1,611 research outputs found

    Jamming precoding in AF relay-aided PLC systems with multiple eavessdroppers

    Get PDF
    Enhancing information security has become increasingly significant in the digital age. This paper investigates the concept of physical layer security (PLS) within a relay-aided power line communication (PLC) system operating over a multiple-input multiple-output (MIMO) channel based on MK model. Specifically, we examine the transmission of confidential signals between a source and a distant destination while accounting for the presence of multiple eavesdroppers, both colluding and non-colluding. We propose a two-phase jamming scheme that leverages a full-duplex (FD) amplify-and-forward (AF) relay to address this challenge. Our primary objective is to maximize the secrecy rate, which necessitates the optimization of the jamming precoding and transmitting precoding matrices at both the source and the relay while adhering to transmit power constraints. We present a formulation of this problem and demonstrate that it can be efficiently solved using an effective block coordinate descent (BCD) algorithm. Simulation results are conducted to validate the convergence and performance of the proposed algorithm. These findings confirm the effectiveness of our approach. Furthermore, the numerical analysis reveals that our proposed algorithm surpasses traditional schemes that lack jamming to achieve higher secrecy rates. As a result, the proposed algorithm offers the benefit of guaranteeing secure communications in a realistic channel model, even in scenarios involving colluding eavesdroppers

    Distribution dependent adaptive learning

    Get PDF

    BER Performance Improvement in UWA Communication via Spatial Diversity

    Get PDF
    In present era while wireless communication has become an integral part of our life, the advancements in underwater communications (UWA) is still seem farfetched. Underwater communication is typically essential because of its ability to collect information from remote undersea locations. It don’t use radio signals for signal transmission as they can propagate over extremely short distance because of degradation in signal strength due to salinity of water, rather it uses acoustic waves. The underwater acoustic channel has many characteristics which makes receivers very difficult to be realized. Some of the characteristics are frequency dependent propagation loss, severe Doppler spread multipath, low speed of sound. Due to motion of transmitter and receiver the time variability and multipath makes underwater channel very difficult to be estimated. There are various channel estimation techniques to find out channel impulse response but in this thesis we have considered a flat slow fading channel modeled by Nakagami-m distribution. Noise in underwater communication channel is frequency dependent in nature as for a particular range of frequency of operation one among the various noise sources will be dominant. Here they don’t necessarily follow Gaussian statistics rather follows Generalized Gaussian statistics with decaying power spectral density. The flexible parametric form of this statistics makes it useful to fit any source of underwater noise source. In this thesis we have gone through two step approach. In the first step, we have considered transmission of information in presence of noise only and designed a suboptimal maximum likelihood detector. We have compared the performance of this proposed detector with the conventional Gaussian detector where decision is taken based on a single threshold value and the threshold value is calculated by using various techniques. Here it is being observed that the ML detector outperforms the Gaussian detectors and the performance can be improved further by exploiting the multipath components. In the second step we have considered channel along with noise and have designed a ML detector where we have considered the receiver is supplied with two copies of the same transmitted signal and have gone through a two-dimensional analysis. Again we compared the performance with conventional maximal ratio combiner where we can observe the ML detector performance is better. Further we have incorporated selection combining along with these detectors and compared the performance. Simulation results shows that the proposed detector always outperforms the existing detectors in terms of error performance

    Investigation of non-binary trellis codes designed for impulsive noise environments

    Get PDF
    PhD ThesisIt is well known that binary codes with iterative decoders can achieve near Shannon limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wired or wireless channels can become degraded due to the presence of burst errors or impulsive noise. In such extreme environments, error correction alone cannot combat the serious e ect of the channel and must be combined with the signal processing techniques such as channel estimation, channel equalisation and orthogonal frequency division multiplexing (OFDM). However, even after the received signal has been processed, it can still contain burst errors, or the noise present in the signal maybe non Gaussian. In these cases, popular binary coding schemes such as Low-Density Parity-Check (LDPC) or turbo codes may not perform optimally, resulting in the degradation of performance. Nevertheless, there is still scope for the design of new non-binary codes that are more suitable for these environments, allowing us to achieve further gains in performance. In this thesis, an investigation into good non-binary trellis error-correcting codes and advanced noise reduction techniques has been carried out with the aim of enhancing the performance of wired and wireless communication networks in di erent extreme environments. These environments include, urban, indoor, pedestrian, underwater, and powerline communication (PLC). This work includes an examination of the performance of non-binary trellis codes in harsh scenarios such as underwater communications when the noise channel is additive S S noise. Similar work was also conducted for single input single output (SISO) power line communication systems for single carrier (SC) and multi carrier (MC) over realistic multi-path frequency selective channels. A further examination of multi-input multi-output (MIMO) wired and wireless systems on Middleton class A noise channel was carried out. The main focus of the project was non-binary coding schemes as it is well-known that they outperform their binary counterparts when the channel is bursty. However, few studies have investigated non-binary codes for other environments. The major novelty of this work is the comparison of the performance of non-binary trellis codes with binary trellis codes in various scenarios, leading to the conclusion that non-binary codes are, in most cases, superior in performance to binary codes. Furthermore, the theoretical bounds of SISO and MIMO binary and non-binary convolutional coded OFDM-PLC systems have been investigated for the rst time. In order to validate our results, the implementation of simulated and theoretical results have been obtained for di erent values of noise parameters and on di erent PLC channels. The results show a strong agreement between the simulated and theoretical analysis for all cases.University of Thi-Qar for choosing me for their PhD scholarship and the Iraqi Ministry of Higher Education and Scienti c Research (MOHESR) for granting me the funds to study in UK. In addition, there was ample support towards my stay in the UK from the Iraqi Cultural Attach e in Londo

    Land Mobile Radio Systems - A Tutorial Exposition

    Get PDF
    An in-depth tutorial on land mobile radio system

    Improvement of indoor environment signal reception using PLC-RF diversity techniques

    Get PDF
    D.Ing. (Electrical and Electronic Engineering)Abstract: Please refer to full text to view abstract

    Physical layer security solutions against passive and colluding eavesdroppers in large wireless networks and impulsive noise environments

    Get PDF
    Wireless networks have experienced rapid evolutions toward sustainability, scalability and interoperability. The digital economy is driven by future networked societies to a more holistic community of intelligent infrastructures and connected services for a more sustainable and smarter society. Furthermore, an enormous amount of sensitive and confidential information, e.g., medical records, electronic media, financial data, and customer files, is transmitted via wireless channels. The implementation of higher layer key distribution and management was challenged by the emergence of these new advanced systems. In order to resist various malicious abuses and security attacks, physical layer security (PLS) has become an appealing alternative. The basic concept behind PLS is to exploit the characteristics of wireless channels for the confidentiality. Its target is to blind the eavesdroppers such that they cannot extract any confidential information from the received signals. This thesis presents solutions and analyses to improve the PLS in wireless networks. In the second chapter, we investigate the secrecy capacity performance of an amplify-andforward (AF) dual-hop network for both distributed beamforming (DBF) and opportunistic relaying (OR) techniques. We derive the capacity scaling for two large sets; trustworthy relays and untrustworthy aggressive relays cooperating together with a wire-tapper aiming to intercept the message. We show that the capacity scaling in the DBF is lower bounded by a value which depends on the ratio between the number of the trustworthy and the untrustworthy aggressive relays, whereas the capacity scaling of OR is upper bounded by a value depending on the number of relays as well as the signal to noise ratio (SNR). In the third chapter, we propose a new location-based multicasting technique, for dual phase AF large networks, aiming to improve the security in the presence of non-colluding passive eavesdroppers. We analytically demonstrate that the proposed technique increases the security by decreasing the probability of re-choosing a sector that has eavesdroppers, for each transmission time. Moreover, we also show that the secrecy capacity scaling of our technique is the same as for broadcasting. Hereafter, the lower and upper bounds of the secrecy outage probability are calculated, and it is shown that the security performance is remarkably enhanced, compared to the conventional multicasting technique. In the fourth chapter, we propose a new cooperative protocol, for dual phase amplify-andforward large wireless sensor networks, aiming to improve the transmission security while taking into account the limited capabilities of the sensor nodes. In such a network, a portion of the K relays can be potential passive eavesdroppers. To reduce the impact of these untrustworthy relays on the network security, we propose a new transmission protocol, where the source agrees to share with the destination a given channel state information (CSI) of source-trusted relay-destination link to encode the message. Then, the source will use this CSI again to map the right message to a certain sector while transmitting fake messages to the other sectors. Adopting such a security protocol is promising because of the availability of a high number of cheap electronic sensors with limited computational capabilities. For the proposed scheme, we derived the secrecy outage probability (SOP) and demonstrated that the probability of receiving the right encoded information by an untrustworthy relay is inversely proportional to the number of sectors. We also show that the aggressive behavior of cooperating untrusted relays is not effective compared to the case where each untrusted relay is trying to intercept the transmitted message individually. Fifth and last, we investigate the physical layer security performance over Rayleigh fading channels in the presence of impulsive noise, as encountered, for instance, in smart grid environments. For this scheme, secrecy performance metrics were considered with and without destination assisted jamming at the eavesdropper’s side. From the obtained results, it is verified that the SOP, without destination assisted jamming, is flooring at high signal-to-noise-ratio values and that it can be significantly improved with the use of jamming

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks
    corecore