Studies on 6-sector-site deployment in downlink LTE

Abstract

Mobile data traffic is expected to increase massively in the following years. Consequently, service operators are induced to increase the capacity of their networks continually to attract more subscribers and maximize their revenues. At the same time, they want to minimize operational costs and capital expenditures. Among the alternatives that aim to increase the network capacity, higher order sectorization, and in particular a six sectorized configuration, is nowadays attracting a lot of attention for LTE macro-cell deployments since a higher number of sectors per site results in improved site capacity and coverage. A six sectorized configuration is attractive for both roll-out phase and growth phase of the network. In the roll-out phase, the radio access network is planned with 6-sector sites instead of 3-sector sites with the advantage that less sites are needed for the same capacity and coverage requirements. In the growth phase, the six sectorized configuration can be used to upgrade existing 3-sector sites where the traffic grows beyond the current sites' capabilities. Therefore, no additional expensive and time consuming contracts need to be signed for the locations of the new sites, while the existing sites are used more efficiently. However, although potentially a 6-sector site can offer a double capacity than a 3-sector site, several factors prevent the capacity from growing proportionately to the number of sectors. Consequently, there is an uncertainty on whether the capacity gain is high enough to justify the extra costs of the additional equipment and, more specifically, whether the 6-sector-site deployment is more economically attractive than a 3-sector-site deployment. The aim of this report is to solve this uncertainty. First, we present the main factors that affect the capacity gain. Next, we quantify the impact of these factors on the capacity gain in downlink LTE with the use of a system level simulator. Finally, we use the results of the simulation study as inputs for an economic study to access the reasons for a possible deployment of 6-sector sites instead of 3-sector sites for LTE

    Similar works