6 research outputs found

    Mammography Image Enhancement using Linear, Nonlinear and Wavelet Filters with Histogram Equalization

    Get PDF
    In the worldwide, breast cancer is one of the major diseases among the women. In the modern medical science, there are plenty of newly devised methodologies and techniques for the timely detection of breast cancer. However, there are difficulties still exist for detecting breast cancer at an early stage for its diagnoses because of poor visualization and artifacts present in the mammography. Thus the Digital mammographic image preprocessing often requires, enhancement of the image to improve the quality while preserving important details. The proposed method works in three stages. First it removes all the artifacts present in the image. Second it denoise the image by using Linear, nonlinear and wavelet filters. Third, contrast of the image increased by histogram equalization. This method definitely helps to computer aided diagnosis system to increase the accuracy. The experimental results are tested on two standard datasets MIAS and DDSM.

    Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Get PDF
    Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the K-nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study

    Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy

    Full text link
    Aim: To detect pathological brain conditions early is a core procedure for patients so as to have enough time for treatment. Traditional manual detection is either cumbersome, or expensive, or time-consuming. We aim to offer a system that can automatically identify pathological brain images in this paper.Method: We propose a novel image feature, viz., Fractional Fourier Entropy (FRFE), which is based on the combination of Fractional Fourier Transform(FRFT) and Shannon entropy. Afterwards, the Welch’s t-test (WTT) and Mahalanobis distance (MD) were harnessed to select distinguishing features. Finally, we introduced an advanced classifier: twin support vector machine (TSVM). Results: A 10 x K-fold stratified cross validation test showed that this proposed “FRFE +WTT + TSVM” yielded an accuracy of 100.00%, 100.00%, and 99.57% on datasets that contained 66, 160, and 255 brain images, respectively. Conclusions: The proposed “FRFE +WTT + TSVM” method is superior to 20 state-of-the-art methods
    corecore