163,624 research outputs found

    Musemo: Express Musical Emotion Based on Neural Network

    Get PDF
    Department of Urban and Environmental Engineering (Convergence of Science and Arts)Music elicits emotional responses, which enable people to empathize with the emotional states induced by music, experience changes in their current feelings, receive comfort, and relieve stress (Juslin & Laukka, 2004). Music emotion recognition (MER) is a field of research that extracts emotions from music through various systems and methods. Interest in this field is increasing as researchers try to use it for psychiatric purposes. In order to extract emotions from music, MER requires music and emotion labels for each music. Many MER studies use emotion labels created by non-music-specific psychologists such as Russell???s circumplex model of affects (Russell, 1980) and Ekman???s six basic emotions (Ekman, 1999). However, Zentner, Grandjean, and Scherer suggest that emotions commonly used in music are subdivided into specific areas, rather than spread across the entire spectrum of emotions (Zentner, Grandjean, & Scherer, 2008). Thus, existing MER studies have difficulties with the emotion labels that are not widely agreed through musicians and listeners. This study proposes a musical emotion recognition model ???Musemo??? that follows the Geneva emotion music scale proposed by music psychologists based on a convolution neural network. We evaluate the accuracy of the model by varying the length of music samples used as input of Musemo and achieved RMSE (root mean squared error) performance of up to 14.91%. Also, we examine the correlation among emotion labels by reducing the Musemo???s emotion output vector to two dimensions through principal component analysis. Consequently, we can get results that are similar to the study that Vuoskoski and Eerola analyzed for the Geneva emotion music scale (Vuoskoski & Eerola, 2011). We hope that this study could be expanded to inform treatments to comfort those in need of psychological empathy in modern society.clos

    Spatial smoothing with uniform circular arrays

    Get PDF
    In this paper, we extend and analyse spatial smoothing with uniform circular arrays (UCA's). In particular, we study the performance of the Root-MUSIC with smoothing in the presence of correlated sources, finite data perturbations and errors in transformed steering vector that arise due to some approximations made to enable the extension of the Root-MUSIC and smoothing to UCA. Expressions are derived for the asymptotic performance of the Root-MUSIC with smoothing applied to the transformed UCA data. An attempt has been made to bring out the impact of both forward and forward-backward smoothing. Computer simulations are provided to demonstrate the usefulness of the analysis

    Model-Based Approaches to Channel Charting

    Full text link
    We present new ways of producing a channel chart employing model-based approaches. We estimate the angle of arrival theta and the distance between the base station and the user equipment rho by employing our algorithms, inverse of the root sum squares of channel coefficients (ISQ) algorithm, linear regression (LR) algorithm, and the MUSIC/MUSIC (MM) algorithm. We compare these methods with the training-based channel charting algorithms principal component analysis (PCA), Samson's method (SM), and autoencoder (AE). We show that ISQ, LR, and MM outperform all three in performance. The performance of MM is better than LR and ISQ but it is more complex. ISQ and LR have similar performance with ISQ having less complexity than LR. We also compare our algorithm MM with and algorithm from the literature that uses the MUSIC algorithm jointly on theta and rho. We call this algorithm the JM algorithm. JM performs very slightly better than MM but at a substantial increase in complexity. Finally, we introduce the rotate-and-sum (RS) algorithm which has about the same performance as the MM and JM algorithms but is less complex due to the avoidance of the eigenvector and eigenvalue analysis and a potential register transfer logic (RTL) implementation.Comment: 28 pages, 13 figures, 6 table

    Efficient Beamspace Eigen-Based Direction of Arrival Estimation schemes

    Get PDF
    The Multiple SIgnal Classification (MUSIC) algorithm developed in the late 70\u27s was the first vector subspace approach used to accurately determine the arrival angles of signal wavefronts impinging upon an array of sensors. As facilitated by the geometry associated with the common uniform linear array of sensors, a root-based formulation was developed to replace the computationally intensive spectral search process and was found to offer an enhanced resolution capability in the presence of two closely-spaced signals. Operation in beamspace, where sectors of space are individually probed via a pre-processor operating on the sensor data, was found to offer both a performance benefit and a reduced computationa1 complexi ty resulting from the reduced data dimension associated with beamspace processing. Little progress, however, has been made in the development of a computationally efficient Root-MUSIC algorithm in a beamspace setting. Two approaches of efficiently arriving at a Root-MUSIC formulation in beamspace are developed and analyzed in this Thesis. In the first approach, a structura1 constraint is placed on the beamforming vectors that can be exploited to yield a reduced order polynomial whose roots provide information on the signal arrival angles. The second approach is considerably more general, and hence, applicable to any vector subspace angle estimation algorithm. In this approach, classical multirate digital signal processing is applied to effectively reduce the dimension of the vectors that span the signal subspace, leading to an efficient beamspace Root-MUSIC (or ESPRIT) algorithm. An auxiliaay, yet important, observation is shown to allow a real-valued eigenanalysis of the beamspace sample covariance matrix to provide a computational savings as well as a performance benefit, particularly in the case of correlated signal scenes. A rigorous theoretical analysis, based upon derived large-sample statistics of the signal subspace eigenvectors, is included to provide insight into the operation of the two algorithmic methodologies employing the real-valued processing enhancement. Numerous simulations are presented to validate the theoretical angle bias and variance expressions as well as to assess the merit of the two beamspace approaches

    Subspace Leakage Analysis and Improved DOA Estimation with Small Sample Size

    Full text link
    Classical methods of DOA estimation such as the MUSIC algorithm are based on estimating the signal and noise subspaces from the sample covariance matrix. For a small number of samples, such methods are exposed to performance breakdown, as the sample covariance matrix can largely deviate from the true covariance matrix. In this paper, the problem of DOA estimation performance breakdown is investigated. We consider the structure of the sample covariance matrix and the dynamics of the root-MUSIC algorithm. The performance breakdown in the threshold region is associated with the subspace leakage where some portion of the true signal subspace resides in the estimated noise subspace. In this paper, the subspace leakage is theoretically derived. We also propose a two-step method which improves the performance by modifying the sample covariance matrix such that the amount of the subspace leakage is reduced. Furthermore, we introduce a phenomenon named as root-swap which occurs in the root-MUSIC algorithm in the low sample size region and degrades the performance of the DOA estimation. A new method is then proposed to alleviate this problem. Numerical examples and simulation results are given for uncorrelated and correlated sources to illustrate the improvement achieved by the proposed methods. Moreover, the proposed algorithms are combined with the pseudo-noise resampling method to further improve the performance.Comment: 37 pages, 10 figures, Submitted to the IEEE Transactions on Signal Processing in July 201

    Approximate maximum likelihood estimation of two closely spaced sources

    Get PDF
    The performance of the majority of high resolution algorithms designed for either spectral analysis or Direction-of-Arrival (DoA) estimation drastically degrade when the amplitude sources are highly correlated or when the number of available snapshots is very small and possibly less than the number of sources. Under such circumstances, only Maximum Likelihood (ML) or ML-based techniques can still be effective. The main drawback of such optimal solutions lies in their high computational load. In this paper we propose a computationally efficient approximate ML estimator, in the case of two closely spaced signals, that can be used even in the single snapshot case. Our approach relies on Taylor series expansion of the projection onto the signal subspace and can be implemented through 1-D Fourier transforms. Its effectiveness is illustrated in complicated scenarios with very low sample support and possibly correlated sources, where it is shown to outperform conventional estimators

    Partial Relaxation Approach: An Eigenvalue-Based DOA Estimator Framework

    Full text link
    In this paper, the partial relaxation approach is introduced and applied to DOA estimation using spectral search. Unlike existing methods like Capon or MUSIC which can be considered as single source approximations of multi-source estimation criteria, the proposed approach accounts for the existence of multiple sources. At each considered direction, the manifold structure of the remaining interfering signals impinging on the sensor array is relaxed, which results in closed form estimates for the interference parameters. The conventional multidimensional optimization problem reduces, thanks to this relaxation, to a simple spectral search. Following this principle, we propose estimators based on the Deterministic Maximum Likelihood, Weighted Subspace Fitting and covariance fitting methods. To calculate the pseudo-spectra efficiently, an iterative rooting scheme based on the rational function approximation is applied to the partial relaxation methods. Simulation results show that the performance of the proposed estimators is superior to the conventional methods especially in the case of low Signal-to-Noise-Ratio and low number of snapshots, irrespectively of any specific structure of the sensor array while maintaining a comparable computational cost as MUSIC.Comment: This work has been submitted to IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore