22,237 research outputs found

    NeuroSVM: A Graphical User Interface for Identification of Liver Patients

    Full text link
    Diagnosis of liver infection at preliminary stage is important for better treatment. In todays scenario devices like sensors are used for detection of infections. Accurate classification techniques are required for automatic identification of disease samples. In this context, this study utilizes data mining approaches for classification of liver patients from healthy individuals. Four algorithms (Naive Bayes, Bagging, Random forest and SVM) were implemented for classification using R platform. Further to improve the accuracy of classification a hybrid NeuroSVM model was developed using SVM and feed-forward artificial neural network (ANN). The hybrid model was tested for its performance using statistical parameters like root mean square error (RMSE) and mean absolute percentage error (MAPE). The model resulted in a prediction accuracy of 98.83%. The results suggested that development of hybrid model improved the accuracy of prediction. To serve the medicinal community for prediction of liver disease among patients, a graphical user interface (GUI) has been developed using R. The GUI is deployed as a package in local repository of R platform for users to perform prediction.Comment: 9 pages, 6 figure

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    ANN for Diagnosing Hepatitis Virus

    Get PDF
    Abstract: This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. A number of factors that may possibly influence the performance of patients were outlined. Such factors as age, sex, Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm Splean Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, SGOT, Albumin, Protine and Histology, were then used as input variables for the ANN model . Test data evaluation shows that the ANN model is able to correctly predict the diagnosis of more than 93% of prospective Patients

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Identification of a serum biomarker panel for the differential diagnosis of cholangiocarcinoma and primary sclerosing cholagnitis

    Get PDF
    The non-invasive differentiation of malignant and benign biliary disease is a clinical challenge. Carbohydrate antigen 19-9 (CA19-9), leucine-rich α2-glycoprotein (LRG1), interleukin 6 (IL6), pyruvate kinase M2 (PKM2), cytokeratin 19 fragment (CYFRA21.1) and mucin 5AC (MUC5AC) have reported utility for differentiating cholangiocarcinoma (CCA) from benign biliary disease. Herein, serum levels of these markers were tested in 66 cases of CCA and 62 cases of primary sclerosing cholangitis (PSC) and compared with markers of liver function and inflammation. Markers panels were assessed for their ability to discriminate malignant and benign disease. Several of the markers were also assessed in pre-diagnosis biliary tract cancer (BTC) samples with performances evaluated at different times prior to diagnosis. We show that LRG1 and IL6 were unable to accurately distinguish CCA from PSC, whereas CA19-9, PKM2, CYFRA21.1 and MUC5AC were significantly elevated in malignancy. Area under the receiver operating characteristic curves for these individual markers ranged from 0.73–0.84, with the best single marker (PKM2) providing 61% sensitivity at 90% specificity. A panel combining PKM2, CYFRA21.1 and MUC5AC gave 76% sensitivity at 90% specificity, which increased to 82% sensitivity by adding gamma-glutamyltransferase (GGT). In the pre-diagnosis setting, LRG1, IL6 and PKM2 were poor predictors of BTC, whilst CA19-9 and C-reactive protein were elevated up to 2 years before diagnosis. In conclusion, LRG1, IL6 and PKM2 were not useful for early detection of BTC, whilst a model combining PKM2, CYFRA21.1, MUC5AC and GGT was beneficial in differentiating malignant from benign biliary disease, warranting validation in a prospective trial

    Identification and Diagnosis of Breast Cancer At Different Stages By Different Machine Learning Algorithms On The Coimbra Dataset

    Get PDF
    Cancer is the most deadly disease in the world. Breast cancer is the second-most common disease in women worldwide. It is the most common cancer globally among women. Annually, 12.5% of all new cancer cases worldwide Globally, 2.26 million breast cancers were discovered, and 685,000 women died from this disease. Early diagnosis of breast cancer is more difficult in developing countries than in developed countries. Using technology, if it is possible to detect cancer early and treat it on time, then many women can be cured and their lives can be saved. Early detection also leads to an increased survival rate for patients who receive clinical therapy before reaching later stages. It includes a number of risk factors, such as modifiable and non-modifiable ones. A recent survey discovered that for women above 50 years of age, the chance of getting breast cancer is about 80%. Machine learning algorithms are playing a major role in diagnosing liver cancer in its early stages and helping doctors make prompt decisions. A number of machine learning models have been executed in which the model gave better performance in terms of accuracy, and other parameters such as precision, recall, etc. are used to predict early. In this research work, the latest dataset, Coimbra, belongs to UCI machinery. It has nine features (age, BMI, glucose, insulin, HOMA, leptin, adiponectin, Resistin, MCP.1) and one classification attribute, which has values 1 and 2. 1 belongs to benign, and 2 belongs to malignant. Based on that, the supervised machine learning algorithm was applied. The WEKA tool is used to analyze the dataset. A number of algorithms are applied, such as Bayes net, multilayer perceptron, IBK, random committee, random tree, etc. More of them gave better results, and that model was chosen as the key model for breast cancer analysis

    Predicting Pancreatic Cancer Using Support Vector Machine

    Get PDF
    This report presents an approach to predict pancreatic cancer using Support Vector Machine Classification algorithm. The research objective of this project it to predict pancreatic cancer on just genomic, just clinical and combination of genomic and clinical data. We have used real genomic data having 22,763 samples and 154 features per sample. We have also created Synthetic Clinical data having 400 samples and 7 features per sample in order to predict accuracy of just clinical data. To validate the hypothesis, we have combined synthetic clinical data with subset of features from real genomic data. In our results, we observed that prediction accuracy, precision, recall with just genomic data is 80.77%, 20%, 4%. Prediction accuracy, precision, recall with just synthetic clinical data is 93.33%, 95%, 30%. While prediction accuracy, precision, recall for combination of real genomic and synthetic clinical data is 90.83%, 10%, 5%. The combination of real genomic and synthetic clinical data decreased the accuracy since the genomic data is weakly correlated. Thus we conclude that the combination of genomic and clinical data does not improve pancreatic cancer prediction accuracy. A dataset with more significant genomic features might help to predict pancreatic cancer more accurately
    corecore