM11].

4As a general term, encompassing Java’s Weak, Soft, and Phantom references, plus constructs
such as ephemerons [Hay97] in other languages.
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Performance On the one hand, reference processing requires additional processing

passes, which can inflate the cost of collecting the condemned set. On the other hand,

we would expect most explicit collections to contain mostly or entirely dead objects;

in such situations, the cost of reference processing would be minimal.

2.6.4. An Accounting of Costs

Subheaps come with both direct and indirect costs. These costs are mostly mentioned

elsewhere in this dissertation, but are presented here in a unified list for clarity. This

following considerations are sorted roughly in ascending order of importance:

• The tracing loop must do a little extra work to check objects against the con-

demned set. This is a very small cost in practice; note that on modern proces-

sors, extra instructions do not always result in more cycles.

• Allocating objects becomes (very slightly) slower due to the need to add subheap

identifiers to object headers.

• Subheaps de facto require that the underlying compiler be safe for space com-

plexity [ADM98, SA00] so that dead bindings at the source level—especially

in loops—are translated to dead roots at runtime. The analysis required for

optimal placement of root management requires both forwards and backwards

dataflow information. This makes the problem more technically interesting but

also less amenable to off-the-shelf dataflow analysis infrastructure. Static anal-

ysis and function cloning for subheap barrier removal adds additional compiler

complexity.

• Remembered set processing must account for stale entries, necessitating a choice

between conservatism or line stamps (see Section 2.4).
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• The subheap write barrier is more costly than a generational barrier.

• Static elimination of write barriers de facto forbids intra-subheap evacuation.

• Careless use of subheaps can result in arbitrarily high performance overheads

due to repeatedly performing unexpected tracing work. (Evacuation could re-

duce this overhead in some situations).

• The combination of per-object and per-line segregated metadata imposes roughly

8.6% space overhead.

• Remembered set maintenance costs (which depend entirely on the user-chosen

subheap configuration) can outweigh the collection-time savings of subheaps.

2.7. Refinements of the Subheap API

The basic subheap API given in Section 2.3 suffices for most uses of subheaps. It

can, however, be extended to reduce reliance on ad-hoc heuristics or reify existing

functionality in order to improve performance. Such seemingly simple supplements

surface surprising subtleties.5

2.7.1. Subheaps for Temporary Data

Maintenance of remembered sets provides independent collection of subheaps. This

can be broken down into dual benefits. First, data outside of a subheap can be ignored

when collecting the subheap. This improves efficiency when data within the subheap

is dead and data outside of the subheap is live. Conversely, data within a subheap

can be ignored when collecting the remainder of the heap. This permits avoiding

wasted effort in repeated collection of (subheap-internal) data known to be live.

5sadly sometimes sans solutions
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Although their phrasing above is intentionally similar, the applications of these prin-

ciples in practice sees larger differences. The first benefit effectively reduces the

overhead of reclaiming known-dead space; instead of needing to trace the entire heap

to establish deadness, collection can instead examine the (much smaller) set of re-

membered pointers. The second benefit can be obtained by corralling long-lived data

in a separate subheap, avoiding repeated tracing when the main body of the heap is

collected.

The simple presentation of subheaps given so far conflates these two benefits. How-

ever, in some situations, only one of the two benefits is needed for a given subheap.

Consider a subheap created to hold short-lived temporary data. Recording incoming

pointers is needed to allow efficient reclamation of the data within the subheap once it

dies en masse. However, we may have no real need to collect other subheaps indepen-

dently; if that is the case, then any outgoing pointers recorded from the temporary

subheap are superfluous.

Relaxing remembered set maintenance can enhance performance. Given two sub-

heaps, A and B, we need not remember any incoming pointers into A from subheap

B as long as subheap B is always collected whenever subheap A is. Note the asymme-

try: B can still remember pointers from A, and thereby retain support for collecting

B independently of A. Exploiting this asymmetry can improve performance (by re-

ducing remembered set maintenance burdens) in situations such as the temporary

subheap example. In practice, the most important relationship is between the default

subheap and each individual non-default subheap. Extending the precedence relation

to arbitrary pairs of subheaps is possible [Hir04] but we leave such exploration for

subheaps to future work.

To capture this opportunity, we can introduce a new type of subheap, made available
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via an addition to the subheap API, to hold short-lived data. Short-lived subheaps

do not contribute to the default subheap’s remembered set, and in turn must be

collected whenever the default subheap is. Concretely, the subheap write barrier

(see Section 2.4.2) gains one small expansion in the fast path: writes into short-lived

subheaps of values from the default subheap may skip remembered set maintenance.

The addition of short-lived subheaps paves the way for the runtime to make a more

principled selection of “default” condemned set: the active subheap, plus any short-

lived subheaps.6 The remaining subheaps have been implicitly designated by the

programmer as holding long-lived data, and avoiding their repeated collection can

reduce total collector work.

2.7.2. subheapOf and Subheap Equality

When tracing, the subheap associated with each newly-encountered object is looked

up, in order to ascertain the object’s condemned status. Adding this operation to

the core API involves no further implementation burden, and can avoid the need to

explicitly pass around Subheap objects in some cases.

The details of how to best encapsulate the object-to-subheap mapping—and how to

handle edge cases—are not entirely obvious. The root of the issue is a mismatch

of abstraction layers: programming languages deal in values rather than heap ob-

jects. Untyped languages provide values such as nil or undefined, which do not

have any clearly associated subheap. In typed languages (such as Java) which dis-

tinguish between primitive types like int and pointer-represented types like Object,

the subheapOf operation can be given a type that restricts it to values represented

with pointers. But this still leaves the question of how to handle null pointers (or, in

6Programs which do not create any short-lived subheaps can use the full-heap heuristic.
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functional languages, values created from nullary constructors). Returning a default

value such as the empty subheap makes for a more forgiving interface. Enforcing

partiality (such as by throwing an exception or returning a Maybe value) is more

“honest” but makes the operation harder to use robustly.

From the perspective of the GC implementor, either of these choices is reasonable,

and are equally easy to accomodate. The issue is of more concern for compiler writers

and others who care about language semantics and metatheory. In particular, is it

legal for program transformations (which might change the representation of values)

to change which subheap is returned by any given call to subheapOf? Consider the

Maybe type constructor, values of which are either None or Some value. Although

a naive language implementation would heap allocate values of type Maybe, it has

long been recognized that using a null pointer to encode None allows the compiler to

elide allocations. However, the subheapOf operation provides a means to (potentially)

detect this optimization. A very similar issue arises for the question of giving subheaps

observable identities.

The subheap API is defined in terms of values of type Subheap. One question implic-

itly raised by the subheap API is whether it is legal to perform equality comparisons

(such as with the == operator) between subheaps. Forbidding such equality checks

places draconion restrictions on the use of subheaps as first-class values. For example,

it would not be possible to construct a Set of subheaps.

The issue of implementation details (such as object representation) leaking to the lan-

guage semantics is amplified by subheap equality, which provides a direct means to

observe differences between given Subheap values. The combination of subheapOf

and subheap equality also unlocks new opportunities for mischief. For example,

in many languages in the ML family, function values cannot be hashed or com-
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pared for equality. So you cannot write f == g, but with subheaps you could

write subheapOf(f) == subheapOf(g), thereby distinguishing previously indistin-

guishable values.

2.7.3. A Failed Experiment

An earlier iteration of the subheap prototype avoided storing subheap identifiers in

object headers and instead associated it with per-frame metadata. In this design,

each frame held objects from only one subheap.

To avoid imposing unavoidable internal fragmentation for small subheaps, this design

was in turn extended with a scheme for a new kind of subheap to allow intermixing

subheap ownership at line granularity. With a line size of 256 bytes, reserving five

lines (1280 bytes) per frame allowed recording a subheap pointer for each line (plus

some extra metadata), for an additional space cost of 3.9%.

The most obvious tradeoff for the increased space efficiency was higher overhead for

collection and allocation, both of which deal with the additional metadata for line-

granularity subheaps. Another shortcoming was that this design for subheaps relied

on the programmer to decide a priori whether a given subheap should optimize for

fast allocation or low space overhead. Implicitly, this assumed that programmers can

identify (at least in hindsight) which subheaps will have low expected space utilization.

A less obvious downside was the potential for induced fragmentation between, rather

than within, subheaps. Because line-granularity subheaps need disjoint space from

“full” subheaps, a program could encounter heap exhaustion even when there is ample

free space available (for line-granularity allocations).

42



CHAPTER 3 : Using Subheaps

The previous chapter covered the big-picture principles behind subheaps, and also

explored lower-level details of the subheap API design and implementation. These

are why and what, respectively. This chapter addresses the use of subheaps: where,

when, and how, including concerns such as modularity and debugging.

3.1. “Hello, World”

We begin by illustrating the line-by-line application of subheaps to a venerable garbage

collection microbenchmark. The binarytrees program [Gou18], a descendent of

Hans Boehm’s GCBench [Boe], creates and discards a series of binary trees while

also holding a reference to a long-lived tree. It is intended to coarsely approximate a

generic generational-collector-friendly workload.

Figure 5 shows Foster code implementing the core of the binarytrees microbenchmark.

There are four primary allocation sites in this code. Line 7 allocates a “stretch” tree

whose purpose is to avoid any overhead from growing the heap during the remainder

of the microbenchmark. Line 10 allocates a long-lived tree, which increases the tracing

workload for non-generational collectors. Lines 15 and 16 allocate short-lived trees,

which (once fully built) are immediately consumed by the check function.

Even with this simple computation, there are multiple ways to apply subheaps. The

first question to answer is: how many subheaps should be created? The short-lived

and long-lived trees should be kept separate in order to allow minimal-cost reclama-

tion of the short-lived trees’ memory. This can be done with two explicitly created

subheaps, though only one is needed, as the long-lived tree can be kept in the default

subheap. Because the data at hand is self-contained, the difference between these

43



1type case Tree

2of $TNil

3of $Node Int32 Tree Tree;

4
5benchmark = { n : Int32 =>

6maxN = if n >=SInt32 6 then n else 6 end;

7stretchN = maxN +Int32 1;

8c = check (make 0 stretchN );

9io "stretch tree" stretchN c;

10long = make 0 maxN;

11minN = 4;

12REC depth = { mn => mx =>

13REC sumT = { d => i => t =>

14if i == Int32 0 then t else

15a = check (make i d);

16b = check (make (0 -Int32 i) d);

17ans = a +Int32 b +Int32 t;

18sumT d (i -Int32 1) ans

19end

20};

21
22if mn <=SInt32 mx then

23n = bit ((mx -Int32 mn) +Int32 minN);

24i = sumT mn n 0;

25m = 2 *Int32 n;

26iot m "\t trees" mn i;

27depth (mn +Int32 2) mx

28end

29};

30depth minN maxN;

31io "long lived tree" maxN (check long);

32};

33
34make = { i => d =>

35if d == Int32 0

36then Node i TNil TNil

37else i2 = i *Int32 2;

38d2 = d -Int32 1;

39Node i (make (i2 -Int32 1) d2) (make i2 d2)

40end

41};

42
43// check :: { Tree => Int32 } computes a checksum of a Tree.

44// bit :: { Int32 => Int32 } returns an int with the n’th bit set.

45// io and iot are helpers to print tree depth and checksums.

Figure 5: Foster code for binarytrees

44



two choices is purely stylistic. In a more realistic application, the opportunity for

isolation in a separate subheap must be weighed against the potential consequences

of creating subheap-crossing pointers.

The second and more consequential decision is: where should explicit collections take

place? One choice would be to collect the short-lived trees once per iteration of the

sumT loop. Colocating allocation and collection points makes it easy for a human

reader to follow along. There are four potential points in the code where a collection

could be added to implement this policy: after lines 13, 14, 16, or 18. Adding code

after line 18 is a non-starter because it would mean that sumT no longer forms a tail-

recursive loop. Adding a collection after line 14 would correspond to collecting before

running each loop iteration. This can ensure that the target subheap is empty before

allocating into it, but it leaves data from the last iteration of the loop un-collected.

Collections on lines 13 or 16 will clean up after each iteration. Putting the collection

after line 16 is arguably clearer.

Another choice would be to separately collect each subtree allocated in sumT. Doing

so may lead to improved mutator cache behavior from keeping a smaller working set,

but those benefits are unlikely to outweigh the doubling of collection costs relative to

the once-per-loop approach.

Alternatively, multiple small trees may be allowed to accumulate between collections.

This policy could be implemented by conditional collection inside the sumT loop, or

by moving the collection point to occur in the (outer) depth loop rather than the

(inner) sumT loop.

Collecting less frequently carries the opposite tradeoff: larger working sets but lower

collection costs. Allowing subheaps to grow before collecting their contents leads to

45



fewer collections and thus lower total per-collection fixed overhead. In the extreme

case, explicit collection is never triggered and the benefits of subheaps will not be

realized. The primary risk of less-frequent collection is of inadvertently triggering an

implicit collection and incurring the tracing costs which subheaps are meant to avoid.

This section’s purpose is to highlight the existence of the choices faced by a pro-

grammer looking to apply subheaps to a concrete codebase. In practice, such choices

will be resolved by a combination of intuition and experimental iteration. We defer

examination of the quantitative consequences of these choices to Section 4.3.1.

3.2. Modes of Usage

How will programmers know where to modify their programs to use subheaps? The

answer has to do with the lifetimes and connectivity of program objects.

Viewing the heap as a directed object graph, an efficient subheap configuration will

find one or more partitions which both contain objects of similar lifetimes and form

small cuts with the remainder of the graph. The partitionings need not form strictly

minimal cuts in the graph theoretic sense, but too many subheap-crossing edges will

result in high costs for remembered set maintenance. Note that by definition, any

reachable partition will have one or more incoming references, but it need not have

any outgoing references. Partitions with no outgoing references are prime candidates

for subheap management.

Of course, this is a coarse mental model. The heap evolves over time, as object

references are created and deleted. Even if a small cut exists at the time of collection,

the cost of building the remembered set will have already been paid for by the mutator.

Having objects of similar lifetimes within a subheap makes it easier to find collection

points at which most or all objects within the subheap will be dead. Whenever
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two connected objects have different lifetimes, a choice arises in whether to co-locate

them within a subheap. Putting the objects in different subheaps incurs the cost

of (dynamically) tracking the subheap-crossing references connecting the objects, a

burden paid by the mutator. When co-located, however, the burden falls on the

collector: prompt reclamation of the space for the shorter-lived object comes at the

cost of tracing the longer-lived one. Alternatively, one can “spend” space to delay

reclamation. This is a fundamental space-time tradeoff; subheaps provide tools for

the programmer to make a choice as they see fit, but do not eliminate its existence.

The preceding paragraphs give a somewhat low-level view of the connection between

programs and subheaps. Many programmers might find it easier to identify higher-

level patterns of object usage within their programs. One common and broad category

amenable to improvement with subheaps is phased behavior [WM89]. Phases are a

common phenomenon in real-world programs, and the boundaries between phases are

often where large volumes of objects from the previous phase die [XSaJ07]. Phases

often, but not always, correspond to distinct program constructs like loops or function

calls, which is why previous work has focused on such constructs [Har06, Cor06].

Examples of phases in real-world programs include server response loops [XSaJ08,

XSaJJ07], compiler passes [BVEB07], and big data processing [NFX+16, BOF17].

The extension for temporary subheaps described in Section 2.7.1 allows additional

knowledge of object lifetimes to be exploited. For example, a program with long-

lived data can segregate that data in a (non-temporary) subheap, thus effectively

instructing the GC to avoid tracing the long-lived data unless absolutely necessary.

Another stategy is to capture domain-driven lifetimes with subheaps. Examples in-

clude tabs in a web browser, entries in a cache, and memoized incremental subcompu-

tations [HA08]. This category of allocation is particularly challenging for generational
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collectors because object lifetimes are determined by external events and thus rarely

satisfy the weak generational hypothesis. Section 3.5 explores this category, and its

connection to Hayes’ notion of key objects, in more detail.

3.3. Iterative Deployment & Debugging

When applying subheaps to a particular program, having a mental model is useful, but

not always sufficient. The details of object lifetimes and connectivity can be surprising

even when investigating a relatively small and familiar piece of code. Faced with a

larger unfamiliar code base, reading the code itself is an inefficient way to ascertain

the broad strokes of the program’s heap usage. Instead, it is much easier to have the

runtime convey information to help guide the deployment of subheaps.

Such feedback can come in several different forms to answer several corresponding

questions. One simple question is: will a given activation of subheaps capture the

majority of a program’s allocations? Object profiling can help identify certain parts

of a codebase as being more allocation-heavy, but higher order code can make it

harder to leverage profiled information with subheaps. A simpler and more direct

mechanism is to have the runtime report what proportion of allocations are captured

by non-default subheaps. This allows the programmer to verify that they are indeed

capturing as much data as they expect to.

Another key question is: will a given deployment of subheaps actually lead to an im-

provement in GC costs? Programmers would appreciate direct feedback on collection

efficiency to confirm or refute their hypotheses about appropriate points to trigger

subheap collection. Even though the end goal is to reduce wall-clock execution times,

direct measurement of this metric has several downsides. Even for deterministic pro-

grams, wall-clock time results are often not deterministic. Hardware performance
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counters can count elapsed cycles with low variance, but even these metrics are usu-

ally not completely deterministic. The cost of such variance is longer iteration loops

due to the need to run programs multiple times to establish statistical significance.

Machine-independent statistics, such as mark/cons ratios and percentage of alloca-

tions captured in (non-default) subheaps, can provide fully deterministic reflections of

the impact a given subheap configuration has, and are thus invaluable in the process

of iteratively applying subheaps.

Note that a mark/cons ratio alone does not account for every GC-related cost. In

particular, remembered set maintenance and stack scanning costs are not reflected in

the mark/cons ratio. The subheap runtime can easily capture and report additional

(deterministic) statistics such as remembered set entries created and traced to help

programmers understand the implications of their chosen subheap usage. Overall,

both deterministic and non-deterministic performance metrics are worth collecting.

Finally, extensions of the subheap API can improve the programming cycle. For

example, when a programmer initiates a collection, they often have an expectation of

whether that collection will need to do any tracing work. When such assumptions are

violated, the performance impact of subheaps can quickly shift from a boon to a bane.

Even with a variety of robust metrics as described above, currently such expectations

must be manually verified in testing. This is both labor-intensive and potentially

fragile as codebases and allocation patterns evolve. A more robust solution would be

to allow the API to capture (and check) such beliefs. A separate improvement would

be to assign human-readable labels to particular subheaps; this would have obvious

benefits for the clarity of debugging feedback.
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3.4. Modularity

Subheaps occupy a middle ground between the fully automated nature of traditional

garbage collection and the fully manual nature of malloc()/free()-style memory

management. Although manual memory management provides a great deal of power

and flexibility to the programmer, it also brings inconvenience and a tendency towards

immodularity. This immodularity comes from the need for disparate pieces of code

to agree on, and cooperatively implement, a division of responsibility for reclaiming

dead objects. A natural question then is: do subheaps bring with them the familiar

drawbacks of manually freeing objects?

Some of the most problematic patterns found with manual memory management are

mitigated with subheaps. For example, the dynamically scoped nature of subheap

activation, combined with the implicit presence of garbage collection, enables callers

to capture and manage the memory allocated by callees. With manual memory

management, deallocation for the callee’s allocations must be baked into either the

caller or callee. With subheaps, the choice of where to direct the callee’s allocations,

and thus implicitly the assignment of responsibility for collecting the chosen subheap,

can be made on a per-call basis.

Another key property of subheaps is that they can be deployed on an as-needed basis.

While subheaps carry a variety of costs (in runtime overhead, programmer effort, code

modification/distortion, etc), these costs need only be paid when the benefits from a

particular use of subheaps outweighs the drawbacks.

However, subheaps are admittedly not inconvenience-free. A module which allocates

objects of disparate lifetimes may need to activate several different subheaps dur-

ing its execution in order to facilitate efficient reclamation of each subheap without
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interference from unrelated objects. This can certainly be inconvenient. In some

situations, a callee must change its signature to be explicitly parameterized by the

subheaps to activate; this blurs the line between inconvenience and immodularity.

Particular uses of subheaps may also be forced to change data representations to

“thread through” subheap handles to the appropriate place in their code. One con-

crete example of this phenomenon is in a cache, which maps keys to values. A natural

data structure to represent this mapping is a hash table in which each bucket holds

either a reference to a value or a null pointer. Each bucket’s value should be held in

a different subheap to allow independent collection. Without subheaps, pseudocode

(in Foster syntax) to update a an entry might look like this:

updateCacheEntry = { table => key => valueGenerator =>

entry = HashTable.lookupEntry table key;

value = valueGenerator ();

HashTable.setEntry table key value;

};

In the subheap-enabled version of this code, we must put each generated value into

the subheap for the associated bucket:

updateCacheEntry = { table => key => valueGenerator =>

entry = HashTable.lookupEntry table key;

associatedSubheap = subheapOf entry; //

oldSubheap = Subheap.activate associatedSubheap; //

value = valueGenerator ();

HashTable.setEntry table key value; //

_ = Subheap.activate oldSubheap;

};
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Of course, segregating the cache entries into separate subheaps is a means to an end,

namely, the ability to efficiently collect the old cache entry when it dies. This requires

explicitly clearing the cache entry reference so that the old value is recognized as being

dead. Collection must be done before the new value is generated, otherwise the new

value will be traced and collection will be inefficient:

updateCacheEntry = { table => key => valueGenerator =>

entry = HashTable.lookupEntry table key;

associatedSubheap = subheapOf entry;

oldSubheap = Subheap.activate associatedSubheap;

HashTable.setEntry table key NullEntry; //

_ = Subheap.collect associatedSubheap; //

value = valueGenerator ();

HashTable.setEntry table key value;

_ = Subheap.activate oldSubheap;

};

However, this code is still not correct. The problem was mentioned in 2.7.2: null

entries are represented with a non-allocated value in most mature language imple-

mentations. Thus the call to subheapOf will work for established keys but fail when

first installing a key’s value. (“Fixing” this by heap-allocating null pointer values

would presumably carry catastrophic performance overhead.) Instead, the cache im-

plementation must be augmented to record each entry’s subheap in a separate table:

updateCacheEntry = { table => subheaps =>

key => valueGenerator =>

entry = HashTable.lookupEntry table key;

associated = HashTable.lookupEntry subheaps key; //

oldSubheap = Subheap.activate associated;
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HashTable.setEntry table key NullEntry;

_ = Subheap.collect associated;

value = valueGenerator ();

HashTable.setEntry table key value;

_ = Subheap.activate oldSubheap;

};

Alternatively, a single (immutable) table could map keys to pairs of subheap handles

and mutable references to a cache entry. In either case, the need to route allocations

to a particular subheap necessitated changes in the data representation.

3.4.1. Immodular Urges and Barrier Optimization

Some code patterns—see Figure 4 in Section 2.4.3—inherently lead to imprecision in

the static analyses that drive barrier optimization. These sources of imprecision could

be avoided by restructuring code to not violate the invariants that the static analysis

tracks. While often possible in theory, such alterations would have significant costs

in human effort and code clarity. As with most questions of compiler-driven opti-

mization, there is some tension between performance and modularity. This tension

derives from the need to optimize the subheap write barrier.

In contrast, there is little risk of programmers wanting to rearrange code for the sake

of optimizing generational write barriers. The difference can be traced to three root

causes. First, generational barriers are less pervasive, since they are not needed for

initializing writes. Second, generational barriers are more difficult to remove, since

doing so requires reasoning about when and where minor collections can be guaranteed

to not occur. Finally, generational write barriers are significantly cheaper to execute

than subheap write barriers; thus the reward for removing them is much smaller. As
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a consequence of these factors, most work on optimizing generational write barriers

has focused on making barriers cheaper to execute, rather than static optimizations

to remove barriers.

3.5. “Reference Counting” with Key Objects

Prior work on memory management has focused on software caches due to their

wide deployment in performance-sensitive environments, such as web servers and the

cloud [TAV14, NGB16, PVV+17] . Caches are a prime example of how lack of control

over memory management performance drives continued use of unsafe programming

languages: Redis [SN18] and Memcached [Mem18] are both written in C.

Figure 6 illustrates an idealized version of such a software cache. Our cache initially

contains four entries. The first entry references the second entry, but otherwise the

entries are isolated. In Figure 6b, two entries are removed from the cache. The

storage for one of the entries is unreachable by the program (dead), and the program-

mer knows it, but a simple tracing garbage collector cannot prove this fact without

traversing the entirety of the heap—including the other (live) cache entries. When

the cache occupies a large fraction of the heap, this spells disaster, because the small

amount of free space will cause collection to be frequently re-triggered. As cache en-

(a) Initial cache state
(b) Cache entries
deleted

S

(c) With subheaps

Figure 6: Simplified cache heap structure
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tries are allocated and removed, the program will spend most of its time re-tracing the

unchanged cache entries, over and over. The work is redundant, but the programmer

cannot convey that knowledge to the garbage collector.

This example is a simplification of the memory management involved for programs

like redis [SN18] and Memcached [Mem18]. Terei, Aiken and Vitek [TAV14] identify

Memcached as representing a common, important class of real-world programs that

pose significant difficulties for tracing collectors. Memcached maintains a set of key-

value cache entries, with a client interface for additions, deletions, and key lookups.

Such programs feature three elements that are difficult to simultaneously reconcile:

large heaps, stringent latency demands, and client-driven object lifetimes that do not

obey the generational hypothesis. Memcached is well suited to reference counting (or,

of course, manual memory management). With reference counting, full-heap scans

are not necessary, and each cache entry can be immediately reclaimed as soon as it

becomes dead.

As in Figure 6c, when each cache entry is allocated in a separate subheap, all ref-

erences pointing into the subheap will be tracked by the subheap’s remembered set.

Second, before a deletion overwrites or nulls out an entry’s reference, we would first

look up the entry’s associated subheap. After the entry’s reference has been annulled,

the cache’s deletion routine triggers a subheap reclamation. The subheap reclamation

will inspect the remembered set. With a remembered set that retains slots (rather

than pointer values), the first step of collection is to check that the slot contents still

point into the subheap being collected. Since the slot contents were just annulled,

the remembered set will be empty. Given that there are no references to the cache

entry on the stack, the net effect is that the cache entry’s subheap can be reclaimed

without needing to trace the entirety of the heap.
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This example is a special case of the idea of key object opportunism [Hay93]. Hayes

theorized that the lifetimes of groups of objects could be inferred from the lifetime

of a single key object within the group, rather than being tied to program phase

behavior. To find key objects, he considered a variety of heuristics—such as random

selection, stack reachability, and programmer hints—but his primary heuristic was to

focus on those objects appearing in remembered sets.

If collection of a subheap is triggered once all subheap-external copies of the key

object references have been deleted, then the subheap’s contents can be reclaimed

in bulk, and we’ll have behavior somewhat akin to reference counting. Rather than

counting copies of a pointer made as it is copied around the heap, as traditional

reference counting does, we “count” incoming pointers at subheap-collection time,

via the subheap’s remembered set. This scheme resembles Bobrow’s technique for

managing cyclic structures [Bob80].

Immutability The cache example makes inherent use of mutability to establish the

non-liveness of the cache entry in the remembered set. But not all languages support

explicit mutability. Can this trick with subheaps work in pure languages? Let us

re-enact the scenario with an immutable data structure.

 

R

ES

( root )

T 

( objects )
( subheaps )

In our setup on the right, we have a binding for

node T , which in turn has a right child R pointing

to the cache entry in a separate subheap.

Now, consider what happens when we “remove” the

cache entry from an immutable spine. Instead of overwriting any pointers, we allocate

a new node T ′ which does not point to R.

Calling subheapReclaim E will be stymied by the remembered set entry for R, whose
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death remains undiscovered. Perhaps surprisingly, calling subheapReclaim S first

may not help! First, even though the R node is dead, the line it is on may still be

used, preventing the remembered set entry from being trimmed. Second, reclaiming

space does not alter its contents; to do so would shatter our performance goals. We

cannot overwrite dead space without sacrificing the notion that the cost of collection

can be independent of the amount of space reclaimed. Thus, even though R is known

to be dead, its ghost can remain until overwritten by subsequent allocations in S.

If we trigger collection after condemning both

S and E, the remembered set entry will be ig-

nored, and both R and the cache entry will be

eligible for reclamation. The downside is that

if we try to reclaim multiple cache entries back-

to-back, we will have to trace through the mostly-live contents of S multiple times.

A better solution is to condemn without immediately and explicitly triggering a col-

lection. Having done so, there are two routes to initiate collections. The first option is

to proactively trigger collections at a later point in time, either on the basis of elapsed

work or elapsed time. The second option is to passively wait for a “regular” collec-

tion (of the condemned set) to be triggered due to heap exhaustion. Collecting on an

as-needed basis minimizes duplicated collector work from re-scanning live condemned

data, whereas proactive collections can schedule GC effort [DEE+16] to minimize in-

terference with latency-sensitive periods of application work. This demonstrates the

benefits from fine-grained control over where and when the GC expends effort.

Compare and Contrast A few differences from traditional reference counting are

worth pointing out. First, the work to inspect remembered sets is less incremental
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than manipulation of reference counts. Also, our “count” ignores intra-subheap point-

ers. One negative consequence is that this scheme, unlike precise reference counting,

cannot be used as dynamic evidence of unique ownership. But we retain the on-

demand reclamation of reference counting, and gain the ability to efficiently reclaim

subheap-internal cycles—a perennial issue for traditional reference counting.

Bacon, Cheng, and Rajan [BCR04] explored the duality between tracing and reference

counting. They observed that generational collectors, due to their remembered sets,

are a hybrid of reference counting and tracing. With subheaps, that hybridization is

put in the programmer’s hands, to potentially significant benefit.
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CHAPTER 4 : Evaluation

Subheaps provide a mechanism for leveraging explicit programmer cooperation to

guide garbage collection effort. The goal of this cooperation is to improve the perfor-

mance of tracing garbage collection on otherwise-problematic programs. This suggests

several facets of evaluation for subheaps:

• Performance can be measured in several different ways, primarily throughput

and latency. Many factors outside our scope—such as processor cache configu-

ration and compiler optimizations—influence end-to-end program performance.

Space usage must also be accounted for due to pervasive space-time tradeoffs.

The core premise of subheaps is that careful usage of subheaps can improve

performance (in some programs) by reducing GC work.

• Usability aids wide adoption; a system that can only be effectively used by

experts will only achieve a small fraction of its potential influence. Usability has

many incarnations: How often does effective usage of subheaps break modular-

ity? Do subheaps interfere with ongoing maintenance of a codebase? How much

background knowledge of GC is required to use subheaps? Does the difficulty

of applying subheaps scale linearly, or perhaps sub-linearly or super-linearly,

with the complexity of the underlying application? Questions of usability are

of great relevance to the success or failure of subheaps “in practice,” but are

mostly outside the scope of this dissertation.

• Applicability: what programs have sufficiently high overheads to make usage

of subheaps worthwhile? Domain-specific GC techniques are less widely useful

than domain-agnostic approaches. Likewise, subbheaps will find wider applica-
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bility if their usage can be encapsulated in libraries or other sub-components of

whole applications.

These categories are not sharply defined. For example, applicability is predicated on

(lack of) performance, which in practice depends on the “baseline” collector chosen.

Other concerns cut across multiple aspects. For example, scaling up application com-

plexity, as reflected in the choice between microbenchmarks and macrobenchmarks,

has elements of both usability and applicability concerns.

Because subheaps are not a fully automated mechanism, there is no singular charac-

terization of their performance. The same program can be modified to use subheaps

in many different ways, with varying degrees of payoff vs. programmer burden. To

shed light on what subheaps can achieve in practice will ultimately require a hu-

man subject research protocol. The evaluation in this section illustrates the potential

performance gains from careful use of subheaps. Careless use of subheaps, on the

other hand, can impose nearly arbitrary performance degradation; it is entirely the

programmer’s responsibility to avoid unprofitable modes of use.

This evaluation focuses on microbenchmarks and small applications, for two reasons.

First, the development of subheaps for Foster impedes the direct reuse of existing

benchmark suites. Second, the manual effort needed to use subheaps suggests that

subheaps will be most successful for non-standard applications—such as big data an-

alytics and caches operating in tight heaps. Traditional benchmark suites do not

encounter the requisite crushing GC overheads. An evaluation of subheaps in a more

traditional setting would of course help shed more light on the mechanism’s strengths

and weaknesses, but even this dissertation’s more limited experiments reveals inter-

esting phenomena.
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4.1. Experimental Platform

Except where otherwise noted, experiments were run on a Core i5 6600K CPU running

at 3.5 GHz1 with 32 GB of DDR4-2400 RAM. Heap sizes for Java programs were

specified with both -Xmx and -Xms. To keep cross-language benchmarks as fair as

possible, pointer compression was disabled. Software versions: Ubuntu 16.10 with

kernel 4.8; Go 1.10; OpenJDK 10 (with ZGC; HEAD commit 55e292c8ab9b); Foster

and C++ code compiled with LLVM 6.0 and -O2 -march=native flags. In all cases,

we measure wall clock elapsed time using the perf utility.

4.2. Conway’s Game of Life

Gualandi and Ierusalimschy [GI18] identified a benchmark, based on Conway’s Game

of Life, as being GC-heavy. Its simplicity makes for a good introductory setting to

analyze and dissect the application of subheaps in full detail. The main body of the

benchmark driver is presented in Figure 7.

The benchmark allocates two scratchpads and initializes one, then loops, printing the

current state of the board and updating the next based on the rules of the game.

Building up a printable string is done via concatenation (rather than mutation), and

thus requires substantial allocations to hold intermediate strings. Once the final string

has been printed, the previously allocated strings immediately become garbage.

The size of the game board is configurable, and determines the rate of garbage produc-

tion. However, somewhat counter-intuitively, increasing the size of the game board

decreases the proportion of time spent collecting in minimally-sized heaps. This is

because the amount of live data processed at each collection does not change, so the

1SpeedStep disabled in BIOS, and Turbo Boost disabled via the Linux kernel.
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main = {

luasteps = 2000;

steps = luasteps -Int32 1;

n = 40;

m = 80;

curr_cells = newcanvas n m;

next_cells = newcanvas n m;

glider = prim mach -array -literal

(prim mach -array -literal 0 0 1)

(prim mach -array -literal 1 0 1)

(prim mach -array -literal 0 1 1);

enumRange32 1 9 { i =>

enumRange32 1 17 { j =>

i0 = (5 *Int32 i) +Int32 1 +Int32 (j *Int32 j);

j0 = (5 *Int32 j) +Int32 1;

lifespawn n m curr_cells glider i0 j0;

};

};

lifedraw n m curr_cells;

REC loop = { gen => curr => next =>

if gen <=SInt32 steps

then

lifedraw n m curr;

print_text_bare "\n";

lifestep n m curr next;

loop (gen +Int32 1) next curr;

else

()

end

};

loop 0 curr_cells next_cells;

lifedraw n m curr_cells;

};

Figure 7: Conway’s Game of Life microbenchmark in Foster
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ratio of GC work to mutator work decreases as mutator work increases. Later graphs

will explore this aspect of the microbenchmark’s behavior.

For the configuration listed in Figure 7, with Foster’s baseline Immix collector, the

program triggers one collection per game step and spends 25 ms (5.1% of total exe-

cution time) in garbage collection.

Figure 8 shows how collector workload varies with changes in heap size. The result is

a noisy curve; Figure 9 decomposes those results into the combination of the number

of GCs triggered (a smoothly decreasing curve) and the per-cycle observed live size

(sampled from a periodic distribution). As Figures 8a and 9b show, small increases

in heap size can make collection take more time rather than less. This is due to

the way heap sizes interact with the periodic nature of allocation in this simple

microbenchmark, causing collection to happen (on average) when more data is live.

Figure 11 lists the driver of the Conway benchmark after being modified to use sub-

heaps. Figure 10 shows that using subheaps to consistently trigger collections of

completely dead data, once per loop iteration, eliminates all tracing work regardless

of heap size. Because no marking work is ever done, the mark/cons ratio is zero.

Doing no tracing work does not mean that GC is entirely free. For example, stacks

must still be (repeatedly) scanned, and line marks inspected. However, both latency

and GC work costs on this benchmark are reduced by an order of magnitude with the

use of subheaps. Mean GC pause times decrease from 25.6 microseconds to 2.1 mi-

croseconds, and max pause times decrease from 296 microseconds to 17 microseconds.

The net cost of memory reclamation is 5.4 ms, including the overhead of recording

timing statistics.
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Conway (original): heap size vs GC time

(a) Observed GC time as heap size varies: a spiky curve.
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(b) Mark/Cons Ratio (Obj/Obj) almost perfectly mirrors observed GC time.

Figure 8: Conway (Foster) baseline results show close correspondence of (machine-
dependent) wall-clock time and (machine-independent) mark/cons ratio.
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Figure 9: Conway (Foster) baseline results illuminating why Figure 8 is a spiky curve.
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Figure 10: Subheaps eliminate tracing work from the Conway benchmark and produce
a heap-size-insensitive performance profile.

More on Barriers The measurements listed were taken with the Foster compiler’s

subheap barrier optimizations enabled. Without static optimization of GC write

barriers, the benchmark would see an increase of roughly one fifth in the number of

barriers dynamically executed—from 26 million to 32 million. Given the small size of

the benchmark, we can fully characterize the barriers remaining after optimization.

There are twelve barrier sites in the generated executable:

• Six sites arise from text concatenation when building the output string to dis-

play, in the implementation of lifedraw. These barriers are not eliminated

because the output string is built up in a mutable style, with a temporary

string stored in a ref cell. The barrier analysis does not track mutable state and

thus conservatively assumes that the barrier might be needed.2

2Mutable state is not the only challenge to removing these barriers. The optimizer would also have
to switch from an in-current-subheap analysis to a subheap-aliasing analysis, because the long-lived
scratchpads are kept outside the current subheap, which is used to collect temporary allocations.
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1main = {

2luasteps = 2000;

3steps = luasteps -Int32 1;

4
5n = 40;

6m = 80;

7curr_cells = newcanvas n m;

8next_cells = newcanvas n m;

9
10glider = prim mach -array -literal

11(prim mach -array -literal 0 0 1)

12(prim mach -array -literal 1 0 1)

13(prim mach -array -literal 0 1 1);

14
15enumRange32 1 9 { i =>

16enumRange32 1 17 { j =>

17i0 = (5 *Int32 i) +Int32 1 +Int32 (j *Int32 j);

18j0 = (5 *Int32 j) +Int32 1;

19lifespawn n m curr_cells glider i0 j0;

20};

21};

22
23sh = foster_subheap_create !; // New subheap for

24old = foster_subheap_activate sh; // short -lived data.

25lifedraw n m curr_cells;

26foster_subheap_collect sh; // Clean up after lifedraw.

27
28REC loop = { gen => curr => next =>

29if gen <=SInt32 steps

30then

31lifedraw n m curr;

32print_text_bare "\n";

33lifestep n m curr next;

34foster_subheap_collect sh; // Clean up for next loop.

35loop (gen +Int32 1) next curr;

36else

37()

38end

39};

40
41loop 0 curr_cells next_cells;

42lifedraw n m curr_cells;

43};

Figure 11: Conway’s Game of Life microbenchmark in Foster, using subheaps.
Added lines are commented.

67



• One site traces back to a special case for concatenation of small strings, which

copies data to increase locality and decrease pointer chasing. In this case, the

issue is not mutable state but rather overapproximation due to a helper function.

The helper function for array concatenation special-cases copying of zero-length

arrays, and conditionally returns either a fresh array (which is guaranteed to

be in the current subheap) or one of the input arrays (which is not). Thus

the return value of the helper is not guaranteed to be allocated in the current

subheap, and a barrier must be emitted in case the input array was not allocated

in the current subheap.

• Two sites correspond to one-time initialization of a nested array (glider).

• Two sites arise from initialization of a closure’s environment; the analysis driv-

ing barrier optimization is unable to prove that two objects closed over in the

function’s environment will be located in same subheap as the freshly-allocated

environment record (namely, the current subheap).

• One site arises from initialization of a nested array in a loop (in the body of

newcanvas).

It would be possible to extend the barrier optimization analysis to track properties,

in limited cases, of objects stored in mutable state, albeit at significant cost in com-

plexity. Code that tried to avoid the shortcomings of the barrier analysis in the face

of mutable state might find itself stymied by another difficulty: tracking properties

of higher-order functions. Faced with a loop combinator, a first-order analysis will

note that it calls an unknown function—the loop body—and conservatively assume

that any usage of the combinator could invalidate the set of known-current values

by activating a new subheap. Thus, a robust analysis would have to handle both

68



mutable state and higher order functions. Finally, the overapproximation due to use

of a function helper is even more difficult to resolve with enhanced static analysis.

Generational Collection To determine the difference in efficacy between Fos-

ter’s baseline Immix collector and a generational collector, I implemented a simple

copying-nursery generational collector for Foster (in addition to the sticky mark bits

implementation used elsewhere).

Surprisingly, for the original version of the Conway microbenchmark, generational

collection performs worse overall than the non-generational Immix baseline. The

primary reason is that almost no objects survive multiple collections, as illustrated in

Figure 9b, meaning the baseline Immix collector does not repeatedly trace many long-

lived objects. Second, the cost of evacuating arrays is higher than simply marking

them. Figure 12 examines the data in more detail, showing how performance varies

with heap size for the generational collector plus three other Immix variants. This

graph conveys several interesting pieces of information.

At the bottom of the graph is a line, labeled A , showing the ideal performance

without any GC-related overhead. Next, B shows the performance of subheaps. In

both cases, garbage collection is arranged to occur when no objects are live, and thus

both lines are flat: heap size does not affect their performance. The delta between the

two lines reflects the higher mutator costs from subheap allocation, primarily from

the extra instructions from expanding objects headers from 4 bytes to 8 bytes, and

from the requirement to set “used” line marks at allocation time.

The behavior of a copying generational nursery is exhibited with data points labeled

C and D . The lower line, C , isolates the performance impact of resizing the

generational nursery itself. It shows only the cost of copying data out of the nursery,
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not including the necessary full-heap collections. The nursery can be smaller than

the benchmark’s live size, which is why this is the only line that starts at a heap ratio

of zero rather than one. The upper line, D , shows the combined cost of nursery and

full-heap collections when the nursery is fixed at one fourth of the total heap. The

generational collector has a larger minimum heap size due to the requirement that

the mature space keep a (conservatively-sized) free reserve for the nursery.

Finally, the behavior of the Immix collector, labeled E , shows the unusual saw-tooth

behavior seen in Figure 8a. Note that the width of each tooth is equal to the minimum

heap size, with the lowest (lowest overhead) points being at (or just beyond) integer

multiples of the minimum heap size.

This phenomenon occurs because the microbenchmark does its work—including its

allocation—in a loop. The difference between the smooth curve of the generational

nursery and the spiky curve of the non-copying collector reflects how each loop iter-

ation influences the next. With a copying nursery, any data live at collection time is

evacuated, so the amount of available space left in the nursery is fixed. Mismatches in

the size of the nursery and the per-loop allocation load give rise to periodic behavior

in the triggering of nursery collections and, crucially, the amount of data copied out

in each nursery collection. The net effect is that the many “modular remainders”

induced by the delta between nursery size and loop workload produce a per-collection

load average that is mostly insensitive to the size of the nursery. Thus the total cost

of nursery evacuation, which is the average cost per event multiplied by the num-

ber of events, smoothly rises as the nursery shrinks because the number of (nursery)

collections needed grows.

In contrast, the sawtooth pattern for the Immix collector reflects a different phe-

nomenon. With the Immix collector, live data at collection time remains in place,
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Figure 12: Detailed impact of generational collection on Conway.
Generational Immix provides no improvements over the non-generational baseline (but see
Figure 13 for a more complete story). Note the restricted range of the y-axis.

thereby reducing the amount of remaining space to be used for the next loop’s allo-

cations. The pattern then repeats, until the amount of remaining space is a multiple

of the loop’s allocation load. At that point, a “stable attractor” has been reached,

and the synchronization produces a consistent per-collection tracing load with little

variation. This explains why each sawtooth’s width is equal to the minimum heap

size: because that is also the amount of data allocated in each loop iteration. The

“excess” space beyond each multiple of the loop workload produces a consistent per-

collection tracing burden. It also explains why the most efficient sizes are multiples of

the minimum heap size. Regardless of the heap size chosen, the per-collection tracing

load stabilizes quickly, usually within six collection cycles.

Ambient Heap Size In a variant of this benchmark, we keep a forest of objects

live for the course of the program’s execution. Doing so increases the benchmark’s
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realism, since most programs deal with a mix of short- and long-lived data. It also

accentuates the difference in how subheaps enable a qualitative change in behavior in

tight heaps.

There are now two input variables of interest: program heap size and ambient live

data size. The larger the ambient data size, the greater the cost of each collection.

The greater the proportion of heap size devoted to ambient data, the more frequently

collection will be triggered. Figure 13 illustrates these effects. It shows that gen-

erational GC (whether in-place with sticky mark bits, or evacuating with a copying

nursery) outperforms plain Immix with moderate amounts of live data, but does not

avoid the trend of exponential increase in total GC cost. The fluctuation in the Sticky

Immix results are not random variation or measurement error; they capture the same

sensitivity to heap sizing as in Figure 12. These fluctuations are obscured for the

non-generational Immix results by the log scale of the Y-axis and the higher costs

incurred by repeated tracing of the ballast. As before, subheaps are unaffected by

the presence of long-lived data.

Adding 5 MB of long-lived data significantly impacts both latency and throughput:

mean per-GC latency for Immix rises to 3.02 milliseconds (from 12.1 microseconds

before). Figure 15 shows bounded mutator utilization [SMB04] curves for three col-

lector configurations on the Conway benchmark. These plots show the worst-case

GC efficiency at varying time scales. The x-intercept, where mutator utilization first

creeps above zero, indicates the largest observed pause. The y-intercept at the right

of the graph shows the proportion of time spent on GC over the course of the whole

program run. The shape of the curve in between these two points reflects the distri-

bution of pauses incurred by the GC. Figure 15 illustrates how this benchmark sees

a much larger impact on latency from subheaps than from generational collection.
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Figure 13: Impact of ballast on Conway.

Increasing ambient live data quickly produces exponentially increasing GC time bur-
dens for both the plain and generational Immix collectors. Subheaps maintain a flat
profile. The leftmost data points, with no ambient live data, correspond to the “original”
configuration.
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(b) Subheaps eliminate repeated tracing, producing large speed (and latency) gains. Im-
portantly, the runtime with subheaps (and generational collection) is not merely faster, it
is also consistent—the benchmark’s runtime is no longer sensitive to choice of heap size.

Figure 14: Adding 5 MB of long-lived “background” data significantly changes the
benchmark’s results in comparison to Figure 8.
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(a) Bounded Mutator Utilization curve: non-generational Immix.

(b) Bounded Mutator Utilization curve: Sticky Immix.

(c) Bounded Mutator Utilization curve: subheaps.

Figure 15: Bounded Mutator Utilization curves for the Conway benchmark.
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As Figure 14b shows, due to the increased cost of each GC, total runtime depends even

more strongly on selection of heap size. Generational collection improves throughput

with moderate amounts of ballast, but does not improve worst-case latency, since

full-heap collections are still orders of magnitude more expensive than before. With

subheaps, the long-lived data can be fully segregated and is never traced by the

collector. As a result, the max observed GC pause is 11 microseconds.3 Unlike

with either the baseline or generational Immix implementations, the performance of

subheaps does not vary with the amount of long-lived data.

Conclusion This benchmark reflects the potential for subheaps to corral a set of

allocations with lifetimes scoped to a loop body. Its simplicity enables exploration of

the impact of subheaps and subheap barrier optimizations in detail. Subheaps deter-

ministically reduce the amount of marking required, producing large improvements

to GC latency, and moderate throughput improvements compared to a generational

collector. In the presence of long-lived allocations, subheaps enable both faster and

heap-size-independent runtime. Subheaps eliminate more work than generational col-

lection.

4.3. Tree Microbenchmarks

To explore the behavior of collection in a simplified setting, garbage collection re-

searchers have long used microbenchmarks based on tree structures. This section

examines how subheaps can be used to improve the performance of two such venera-

ble microbenchmarks: binarytrees and reynolds2.

3Figure 15c shows a worst-case pause of 26 microseconds due to the overhead of printing statistics
for computing mutator utilization.
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Figure 16: Binary-trees results for Java and Foster

4.3.1. Binarytrees

To explore the costs and benefits of aggressive reclamation, we ported the binarytrees

microbenchmark [Gou18] discussed in Section 3.1 and modified it to make use of sub-

heaps. The basic structure of the program is: a single large binary tree is allocated,

which remains live for the duration of the program. In turn, increasing numbers of

smaller trees are generated and traversed, after which they become garbage. Non-

generational tracing collectors spend significant effort tracing the long-lived tree in

the course of reclaiming the garbage generated by the smaller trees. But generational

collectors still face a subtle problem: they are likely to evacuate the nursery in the

middle of allocating a tree, thus prematurely promoting the already-allocated portion.

On a longer-running program, such as a web server, such leakage would eventually

trigger full-heap collection if not dealt with by concurrent collection of the mature

space. Intermittent full-heap collections may have little effect on throughput, but

they wreak havoc with tail latencies in distributed systems [MAHK16].

A key benefit of binarytrees is that it has been implemented by many people in a

wide variety of languages. This makes it feasible to compare Foster’s experimental

collector against production-quality collectors on an identical workload. For exam-

ple, Ferreiro et al [FCJH16] carefully investigate the impact of varying the size of a
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generational nursery on collector performance for binarytrees in the context of the

GHC implementation of Haskell.

Figure 16 plots the impact of varying heap size for several collector implementations

in Java and Foster. Generational collection with StickyImmix closely matches the

performance of Java’s (generational) serial collector. The non-subheap collectors ex-

hibit space-time tradeoff curves, and use of subheaps produces a flat performance

profile, removing the program’s sensitivity to heap size.

Two configurations for subheaps were measured, varying in how frequently short-lived

trees were collected. Reclaiming every tree individually triggers 669,041 collections.

Most of the collections happen with a subheap containing only a few frames, resulting

in an average cost per collection of less than one µs. While the per-collection cost is

low, the sheer number of collections results in lower performance than generational

collection in generously-sized heaps. Fortunately, the programmatic nature of the

subheap API—in contrast to schemes linked to inflexible entities like program scope—

allows the programmer to trigger subheap collections on some rather than all loop

iterations, thereby reducing GC costs below the cost of generational collection at all

heap sizes.

Figure 17: binarytrees
on G1.

x-axis: heap size
y-axis: time

This benchmark exhibits a second interesting phenomenon:

unpredictable collector costs with Java’s G1 concurrent col-

lector. Most collectors exhibited low variance and we display

their results as an average of five runs, connected with lines.

The throughput results from Java’s G1 collector, displayed as

raw data points in Figures 16 and 17, show high variance. At several heap sizes, the

G1 collector is on the brink of being unable to satisfy mutator demand. In some exe-

cutions, the program runs to completion with only young pauses. In other executions,
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the collector falls behind and starts triggering full-heap collections. This demonstrates

the potential for concurrent collectors to hit “performance cliff” behavior.

4.3.2. Reynolds2

Figure 18 lists the source code for the Reynolds2 microbenchmark, ported from the

code in Tofte & Talpin’s paper on region-based memory management [TT97]. As

with binarytrees, the code constructs a complete binary tree, then walks over it. The

twist here is that the tree walk itself allocates closures for the predicate provided to

the search function, on lines 17 and 19.4 In effect, as the tree is explored, a list of

values to search for is accumulated in the form of a chain of predicate functions.

The code as written is compatible with region-based memory management, meaning

that region inference does not result in exponentially-growing regions. (Tofte & Talpin

note that a seemingly innocuous change—representing the list of values to search for

as an explicit list, instead of via functions—destroys this behavior). Of course, space

efficiency is not the same as time efficiency. Region-based memory management does

not amortize the costs of reclamation for this workload. With MLKit 4.3.18, regions

are 4.6x slower than non-generational GC. Subheaps offer more flexibility than region-

based memory management in dealing with such granularity issues. The remainder

of this subsection investigates how that flexibility affects performance.

For the size-24 input in a 1 MB heap, the baseline code allocates 67.1 M closure

objects (32 bytes each; 2.1 GB total) and triggers 2335 collections, which takes 157

ms out of 1.9 s total runtime. The mark/cons ratio with plain Immix collection5 is

2.417e-3, and in total 273k potential root values are examined.

4The functions passed to oror are reliably eliminated by inlining.
5 Use of sticky mark bits degrades performance versus plain Immix on this benchmark, because

every value that survives a nursery collection immediately becomes floating garbage, thus increasing
the number of collections occurring.
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1 type case Tree

2 of $Lf

3 of $Br Int32 Tree Tree;

4
5 mktree = { n =>

6 if n ==Int32 0 then Lf else

7 t = mktree (n -Int32 1);

8 Br n t t

9 end

10 };

11
12 search = { p => t =>

13 case t

14 of $Lf -> False

15 of $Br x t1 t2 ->

16 { p x } ‘oror ‘ {

17 { search { y => { y ==Int32 x } ‘oror ‘ { p y } } t1 }

18 ‘oror ‘

19 { search { y => { y ==Int32 x } ‘oror ‘ { p y } } t2 }

20 }

21 end

22 };

23
24 reynolds2 = { search { x => False } (mktree 24) };

Figure 18: Reynolds2 source code in Foster.
Note that, like Haskell, Foster supports the use of regular identifiers as infix binary operators
using the ‘ident‘ lexical syntax. The oror function is a functional implementation of the
lazily evaluted || operator in C, or Standard ML’s orelse keyword. An expression wrapped
in curly brackets, with no arrow parameters, denotes a zero-argument function (a thunk).
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One approach to using subheaps would be to segregate the tree being traversed from

the closures allocated while traversing it. The intuition here is that the benchmark

allocates one (short-lived) closure per (long-lived) tree node traversed, so perhaps the

program’s allocations can be split in order to (implicitly) focus collection effort only

on closures and not on nodes. However, the original code takes a clever shortcut: on

line 8, the left and right subtrees, which represent identical values, are in fact pointers

to the same value. Thus what is conceptually a complete binary tree is implemented

with a redundantly linked list, so the tree occupies less than one kilobyte out of the

multiple gigabytes allocated by the benchmark. As a result, segregating the list-

represented tree produces no savings at all.

We can, however, explicitly focus collection effort on the closures. Each closure’s

lifetime is scoped precisely to the activation of search that uses it. In the extreme,

each closure could be allocated in a fresh subheap and collected precisely when it dies.

As with regions, this scheme would suffer high overheads from rapid creation and

disposal of subheaps. The minimum space expenditure for a subheap (one Immix line

for the subheap contents, plus the backing subheap object) is an order of magnitude

larger than a single closure; thus, storing each closure in a separate subheap would

increase GC pressure by a corresponding amount.

A better idea is to capture groups of closures. Since complete trees have most of

their nodes near the leaves, a simple approach is to capture subtrees near the leaves

(or more precisely, the closures allocated while searching through said subtrees) and

ignore the intermediate nodes nearer the root of the tree. We can modify the recursive

calls to search to occur in fresh subheaps only at a particular level using a helper

akin to inTempSubheap from Section 2.6.2. Doing so produces interesting results with

a Goldilocks-style phenomenon, captured in Table 1.
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Table 1: Effect of varying granularity of subheap collection on Reynolds2 (input 24).

Subheap
@ Depth

GC time
(ms)

Mark/Cons
Ratio

Explicit
Collections

Implicit
Collections

None 157 2.42e-3 0 2335
16 165 2.13e-3 0.5 k 2048
15 166 2.15e-3 1 k 2048
14 168 2.17e-3 2 k 2048
13 29 0 4 k 0
12 46 0 8.1 k 0
11 115 1.06e-6 16.3 k 1
10 197 2.13e-6 32.7 k 2
9 279 4.35e-6 65 k 4
8 420 9.40e-6 131 k 9

With the “right” choice of granularity for subheaps, all marking work is eliminated

and no involuntary collections occur. When capturing large groups, the heap itself is

too small to accommodate the data being routed into the active subheap, resulting

in a net increase in collections (and GC time). When capturing smaller groups,

the savings from reduced tracing (as reflected by a drop in mark/cons ratio) are

outweighed by the cost of stack scanning, leading to a net increase in GC time. For

example, compare the base configuration to subheaps at depth 8: the mark/cons

ratio falls by two orders of magnitude, yet the GC time jumps almost threefold. The

culprit is the cost of stack scanning, the per-collection cost of which did not change,

even as the number of collections grew exponentially. In addition, as less total data

is contained within subheaps, enough garbage accumulates to trigger (infrequent)

collections, leading to non-zero mark/cons ratios.

After accounting for stack scanning, recording of runtime statistics, and the like, each

non-marking collection takes roughly 5.5 µs. This benchmark clearly shows that even

such miniscule costs add up when executed frequently enough.
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(a) Java collectors (b) Non-Java collectors

Figure 19: Minicache (B=1000, N=700, K=300) results

4.4. Software Caches

As discussed in Section 3.5, programs with large data caches pose a challenge for

tracing garbage collectors. I wrote a small cross-language microbenchmark, called

minicache, to quantify the cost of tracing GC for such caches. The structure of the

minicache heap is illustrated in Figure 6 (minus the pointer between entries). There

is an array containing B binary trees comprised of N nodes each. The minicache

workload is to make K passes over the array, allocating and inserting one replacement

subtree at a time. The results of running minicache (B = 1000, N = 700, K = 300)

are presented in Figure 19. The left plot shows the behavior of a variety of collectors

(parallel, serial, and concurrent) for the benchmark running on several widely used

Java virtual machines. The right plot shows, with the same axes, the behavior for

the same benchmark written in Go (using a concurrent collector) and Foster (with

and without subheap augmentation). Each program was run five times per heap size.

The plots show raw datapoints, not averages. Run-to-run timing variance was low.

Figure 20 explores different Immix variants on the Minicache workload. Generational

collection with sticky mark bits performs worse than plain Immix—unsurprising, be-

cause the lifetime of cached data does not follow the generational hypothesis. Mean-
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Figure 20: Comparison of Foster’s Immix variants on minicache.

while, ImmixRC’s behavior is independent of heap size. It is faster than non-RC

Immix in small heaps and slower in larger heaps. While both ImmixRC and sub-

heaps have flat profiles, ImmixRC is slower by a large constant factor. The difference

is that subheaps reduce the benchmark’s workload by making sure objects need not be

traced, whereas ImmixRC merely enforces a heap-size independent workload: every

allocation is effectively traced twice with little amortization (once each for recursive

marking and unmarking).

What makes these graphs interesting is the shape of the results: the tracing collec-

tors exhibit classic space-time tradeoff curves, which reference counting—even when

“emulated” with subheaps—avoids. By putting each subtree in a separate subheap

we combine the low cost of region-based reclamation with a reliably flat performance

profile.

The authors of M3 [TAV14] were partially motivated by the poor performance of a

Memcached-like system written in Go, which at the time offered only a serial collector.
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Recent versions of Go offer a state of the art concurrent collector. Would it have have

avoided their woes? The results in Figure 19b suggest not. Especially in tight heaps,

concurrent collection cannot overcome the sheer amount of work generated by the

minicache workload.

4.4.1. memcached & ghost thereof

Minicache is designed to throw the memory management issues of a cache into stark

relief. These effects are muted in a real cache for several reasons. First, minicache

simulates a cache’s workload with no superfluous influences: the workload involves

no hashing, nondeterminism, or I/O. A real cache must do this extra work, which

obscures the costs of GC. Second, minicache stores large, pointer-dense object graphs,

which amplify GC work. Many caches store data like strings or binary blobs which

do not need tracing. Thus, while caches are not GC-friendly, most caches will not

observe the severe (exponential decay) throughput impacts illustrated.

However, throughput is not the only relevant performance metric for a cache. Latency

is often a more critical concern for network-enabled cache servers. The minicache

benchmark cannot realistically measure end-to-end latency. To demonstrate the effect

of subheaps on a more realistic server, I implemented mcd: a minimal network-enabled

clone of Memcached in Foster. Using a lexer compiled from C into Foster, plus

bindings to the POSIX sockets API, mcd parses and implements the GET and SET

commands in the memcached wire protocol.

The mutilate program [LK14, Lev14] was used to generate memcached wire traffic

with a mix of 90% reads and 10% updates. Three configurations for mcd were tested.

Since our workload induces 166 MB of allocation, a 170 MB heap is large enough to

avoid GC entirely. Reducing the heap size to 130 MB results in one garbage collection
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Figure 21: End-to-end memcached workload latency

cycle, which subheaps avoid. The results of testing these variants of mcd, along with

memcached itself, are shown in Figure 21. Reading left to right: When the heap

is large enough to avoid garbage collection, mcd shows max latencies comparable to

memcached.6 In a smaller heap, the cost of GC is reflected in severe degradation of max

read request latency. The application of subheaps, in the smaller heap, successfully

replaces one costly GC with almost thirty thousand cheap GCs, each of which costs

barely more than a microsecond. This effectively eliminates the latency impact of

garbage collection for the mcd server. The GC-induced throughput degradation for

mcd-130 is 1.8%, increased to 4.2% with subheaps. Most of the lost throughput for

subheaps is due to repeated stack scans.

Experience Although the mcd server loop is relatively simple, it still highlights

four interesting phenomena surfaced by applying subheaps in practice. Some of these

findings have also been explored in Section 3.4.

First, when the goal is to not merely reduce but entirely eliminate full GCs, we

6 memcached’s throughput is roughly four times that of mcd; like most functional languages,
idiomatic Foster makes heavier use of allocation, indirection, and bounds checking than does C.
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must capture all allocated data within the server loop, not merely the subset of data

allocated within each cache bucket. Otherwise, the un-captured data will accumulate

and eventually trigger a collection. When data of varying lifetimes is interleaved,

proper separation can increase the subheap annotation burden.

Second: circumstances sometimes force allocation to occur before the “proper” des-

tination subheap is known. The Memcached protocol has clients send servers lines

with a command name, followed by a key, followed by command-specific fields. There

is a bit of a catch-22 with the key’s memory management: it must be allocated in

a bucket’s subheap to detect hash collisions, but the choice of what bucket—and

therefore what subheap—to use can only be made after it has been extracted from

the network, and thus allocated in some other subheap. To resolve the mismatch

in object lifetimes, the programmer must store a fresh copy of the key in the cho-

sen bucket’s subheap. Failure to do so creates a long-lived subheap-crossing pointer,

destroying the potential for subheaps to improve performance.

Third, there can be tension between separation of concerns in code versus data. Cache

buckets can be empty, and each non-empty cache bucket needs an associated subheap.

One scheme for this is to create subheaps on demand, as each bucket transitions from

empty to non-empty. This allows the use of subheapOf (see Section 2.7.2) without

needing any changes in data representation, but it mixes unrelated concerns in the

server response loop. Alternatively, creating a subheap in advance for each bucket

leads to better separation of concerns in code, but it no longer suffices to use a null

pointer to represent an empty cache bucket. Some change in data representation is

needed for the web server to map empty buckets to their respective subheaps.

Finally, care must be taken not to capture too much data in a subheap. Interleaved

with the allocations that must go in each bucket, the server also generates some short-
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lived garbage. Sticking this garbage in the long-lived cache entries inflates the amount

of space needed to store cache entries in subheaps. Whether this is acceptable or not

depends on the amount of provisioned heap space.

4.5. Self-Adjusting Computation

Self-adjusting computations (also known as incremental computations) are those

which can efficiently re-compute results as inputs change. This genre of programs

is known to be problematic for tracing GCs [HA08]. Self-adjusting computations vi-

olate many of the heuristics employed by garbage collectors, especially generational

collectors. In particular, self-adjusting computations tend to have a large amount

of long-lived data, with frequent mutatations to point to young data. Furthermore,

object lifetimes do not satisfy the weak generational hypothesis because memoized

computations are kept alive until made irrelevant by changed inputs. To avoid the

inflated costs of garbage collection for self-adjusting computations, researchers have

explored options ranging from custom compilers [LW10] to custom language exten-

sions [HAC09] to rewriting libraries in different languages [HKHF14, HDH+18].

On paper, subheaps appear to be a promising technique for managing the memory

used by self-adjusting computations. First, the closures representing invocations of

self-adjusting computations own the data allocated in their dynamic extent, minus

the dynamic extent of their callees. This behavior—of capturing allocations within

a dynamic extent—precisely matches the activation-based usage model for subheaps.

Second, the deactivation of a closure is an explicit operation, suggesting a natural

place to hook in a call to subheapCollect. Third, the fine granularity of self-adjusting

closures—which often allocate only a few dozen bytes—suggests that subheaps can

be applied with lower space overheads than systems with multi-kilobyte minimum
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region sizes. The SAC library [Aca05, ABBT06] for self-adjusting computation in

Standard ML provides a concrete example. The qsort test case allocates just shy of

50,000 modifiable references. Because a single subheap is lightweight—less than 600

bytes—the net cost with subheaps would be only 28 MB. If each modifiable reference

were given a subheap with a full 32 KB frame, the net memory usage for the program

would explode to 1.6 GB.

As with previously covered benchmarks, there are multiple means by which subheaps

might be applied to SAC-using code. As it turns out, in the test suite and benchmarks

exercising the SAC library, the incremental subsystem is often not the source of most

allocations. For example, in the qsort benchmark, 78% of allocated bytes come

from the verification step of the SAC test harness, which serializes incremental state

and compares against a non-incremental implementation. Tackling these temporary

allocations is an easy first step, but is a relatively trivial target for subheaps. Much

more interesting is to manage the incremental computations themselves.

To apply subheaps to SAC requires some background on how the library works. The

SAC library tracks a dependence graph of memoized computations and their input

sources; when an input is updated, memoized computations are recursively re-run

until reaching quiescence. Specialized memory management for SAC [HA08] hooks

into this change-propagation process. In short, the library’s correctness criterion is

that incrementally computed results do not differ from their non-incremental equiva-

lents. This consistency theorem implies that subcomputations—and their associated

allocations—which have been invalidated are guaranteed to be garbage when change

propagation completes. Even with a guiding principle for how to associate subheaps

with domain elements, the details of how to multiplex the dozen-plus allocations aris-

ing from each call to Modref.read (see Figure 26) across subheaps remains somewhat
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Figure 22: Mark/Cons Ratios for SAC qsort-500 example
(subheaps for temporary data only)

subtle.

To evaluate the impact of subheaps on self-adjusting programs written against the

SAC library, I modified the MLton compiler [Wee06] to emit its SSA-based interme-

diate representation (augmented with new source-level subheap primitives) as Foster

code. This enabled automated translation of whole SML programs, extended to use

subheaps, into Foster.7 Because the application of subheaps targets the SAC library

rather than the programs written using the SAC library, we focus our examination

on the qsort benchmark highlighted by Hammer et al [HA08].

Figure 22 shows how the amount of tracing work performed is affected by Foster’s

various Immix collectors. The baseline Immix collector is the slowest in moderate

7 Applying subheaps to MLton itself is tempting, but MLton is a 32 MB binary, and its bootstrap
produces more than 700 MB of Foster source—too large for Foster’s prototype compiler to process
in reasonable time.
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Figure 23: GC runtime for SAC qsort-500 example
(subheaps for temporary data only)

(< 5× minimal) sized heaps, but for oversized heaps it becomes slightly more effi-

cient than ImmixRC, which spends effort incrementing and decrementing individual

objects. Sticky Immix becomes more efficient than ImmixRC at a 1.7× heap. Using

subheaps to corral temporary data produces uniform savings in tracing work. For

example, with a 54 MB heap, Sticky Immix triggers 11 collections; using subheaps

reduces that to a single GC.

However, tracing work alone does not tell the full story. Figure 23 shows that while

GC time follows similar curves as does tracing work, it only varies by two orders of

magnitude rather than four. The figure also shows that the GC time exhibited by

Foster’s GC backends is comparable to the MLton runtime’s GC. Finally, subheaps

also add costs to the mutator for executing write barrier checks and maintaining

remembered sets (in general; this configuration does not add any cross-subheap re-
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Figure 25: Impact of augmenting the Sticky Immix collector with compaction.
Compaction provides greater benefit than subheaps, particularly in tight heaps.
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membered set entries). Figure 24 shows that in larger heaps, the mutator costs of

subheaps outweigh the reduced tracing load. Reductions in program runtime from

using subheaps for temporary data appear only in small heap sizes. Meanwhile, Fig-

ure 25 shows that the difference in Figure 24 between Sticky Immix and ImmixRC

is almost entirely due to the latter’s use of compaction, which permits execution in

smaller heaps and leads to savings in mutator time. With compaction enabled, Sticky

Immix produces very similar results as ImmixRC. Overall, using subheaps to manage

the temporary data generated by the testing harness successfully reduces GC work

but shows only modest improvements to program runtime.

What about using subheaps to manage the allocations of individual memoized com-

putations? A primary challenge is that, as mentioned previously, self-adjusting com-

putation involves intricate management of higher-order stateful functions. Even when

looking at a single page of code, it is difficult to determine the optimal placement

for subheap primitives. Consider the definition of Modref.read in Figure 26. We

can walk through a few factors influencing how this code might take advantage of

subheaps:

• On line 34, the definition of run silently allocates a closure that captures two

variables. Likewise, calls to delete on lines 45 and 11 allocate a closure that

will only be invoked at a statically-unknown later time.

• The new value captures the run closure and may capture previous definitions;

the delete closure gets stored within the TimeStamps module as time stamp

invalidators.

• A subheap activated after line 1 would not necessarily be activated when line 3

eventually executes. Long-lived closures use the subheap active at their invoca-
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1 fun read modr f = let

2 fun delete node = fn () =>

3 case node of

4 ONE _ =>

5 let val WRITE (v, rs) = !modr in

6 case rs of

7 ONE _ => modr := WRITE(v,ZERO)

8 | FUN (p, reader as (_,t,_), n as ref next) =>

9 let

10 val new = ONE reader

11 val _ = TimeStamps.setInv (t, delete new)

12 in

13 case next of

14 ZERO => modr := WRITE (v, new)

15 | FUN(pofn ,_,_) => (pofn := new;

16 modr := WRITE (v, next))

17 | _ => raise InternalError

18 end

19 end

20 | FUN (p as ref prev , _, n as ref next ) =>

21 case (prev ,next) of

22 (ONE _, ZERO) =>

23 let val WRITE (v,_) = !modr

24 in modr := WRITE (v,prev) end

25 | (FUN (_,_, nofp), ZERO) => nofp := ZERO

26 | (ONE _, FUN (pofn , _,_)) =>

27 let val WRITE(v,_) = !modr val _ = pofn := prev in

28 modr := WRITE (v,next) end

29 | (FUN(_, _, nofp), FUN(pofn ,_,_)) =>

30 (nofp := next; pofn := prev)

31 | _ => raise InternalError

32
33 val WRITE (v,rs) = !modr

34 fun run () = let val WRITE(v,_) = !modr in f v end

35 val t1 = insertTime ()

36 val _ = f v

37 val t2 = insertTime ()

38 val WRITE(v,rs) = !modr

39 val new = case rs of

40 ZERO => ONE (run , t1 , t2)

41 | ONE _ => FUN (ref rs, (run , t1, t2), ref ZERO)

42 | FUN (prev ,_,next) =>

43 let val new = FUN (ref (!prev), (run , t1 , t2), ref rs) in

44 prev := new; new end

45 val _ = TimeStamps.setInv (t1 , delete new)

46 in

47 modr := WRITE (v,new)

48 end

Figure 26: Definition of Modref.read
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tion sites, not their definition site. This is a downside of using dynamic scope

instead of lexical scope.

• The calls to insertTime on lines 35 and 37 allocate timestamp nodes with

lifetimes not clearly bound to other allocated data in the read function.

• Time stamp invalidation is stateful; the SAC library happens to call a times-

tamp node’s invalidator before removing the reference to the node via mutation.

This implies that timestamp nodes will be considered live for garbage collection

purposes when invalidators run. The choice of how to order removal and in-

validation cannot be distinguished by a non-subheap-aware client, but a client

using subheaps can detect the difference in tracing performance.

• The various dereferences of modr can see values allocated in different calls to

read; this complicates both reasoning about where it might be profitable to

trigger subheap collections, and where it is sound to eliminate subheap barriers.

• Allocations occur on lines 7, 10, 11, 14, 16, 24, 28, 33, 34, 36, 39, 40, 42, 44,

46, and possibly 35. Data may become unreachable on lines 7, 14, 15, 16, 24,

25, 27, 28, 30, 43, and 46. Frequently only a portion of a a data structure will

be rendered unreachable by any given mutation. In contrast to the Conway

benchmark, there are no clear and obvious points in the code where any given

subheap can be most profitably collected.

Another distinguishing feature of the SAC library is that it makes intricate use of

recursion. It turns out that, even with only a single user-created subheap S, there

are three—not two!—choices for where to put allocations in the body of a recursive

function. The three possible “destination” subheaps are S, the default subheap,

or the active subheap. The same call site can see different bindings for the active
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subheap. While these decisions must be made for both recursive and non-recursive

code, experience with SAC shows that recursion can easily obscure the correct choice.

Selectively enabling subheaps for portions of Modref.read allows us to measure the

amount of allocation performed by various portions of the implementation. The

simplest approach is to wrap the whole function definition with a subheap activation;

this captures 48.29 MB out of the 451.0 MB allocated on the qsort-500 benchmark.

Due to the dynamic scoping of subheaps, this does not capture allocations made by

delete on lines 3-29, nor in the execution of f within run. Fixing these omissions

nearly doubles the amount of subheap-captured data, to 90.15 MB.

However, maximizing the number of subheap-allocated bytes is not our only concern.

To minimize remembered set maintenance costs, we should also find subheap bound-

aries that produce few remembered pointers, as discussed in Section 3.2. Figure 27

illustrates why minimal cuts are difficult to find for the SAC library. The timestamp

nodes t1 and t2 are elements of a complex linked data structure maintained by the

TimeStamps module. The t1 node is additionally circularly linked, as its invalidator—

the thunk produced by delete new—indirectly refers back to t1. The new node is

also an element of a mutable circularly linked list of readers. These allocations are

repeated for every read of each modifiable reference in the program.

Capturing a partial subset of these nodes in subheaps would produce poor perfor-

mance: the arrows illustrated in Figure 27 are all immutable references. This means

that, as discussed in Section 3.5, minimal subheap collection will be unable to identify

dead data, and we will be forced to wastefully inspect the sources of subheap-crossing

pointers as well. But capturing the entire cycle in a subheap (for each modifiable

read) also produces problematic subheap-crossing pointers, this time within the guts

of the TimeStamps module. Meanwhile, shunting all this data to a single subheap (or
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 run ()

t1... t2 ...

delete new
(run, t1, t2)new

TimeStamps

Figure 27: Partial heap structure allocated by Modref.read

even one subheap per modifiable reference) would avoid the burden of remembered

pointers, but would also fail to effectively separate dead from live data.

There is one source of seemingly well-isolated data: the payloads generated by execut-

ing memoized closures. These payloads originate from lines 32 and 34 in Figure 26,

and have no obvious ties to the surrounding code or data structures, which is why they

are illustrated as a cloud around run () in Figure 27. On qsort-500, these payloads

account for almost exactly half of all data allocated by Modref.read. Unfortunately

the payload data turns out not to be isolated. Capturing run’s data within per-read

subheaps ends up doubling mutator time by causing 1.76 M subheap write barriers

to trigger. The reason for this is made clearer by inspection of the definition of the

incremental quicksort function in Figure 28: due to higher-order usage of the SAC li-

brary API, the memoized closures (on lines 9, 11, and 18) reference data from external

subheaps and allocate new data that will be manipulated in other subheaps.

Figure 29 illustrates the disappointing results from trying to use subheaps in a fine-

grained way to manage memory for the SAC qsort/500 benchmark. The leftmost

bar illustrates a rough limit cost for the program without influence from garbage

collection, obtained by measuring the program runtime in a sufficiently large heap
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1 fun sort l =

2 let

3 val lift = C.mkLift2 (ML.eq , ML.eq)

4
5 fun qsortM (l,cr , prev ,next) =

6 l ==> (fn c =>

7 case c of

8 ML.NIL => ML.write cr

9 | ML.CONS(h,t) => t ==> (fn ct =>

10 lift ([Box.indexOf h, Box.indexOf prev ,

11 Box.indexOf next],ct ,cr)

12 (fn (t,rest) =>

13 let

14 val (_,hv) = h

15 fun fg (_,kv) = (Poly.eval0sgn(Key.compare (kv ,hv)))

16 val (les ,grt) = ML.split fg t

17
18 val bh = Box.fromOption (SOME h)

19 val mid = C.modref (rest ==> (fn cr =>

20 qsortM (grt ,cr ,bh , next )))

21 in

22 qsortM (les ,ML.CONS(h,mid),prev , bh)

23 end )))

24 in

25 C.modref (qsortM (l, ML.NIL , Box.fromOption NONE ,

26 Box.fromOption NONE))

27 end

Figure 28: Definition of SAC’s qsort implementation

Figure 29: Cycle timings for fine-grained subheaps on SAC qsort/500
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that GC does not occur.

The next bar shrinks the heap such that collection does occur; it suggests that GC

accounts for more than a third of program runtime. Thus there is potential for

subheaps to improve performance by reducing GC costs. The middle bar, labeled

“Lg+cap”, isolates the cost of mutator overhead from write barriers and remembered

set maintenance when using fine-grained subheaps. In this configuration, the heap

is again large enough that collections do not occur. Because of the intricate internal

structure of the SAC data structures discussed previously, the mutator overhead from

subheaps is nearly as expensive as the cost of collection without subheaps, suggesting

that subheap collection must be very nearly free to produce a net win.

Unfortunately, the next bar shows that subheap collection is not free; in fact, it is

very slightly more expensive than non-subheap collection. The final bar shows that,

in a small heap, application of fine-grained subheaps produces a large degradation in

runtime compared to not using subheaps at all.

These results show that, counter to my expectations when first considering the mar-

riage of self-adjusting computation and subheaps, the potential for subheaps to man-

age memory in a fine-grained way is stymied by the intricate, higher-order nature of

the SAC library’s implementation.
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CHAPTER 5 : Challenges & Future Work

This dissertation explores a bare-bones proof of concept incarnation of subheaps.

There are several aspects of subheaps as they would likely appear in practice—ranging

from curious to critical—that have been heretofore ignored for clarity of focus. This

chapter explores a few of these “missing pieces.”

5.1. Concurrency

Shared-memory concurrency impedes high-frequency reclamation of subheaps. The

key issue is: to collect a given subheap, we must know whether or not there are

pointers into the subheap from other threads’ stack frames. When answering this

question involves coordination between threads, the cost of such coordination limits

the maximum frequency of collection.

A key premise of subheaps is that the cost of reclaiming dead space should be pro-

portional to the amount of live space traversed. This premise is violated in a setting

with concurrent threads that share memory, because the cost of scanning all stack

frames is proportional to the number of outstanding threads.

The constant factors at hand also matter: in traditional concurrent collectors, stack

scanning is often done in a brief cooperative stop-the-world pause lasting roughly

one millisecond. In contrast, reclamation of a mostly empty subheap operates at

megabytes per microsecond—and processing completely empty subheaps is even faster.

If every reclamation of every subheap is forced to do a full scan of all stacks, the

gains from moderately sized1 subheaps would be mostly lost. Yak [NFX+16] forces

1That is, subheaps containing moderate amounts of allocated data. For an allocation rate of
N MB/ms, reclamation of kN MB of allocated space need happen no more often than once per k
milliseconds.
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thread synchronization in this manner. The impact of this choice is acceptable in

part because their domain (Big Data) implies large regions with relatively infrequent

collections.

We can avoid stack scans if the runtime can statically or dynamically guarantee

isolation between threads. Some collectors enforce such isolation dynamically by

copying the transitive closure instead of recording a thread-crossing remembered set

entry. However, such copying can be expensive in space, time, and latency, and

often ends up being wasted work [Mol15]. When such copies are done silently by the

runtime, it becomes more difficult for the programmer to reason about when and why

certain collection points might be inefficient. As discussed in Section 2.4.3, it also

curtails the effectiveness of static optimizations for write barriers.

Another possibility for combining subheaps with concurrency would be to revisit

the basic semantics of the subheap API. The API in Section 2.3 is fundamentally

synchronous in its treatment of collection requests. An alternative design could make

condemnation record logical snapshots, which would be processed asynchronously.

In this model, the collection API furnishes requests rather than commands. This

change would complicate the implementation of subheaps, but would provide the

runtime more flexibility in scheduling collections, potentially reducing wasted work.

One potential downside of subheaps in a concurrent setting—especially with a syn-

chronous API—is of running into bottlenecks that do not affect single-threaded pro-

grams. The amortization of subheaps fundamentally depends on allowing garbage to

accumulate, so as to reduce the average cost per reclaimed byte. Inoue et al [IKN09]

illustrated this risk in the context of a web server. Their study revealed two interest-

ing phenomeona. First, they showed that using region-based memory management

reduced the cost of collection yet produced an overall slowdown due to degraded
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mutator behavior. Second, they showed that the mutator regression was due to old

dead objects being flushed from processor caches, instead of being reused as with

traditional malloc/free systems. This produced contention on the memory subsystem

that was not exhibited by the same system running in single-threaded mode.

The simplest route to achieving static isolation is to entirely forsake shared-memory

multithreading. Such restrictions are often indepedently appealing for avoiding the

conceptual complexity of concurrent mutation, weak memory models, etc. Subheaps

may end up being most easily justified in the context of more restrictive programming

models (such as message passing actors) that forgo shared-memory concurrency.

5.2. Untrusted Code

The bulk of our discussion around subheaps has assumed a non-adversarial runtime

environment. Extending subheaps to work robustly in the presence of potentially-

malicious code remains an unexplored problem. Two aspects deserve elaboration:

structured use of subheaps and enforcing space limits.

First, it should not be possible for an untrusted callee to alter which subheap is active

for its caller. In other words, whereas trusted code may benefit from free-form use of

the subheap API, untrusted code must obey a stricter discipline of scoped subheap

activation. Well-scoped primitives can be easily supplied, reducing the problem to

constraining access to the full subheap API. Fortunately, restricting access to sen-

sitive APIs has been a topic of much research from both the language and systems

communities.

The second aspect is space limits. Examples in which untrusted code must be run

in a partially isolated way include: auto-grading systems which must run code from

students; web browsers running downloaded scripts; and cloud providers running
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customer binaries. Similar issues (of excessive resource usage) also arise when code

may allocate based on untrusted inputs, such as with decompressors and deserializers.

Systems software—both operating systems and virtual machines—provides virtual-

memory-based mechanisms for limiting space usage. Unfortunately, such solutions

also come with large overheads compared to language-based mechanisms. Building

support for space limits atop subheap infrastructure may lead to lower runtime costs.

However, introducing space limits would also mandate a change in the trust model

for subheaps. In particular, if subheap limits are used to limit untrusted code’s

resource usage, the API as described in this document is too permissive: it fails

to restrict untrusted code from activating a non-limited subheap. There are also

semantic changes implied by subheap limits (e.g. child subheaps must inherit their

creator’s limits). We would, in short, require a more capability-oriented API design for

subheap management, with stronger notions of principals and trust. The connection

is neither accidental nor subheap-specific: Yang and Mazières [YM14] observe that

their design for a resource container API closely mirrors that of an information flow

control API.

5.3. Stack Scanning Costs

The cost of scanning even a single stack can be a significant portion of GC effort.

The garbage collection literature has explored how to minimize the cost of repeatedly

scanning the program stack, using techniques such as stack markers [CHL98]. Such

techniques implicitly assume a monolithic heap design, not an arbitrarily-partitioned

one. Reducing the cost of stack scanning by extending stack markers to work with

multiple subheaps would be a useful extension to the subheap implementation model.
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5.4. Automation

The subheap design relies on the programmer to make good decisions about the

creation, activation, and reclamation of subheaps. This raises two questions for future

work to tackle: first, is reliance on the programmer a significant liability; second, can

the computer help identify productive use of subheaps?

Reliance on non-experts On the one hand, the vast majority of programmers—

those who currently ignore the GC—will be able to ignore subheaps. That is a key

motivator for subheaps compared to alternatives such as memory management with

substructural type systems. On the other hand, the programmers who do eventually

use subheaps will almost certainly not be experts on garbage collection. It is unclear

to what degree non-experts will be able to make effective use of subheaps.

Improper use of subheaps can degrade performance, for example if collection requests

are triggered for large subheaps full of live data. It is easy to give the programmer

concrete feedback about collection efficiency (data traced vs data reclaimed), which

can reassure programmers that the collection points they’ve chosen are neither wasted

work (due to low reclamation) nor inefficient (due to large amounts of tracing).

Inferring use of subheaps Computer assistance for using subheaps could take

many forms. The ideal instantiation would be a fully automatic tool. Such a tool

would take as input a codebase, perhaps augmented with a set of traces [HBM+06,

Ric16], and identify where in the codebase to insert subheap API calls.

It is unclear whether such a tool is feasible. Analyzing object lifetimes [JR08, Xu13,

BPSa+19] to give suggestions about where to collect or when to create new subheaps

appears promising but challenging [VG17, JCMM16, BOF17]. One key technical
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challenge is the cyclic dependence between collection efficiency and subheap decom-

positions: the value of a specific partitioning is determined by the (careful) choice of

collection points it enables, and the usefulness of a given set of collection points is in

turn dependent on the choice of subheap decomposition.

A particularly promising intermediate point for automation would be to focus on

automation of subheap activation. This would have the human choose how to create

and collect subheaps, while leaving the details of routing allocations into the right

subheap to the runtime. Such automation would allow more fine-grained usage of sub-

heaps without increasing programmer burden. The reason this division of labor seems

promising is that connecting lifetime-related events—such as a browser tab closing,

or a self-adjusting library’s quiescence—with the idea of certain allocations becoming

obsolete often relies on very high-level, often domain-specific, proof sketches. In con-

trast, disentangling an “interleaved” sequence of subheap-destined allocations seems

more amenable to machine intervention.

Automation or assistance could take less extreme forms as well. Heap visualiza-

tion [PG02] could help programmers decide which portions of the heap would be

most amenable to subheap management. Subheaps work best when they reflect a

human’s understanding of heap structure; visualization could help programmers gain

such understanding. Visualization could also help programmers evaluate the effec-

tiveness of a particular configuration of subheaps.
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CHAPTER 6 : Related Work

Chapter Contents

6.1 Region-Based Memory Management . . . . . . . . . . . . . . . . . . . 108
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6.2 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Phase-Aware GC . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Generational Collectors . . . . . . . . . . . . . . . . . . . . . . 122

6.2.3 Partitioned Collectors . . . . . . . . . . . . . . . . . . . . . . 126
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6.2.5 Program-Specific Garbage Collection . . . . . . . . . . . . . . 135
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6.2.8 GC Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Subheaps sit at the intersection of many strands of the research literature. The

insight that program allocation patterns can be exploited to improve GC efficiency is

not new, but the design for subheaps synthesizes these insights in a novel way.

The literature has explored the benefits of program-tailored garbage collection [FT00,

SK07, SBWC07, MZS09, CP15], selective choice of collection points [BVEDB05,

XSaJ07, DEE+16, JCMM16], static partitioning [HDH03, GM04, XSaJJ07], dynamic

partitioning [SHB+02, DFHP04, SMB04, DGK+02, UOO11, KC11, CM15], regions

[Att94, Gay98, HMGJ04, CR04], and hybrids of tracing and regions [HET02, Cor06,

Har06, SWB+15, XGD+15, RMAB16, NFX+16, VG17, BOF17, MHKS09] or refer-

ence counting [DB76, AP03, BM03, TAV14].
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This chapter compares and contrasts subheaps with related research efforts. We begin

by covering the most closely related work, highlighting how subheaps differ:

• Region-based memory management [TT97, HET02, GMJ+02, TBEH04] uses

static analysis, usually in the form of a type system, to eliminate the need for

garbage collection entirely. Subheaps rely on programmer guidance to avoid

some pitfalls of RBMM, such as having tail calls and loop-carried dependencies

without space leaks. Future work might combine the flexibility of subheaps with

automation driven by static analysis.

• Generational garbage collection [LH83, Ung84, Moo84] heuristically focuses col-

lection effort on the youngest data to gain efficiency by reducing tracing work.

Older-first [SMM99] techniques use a different heuristic to efficiently handle

some programs that are problematic for youngest-first collection. Subheaps

give programmers non-heuristic control over heap partitioning, allowing them

to focus GC effort on known-dead data or away from live data.

• M3 [TAV14] and DSA [CP15] exhibit gains from widening the GC interface.

Both rely on programmer annotations, attached to types, to improve GC effi-

ciency. Subheaps give programmers more fine-grained control via a dynamically-

executed API rather than static annotations on types.

• Yak [NFX+16] combines tracing collection and regions. Yak’s regions corre-

spond closely to subheaps. Yak’s interface is more limited than subheaps, due

to their differing aims: Yak aims to improve the efficiency of GC for big data

applications, whereas subheaps seek to allow programmers to improve perfor-

mance for a wider selection of problem domains. Both Yak and subheaps can

in turn be seen as extensions of Leaky Regions [Har06].
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Subheaps Static Regions Generational GC

“Worst Case”
Behavior

Extra copying & pressure
on tenured space, and/or
remembered set blowup

Space Leaks
Extra copying & pressure
on tenured space, and/or
remembered set blowup

When does
reclamation happen?

Upon programmer
request (deterministic)

At statically inferred
(or checked) points,
deterministically

Whenever the nursery
fills up (nondeterministic)

Granularity of
reclamation

Coarse Fine Coarse

Number of spaces
Arbitrary, determined
by programmer

Arbitrary, inferred
Almost always statically
fixed, usually two

Programmer
“interface”

Modify source to use API Rewrite problematic code Command line flag tuning

Avoiding bad cases
Don’t add use of subheaps
(rely on GC instead)

Forced to rewrite code Forced to rewrite code

Automatic? No Yes Yes

Table 2: Comparison Matrix for Various Memory Management Approaches

• Hayes [Hay93] proposed the idea of key object opportunism, observing that clus-

ters of objects often die all at once. Subheaps can emulate some of the beneficial

properties of reference counting—in particular, immediate reclamation—by re-

lying on programmers to identify key objects. The work of Hayes was mostly

theoretical; subheaps provide an implementation and evaluation.

Table 2 provides an overview of how subheaps compare to regions and generational

GC. The following sections examine in more detail the relationship between subheaps

and specific variants of regions and GC.

6.1. Region-Based Memory Management

Tofte and Talpin provided the canonical instance of memory management based on

regions [TT97]. Tofte’s insight was that an integer-typed expression (in a pure lan-

guage) might allocate arbitrary amounts of memory, but all of it could be deallocated

once the result was computed.

In the Tofte/Talpin system, the heap was replaced by a stack of regions. Individual
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results could be allocated into any in-scope region, and the choice of regions to use was

made via type inference. When a region went out of scope, the type system guaranteed

that all values allocated within the region were dead, and could be reclaimed in

bulk. Thanks to this stack discipline, regions known to contain a statically bounded

number of objects—so-called “finite” regions—were backed by memory allocated on

the program’s call stack.

Overall results, after several years of effort from Tofte and others [HET02], showed

promise. In particular, the combination of region inference and GC reduced bootstrap

compilation time for the ML Kit compiler from 2441 seconds to 1053 seconds, and

regions often relieved the GC of 80-90% of its total workload.

Retrospectives from some of the flagship region-based projects showed mixed success;

regions seemed to complement GC well, and there were occasional efficiency gains,

but primarily regions were useful to reduce the load on the GC:

• The RBMM retrospective [TBEH04] says “it is not clear that infinite regions

are such a good idea [...] and the experience with the garbage collector suggests

that it is better to use garbage collection for objects that region inference puts

into infinite regions, due to fragmentation problems.”

• The authors of the Cyclone project observed [SHM+06] that while their mech-

anisms for safe memory management (building upon regions) usually reduced

program working set sizes, there was only one instance in which overall program

performance improved versus a conservative garbage collector.

Ad-hoc extensions to Tofte’s region calculus, such as storage mode analysis [BTV96]

and multiplicity inference analysis [Vej94], improved asymptotic performance and/or

constant factors in certain circumstances. Even so, memory management based on
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compiler-inferred lexically-scoped regions has well-known shortcomings, as discussed

in Tofte et al’s retrospective [TBEH04]:

• Data allocated within a loop and passed between iterations often must be kept

live until the loop terminates. Similar problems occur for data allocated in

compiler phases.

• Not all programs are amenable to region inference.

• Inference of lightly-used infinite regions can lead to (internal) fragmentation.

• Inferred letregion expressions can interfere with tail call optimization.

• Minor refactorings can result in large performance changes.

Much as with subheaps, Tofte and Talpin proposed region-based memory management

as a compromise between fully-automatic garbage collection and fully-manual memory

management. Many of region-based memory management’s limitations derive from

the decision to rely on automatic, compiler-driven region inference, and the decision to

force region deallocation in stack order. Reliance on programmer input and arbitrary

collection ordering allows subheaps to avoid some limitations of region-based memory

management. In particular, subheaps can accomodate patterns of overlapping or

non-lexically-scoped lifetimes, and any interference with tail calls is made explicit.

However, even with programmer input, subheaps do carry limitations on the patterns

of data that can be easily managed. For example, subheaps struggle to efficiently

collect portions of circularly linked structures, for which the cost of remembered set

maintenance can easily outweigh the reductions in tracing workload.
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Static/Dyn
Usage
Model

Scoping
Model

Features
beyond TT

Tofte/Talpin [TT97] Static Type inference Static, lexical -

ML Kit [HET02]
Static, TT-based

+ GC backstop
Type inference Static, lexical

Multiplicity Inference
and Region Resetting

AFL [AFL95] Static, TT-based Type inference Static, non-lex Early dealloc, no MI
WCM [WCM00] Static, not TT Explicit CPS IR Static, non-lex all?

HMN [HMN01] Static, not TT
Inferred IR (only
first order source)

Hybrid, non-lex Subsumes Kit & AFL

FMA [FMA06], Fluet [Flu07] Static, not TT
Inference, explicit
monadic src,
sub-structural IR

Hybrid, non-lex all?

Subheaps Dynamic Explicit source Dyn, non-lex n/a

Comparing RBMM Approaches

Gay & Aiken also propose explicit regions for use in C programs, via a language called

C@ and a compiler called RC [GA98, GA01]. They use reference counting (of regions,

rather than objects) to provide safety. In their original system, deleteregion()

applied to a non-empty region is a no-op (which means it does not reclaim any space

at that point; arguably, a space leak). RC changed the semantics to be a fatal error.

The equivalent operation applied to a subheap will reclaim any available space, at

line granularity, for reuse.

Their paper on RC [GA01] points out that some patterns exhibited by the real pro-

grams (such as the lcc compiler) in their benchmark suite cannot be represented

accurately by the purely-static systems, which are forced to either leak space or force

the programmer to rewrite their code. They also note that it is the programmer’s

responsibility to break region-crossing cycles before deleting regions. With the RC

system, failure to break a region-crossing cycle is a fatal error. With subheaps,

region-crossing cycles can be severed on an as-needed basis, and condemned sets can

obviate the need to break cycles manually. The tradeoff for this flexibility is that

subheaps make it easier for unexpected cyclic garbage to degrade the performance of
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explicitly-invoked collections.

Gay & Aiken [GA98] studied the difficulty of programming with explicit regions, and

found that the programs they studied “required only modest recoding to use regions,

and the needed region organization was straightforward to derive.” They observed

that even when programs manipulated data in complex ways, it was not difficult to

find simple and effective ways to organize that data in regions. Carrying over this

line of reasoning to subheaps is straightforward; the primary extra cost incurred by

subheaps is that of checking for, and recording, subheap-crossing pointers.

Cyclone [GMJ+02, HMGJ04, SHM+06] had a heap region, stack regions, and growable

regions, plus unique pointers and reference-counted pointers. Growable regions did

not need to have nested lifetimes. While Cyclone’s machinery was powerful, it’s

not clear what the performance impact was. In his dissertation [Gro03], Grossman

admitted that “simply using a garbage-collected heap is often as fast or faster than

using growable regions.”

Other Type Systems

It has long been known that substructural type systems (in particular, with linear of

affine types) can reduce or eliminate the need for garbage collection. For example,

Lafont [Laf88] described an abstract machine which could produce only acyclic heaps,

and therefore needed no garbage collection.

Schemes to avoid garbage collection by static enforcement of rules tend to eliminate

useful flexibility, such as circular data structures. Thus, general-purpose languages

(such as Rust) that make use of substructural types usually retain the need for some

form of automated garbage collection, either via tracing or reference counting.
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Recent research has also explored the benefits of co-designing a concurrent language’s

type system and garbage collector, such as with the Orca project [CFD+17, FCD+18].

6.1.1. Unsafe Region Hybrids

Many programs written in unsafe languages like C can benefit from the bulk deal-

location behavior of regions. In part because C does not provide memory safety or

any portable way of mandating write barriers, such attempts often make it the user’s

responsibility to avoid use-after-free bugs.

Hanson proposed a C library for arena allocation and evaluated its benefits in the

context of the lcc compiler [Han90]. In his scheme, as with subheaps, the programmer

had to identify allocations of similar lifetimes to place within arenas. Barrett and

Zorn [BZ93] extended Hanson’s scheme, using profiling to automate the segregation

of short-lived objects.

Berger, Zorn, & McKinley [BZM02] investigated folklore about the performance

impact of custom memory allocation. They found that most custom allocators failed

to outperform a well-tuned general purpose allocator. The exception was an allocator

based on regions (arenas), which performed substantially better on certain applica-

tions, but suffers excess memory usage for common programming patterns such as

dynamic arrays and producer-consumer designs. The same patterns cause difficulty

for region-based memory management, for the same reason: a sequence of finite but

overlapping lifetimes means that the region/arena is never completely empty. Sub-

heaps avoid this pitfall, and as the experiments in Section 4 show, can still achieve

equivalent performance to unsafe arena allocation for some programs.

Informed by their investigation of the efficacy of custom memory allocation schemes,

Berger, Zorn, & McKinley proposed adding flexibility to arena allocation regions
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with individual object deallocation, yielding reaps. Unlike reaps, subheaps seek to

preserve memory safety and thus do not provide the flexibility of individual object

deallocation.

Inoue et al [IKN09] also produced a hybrid of regions with manual deallocation. Their

investigation of request-oriented region allocation in a multithreaded web server con-

text revealed that both malloc/free and pure regions suffered from overheads. Deal-

locating individual objects raised the cost of allocation and reclamation, with a signif-

icant contribution being the cost of object coalescing and splitting, intented to avoid

defragmentation. Meanwhile, use of traditional regions caused memory bandwidth

contention as caches flushed dead objects back to RAM. Their proposed solution was

to augment the malloc/free interface with a freeAll function to perform bulk recla-

mation, thereby producing a defrag-dodging malloc (DDmalloc). As with reaps,

DDmalloc did not seek to preserve memory safety.
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6.2. Garbage Collection

Generational garbage collectors have enjoyed huge success. They are effectively the

baseline against which other memory management schemes are compared. However,

it is well-known in the GC community that medium-lived data can be problematic for

standard generational collectors: it raises copying costs when it leaves the nursery,

then bloats the mature space and causes expensive full-heap collections. The litera-

ture on garbage collection has explored many ideas for how to build a better garbage

collector, and many of these ideas are reflected in various facets of subheaps.

6.2.1. Phase-Aware GC

One category of related work is on garbage collectors that improve their efficiency by

taking advantage of program phases. Hybrids of tracing GC and region-based memory

management also fall into this category, because regions correspond to (statically

identifiable) phases.

The work of Buytaert et al [BVEDB05, BVEB07] on Garbage Collection Hints

uses profile-guided offline analysis to identify favorable collection points. Their ex-

perimental evidence shows that “garbage collection hints work well for long running

applications that show some recurring phase behavior in the amount of live data. [...]

Applications that do not exhibit a phased live/time function are not likely to benefit

from GCH.”

Subheaps aim to capture the same benefits, trading the engineering cost and com-

plexity of profile-guided offline analysis with programmer burden. Both subheaps and

GCH will trigger a subheap/nursery reclamation at the end of a phase or iteration,

when live data is low. The most salient difference between the run-time behavior
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of subheaps and GCH is that the latter can only trigger a collection of the nursery,

which will include whatever unrelated data was present at the start of the phase

(and its associated remembered set). In contrast, with careful activation of multiple

subheaps, subheaps can focus effort solely on the data allocated within the dynamic

extent of a phase itself, ignoring superfluous data in the rest of the heap.

Obviously, the analysis for GCH could be used to suggest potentially-beneficial points

to insert subheap reclamation primitives. Determining how and where to place sub-

heap creation and activation primitives in order to further improve the efficiency of

reclamation—and avoid costly remembered set maintenance—would be an interesting

avenue for future work.

In the SEHMM project, Stancu et al [SWB+15] explored a hybrid region/GC ap-

proach for Java. They only region-allocated objects that were provably dead at region

exit. They found that roughly three quarters of memory could be region-managed.

This means a smaller generational nursery can be used without sacrificing perfor-

mance. With a large nursery, end-to-end speedups were small because baseline GC

time was only 3.6% of total time. Subheaps identify dead data dynamically rather

than statically; this brings flexibility but imposes program-dependent costs for re-

membered sets.

Leaky Regions proposed annotating method calls to indicate that their allocations

would be garbage at method return [Har06]. Nested method calls lead to scoped re-

gion behavior. The evaluation showed that judicious annotation placement resulted

in savings that outweighed the cost of the write barrier needed to prevent incorrect

deallocations. Use of Leaky Regions produced significant heap size footprint reduc-

tions, and significant reductions in overhead for small nursery sizes. However, only

in a few selected cases did the best annotations outperform a large nursery in total
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throughput. Harris observes that the work of Buytaert is complementary to his: GCH

is coarse grained, applying nursery collections to maximize reclamation yield; leaky

regions are fine grained, minimizing heap footprints and maximizing memory reuse

within a single collection cycle. Subheaps provide more general functionality, without

the limitation to scoped regions. However, our experimental analysis showed similar

tensions between improved collection efficiency and degraded mutator performance

due to write barriers and locality effects.

Xian et al [XSaJJ07] observed that local and remotable objects in Java application

servers have different lifetimes. These observations are mirrored by the study of Java

object demographics conducted by Jones & Ryder [JR08]. The work on GC for ap-

plication servers (AS-GC) investigated the possibility of using two nurseries in a

generational collector, to avoid interference between the different sorts of allocations.

Their heuristic was simple: any objects allocated during the execution of a remote

method (that is, one that extends java.rmi.Remote) would be placed in the remote

nursery. They found that AS-GC led to more frequent reclamations and higher ef-

ficiency as measured by nursery object survival rate, pause times, application-level

workload sustained, and overall program throughput. A variant of subheaps with

support for cross-subheap evacuation would be capable of encapsulating the domain-

specific AS-GC heuristic within a library.

Xian et al [XSaJ08] also studied the correlation between server load and GC over-

head. They found that increasing load on a Java application server caused the pro-

portion of time spent on GC to spike to nearly 50%, even when running with a gen-

erational collector. The culprit was a combination of objects (such as for database

connections) living longer under load, thus reducing the efficiency of minor collections,

combined with paging triggered by a heap growing to accommodate the longer living
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objects. Subheaps combat the former problem: they use programmer knowledge to

perform “minor” collections with maximal efficiency. The paper also studied where

collection could be performed most efficiently during server execution. They found

that collecting when the heap was full worked well under light loads (when most ob-

jects had had sufficient time to die) but did not work well under heavy loads (due

to object longevity). Under heavy loads, the most efficient time to collect was when

the nursery was mostly—but not completely—full. Again, this perfectly matches the

intuition for appropriate use of subheaps.

Phase-Adaptive Garbage Collection identifies program phases and preferentially

invokes collection at phase boundaries [RKP09]. PAGC proposes to automatically

partition the heap by dynamically monitoring application phases. They relocate ob-

jects by connectivity to form connected clusters (like the Train algorithm). They pay

the cost of runtime analysis and relocation, in order to relieve the programmer of

management concerns. Like GCH, they evaluate against SPECjvm98 and find that

javac benefits the most. Across all benchmarks, their improvements to mark/cons

ratios vary from −3.3% to 49.7% (average 19.9%), but some benchmarks suffer de-

graded performance from the extra copying done to dynamically aggregate objects

by connectivity. Again, users of subheaps can face similar dilemmas. PAGC reduces

time spent on GC by -4% to 41%, which translates to overall runtime improvement of

-0.6% to 5.3%; GC was at most 12% of execution time to start. PAGC had relatively

little effect on mutator utilization.

Preventative Memory Management [DZSO05] initiates collection at the start

of program phases. In contrast to subheaps, it was based on statically modify-

ing program binaries rather than source code. MicroPhase [XSaJ07], like GCH,

reaps benefits from triggering deallocation at phase boundaries. They studied sim-
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ilar benchmarks (SPECjvm98, SPECjbb2000, DaCapo) as many of the other listed

works, and found closely matched results: some benchmarks are slightly degraded

(their runtime monitor imposes 2% baseline overhead); others see moderate perfor-

mance improvements; average speedup is 5% for SPECjbb2000.

Short-Term Memory for Self-Collecting Mutators [AHKS10, AHK+11] has

programmers mark objects with logical expiration timestamps, allowing the runtime

to collect expired objects en masse. As with subheaps, programmers must identify

quiescent points in program execution and add code annotations to manage memory.

Unfortunately, their approach sacrifices safety when applied to a GCed language.

Their technical report specifies performance improvements in total execution time

ranging from approximately +5% to -0.5%.

Yak [NFX+16] focuses on improving efficiency of GC for Big Data applications.

It separates the heap into a Control Space, managed generationally, and a Data

Space, managed with dynamically-sized regions. Arguably, Yak can be seen as an

independently-developed multi-threaded version of Leaky Regions.

Yak bears quite some similarity to subheaps. The CS corresponds to the default sub-

heap, and non-default subheaps are akin to DS regions. Like subheaps, Yak requires

program modification to establish region boundaries and lifetimes. Yak’s authors ob-

serve that (unlike traditional non-distributed applications) the programs they target

effectively already identify phase structure and therefore region boundaries.

In contrast to subheap’s general-purpose API, Yak adopts a simpler but more lim-

ited domain-specific interface. In particular, Yak’s epoch begin() combines subheap

creation and activation, while epoch end() combines collection, deactivation, and de-

struction. This slightly simpler interface limits Yak’s expressiveness. First, because
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there is no way to activate existing subheaps, it is impossible to separate out allo-

cations that are known to be longer-lived than their brethren. With subheaps, such

manual “pretenuring” has the potential to improve efficiency with reduced memory

budgets. Instead, Yak relies on lattice-based evacuation to reduce wasteful object

movement. Second, because the epoch-based API provides no way to trigger col-

lection of an arbitrary region, Yak lacks the power of reference counting with key

objects. Thus Yak cannot improve the efficiency of programs in which object life-

times are well-known but neither generational nor nested. Important examples of

such lifetimes include cache entries in memcached and tabs in a web browser.

Another difference from subheaps is that DS regions are collected only once; evac-

uation and region destruction go hand in hand. As a result of this restriction, Yak

can use a (very slightly) simpler bump-pointer allocation scheme instead of the mark-

region structure adopted for subheaps. However, the decision to collect each region

exactly once also implies that Yak must evacuate. This in turn means that Yak,

unlike subheaps, does not have a straightforward story for application in a conser-

vative environment. It also poses difficulties for minimizing pauses in a concurrent

implementation. The key is that marking can be done incrementally, unlike updating

incoming references.

Broom also combines GC and RBMM, targeting distributed data processing sys-

tems based on message-passing actors [GGS+15]. Rather than using remembered

sets, Broom proposes to use three types of regions (temporary, actor-scoped, and

transferable) with restrictions on pointer destinations. Enforcement of the associated

restrictions was left to future work. Like subheaps and Yak, Broom exposes an API

that programs must be modified to use. Unlike Yak, Broom’s API separates region

(de)activation and destruction.
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Hierarchical Memory Management for Parallel Programs applies to purely-

functional fork-join parallel code [RMAB16]. The restriction to fork-join structured

parallelism opens the opportunity to automatically use nested heap regions, without

the need for programmer annotations. In an amusing coincidence, they refer to their

heap structure as “superheaps”. Memory is structured as a tree of heaps, mirroring

the tree of parallel tasks. A parallel task join induces the unioning of a heap with

its parent. To support bump-pointer allocation and efficient unioning, heaps are

structured as a list of contiguous pages. Task stealing from a subtree is disabled

while it is being GCed.

The restriction to purely functional programs brings other benefits. Unlike Yak,

collections need not pause all thread stacks; only the subset of processors evaluating

within a given task subtree must be scanned. Thanks to the lack of mutation implied

by a (strict) purely functional language, and age-order collection between related

heaps, there’s no need for remembered sets or a write barrier. Also, parallel collection

between and within subtrees is greatly simplified.

Subheaps support most of the operations provided by superheaps (and more). Hierar-

chical Memory Management (HMM) could mostly be implemented as a library atop

subheaps. However, such an encoding would suffer from two sources of additional

overhead. First, because subheaps lack the structured lifetimes and collection-order

constraints of superheaps, they’d need the cost of write barriers and remembered

sets. Under the reasonable assumption that subheaps would be joined more often

than collected, work to track subheap-crossing pointers would be redundant. Second,

subheaps would not enjoy the benefits of selective synchronization, which allows some

threads to be entirely ignored during collection. This would hurt throughput, latency,

and scalability.
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So subheaps could extend HMM to impure programs, at some cost. This is mod-

erately interesting; of more interest would be exploring ways to improve the work

efficiency of GC in parallel code. HMM aims to allow parallel collection with min-

imal synchronization, but since it provides no interface to control where allocations

end up nor when or where collections occur, HMM doesn’t improve efficiency on a

uniprocessor. The authors acknowledge that the questions of when and where to trig-

ger GC are open issues. Heuristics targeting parallel code are not well explored, and

heuristics developed in a serial setting may not be as effective. Letting programmers

override heuristics with subheaps might then be even more compelling.

6.2.2. Generational Collectors

Rather than taking advantage of phases in particular (types of) programs, genera-

tional collection relies on an even more common property: most objects have short

life spans. Generational collectors improve throughput by focusing their effort on

the youngest objects. Generational garbage collection is usually co-credited to Un-

gar [Ung84], Moon [Moo84], and Lieberman & Hewitt [LH83]. Earlier partitioned

schemes included work by Hanson, Ripley, and Griswold [Han77, RGH78].

In Lieberman & Hewitt’s system, space was divided into multiple generations com-

posed of multiple regions, each with a version number. Rather than the modern

notion of a transparently-maintained remembered set, they forbade direct pointers

from older to newer generations, insisting on indirection via an entry table. They

suggested two possible treatments of the stack. If it is considered part of the oldest

generation, it would require indirections for all its references. Alternatively, it can

be included in the youngest generation, with the tradeoff that the stack must be

scanned at every collection. Their paper draws the connection between entry tables

and reference counts; both have trouble with cyclic garbage. However, because gener-
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ations were not under programmer control, there was no possibility of emulating the

benefits of reference counting. Lieberman & Hewitt raised the possibility of benefits

from programmer influence over region sizing and object placement. They did not

suggest programmer-triggered reclamation of individual regions/generations, nor did

they explore the details of how programmers might influence generational collection

or what magnitude of benefit might be obtained.

Moon’s collector [Moo84] distinguished between static, ephemeral, and dynamic ob-

ject lifetimes. Ephemeral objects correspond to a nursery with aging spaces (called

levels), and dynamic objects to the old space. Objects were partially separated by

assumed lifetime at creation, and information about an object’s space and level was

encoded in its address (similarly to our scheme for block metadata). However, objects

were not strictly space-partitioned; objects of different lifetimes could be interleaved

within a space.

Ungar [Ung84] divided the heap into a nursery, an aging semispace, and the old

space. In Berkeley Smalltalk II, the old space was backed with offline storage. Ungar

identified the tenuring problem, of data that dies after reaching the old space, as a

potential impediment to the efficiency of a generational collector. One of the proposed

solutions, left as future research, was “hints from the executing program.”

Appel [App89] proposed a flexible nursery sizing policy, in which all space not used

by the mature generation is devoted to a semispace nursery. The nature of a semis-

pace nursery means that half of the remaining heap must be reserved as tospace.

However, this is a very pessimistic assumption; the entire premise of generational GC

is that most of the time, a significant fraction of the nursery will be dead! This, in

turn, means that most of the tospace reserve will be wasted, reducing GC efficiency.

Measured nursery survival rates in the literature vary from 20% to less than 3% for
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allocation-heavy code in the SML/NJ compiler.

Guan, Srisa-an, & Jia [GSaJ09] measured several nursery sizing policies for a gener-

ational collector, and found that performance varied widely in some cases. Through-

put varied by up to 36%, and MMU graphs showed widely divergent profiles for some

benchmarks. Even the same benchmark can “prefer” different policies depending

on workloads. For example, jbb2005-23whs achieved 30% MMU at two orders of

magnitude finer granularity with an Appel nursery (HA) versus the other policies.

In contrast, for jbb2005-8whs, at roughly 1 second granularity, the default adaptive

policy achieved roughly 85% MMU versus roughly 15% MMU for the HA policy.

One approach to avoid the overhead of the tospace reserve is to simply reduce its size.

This gives objects more time to die and makes minor collection more efficient. If the

reserve turns out to be too small, a backup strategy is needed, such as compacting

collection. Velasco, Olcoz, & Tirado [VOT04] measured average GC time reduction of

17% for a 2x heap, and a reduction of heap usage ranging from 19% to 40%. Overall

execution time speedup was 2% on average for SPECjvm98.

Similar approaches have been explored by McGachey & Hosking [MH06], as well as

Tong & Lau [TL10].

Demers et al [DWH+90] detailed schemes for obtaining some of the benefits of gen-

erational collection in the context of a conservative collector. They also note the

possibility of using application-provided hints (in the form of a logical timestamp) to

guide collector effort. Their chosen example is to do a partial collection between two

compiler phases. On that benchmark, they observed that hints produced a speedup

relative to the baseline generational collector, but the non-generational collector was

still faster. Their conclusion was that “with the right hints, at no loss of working set,
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collection time can be greatly improved.” Subheaps would enable compiler authors

to experiment with domain-specific collection heuristics, such as inter-pass partial

collections.

Demers et al also introduced the possibility of leaving objects marked between collec-

tions. The implementation in this dissertation uses this “sticky mark bits” technique

to implement generational collection for subheaps. Subsequent work has leveraged

the same idea to either reduce redundant tracing [CM15, Ric16] or improve parallel

tracing [CP15, RN13].

The Mapping Collector [WK08] uses virtual memory to compact the tenured

space in a generational collector without copying or updating pointers. This re-

lies on the same basic phenomenon that subheaps take advantage of: objects tend

to die in clumps. The Mapping Collector (MC) identifies completely-dead pages,

and remaps the underlying storage to permit indefinite bump-pointer allocation. Ad-

dress space is never reused, but with 64-bit pointers, virtual memory is not a scarce

resource. Reclaiming chunks of memory with little live data is a trick shared by

G1 and C4 [DFHP04, TIW11]; MC adopts the simpler approach of reclaiming only

completely-dead pages. Their experimental evaluation shows this causes only mild

fragmentation. Because MC doesn’t modify live objects, it need not synchronize with

the mutator to reclaim space. Concurrent marking is demarcated by stop-the-world

root scans. MC provides significant improvements to throughput and MMU com-

pared to alternative compaction algorithms such as the Compressor [KP06]. Max

pause times for the concurrent MC were roughly 1 ms per 3 MB of heap.
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6.2.3. Partitioned Collectors

Another category of collectors partitions the heap in ways beyond the standard gen-

erational design. These designs generally use fixed, automated, program-independent

partitioning schemes, whereas subheaps provide arbitrary partionings but require

programmer guidance.

Bishop developed a partitioned collector for an early capability system with a single

paged linear address space, called ORSLA [Bis77]. Bishop’s design had the program-

mer place objects into separate “areas” which served as both the basis for efficient

paging of small objects and of incrementalizing garbage collection in a large address

space. Areas also supported space quotas. Each process owned multiple areas, includ-

ing an area for activation records. In ORSLA, the user bore ultimate responsibility for

invoking GC. However, the system implemented automatic inter-area reference track-

ing (with hardware assistance), and inter-area object movement was handled by the

collector. An “object mover” helped maintain cycle-completeness without requiring

simultaneous collection of cyclically linked areas.

In ORSLA, direct references between areas were normally forbidden; instead, an ex-

plicit indirection called an inter-area link served as the equivalent of a remembered

set. However, Bishop observed that maintenance of inter-area links (and its asso-

ciated overhead) was unnecessary for short-lived computations; for such situations,

Bishop proposed “cables” between areas to permit direct linkage (and, of course, force

simultaneous collection). Cables were automatically constructed from short-lived to

long-lived areas. Users could also explicitly create cables between areas. The design

for temporary subheaps from Section 2.7.1 is a simpler, less-general reinvention of

Bishop’s notion of cables.
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Bishop suggested that directing collection effort towards pages seeing the highest rate

of modification could improve the efficiency of collection. Given ORSLA’s context

as an operating-system level solution, combined with the collector’s integration with

hardware and virtual memory, made this an attractive point in the design space.

Subheaps instead rely on user input to redirect collector effort, on the assumption

that “regular” garbage collection provides sufficient performance in most situations.

The core mechanisms of subheaps bear striking resemblance to ORSLA’s scheme for

garbage collection. Novel elements of this dissertation include: the subheap API,

including dynamically-scoped subheap activation and the design for condemned sets;

integration of subheaps with generational garbage collection; investigation of write

barriers and compiler-driven barrier optimization; lessons learned from deployment

of subheaps; careful design for efficient amortization of both allocation and collec-

tion costs; and a full implementation, with performance analysis of subheaps across

multiple programs and collector reference points.

The Mark-Copy collector by Sachindran & Moss [SM03] reduces the space overhead

associated with semispace collection. Because of the standard space-time tradeoff

with GCs, this also translates to faster collections in size-constrained heaps. The

core idea is to divide the heap into numbered blocks, which can be evacuated, in-

order, incrementally. To do this, MC constructs (at collection time) unidirectional

remembered sets between blocks, using a full-heap scan. This scheme brings both

lower space overhead and the potential for smaller pauses, at the cost of extra redun-

dant work. When used in lieu of mark-sweep in a generational collector, MC usually

brings small performance advantages due to increased mutator locality from copying.

The Memory-Constrained Copying collector (MC2) [SMB04] enhances MC with

incremental marking, logical block numbering, and interleaved nursery & generational
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collection. By carefully scheduling its collection effort, MC2 provides throughput

comparable to mark-sweep while achieving significantly reduced pause times.

Generational GC designs focus on the youngest objects, but this risks promoting ob-

jects too soon. Focusing on the oldest objects is worse: they are often immortal,

meaning tracing them is wasted effort. Older-First [SMM99] garbage collection fo-

cuses effort on the middle class. It does so by rotating a fixed-size collection increment

through the heap, moving in turn from older to younger objects. Like subheaps, this

means that its write barrier must remember more pointers.

Stefanović et al’s [SHB+02] analysis of (Deferred) Older-First versus Appel-style gen-

erational collectors illuminated several trends that also apply to subheap collectors.

The three biggest factors for Older-First were: more frequent collections, leading to

higher costs for stack scanning; lowered pause times due to avoiding whole-mature-

space collection; and lower total execution time, mainly due to reduction of GC work

as evidenced by lower mark/cons ratio.

At the obvious cost of requiring programmer intervention, subheaps offer the fol-

lowing potential improvements upon Older-First collection. First, because subheaps

are flexibly-sized instead of fixed-size, they may require fewer remembered pointers.

Second, because subheap collection can be triggered based on specific program be-

havior, rather than on the weak generational hypothesis [JHM11], fewer objects need

be unnecessarily copied out prematurely.

The Beltway framework [BJMM02] generalizes multi-space collectors, including semis-

pace, generational, and Older-First designs. A Beltway design has one or more belts,

each composed of an ordered sequence of increments. Allocations are directed into

the last increment of a particular belt. Increments are collected in-order per belt.
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Promotion policies determine where evacuated objects end up. Remembered sets

must track pointers from old to young belts, and from young to old increments.

Jones & Ryder advocated for lifetime-aware garbage collection in the LACE [JR06,

JR08] project. They observed that individual allocation sites almost always allocate

objects with predictable lifetimes, and suggested orienting the heap towards object

deaths rather than births. Doing so would avoid wasting effort on live objects, and

speed the collection of dead objects: precisely the benefits conferred by subheaps.

Unlike subheaps, LACE was envisioned primarily as an automatic system, driven by

traces and/or static analysis.

The Train algorithm [HM92, SG95, Gar05] was designed to incrementally collect the

mature space in a generational collector. Use of subheaps does not preclude use of

the Train (or any other sophisticated design) for the default/mature space. Ideally,

there would be little benefit in using the Train to collect other subheaps—if there is

enough live data at the point of collection to make the Train worthwhile, the subheap

is probably being activated and/or collected at the wrong time. I haven’t yet thought

about the possible complications of applying Train-like techniques within individual

subheaps.

The Train algorithm works by dividing the mature space into fixed-size frames (cars)

organized into ordered lists called trains. Any set of prefixes of cars within trains

can be collected independently, thus bounding the work needed for a single round of

collection. Subheaps, in contrast, are about making collection more efficient, reducing

total GC work to be done, rather than limiting the amount of work to be done in any

particular increment. Reduced GC pause times are simply a beneficial consequence

of efficient collection.
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A subtle but important difference between the Train algorithm and subheaps is that

the former, used in its intended role as the Mature Object Space for a generational

collector, has an invariant that roots are processed and redirected into young space

before scavenging. Subheaps have no such invariant.

Like Beltway, each car/increment has a remembered set. (Subheaps, which also have

remembered sets, are more akin to trains than cars). A key challenge for both Train

and Beltway is handling cyclic structures which span cars/increments. In Beltway,

the solution is to add an unbounded-size fallback space to hold such structures —

which implies sacrificing incrementality. In Train, once a cyclic structure is confined

to a single (unreferenced) train, the whole train can be collected. However, it can take

many repeated object copies to arrange that state of affairs. There is a fundamental

tension between the size of a car: smaller cars bring smaller pauses, but larger cars

incur less recopying to handle cyclic structures. The way subheaps resolve this tension

is to observe that, when a space is known to be nearly all dead objects, cost of

collection is almost entirely independent of the size of the space.

Another traditional challenge for the Train algorithm is to limit the size of remem-

bered sets. With subheaps, the programmer has the power and the responsibility to

use subheaps in ways that do not lead to remembered set blowups. Garthwaite [Gar05]

tackled this and similar issues of scalability.

Klock [KC11, KI11] presented an alternate take on scalable garbage collection. Un-

like the Train algorithm, Klock’s regional garbage collector provides provable,

mutator-independent bounds on pause times.

Klock and Garthwaite tackled many similar issues. One common theme was estab-

lishing careful bounds on the cost of remembered set management, especially in the
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presence of popular objects. Another was pacing garbage collector work to match

mutator activity.

Klock notes that “exposing the notion of regions at a level visible to the applica-

tion programmer” would be an interesting avenue for future research. His discussion

touches on RBMM, pre-tenuring, and (implicitly) CBGC. Subheaps might provide a

flexible framework for capturing the suggested benefits.

The Garbage-First (G1) design [DFHP04] shares common elements with sub-

heaps, Klock’s regional collector, and the Train algorithm. All three feature a space-

partitioned heap with non-unidirectional remembered sets. Like Klock’s regional

collector, G1 uses a concurrent snapshot-at-the-beginning (SATB) marking pass to

avoid retaining circular garbage in remembered sets. In G1, the results of concurrent

marking are also used to prioritize collection of regions that are mostly-garbage. The

less live data in a given region, the faster it will be to collect. This is the same basic

insight that subheaps rely on to boost the efficiency of collection.

Subheaps differ from G1 in several ways. First is the granularity of regions vs sub-

heaps. Regions (or blocks) are a fixed, physical division of the heap. Subheaps are a

logical division; their granularity varies according to programmer-specified directives.

When subheaps comprise multiple regions, they need not record remembered sets

between those regions. This can potentially decrease time and space costs for both

mutator and collector.

A subtle but closely related distinction concerns allocation destination. With G1,

allocation switches to a new region when the previous one fills up. Subheaps have

no maximum size, and allocation destination is under programmer control. This can

also lead to smaller remembered sets.
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G1 uses a points-into remembered set structure (in Klock’s terminology), which has

the downside of potentially quadratic space usage. In the paper’s tests with SPECjbb,

even after specialized handling to reduce the impact of popular objects, more than

one fifth of the heap was devoted to storing remembered sets. This roughly matched

the total volume of live objects. This suggests that space savings from shrinking

remembered sets could be significant for some programs.

NG2C [BOF17] augments G1 with user-controlled fine grained pretenuring, and pro-

vides a profile-based analysis for automatically suggesting annotations. The most fun-

damental difference with subheaps is NG2C’s lack of support for explicit reclamation.

Explicit reclamation of arbitrary subheaps enables features like emulated reference

counting. NG2C omits explicit reclamation, and in return naturally integrates with a

highly concurrent collector. Because NG2C’s “generations” do not maintain indepen-

dent remembered sets, the underlying collector’s write barrier applies as-is. A third

difference is whether allocations are implicitly or explicitly directed to user-defined

generations/subheaps. NG2C’s decision to only pretenure at explicitly-annotated al-

location sites arguably reduces modularity; it means, for example, that the client of

a library cannot capture the library’s allocations.

Several papers have observed that object lifetime and mutation patterns are corre-

lated. Young objects are more heavily mutated, while older objects are more stable.

Copying collection is well-suited to young objects, and reference counting suits older

objects. Ulterior Reference Counting [BM03] combines a copying nursery with

a reference-counted mature space. Pointers into the nursery must be remembered as

usual. Pointers from the nursery to the mature RC space can be deferred or reference

counted. Mutations in the RC space are logged. Object counts in the RC space are

only reconciled when the nursery is collected. URC’s willingness to scan the nursery’s
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live space stands in sharp contrast to subheaps, which strive to avoid making the cost

of collection strongly dependent on the size of live data.

Morad et al [MHKS09] also combined generations and regions, augmenting an Appel-

style generational collector with a region-based heap. In their scheme, long-lived

objects were pretenured into regions to avoid the cost of repeated tracing in the

mature space. Profiling was chosen over manual control or static analysis for choosing

which objects to region-allocate. Each region held (all) objects from a single “nested”

allocation site. Reference counts were maintained for regions rather than objects

within regions; unlike subheaps, they forbade partial reclamation of regions. Their

scheme required an additional write barrier only to keep accurate reference counts

on minor collections. Major collections traced the whole heap, thereby also dealing

with cyclic garbage across regions. In their terminology, the generational heap and

region-based heap were each called “sub-heaps.”

The Age-Oriented Concurrent Collector [PPB05] and the generational slid-

ing views collector [AP03] both use a mark-sweep nursery with a reference-counted

mature space, each concurrently collected. A mark-sweep nursery was chosen to avoid

the complexities of concurrent copying. This dissertation only explores homogeneous

subheaps; exploring heterogeneous memory management schemes such as these ex-

amples could be interesting future work.

Baecker [Bae72] explored the possibility of augmenting Algol 68’s garbage collector

with a region-like construct he called areas. The core benefits of such a scheme over-

lap with those of subheaps: efficient bulk reclamation and the ability to collect the

most relevant subset of the heap. Baecker’s work predates the development of gener-

ational collection. His paper identifies safe independent collection as a key problem

(which would eventually be addressed by the invention of remembered sets and write
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barriers). He also raised the potential for the cost of area management to outweigh

the savings in garbage collection costs, a concern which has been borne out by our

experimental analysis with subheaps.

6.2.4. Static Analysis for GC

Most work on garbage collection relies on generic heuristics and runtime interposi-

tioning. Some work relies on static analysis of particular programs to make garbage

collection more efficient.

Deca aims to reduce GC overhead in distributed data processing pipelines [LSZ+16].

It applies a code transformation, supported by static analysis, to enable bulk man-

agement of data, similar to region-based memory management. Rather than modify

the garbage collector, their system represents objects in data processing pipelines via

packed byte arrays. This brings three benefits: decreased GC cost, due to reduced

object count and elimination of read/write barriers; increased data density and cache

behavior, due to removal of pointers; and reduced serialization costs, because objects

are represented in serialized form.

Deca’s experimental evaluation exhibited exhilarating results: compared with the G1

garbage collector, Deca reduced GC costs from 8.8x to 90.5x, and improved end-

to-end performance from 2.2x to 346x. The authors do not break down how much

of their performance improvements originate from hardware effects or serialization

avoidance versus reduced GC pressure. Comparing subheap’s performance on similar

programs would be quite interesting.

Connectivity-Based Garbage Collection uses a static analysis to determine a

conservative partitioning of runtime objects, such that certain partitions are known
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to never point to other partitions [HHDH02]. This permits sound collection of subsets

of the heap without needing to record every partition-crossing reference. By forcing

some partitions to be collected together, a connectivity-based collector can elide all

write barriers and remembered sets entirely. This is precisely akin to a generational

collector’s requirement to collect the nursery before the old space in exchange for a

unidirectional remembered set.

Viewed through the lens of their work, subheaps allow the programmer to exploit

some of the benefits of connectivity-based collection. Programmers get the task of

identifying fruitful partitions, while the implementation repurposes well-researched

infrastructure for generational garbage collection. CBGC uses topological ordering

to avoid the need for write barriers or remembered sets, which are potentially costly

in time and space, respectively. Subheaps make it the programmer’s responsibility to

choose productive and efficient partitionings of the heap. CBGC uses static analysis

to determine allocation placement; subheaps extend programmer choices through

dynamic slices of program execution.

Ruggieri & Murtagh proposed a static analysis to identify object lifetimes which

could be linked to procedure activation records [RM88]. They relied on inter- and

intra-procedural data-flow analysis rather than the type-based approach of Tofte &

Talpin. In their scheme, each procedure call could create a “sub-heap” to hold objects

which would have been statically shown to die before the procedure call returns.

6.2.5. Program-Specific Garbage Collection

Some collectors discussed thus far have been designed to work well with particular

classes of programs (such as distributed big data computations with Yak) or program

features (such as phase recognition in MicroPhase). Some collectors go a step further,
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and provide ways to customize their behavior to an individual program. In contrast to

work such as subheaps that proposes a richer interface between the programmer and

the collector, program-specific GC works without human interaction, usually driven

by static analysis or data collected from GC traces.

Object colocation [GM04] is related to pretenuring [Har00] and connectivity-

based collection. The common idea is to allocate objects to different spaces in order

to improve GC efficiency. Such techniques could be applied to subheaps which contain

a mix of live and dead objects, reducing the live data size at collection time. Both

are, effectively, forms of program-specific garbage collection.

In the context of a generational collector, pretenuring [Har00] uses static or dynamic

analysis to decide, on a per-call-site basis, whether to allocate into the nursery or the

mature space. Intuitively, allocating long-lived objects into the mature space avoids

both the cost of write barriers and the cost of copying out of the nursery. Coloca-

tion [GM04] makes the decision on a per-object-allocated basis; the same call site can

allocate into the mature space or nursery, depending on what other objects it will be

connected to. Viewed through the lens of colocation, subheap allocation allows call

sites to vary allocation choices, but generally in a more coarse-grained way. Similarly

to colocation, and unlike regions or CBGC, the only negative consequence of “bad”

subheap usage is degraded performance and not compromised program correctness.

In the ideal case, colocation selects exactly those objects that would survive a nursery

collection. With subheaps, the goal is to select only those objects that will not

survive subheap reclamation. In either case, the effect in the limit is the same:

subheap/nursery reclamations can be free because everything they contain is dead.

The use of coalloc imposed a 1% average baseline performance penalty. Colocation
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generally reduced the volume of data copied out of the nursery by 50-75%. However,

the total benefits obtained were mixed. When augmenting a bounded-size nursery,

colocation shaved an average of 30% from GC time in a 3x heap, and consistently im-

proved total performance by about 3%. In an Appel-style nursery, the performance

gain from colocation was drowned out by a slowdown caused by degraded locality

in a mark-sweep mature space. With a copying old space, colocation had no ap-

preciable net performance impact. Colocation required heuristics to prevent certain

benchmarks from severely degrading performance.

Marion, Jones, & Ryder [MJR07] suggest a method for driving pretenuring: they

combine a simple program analysis to identify coding idioms, and a database matching

idioms to object lifetimes. Examples of such idioms include (i) classes with only

final fields; (ii) immutable objects; or (iii) classes encoding reference cells. Observed

reductions in GC time for some SPECjvm98 programs ranged from 6-77%.

Rather than building a novel collector to be more responsive to a range of pro-

grams, several authors have advocated for automatic switching between a diverse

collection of off-the-shelf implementations. Proposed criteria for selecting the most

appropriate design include profiling [FT00], machine learning [SBWC07], automated

heuristics or explicit annotations [Pri01, SKB04, SK07], and accounting for program

inputs [MZS09]. Less drastically, one might “customize” a single off-the-shelf collector

by automatic parameter tuning, as done by Lengauer and Mössenböck [LM14].

Jacek et al [JCMM16] investigated the potential for collection schedule to optimize

GC performance, using traces of the DaCapo benchmark suite. Their model showed

average improvements of 10% in a 2x heap, with overall improvements between 5%

and 20% for a generational collector. Since they did not consider customized heap

partitioning schemes, the efficiency of their collections are limited by the live heap
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(nursery) size at the time of collection, generally between 9MB and 11MB. Follow-

on work by Jacek & Moss [JM19] investigated the potential for machine learning to

improve the selection of GC collection trigger points.

6.2.6. Widening the GC Interface

The concept of augmenting the GC interface is not new to this work. However, the

possibility is under-explored in the literature. This subsection covers the few projects

which have experimented with user input to guide the garbage collector’s actions.

Hayes proposed key object opportunism [Hay93], theorizing that the lifetimes of

groups of objects could be tied to the lifetime of a single key object within the

group, rather than being tied to program phase behavior. His primary heuristic for

identifying key objects was those that appeared in remembered sets; other possibilities

he considered included random selection, stack reachability, or programmer hints.

Subheaps provide a means for programmers to take advantage of key objects.

Multi-Memory-Management (M3) by Terei, Aiken, & Vitek [TAV14] was a signif-

icant spiritual inspiration. In particular, their proposed idea of widening the memory

management interface to boost the efficiency of garbage collection is clearly reflected

in subheaps. Their focus was to combine tracing and reference counting, relying on

the programmer to identify a productive division of labor between the two schemes.

Like subheaps, they argued for an opt-in approach, augmenting rather than replacing

the underlying garbage collector. However, the details of the two efforts widely differ.

Whereas subheaps use a dynamically-scoped runtime API to focus collection effort

on logical subsets of the heap, they use a statically-scoped, type-driven approach to

choose between collection strategies (tracing vs reference counting).

Customizable Memory Management [Att94, AFI98] (CMM) supported multiple
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heaps with an interface roughly isomorphic to the basic interface sketched in Sec-

tion 2.3 (sans the distinction between condemn and collect). Because CMM was

implemented as a library-only solution, it did not—could not—make use of write

barriers. Due to the limits of working without compiler support, CMM had to rely

on either (fallible) user input or (expensive) cross-heap tracing to identify cross-heap

pointers. Use of write barriers for subheaps improves safety, reduces programmer

burden, and enables the hybrid tracing/reference-counting scheme of Section 3.5.

This dissertation explores homogeneous subheaps, in contrast to the heterogenous

heaps explored by CMM. An earlier implementation of subheaps mirrored CMM’s

usage of C++ classes to implement multiple types of (sub)heap, specifically “coarse

grained” subheaps which managed memory at the granularity of frames rather than

lines. This scheme was abandoned in part because it produced significant fragmenta-

tion issues on the SAC benchmarks due to the inability for different granularities of

subheap to share memory.

Project Snowflake [PVV+17] augmented a concurrent garbage collector with safe

deletion of individual objects. The Snowflake programming model guarantees type

and memory safety by making attempted use of a deleted object result in a thrown

exception. However, careless use of delete can result in a program encountering

unexpected exceptions. In contrast, the subheap API only affects performance, and

cannot by itself alter program control flow.

Data Structure Aware collection, proposed by Cohen & Petrank [CP15], also gave

the programmer a wider interface to GC. Their design brings together sticky mark

bits1 and BiBoP-style [DEB94, JHM11] type-segregated allocation. Programmers

must identify data structure node types with annotations; node instances are then

1The sticky mark bit is called the member-bit in their work.
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allocated on segregated pages, and stickily marked until the programmer signals their

removal. Two major benefits accrue from this scheme. First, segregated contiguous

allocation enhances locality for mutator and collector alike. Second, and more im-

portantly, sticky-marked nodes can be treated as roots, providing a rich source of

mostly-independent work packets for a parallel tracer.

Subheaps provide a flexible mechanism to segregate data structure nodes. In DSA,

payloads are not segregated. With subheaps, the programmer could segregate all

nodes together, or pursue a finer granularity of heap decomposition with nodes and

payloads combined into many small subheaps. However, the interaction of subheaps,

sticky marking, and parallel tracing remains entirely unexplored.

The Deferred Collector by Ricci [Ric16] makes GC more efficient by letting the pro-

grammer identify key objects. Ricci adds one function, collectInfrequently(obj),

to the runtime. The transitive closure of objects passed to that API are labeled as

deferred. When the GC runs, it ignores deferred objects. Thus, when a large sub-

graph is protected by a deferred key object, the cost of tracing the subgraph can

be amortized over many collections. Instead of adding a second API to notify the

collector that a key object is about to die, Ricci simply ignores the deferred bits on

every nth collection.

Subheaps can provide similar benefits in theory, with two important disclaimers.

First, subheaps currently provide no direct analogue of Ricci’s infrequent collections;

in practice, programmers would likely need to find points at which to (perhaps con-

ditionally) trigger collection for designated objects. Second, the allocation-oriented

nature of the subheap API may not be as convenient as Ricci’s direct transitive-

closure semantics. With Ricci’s API, objects allocated from many places, at many

different times, can be managed uniformly with a single API call. In contrast, the
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subheap API might require much more careful management of subheap activations

in order to physically segregate the objects that a transitive closure would identify.

Deallocation Hints by Reames and Necula [Rea13, RN13], focuses the collector’s

attention on objects that should soon die. This is in stark contrast to the prior two

designs, which instead identify long-lived objects. Reames targets C and C++, in

which most code already identifies (likely!) object lifetime end points with the free()

function call.

In Reames’s Hinted Collector, objects passed to free() are labeled as condemned

but not immediately reclaimed. At collection time, every non-condemned object is

assumed to be live and treated as a root. Like the Data Structure Aware collector,

the root set is thus greatly expanded. A primary benefit of Deallocation Hints is

to improve the performance of parallel marking. The key insight is that marking

has serial complexity proportional to the reachable volume of live data, but parallel

complexity proportional to the depth of the object graph.

As with DSA, subheaps (with the extension for short-lived subheaps from 2.7.1) can

in theory provide similar abilities to redirect collector effort away from presumed-

live data, but the interaction of subheaps and parallel marking has not yet been

investigated.

These three collector designs can all be cast in a unified framework of programmer-

controlled mark bits. The Hinted Collector allocates objects as marked, and allows

the user to unmark candidates for reclamation. The Data Structure Aware collector

segregates data structure nodes and stickily marks them. The Deferred Collector

stickily marks the transitive closure of programmer-identified key objects. Note that

while they use the same underlying mechanism, there is a distinction in purpose:
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the Deferred collector speeds serial reclamation by amortizing the cost of marking

stable subgraphs, while the other two improve parallel marking by providing a greatly

expanded root set.

6.2.7. Others

Compact Regions [YCA+15] are a runtime-backed library for the Glasgow Haskell

Compiler environment. Programmers modify their programs to make use of the li-

brary’s API, which copies immutable objects to be arranged contiguously in memory.

The stated purpose is to enable efficient network transmission of serialized data by

avoiding the pointer-chasing of traditional serialization. To do so, compact regions

must be self-contained; objects within a region can refer to other objects within the

region, but cannot refer to objects outside of the region. As a pleasant side effect,

this means that the garbage collector can skip over compact regions when processing

the rest of the heap.

Like with subheaps, moving long-lived data from the mature space to a compact region

can reduce GC costs. However, subheaps and compact regions differ in two important

aspects. First, compact regions cannot contain mutable references (since mutation

could introduce region-crossing pointers). Second, like Tofte/Talpin-style regions,

objects within a compact region are only collected en masse with their containing

region; unlike subheaps, there is no reclamation of space from dead objects within a

compact region.

The Clustered Collector [CM15] dynamically identifies “head” objects along with

disjoint sets reachable from each head. Head objects are similar to key objects, in

that reachability of the head implies reachability of the cluster. However, unlike key

objects, non-reachability of the head does not imply non-reachability of the cluster.
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The Clustered Collector intermittently runs a dynamic analysis to identify clusters. In

their prototype, cluster identification is several times more expensive than a full heap

trace. Clusters do not grow once identified, but can be dissolved by writes that would

shrink the cluster. Undissolved clusters need not be re-traced at each collection. In

a sense, the Clustered Collector dynamically identifies fine-grained sub-generations.

Like generations, clusters have remembered sets and can reduce tracing effort wasted

on stable data.

Some key differences with subheaps include: automated runtime analysis vs pro-

grammatic source-embedded API; dissolving clusters for reduced floating garbage vs

deferring subheap collection for efficiency; size-limited clusters vs dynamically-scoped

swathes of allocations.

Firefox partitions its JavaScript heap into “compartments” [WGW+11, WLBF16].

Segregation of objects into compartments is done automatically, via script document

origin, and cross-compartment references are handled via wrappers (which help en-

force web-specific access policies) instead of remembered sets.

Contaminated GC [CPC00] focuses on object death points rather than age. It

essentially dynamically determines the appropriate region to own each object.

Baker [Bak92] proposed a scheme called lazy allocation. The idea is to do all

allocation on the runtime stack, evacuating live objects at method return and heap

writes. Subheaps apply a similar principle, but at coarser programmer controlled

granularity, and reserve stack allocation for allocations with statically-known lifetime.

This avoids the need for evacuation or read/write barriers for the stack (assuming

stacks are not themselves heap-allocated).

Corry extends on Baker’s ideas in several ways with Optimistic Stack Alloca-
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tion [Cor06, Cor04]. Corry splits the traditionally unified Algol-like stack into sep-

arate control and data stacks. He suggests triggering deallocation (from the data

stack) at loop boundaries instead of at call/return. Doing so provides better support

for factory methods and constructors, and reduces the need for inlining. Corry also

avoids the need for Baker’s read barrier by scanning stack frames.

6.2.8. GC Scheduling

Subheap collection is usually explicitly invoked. This touches on the subfield of

garbage collection scheduling, results from which suggest the potential for subheaps

to improve the performance of garbage collected systems.

Perhaps the simplest and most widely-available API for programmers to influence

GC is the System.gc() API found in Java. However, it provides the programmer

no guarantees or even mental model for what portion of the heap it will collect. An

application that intends to trigger a minor collection but instead gets a major col-

lection is unlikely to achieve its performance goals. This uncertainty and imprecision

severely limits the usefulness of System.gc() in practice.

Terei & Levy explored the impact of programmatic GC scheduling with Blade [TL15].

They extended the garbage collector with a very simple API: a callback for the user

to request deferral of garbage collection, and a function to trigger a (whole-heap)

GC. Deferred GC allows domain-specific coordination logic to run, improving system

performance. HTTP servers can notify load balancers that they will be temporarily

out of service while GC takes place. In a distributed system, follower nodes can

coordinate with the leader to avoid correlated pauses that can prevent the system

from reaching consensus. Their evaluation showed huge improvements in worst-case

request latency, on the order of 100x, without degrading throughput. Other big
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data systems such as Cayuga [DGP+07] have also found benefits from the ability to

explicitly kick off GC on a per-thread basis.

There is also work on having the runtime pick opportune moments to trigger garbage

collection. Prior coverage of related work on generational collectors touched on some

examples, mostly focused on improving overall work efficiency by collecting when

the nursery is mostly-dead. Some work has investigated scheduling GC collections to

avoid interference and reduce overheads in Big Data workloads [MAHK16, MHAK15].

Their results show improvements in both throughput and tail latencies.

Finally, some work has looked at GC scheduling with an eye towards latency rather

than throughput. For example, to maintain responsiveness and avoid dropped frames,

V8 schedules increments of collection work to occur in the spare milliseconds between

frame rendering [DEE+16]. Subheaps give programmers more control over when

to start collections, but do not yet allow programmers to schedule partial collection

increments, as would likely be required to explore this sort of latency oriented domain-

specific optimization.
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CHAPTER 7 : Conclusion

Tracing garbage collection and manual memory management seem to be diametrically

opposed: one provides safety, modularity, and decent performance without human

input; the other provides control and performance for a wider range of programs.

Subheaps represent one particular hybrid between these two extremes, for enhancing

programmer control over tracing garbage collection without sacrificing safety.

Of course, the concrete design for subheaps explored in this dissertation is only an

early foray into the design space. Subheaps are more broadly an idea about how

to expand the “range” of a GC by careful focusing of collection effort. The imple-

mentation and evaluation sections have revealed both strengths and weaknesses of the

concrete design explored in this dissertation. The future work section casts some light

on how the underlying idea might evolve—in design and implementation—to amelio-

rate those shortcomings. These threads may now be joined to support an informed

perspective on subheaps. We begin by summarizing the benefits and drawbacks to

the implemented version of subheaps.

Benefits For certain important classes of programs, such as software caches, sub-

heaps can provide large reductions in GC overhead and divorce GC costs from heap

size. Subheaps allow programmers to treat garbage collection costs as partially de-

terministic (with important caveats) rather than completely nondeterministic. A

consequence of such control is that minor alterations to source programs—such as

the insertion or removal of a call to subheapCollect—can produce drastic changes

to GC costs, for better or worse. Finally, by managing space at the granularity of

lines, subheaps can be used in situations where other region-flavored allocators would

fail due to excessive space overhead.
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The reasons behind the sharp division in performance on caches between subheaps and

non-augmented tracing GC, illustrated in Section 4.4, are worth exploring. Caches

have several features that make them well-suited to subheap management. First,

isolation between cache entries minimizes remembered set maintenance costs and

eliminates the possibility of creating subheap-cyclic garbage. Second, the lifetime of

a cache entry is well-defined; this makes it relatively obvious how and where to modify

the cache to use subheaps. Third, cache entry lifetimes are not statically predictable,

which makes it difficult for traditional heuristic approaches like generational collection

to work efficiently. Fourth, the line-based granularity of subheaps minimizes space

overheads for cache entries that may vary widely in size. Caches also have aspects

favoring subheaps which are not related to their heap structure. Traditional workloads

have fixed heap requirements, so the only effect of overprovisioning the heap is to

reduce GC throughput overhead. In contrast, extra space can be used to improve

the behavior of the cache itself, creating an impetus to operate with a tight heap.

Subheaps thus resolve the tension between GC throughput and cache hit rate.

Costs Subheaps impose a variety of costs for the four primary constituents of a

language ecosystem: language designers, language implementors, library authors, and

programmer-users. Designers must account for the tensions between subheaps and

certain language features, particularly mutable globals, shared-memory multithread-

ing, and sophisticated control flow. Language implementors face extra costs, such

as being forced to adopt data flow analysis to scrub stack slots before reclamation,

and to implement the static analysis and optimizations needed for subheap write bar-

riers. While sometimes inconvenient, these costs must be paid only once, and can

be amortized over all users of subheaps. In contrast, some costs recur for all users.

Both library authors and their consumers must contend with the runtime costs of the
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subheap write barrier and the potential costs in human effort of deciding how and

where to make use of subheaps. Any design and implementation for a subheap-like

system must carefully balance best-case versus common-case costs and overheads.

In particular, making “regular” tracing collection slower to speed up user-triggered

collections is a very risky proposition.

There is also a cost in human effort to measure the benefit (or lack thereof) for en-

visioned usages of subheaps. For example, the Reynolds2 benchmark (Section 4.3.2)

exhibits a “sweet spot” of subheap sizing. It would currently be the human’s respon-

sibility to experimentally find this favorable configuration. Lastly, subheaps require

that programs be modified to use the subheap API. Through the API, the choice

of when, where, and whether to collect can be driven by arbitrary Turing-complete

code fragments. The burden of wisely applying this power, in trading off performance

versus clarity, modularity, and maintainability, rests on programmers.

In contrast to the success of subheaps for software caches, it is instructive to con-

sider the failure of subheaps to improve the SAC library for self adjusting computa-

tion. SAC features heap structures—cyclic data structures with heterogeneous object

lifetimes—that prevent subheaps from operating with minimal overhead. SAC also

involves code features, such as intricate use of higher-order recursive functions, that

complicate the task of orchestrating the proper intended usage of the subheap API.

Alternatives Subheaps do not exist in a vacuum. Individual performance problems

that might be solved with subheaps can be resolved, or at least ameliorated, with

other approaches. Examples include overprovisioning the heap to reduce throughput

costs, or reducing latency via concurrent collection. Part of the appeal of subheaps

is to provide a single principled mechanism rather than relying on a collection of
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disparate approaches. The tradeoff for such generality is that subheaps are often not

the lowest-effort solution to any particular isolated GC problem:

• Throughput problems caused by GC thrashing are exacerbated by small heap

sizes. Often, the cheapest and easiest solution to reduce the runtime cost of GC

is to simply provision more memory.

• Subheaps must conservatively update remembered sets; thus even if subheap-

crossing pointers die by the time collection is triggered, the cost of recording

intermediate states can outweigh the savings from cheaper collections. In con-

trast, memory management techniques based on static analysis need not dy-

namically monitor intermediate program states.

• Finally, latency issues with a stop-the-world GC model tend to be binary: par-

tial reductions in GC load imply that unacceptable pauses merely occur less

often, rather than not at all. While subheaps can eliminate GC work for very

simple programs, doing the same for large and complex programs does not seem

feasible. In contrast, concurrent collectors can more easily control latency by

pacing the mutator.

An interesting direction for future work would be to combine subheaps with comple-

mentary approaches. For example, a system that relies primarily on substructural

types for memory management, such as Rust, might find it easier to gain benefits

from use of subheaps because superfluous short-lived data would be “filtered out” by

the language’s static discipline.

A Snapshot of Opinion This dissertation has explored the ideas behind, the im-

plementation of, and the consequences from using subheaps. Subheaps were developed

in pursuit of an ambitious goal: a general-purpose GC augmentation to make safe
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languages performance-competitive with their unsafe counterparts. While subheaps

have demonstrated strong results for some important classes of programs, it remains

unclear whether the crown has yet been won. I believe that most implementors of new

languages, given the costs and benefits outlined above, would make an engineering

decision not to adopt subheaps in their current form. This is in no small part due

to the minimialist focus of the design for subheaps explored in this dissertation. Of

more interest to potential adopters is whether a spiritual successor to subheaps might

prove sufficiently useful. Here I remain optimistic that future research could alter the

tradeoffs involved to make usage in practice, well, practical.

The Future Expansions of the subheap API might lead to improvements for pro-

grams not examined in this dissertation. One example would be to experiment with

support for evacuation between subheaps. This could reduce instances of wasted

work in repeated collection of a subheap with mixed-lifetime objects. Such exten-

sions would also enable more direct comparisons of the efficacy of subheaps versus

related work such as Yak.

The desire to better model or duplicate existing GC designs could also motivate other

API variants. The model of subheaps discussed so far is “flat” in that subheaps are

each separate entities, with no notion of heirarchy or grouping. The related work sec-

tion pointed out that many pieces of related work depend on known relations between

different pieces of the heap. Future work might provide a way to encode such rela-

tions to increase subheap’s flexibility, allowing higher level policies like generational

collection to be composed and configured as needed. Extending the API to make sub-

heap management easier, such as by declaring logical groupings of subheaps, would

likewise have the potential to improve flexibility, performance, and debuggability. A

key challenge would be to balance the dynamic flexibility offered by subheaps with
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the desire to reduce overhead by leveraging statically-known invariants.

Another interesting point for future exploration would concern how objects are routed

into different subheaps. A key design point of the current design for subheaps is to

establish a regime of dynamic scoping for the active allocator. This makes it easy for

the client of a library to capture allocations made by an oblivious library in a coarse-

grained manner. Future work might investigate how to better leverage knowledge

held by library authors, and how to coordinate knowledge across boundaries in a

minimally invasive way.

The version of subheaps presented in this document is type-agnostic, meaning that the

subheap mechanism is unaffected by the types assigned to (or inferred for) program

values. This is in contrast to work on region-based memory management, which drives

allocation decisions through the type system, or work like M3, which derives allocation

decisions from (programmer annotations on) types. Future work on subheaps might

explore variants which are not type-agnostic. Relying on type information to drive

subheaps could reduce programmer burden and increase the analyzability of specific

subheap configurations. In contrast to type inference for region-based memory man-

agement, which must generally compute conservative static approximations to value

lifetimes, subheaps could make use of best-effort data from dynamic observations to

help identify profitable subheap configurations.
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APPENDIX

Segregated-Metadata Write Barrier An earlier iteration of the subheap proto-

type, discussed in Section 2.7.3, represented the object-to-subheap mapping in per-

line metadata instead of storing subheap identifiers in object headers. This produced

a significantly more costly barrier, commemorated in Figure 30.

A.1. The Fundamental Bottleneck of Garbage Collection

Computer systems get huge speedups on common-case workloads via clever tricks

such as caching, branch prediction, and speculative execution. Likewise, garbage

collectors speed up common-case workloads via clever tricks such as parallel marking

and generational collection. Sadly, these tricks are not complementary: when tracing

happens, it tends to be slow.

The heart of any garbage collector is the marking loop.1 A recursive exploration

of most object heaps generates an “unfriendly” pattern of memory accesses: un-

cacheable, hard to prefetch [CHV04, GBF07], and only sometimes amenable to paral-

lel speedups. Marking shows significant degradation in instruction-level throughput

under high-frequency profiling [YBM15]. Allocation, in contrast, has an easy-to-

handle sequential write pattern. The specific penalty for tracing relative to allocation

depends on details of hardware and heap layout, but historically it has been nearly

an order of magnitude slower [BCR03a, BCM04a, BCM04b, XSaJ08].

This asymmetry is partially counterbalanced by smarter heuristics, such as gener-

ational collection, which decouple GC throughput from tracing throughput in the

1Even in reference counting collectors, pause times are dominated by recursive unmarking of large
structures.
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movq %rsi , %r15

movq %rdi , %r14

movq %r14 , %rcx

shrq $11 , %rcx

movq heap_metadata_arr (%rip), %rbx

movabsq $68719476720 , %r13 # imm = 0xFFFFFFFF0

andq %r13 , %rcx

movb 8(%rbx ,%rcx), %al

movq (%rbx ,%rcx), %r12

cmpb $1 , %al

je .LBB61_2

# ^^ fast path insn 11

movzbl %al , %edi

movq %r12 , %rsi

movq %r14 , %rdx

callq heap_for_slowpath

subq $8 , %rsp

movq %rax , %r12

.LBB61_2:

movq %r15 , %rax

shrq $11 , %rax

andq %r13 , %rax

movb 8(%rbx ,%rax), %cl

movq (%rbx ,%rax), %rax

cmpb $1 , %cl

je .LBB61_4

movzbl %cl , %edi

movq %rax , %rsi

movq %r15 , %rdx

callq heap_for_slowpath

subq $8 , %rsp

.LBB61_4: # %heap_for_wb.exit25

testq %r12 , %r12

je .LBB61_7

cmpq %rax , %r12

je .LBB61_7

# ^^ fast path insn 22

movq %r12 , %rdi

movq %r15 , %rsi

callq subheap_write_barrier_slowpath

subq $8 , %rsp

.LBB61_7: # %cleanup

movq %r14 , (%r15)

# ^^ fast path insn 23

Figure 30: Costlier subheap write barrier (asm).
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common case. When a generational nursery is collected with little live data, the ratio

of reclaimed data to traced data can be quite large. In one study, nursery survival

rates for Java application benchmarks averaged 8.5% [BGH+06]. This low survival

rate effectively permits GC throughput to be 12 times faster than the limit imposed

by the cost of tracing.

On the flip side, repeated tracing of long-lived objects can lead to asymptotic slow-

downs. This is most often seen in tight heaps [BM08]. Absolute mark/cons ratios can

vary by orders of magnitude (0.03 to 19.44) in standard benchmark suites [SMS+12].

Observed GC time usually tracks variation in mark/cons ratios [SHB+02, FMB03,

BHM+07]; Section 4 explores this connection, and how it can fail, in more detail.

When it comes time to collect the mature space, and concerns over latency come into

play, nursery survival rates are irrelevant. With a simple stop-the-world collector,

tackling the mature space incurs pause times proportional to the live data in the

heap. Since a significant fraction of the mature space tends to remain live, the cost

of a full-heap collection is proportional to heap size.

The precise cost depends on both tracing rate and heap residency statistics. But an

estimate of one second pauses per gigabyte of heap space seems to be supported

by experimental results from the last decade; in practice, things are rarely better and

often worse [AS16, DSaC02, GTSS11, GKS06, KC11, LP06, Mül14, NFX+16, SMB04,

SHB+02].

Meanwhile, heap sizes have grown just as furiously as allocation rates. The reason

is simple: RAM sizes have grown exponentially. In 2019, desktops have dozens of

gigabytes of RAM, and servers can have hundreds of gigabytes or even terabytes.

Pauses to fully collect such heaps can destroy interactivity in desktops and interfere
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with distributed algorithms in the cloud, since a multi-minute pause is not appreciably

different than a crashed node. And yet, even as heap sizes rise, there is simultaneous

pressure to expand the reach of garbage collection into latency-sensitive domains,

demanding ever more stringent pause limits of milliseconds or even microseconds.

A great deal of great work in the literature has gone into addressing pause times.

Incremental collection can spread out the work of a major collection into multiple

smaller pauses. Concurrent collection can perform work on a background thread,

hopefully allowing the mutator to go about its business unimpeded by garbage collec-

tion pauses. However, such techniques generally impose significant losses in through-

put. And they do not erase the fundamental tension: allocating is much easier than

tracing. This tension creates a lurking performance cliff.

Given some amount of spare resources, in the form of extra cores and memory, a

concurrent collector will be able to recycle memory at some particular sustainable

rate. By dint of the space-time tradeoff, either increasing allocation rate or decreasing

heap size will increase collector workload. When the collection workload pushes past

the collector’s throughput limit, the collector has no choice but to pause the mutator

until memory can be reclaimed. If this occurs, the illusion of “free” garbage collection

is shattered. So the worst-case performance of concurrent collection is difficult to

reason about in a principled way, because small shifts in heap size or allocation

rate can raise pause times by orders of magnitude [KC11, PD00]. Some concurrent

collectors will “pace” the mutator to ensure that it doesn’t overwhelm the collector.

This avoids the latency cliff in exchange for accentuating throughput overhead.
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Day: Coordinating Garbage Collection in Distributed Systems]. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV), Kartause
Ittingen, Switzerland, 2015. USENIX Association.

[MHKS09] Ronny Morad, Martin Hirzel, Kelliot K. Kolodner, and Mooly Sagiv. [Ef-
ficient Memory Management for Long-Lived Objects]. Technical report,
IBM Research Division, 2009.

[MJR07] Sebastien Marion, Richard Jones, and Chris Ryder. [Decrypting the
Java Gene Pool]. In Proceedings of the 6th International Symposium on
Memory Management, ISMM ’07, pages 67–78, New York, NY, USA,
2007. ACM.

168

https://memcached.org


[Mol15] Matthew Robert Mole. [A study of thread-local garbage collection for
multi-core systems]. PhD thesis, University of Kent, 2015.

[Moo84] David A. Moon. [Garbage Collection in a Large LISP System]. In Pro-
ceedings of the 1984 ACM Symposium on LISP and Functional Program-
ming, LFP ’84, pages 235–246, New York, NY, USA, 1984. ACM.

[Mül14] Andreas Müller. [Controlling GC pauses with the Garbage-
First Collector]. http://blog.mgm-tp.com/2014/04/

controlling-gc-pauses-with-g1-collector/, 2014.

[MZS09] Feng Mao, Eddy Z. Zhang, and Xipeng Shen. [Influence of Program In-
puts on the Selection of Garbage Collectors]. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE ’09, pages 91–100, New York, NY, USA, 2009.
ACM.

[NFX+16] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. [Yak: A High-Performance Big-Data-
Friendly Garbage Collector]. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 349–365, GA,
2016. USENIX Association.

[NGB16] Diogenes Nunez, Samuel Z. Guyer, and Emery D. Berger. [Prioritized
Garbage Collection: Explicit GC Support for Software Caches]. In
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, pages 695–710, New York, NY, USA, 2016. ACM.

[PD00] Tony Printezis and David Detlefs. [A Generational Mostly-concurrent
Garbage Collector]. In Proceedings of the 2nd International Symposium
on Memory Management, ISMM ’00, pages 143–154, New York, NY,
USA, 2000. ACM.

[PG02] Tony Printezis and Alex Garthwaite. [Visualising the Train Garbage
Collector]. In ACM SIGPLAN Notices, volume 38, pages 50–63. ACM,
2002.

[PPB05] Harel Paz, Erez Petrank, and Stephen M. Blackburn. [Age-Oriented
Concurrent Garbage Collection]. In Proceedings of the 14th International
Conference on Compiler Construction, CC’05, pages 121–136, Berlin,
Heidelberg, 2005. Springer-Verlag.

169

http://blog.mgm-tp.com/2014/04/controlling-gc-pauses-with-g1-collector/
http://blog.mgm-tp.com/2014/04/controlling-gc-pauses-with-g1-collector/


[Pri01] Tony Printezis. [Hot-Swapping between a Mark&Sweep and a
Mark&Compact Garbage Collector in a Generational Environment]. In
Proceedings of the 2001 Symposium on Java

TM
Virtual Machine Research

and Technology Symposium - Volume 1, JVM’01, Berkeley, CA, USA,
2001. USENIX Association.

[PVV+17] Matthew Parkinson, Dimitrios Vytiniotis, Kapil Vaswani, Manuel
Costa, Pantazis Deligiannis, Dylan McDermott, Aaron Blankstein,
and Jonathan Balkind. [Project Snowflake: Non-blocking Safe Man-
ual Memory Management in .NET]. Proc. ACM Program. Lang.,
1(OOPSLA):95:1–95:25, October 2017.

[PZM+10] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blan-
ton, and Jan Vitek. [Schism: Fragmentation-tolerant Real-time Garbage
Collection]. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10, pages
146–159, New York, NY, USA, 2010. ACM.

[Rea13] Philip Reames. [Hinted Collection]. Master’s thesis, University of Cali-
fornia, Berkeley, 2013.

[RGH78] G. D. Ripley, R. E. Griswold, and D. R. Hanson. [Performance of Storage
Management in an Implementation of SNOBOL4]. IEEE Trans. Softw.
Eng., 4(2):130–137, March 1978.

[Ric16] Nathan P. Ricci. [Determining When Objects Die to Improve Garbage
Collection]. PhD thesis, Tufts University, Medford, MA, USA, 2016.

[RKP09] Y. Roh, J. Kim, and K. H. Park. [A Phase-Adaptive Garbage Collector
Using Dynamic Heap Partitioning and Opportunistic Collection]. IEICE
Transactions on Information and Systems, 92:2053–2063, 2009.

[RM88] C. Ruggieri and T. P. Murtagh. [Lifetime Analysis of Dynamically Al-
located Objects]. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’88, pages
285–293, New York, NY, USA, 1988. ACM.

[RMAB16] Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch.
[Hierarchical Memory Management for Parallel Programs]. In Proceed-
ings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, pages 392–406, New York, NY, USA, 2016.
ACM.

170



[RN13] Philip Reames and George Necula. [Towards Hinted Collection: Anno-
tations for Decreasing Garbage Collector Pause Times]. In Proceedings
of the 2013 International Symposium on Memory Management, ISMM
’13, pages 3–14, New York, NY, USA, 2013. ACM.

[SA00] Zhong Shao and Andrew W. Appel. [Efficient and Safe-for-space Closure
Conversion]. ACM Trans. Program. Lang. Syst., 22(1):129–161, January
2000.

[SBF+10] Jennifer B. Sartor, Stephen M. Blackburn, Daniel Frampton, Martin
Hirzel, and Kathryn S. McKinley. [Z-rays: Divide Arrays and Conquer
Speed and Flexibility]. In Proceedings of the 31st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
’10, pages 471–482, New York, NY, USA, 2010. ACM.

[SBM14] Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. [Fast
Conservative Garbage Collection]. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA ’14, pages 121–139, New York, NY,
USA, 2014. ACM.

[SBWC07] Jeremy Singer, Gavin Brown, Ian Watson, and John Cavazos. [Intelligent
Selection of Application-Specific Garbage Collectors]. In Proceedings of
the 6th International Symposium on Memory Management, ISMM ’07,
pages 91–102, New York, NY, USA, 2007. ACM.

[SBYM13] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S.
McKinley. [Taking off the Gloves with Reference Counting Immix]. In
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages &#38; Applications,
OOPSLA ’13, pages 93–110, New York, NY, USA, 2013. ACM.

[SG95] Jacob Seligmann and Steffen Grarup. [Incremental Mature Garbage Col-
lection Using the Train Algorithm]. In Proceedings of the 9th European
Conference on Object-Oriented Programming, ECOOP ’95, pages 235–
252, London, UK, UK, 1995. Springer-Verlag.

[Sha15] Rifat Shahriyar. [High Performance Reference Counting and Conserva-
tive Garbage Collection]. PhD thesis, The Australian National Univer-
sity, 2015.
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Hassany, Abhishek Kulkarni, and Ryan R. Newton. [Efficient Commu-
nication and Collection with Compact Normal Forms]. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2015, pages 362–374, New York, NY, USA, 2015. ACM.

[YM14] Edward Z. Yang and David Mazières. [Dynamic Space Limits for Haskell].
In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 588–598, New
York, NY, USA, 2014. ACM.

176


	Subheap-Augmented Garbage Collection
	Recommended Citation

	Subheap-Augmented Garbage Collection
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Motivation: Bridging Language Users and Implementors
	The Core Idea Of Subheaps
	Purpose & Contributions
	Roadmap
	Garbage Collection, Briefly

	Subheaps
	Subheap Principles
	Design Constraints
	Subheap API
	Subheap Implementation
	Generational Variants
	Further Considerations
	Refinements of the Subheap API

	Using Subheaps
	``Hello, World''
	Modes of Usage
	Iterative Deployment & Debugging
	Modularity
	``Reference Counting'' with Key Objects

	Evaluation
	Experimental Platform
	Conway's Game of Life
	Tree Microbenchmarks
	Software Caches
	Self-Adjusting Computation

	Challenges & Future Work
	Concurrency
	Untrusted Code
	Stack Scanning Costs
	Automation

	Related Work
	Region-Based Memory Management
	Garbage Collection

	Conclusion
	
	APPENDIX
	The Fundamental Bottleneck of Garbage Collection


	BIBLIOGRAPHY

