253 research outputs found

    A protection scheme for multimedia packet streams in bursty packet loss networks based on small block low-density parity-check codes

    Get PDF
    This paper proposes an enhanced forward error correction (FEC) scheme based on small block low-density parity-check (LDPC) codes to protect real-time packetized multimedia streams in bursty channels. The use of LDPC codes is typically addressed for channels where losses are uniformly distributed (memoryless channels) and for large information blocks. This work suggests the use of this type of FEC codes at the application layer, in bursty channels (e.g., Internet protocol (IP)-based networks) and for real-time scenarios that require low transmission latency. To fulfil these constraints, the appropriate configuration parameters of an LDPC scheme have been determined using small blocks of information and adapting the FEC code to be capable of recovering packet losses in bursty environments. This purpose is achieved in two steps. The first step is performed by an algorithm that estimates the recovery capability of a given LDPC code in a burst packet loss network. The second step is the optimization of the code: an algorithm optimizes the parity matrix structure in terms of recovery capability against the specific behavior of the channel with memory. Experimental results have been obtained in a simulated transmission channel to show that the optimized LDPC matrices generate a more robust protection scheme against bursty packet losses for small information blocks

    A two-level Markov model for packet loss in UDP/IP-based real-time video applications targeting residential users

    Get PDF
    The packet loss characteristics of Internet paths that include residential broadband links are not well understood, and there are no good models for their behaviour. This compli- cates the design of real-time video applications targeting home users, since it is difficult to choose appropriate error correction and concealment algorithms without a good model for the types of loss observed. Using measurements of residential broadband networks in the UK and Finland, we show that existing models for packet loss, such as the Gilbert model and simple hidden Markov models, do not effectively model the loss patterns seen in this environment. We present a new two-level Markov model for packet loss that can more accurately describe the characteristics of these links, and quantify the effectiveness of this model. We demonstrate that our new packet loss model allows for improved application design, by using it to model the performance of forward error correction on such links

    Leveraging network and traffic measurements for content distribution and interpersonal communication services with sufficient quality

    Get PDF
    In this paper, we discuss research problems for enabling content distribution and supporting real-time interpersonal communication services (e.g. voice and video) over best effort networks with sufficient quality. We take a practical view of content distribution and quality, and this is the reason for the term “sufficient”. We argue that the understanding of quality as perceived by the user is a key factor in this context, but also that the understanding of context dependence is a key factor for delivering services which are “good enough” to make the user satisfied. We base our assumptions upon results from the Celtic TRAMMS project, and we describe how to leverage upon the framework for traffic measurements that was built up in that project. Moreover, we identify key technological components that are common for optimization of content delivery and real-time interpersonal communication services such as VoIP and videoconferencing. We also describe how the research problems stated will be tackled in the newly started IPNQSIS project

    Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media

    Full text link
    The bitstream structure of layered media formats such as scalable video coding (SVC) or multiview video coding (MVC) opens up new opportunities for their distribution in Mobile TV services. Features like graceful degradation or the support of the 3-D experience in a backwards-compatible way are enabled. The reason is that parts of the media stream are more important than others with each part itself providing a useful media representation. Typically, the decoding of some parts of the bitstream is only possible, if the corresponding more important parts are correctly received. Hence, unequal error protection (UEP) can be applied protecting important parts of the bitstream more strongly than others. Mobile broadcast systems typically apply forward error correction (FEC) on upper layers to cope with transmission errors, which the physical layer FEC cannot correct. Today's FEC solutions are optimized to transmit single layer video. The exploitation of the dependencies in layered media codecs for UEP using FEC is the subject of this paper. The presented scheme, which is called layer-aware FEC (LA-FEC), incorporates the dependencies of the layered video codec into the FEC code construction. A combinatorial analysis is derived to show the potential theoretical gain in terms of FEC decoding probability and video quality. Furthermore, the implementation of LA-FEC as an extension of the Raptor FEC and the related signaling are described. The performance of layer-aware Raptor code with SVC is shown by experimental results in a DVB-H environment showing significant improvements achieved by LA-FEC. © 2011 IEEE.Hellge, C.; Gómez Barquero, D.; Schierl, T.; Wiegand, T. (2011). Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media. IEEE Transactions on Multimedia. 13(3):551-562. doi:10.1109/TMM.2011.2129499S55156213

    Adaptive HEC-VPS: The Real-time Reliable Wireless Multimedia Multicast Scheme

    Full text link

    Raptor Codes in the Low SNR Regime

    Full text link
    In this paper, we revisit the design of Raptor codes for binary input additive white Gaussian noise (BIAWGN) channels, where we are interested in very low signal to noise ratios (SNRs). A linear programming degree distribution optimization problem is defined for Raptor codes in the low SNR regime through several approximations. We also provide an exact expression for the polynomial representation of the degree distribution with infinite maximum degree in the low SNR regime, which enables us to calculate the exact value of the fractions of output nodes of small degrees. A more practical degree distribution design is also proposed for Raptor codes in the low SNR regime, where we include the rate efficiency and the decoding complexity in the optimization problem, and an upper bound on the maximum rate efficiency is derived for given design parameters. Simulation results show that the Raptor code with the designed degree distributions can approach rate efficiencies larger than 0.95 in the low SNR regime.Comment: Submitted to the IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1510.0772

    Optimum hybrid error correction scheme under strict delay constraints

    Get PDF
    In packet-based wireless networks, media-based services often require a multicast-enabled transport that guarantees quasi error free transmission under strict delay constraints. Furthermore, both multicast and delay constraints deeply influence the architecture of erasure error recovery (EER). Therefore, we propose a general architecture of EER and study its optimization in this thesis. The architecture integrates overall existing important EER techniques: Automatic Repeat Request, Forward Error Correction and Hybrid ARQ techniques. Each of these EER techniques can be viewed as a special case of Hybrid Error Correction (HEC) schemes. Since the Gilbert-Elliott (GE) erasure error model has been proven to be valid for a wide range of packet based wireless networks, in this thesis, we present the general architecture and its optimization based on the GE channel model. The optimization target is to satisfy a certain target packet loss level under strict delay constraints efficiently. Through the optimization for a given real-time multicast scenario, the total needed redundancy information can be minimized by choosing the best HEC scheme automatically among the entire schemes included in the architecture. As a result, the performance of the optimum HEC scheme can approach the Shannon limit as closely as possible dynamically according to current channel state information.In Paket-basierten drahtlosen Netzwerken benötigen Medien-basierte Dienste oft Multicast-fähigen Transport, der quasi-fehlerfreie Übertragung unter strikten Zeitgrenzen garantiert. Außerdem beeinflussen sowohl Multicast als auch Zeitbegrenzungen stark die Architektur von Auslöschungs-Fehlerschutz (Erasure Error Recovery, EER). Daher stellen wir eine allgemeine Architektur der EER vor und untersuchen ihre Optimierung in dieser Arbeit. Die Architektur integriert alle wichtigen EER-Techniken: Automatic Repeat Request, Forward Error Correction und Hybrid ARQ. Jede dieser EER-Techniken kann als Spezialfall der Hybrid Error Correction (HEC) angesehen werden. Da das Gilbert-Elliot (GE) Auslöschungs-Fehler-Modell für einen weiten Bereich von Paket-basierten drahtlosen Netzwerken als gültig erwiesen wurde, präsentieren wir in dieser Arbeit die allgemeine Architektur und deren Optimierung basierend auf dem GE Kanalmodell. Zweck der Optimierung ist es, eine gewisse Ziel-Paketfehlerrate unter strikten Zeitgrenzen effizient zu erreichen. Durch die Optimierung für ein gegebenes Echtzeit-Mutlicast-Szenario kann die insgesamt benötigte Redundanz-Information minimiert werden. Dies erfolgt durch automatische Auswahl des optimalen HEC Schemas unter all den Schemata, die in die Architektur integriert sind. Das optimale HEC-Schema kann die Shannon Grenze so nahe wie möglich, dynamisch, entsprechend dem derzeitigen Kanalzustand, erreichen
    • …
    corecore