46 research outputs found

    Joint optimization of transmission-order selection and channel allocation for bidirectional wireless links-part II: algorithms

    Get PDF
    This is the second in a two-part series of papers on transmission order (TO) optimization in the presence of channel allocation (CA), i.e., joint optimization of the TO selection and CA problem, for interfering bidirectional wireless links. Part I of this paper thoroughly analyzes the joint optimization problem from a game theoretic perspective for a general deterministic setting. Here in Part II, we present novel distributed and centralized CA-TO algorithms, together with their performance analysis, for Device-to-Device (D2D) communications underlaying cellular networks based on the findings in Part I of this paper. Here, TO is a novel dimension for optimization. In Part II, we propose and analyze novel two distributed and one centralized joint CA-TO algorithms. Our investigations show that: i) our algorithms contain many of the existing TO algorithms and CA algorithms as its special cases and can thus be considered as a general framework for the joint CA and TO optimization. The computer simulations for TDD-based D2D communications underlaying cellular network show that the proposed distributed and centralized joint CA-TO algorithms remarkably outperform the reference algorithms.IEEE Communications Societ

    Interference Management Techniques for Cellular Wireless Communication Systems

    Get PDF
    The growing demand for higher capacity wireless networks can be met by increasing the frequency bandwidth, spectral efficiency, and base station density. Flexible spectrum access, multiantenna, and multicarrier techniques are key enablers in satisfying the demand. In addition, automation of tasks related to network planning, optimization, interference management, and maintenance are needed in order to ensure cost-efficiency. Effective, dynamic, and automated interference management tailored for bursty and local data traffic plays a central role in the task. Adjacent channel interference (ACI) management is an enabler for flexible spectrum use and uncoordinated network deployments. In this thesis the impact of ACI in local area time division duplex (TDD) cellular systems is demonstrated. A method is proposed where the transmitters optimize their transmitted spectral shape on-line, such that constraints on ACI induced by power amplifier non-linearity are met. The proposed method increases the fairness among spectrum sharing transceivers when ACI is a limiting factor. A novel interference-aware scheduling technique is proposed and analyzed. The technique manages co-channel interference (CCI) in a decentralized fashion, relying on beacon messages sent by data receivers. It is demonstrated that the proposed technique is an enabler for fair spectrum sharing among operators, independent adaptation of uplink/downlink switching points in TDD networks, and it provides overall more fair and spectrally efficient wireless access. Especially, the technique is able to improve the cell-edge throughput tremendously. New services are emerging that generate local traffic among the users in addition to the data traffic between the users and the network. Such device-to-device (D2D) traffic is effectively served by direct transmissions. The thesis demonstrates the possibilities for allowing such direct D2D transmissions on a shared band together with the cellular communication. It is shown that interference management is needed in order to facilitate reliable and efficient shared band operation. For this purpose, three methods are proposed that provide interference aware power control, interference aware multiuser and multiband resource allocation, and interference avoiding spatial precoding. It is shown that enabling direct transmission itself provides most of the gains in system capacity, while the interference management schemes are more important in promoting fairness and reliability.Langattomien tietoliikenneverkkojen käyttö kasvaa erittäin nopeasti mobiilien internet-palvelujen ja älykkäiden päätelaitteiden suosion myötä. Järjestelmien tiedonsiirtokapasiteettiä voidaan lisätä kasvattamalla kaistanleveyttä, spektritehokkuutta ja tukiasemaverkon tiheyttä. Kehityksen mahdollistaa mm. joustava taajuuksien käyttö ja moniantenni- ja monikantoaaltotekniikat. Lisäksi radioverkkojen suunnitteluun, optimointiin, ylläpitoon ja interferenssinhallintaan liittyvien tehtävien automatisoinnilla voidaan pienentää verkko-operaattoreiden kustannuksia. Tässä hetkellisen ja paikallisen tietoliikenteen tehokas, dynaaminen ja automatisoitu interferenssinhallinta on keskeisessä asemassa. Viereisen kanavan interferenssin hallinta mahdollistaa osaltaan joustavan spektrinkäytön ja koordinoimattoman verkkojen asennuksen. Väitöskirjassa on analysoitu viereisen kanavan interferenssin vaikutusta aikajakoiseen dupleksilähetykseen perustuvien paikallisten radioverkkojen toimintaan. Lisäksi väitöskirjassa on kehitetty menetelmä, jolla voidaan hallita interferenssiä reaaliaikaisesti. Menetelmä maksimoi lähetetyn signaalin spektritehokkuuden siten, että tehovahvistimen epälineaarisuuden aiheuttama viereisen kanavan interferenssi on rajoitettu. Väitöskirjassa on kehitetty ja analysoitu uudenlainen interferenssitietoinen lähetysten ajoitustekniikka. Tekniikka hallitsee reaaliaikaisesti ja hajautetusti saman kanavan interferenssiä vastaanottimien lähettämien majakkasignaalien avulla. Esitetyt simulaatiot osoittavat, että tämä mahdollistaa operaattoreiden välisen taajuuskaistojen jaon, ja alas- ja yloslinkkien aikajaon joustavan säädön. Tämän lisäksi on mahdollista saavuttaa korkeampi yleinen spektritehokkuus. Erityisesti tiedonsiirtonopeus solujen reunoille kasvaa esitetyn tekniikan avulla huomattavasti. Uudenlaiset tietoliikennepalvelut lisäävät laitteidenvälisen paikallisen tietoliikenteen määrää. Spektrinkäytön kannalta tämä liikenne on tehokkainta lähettää suoraan laitteesta toiseen. Väitöskirjassa on tutkittu joustavaa spektrinkäyttöä suorien laitteidenvälisten lähetysten ja soluverkon välillä. Interferenssin hallinta takaa luotettavan ja tehokkaan spektrin yhteiskäytön. Tätä varten väitöskirjassa on kehitetty kolme menetelmää, jotka perustuvat tehonsäätöön, lähetysten ajoitukseen ja moniantennilähetykseen

    Novel feedback and signalling mechanisms for interference management and efficient modulation

    Get PDF
    In order to meet the ever-growing demand for mobile data, a number of different technologies have been adopted by the fourth generation standardization bodies. These include multiple access schemes such as spatial division multiple access (SDMA), and efficient modulation techniques such as orthogonal frequency division multiplexing (OFDM)-based modulation. The specific objectives of this theses are to develop an effective feedback method for interference management in smart antenna SDMA systems and to design an efficient OFDM-based modulation technique, where an additional dimension is added to the conventional two-dimensional modulation techniques such as quadrature amplitude modulation (QAM). In SDMA time division duplex (TDD) systems, where channel reciprocity is maintained, uplink (UL) channel sounding method is considered as one of the most promising feedback methods due to its bandwidth and delay efficiency. Conventional channel sounding (CCS) only conveys the channel state information (CSI) of each active user to the base station (BS). Due to the limitation in system performance because of co-channel interference (CCI) from adjacent cells in interference-limited scenarios, CSI is only a suboptimal metric for multiuser spatial multiplexing optimization. The first major contribution of this theses is a novel interference feedback method proposed to provide the BS with implicit knowledge about the interference level received by each mobile station (MS). More specifically, it is proposed to weight the conventional channel sounding pilots by the level of the experienced interference at the user’s side. Interference-weighted channel sounding (IWCS) acts as a spectrally efficient feedback technique that provides the BS with implicit knowledge about CCI experienced by each MS, and significantly improves the downlink (DL) sum capacity for both greedy and fair scheduling policies. For the sake of completeness, a novel procedure is developed to make the IWCS pilots usable for UL optimization. It is proposed to divide the optimization metric obtained from the IWCS pilots by the interference experienced at the BS’s antennas. The resultant new metric, the channel gain divided by the multiplication of DL and UL interference, provides link-protection awareness and is used to optimize both UL and DL. Using maximum capacity scheduling criterion, the link-protection aware metric results in a gain in the median system sum capacity of 26.7% and 12.5% in DL and UL respectively compared to the case when conventional channel sounding techniques are used. Moreover, heuristic algorithm has been proposed in order to facilitate a practical optimization and to reduce the computational complexity. The second major contribution of this theses is an innovative transmission approach, referred to as subcarrier-index modulation (SIM), which is proposed to be integrated with OFDM. The key idea of SIM is to employ the subcarrier-index to convey information to the receiver. Furthermore, a closed-form analytical bit error ratio (BER) of SIM OFDM in Rayleigh channel is derived. Simulation results show BER performance gain of 4 dB over 4-QAM OFDM for both coded and uncoded data without power saving policy. Alternatively, power saving policy maintains an average gain of 1 dB while only using half OFDM symbol transmit power

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    Studies on 6-sector-site deployment in downlink LTE

    Get PDF
    Mobile data traffic is expected to increase massively in the following years. Consequently, service operators are induced to increase the capacity of their networks continually to attract more subscribers and maximize their revenues. At the same time, they want to minimize operational costs and capital expenditures. Among the alternatives that aim to increase the network capacity, higher order sectorization, and in particular a six sectorized configuration, is nowadays attracting a lot of attention for LTE macro-cell deployments since a higher number of sectors per site results in improved site capacity and coverage. A six sectorized configuration is attractive for both roll-out phase and growth phase of the network. In the roll-out phase, the radio access network is planned with 6-sector sites instead of 3-sector sites with the advantage that less sites are needed for the same capacity and coverage requirements. In the growth phase, the six sectorized configuration can be used to upgrade existing 3-sector sites where the traffic grows beyond the current sites' capabilities. Therefore, no additional expensive and time consuming contracts need to be signed for the locations of the new sites, while the existing sites are used more efficiently. However, although potentially a 6-sector site can offer a double capacity than a 3-sector site, several factors prevent the capacity from growing proportionately to the number of sectors. Consequently, there is an uncertainty on whether the capacity gain is high enough to justify the extra costs of the additional equipment and, more specifically, whether the 6-sector-site deployment is more economically attractive than a 3-sector-site deployment. The aim of this report is to solve this uncertainty. First, we present the main factors that affect the capacity gain. Next, we quantify the impact of these factors on the capacity gain in downlink LTE with the use of a system level simulator. Finally, we use the results of the simulation study as inputs for an economic study to access the reasons for a possible deployment of 6-sector sites instead of 3-sector sites for LTE

    Extended Coverage for Public Safety and Critical Communications Using Multi-hop and D2D Communications

    Get PDF
    In this thesis, we proposed the use of device-to-device (D2D) communications for extending the coverage area of active base stations, for public safety communications with partial coverage. A 3GPP standard compliant D2D system level simulator is developed for HetNets and public safety scenarios and used to evaluate the performance of D2D discovery and communications underlying cellular networks. For D2D discovery, the benefits of time-domain inter-cell interference coordi- nation (ICIC) approaches by using almost blank subframes were evaluated. Also, the use of multi-hop is proposed to improve, even further, the performance of the D2D discovery process. Finally, the possibility of using multi-hop D2D communications for extending the coverage area of active base stations was evaluated. Improvements in energy and spectral efficiency, when compared with the case of direct UE-eNB communi- cations, were demonstrated. Moreover, UE power control techniques were applied to reduce the effects of interference from neighboring D2D links

    Physical Layer Techniques for Massive MIMO Sub-6 GHz LoS and Millimetre-Wave Transmission

    Get PDF
    The explosive growth in data demand requires solutions with higher system throughput, lower energy consumption, and simultaneous support for many users. Massive multiple-input multiple-output (MIMO) and millimetre-wave (mmWave) techniques are promising candidates for next-generation wireless systems. This thesis focuses on sub-6 GHz line-of-sight (LoS) transmissions in massive MIMO systems, which not only fulfil a variety of applications, such as small-cell back-haul but also provide a longer coherent time as the LoS channel varies more slowly and can be readily estimated compared with fading channels. This thesis also focuses on mmWave transmissions in massive MIMO systems since a large-scale antenna array can compensate for the strong pathloss of mmWave transmissions whilst the mmWave carrier frequencies enable compact BS configurations. In this thesis, the fundamentals of the massive MIMO technique are studied comprehensively through theoretical analysis and simulations. The representative sub-6 GHz channel models of LoS and fading channels are considered. The characteristics of the LoS channel and the system performance of LoS transmissions are investigated and compared with fading channels along with the key factors that impact performance. The effective SINR expressions of the linear precoding schemes for LoS transmissions are presented. It is illustrated that the system performance of massive MIMO LoS transmissions is robust when the angles of departure are distributed within a wide range and the power of the LoS channel component is high. The mmWave channel model and technical challenges are studied. The mmWave massive MIMO precoding problem is transformed into a beam-selecting problem. A novel channel deconstruction algorithm is proposed that enables the estimation of each received paths’ parameters from the perfect or Gaussian-perturbed channel state information. Utilising the estimated path parameters, new analogue and hybrid beam-selecting (ABS and HBS) linear precoding schemes are proposed that contribute substantially to system performance. The corresponding hardware architectures for the proposed schemes are demonstrated, which exploit low-complexity and low-cost signal processing with high energy efficiency. An enhanced hybrid beam-selecting precoding (E-HBS) scheme and hardware configuration are further proposed to achieve the optimal and near-optimal performance of digital baseband signal processing with low cost and high energy efficiency in massive MIMO systems. With E-HBS, the number of RF chains and the dimension of the baseband digital control is independent of the number of base station antennas, which is vital for massive MIMO systems. Novel spatial user scheduling (SUS) schemes for sub-6 GHz LoS massive MIMO transmissions are proposed along with a capacity-enhancement check (CEC) scheme to further improve the system performance by mitigating the LoS channel cross-correlation
    corecore