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ABSTRACT 

The  Multiple SIgnal Classification (A.IUSIC) algorithm developed in the late 70's 

was the  first vector subspace approa.ch used to a.ccura.tely determine the arrival an- 

gles of signal wavefronts impinging upon a.n a.rray of sensors. As facilitated by the 

geometry associa,ted with the common uniform linear a.rray of sensors, a root-based 

formulation was cleveloped to  repla.ce the computa.tionally intensive spectral search 

process and was found to  offer a.n enhal~cecl resolution capa.bility in the presence of 

two closely-spa,cecl signals. Operation i 1-1 heamspa.ce, where sectors of space are indi- 

vidually probed via a pre-processor operat.ing on the sensor data,  was found to  offer 

both a performance benefit and a reclucetl compu tationa.1 coinplexi ty resulting from 

the  reduced da t a  dimension associa.ted wit11 11ea.mspace processing. 

Little progress, however, has been nlatle i n  the development of ;L cornputationally 

efficient Root-MUSIC algorithm in a hea,n~spa.ce setting. Two approiaches of efficiently 

arriving a t  a Root-MUSIC for~nulation in bea,nlspace axe developed and analyzed in 

this Thesis. In the first approach, a structura.1 constraint is placed on. the beamforming 

vectors tha t  can he exploited to yielcl a. redl.lced order polynomial wllose roots provide 

information on the signal a,nival a.ngles. rl'lie sccoild a,pproa.ch is considerably more 

general, and hence, a.pplicable to a.llj: \ ~ec~ ,o r  sul,spa.cc a.ngle esti~nation algorithm. 

In this approa.cl1, cla,ssica.l multirate tligit.a,l signal processing is applied to  effectively 

reduce the  dinleilsioll of the vectors t1ia.t span the signal subspace, leading to  an 

efficient beamspa.ce R.oot-MUSIC (or E:SPII.I?') algal-ithm. 

An auxiliaay, yet importa.nt,, obser\~a~t,ion is shown tlo adlo~v a, real-va.lued eigenana,l- 

ysis of the  beamspa,ce s a i n ~ l e  covaria.nce llla,tris to  provide a computational savings 



as well as a performance benefit, particularly i n  t,lle case of correlated signal scenes. A 

rigorous theoretical analysis, based upon derived large-sample statistics of the signal 

subspace eigenvectors, is included to provide insight into the operation (sf the two 

algorithmic methodologies employing the real-valued processing enhancement. Nu- 

merous simulations are presented to validate the theoretical angle bias and variance 

expressions as well as to assess the merit of the two beamspace approaches. 



I .  INTRODUCTION 

A widely studied problem in rada.r, sona.r, and seismology is the estimation of the 

arrival angles of wavefronts based upon measurements from an arra~y of sensors. The 

most profitable techniques of signal localization are baaed upon a vector subspace 

approach introduced by Schmidt [ l l]  in his h4Ultiple SIgnal Cla.ssification (MUSIC) 

algorithm. As with most vector subspa.ce formula.tions [3, l l ,20 ,23,24] ,  the measured 

covariance matrix is eigendecomposed to define two orthogonal spaces, referred to as 

the signal and noise subspaces. The signa.1 subspace ideally proviides a description 

of the signal-induced component of the measured cova,riance. The determination of 

the arrival angles is then a.ccoinplis11ed through the identification and localization of 

peaks in a spatia.1 spectrum clerivecl from knowledge of the noise subspace. 

Root-MUSIC [l ,  101 is a, va,ria.tion of' MUSIC a.pplica.ble in a uniformly-spaced, 

linear array (ULA) scenario that offers significa.nt adva.ntages over Spectral MUSIC 

11 01. In contrast to Spectral R'IU SIC, where a, nonlinear sea.rch over .a one-dimensional 

multi-modal surface is employed to localize signa.ls, Root-RdUSIC is based on a polyno- 

mial formulation of the spectral search facilitated by the ULA struc.ture. The rooting 

of a polynomial is a computatiollal ta.sli for which there a.re numerically robust algo- 

rithms amenable to parallel implementa.tion [5]. In addition to this advantage with 

regard to the search process, R.a,o and Hari [ lo] have shown that Root-MUSIC offers 

improved estimation performa.nce over Spectra.1 R,IUSIC. Although their performance 

analysis revea,ls that the a,sy mpt,oti c mea,n sclua.re error of t,he source a.ngle estima.tes 

obtained with Root-MUSIC is the sa.me a,s that obt,a,ined with Spectral MUSIC, Rao 

and Hari present simula,tions in wlii cll t,he RII~JSIC: spectrum exhibits a single pea.k 

in the vicinity of two closely-spacecl sources \.vliile the corresponcling Root-MUSIC 

polynomial exhibits two clea.rly distinct signal zeros [lo]. 



As the computational burden of the eigenana.lysis of the sensor covariailce matrix 

increases dramatically with the number of sensors, there ha.s been considerahle interest 

in the use of a beamforming preprocessor to reduce the dimensionality of the data 

snapshot vector while simul ta.neously ma.int a,ining the degree of resolution associated 

with element space operation. In addition to the computational savings, it has been 

reported that the inclusion of a. properly designed bea,mspa.ce preprocessor 1ea.d~ to a 

more robust estimator with regard to sensor placemei~t perturbations and deviations 

from the assumed noise model, and aids in the al~ility to resolve two closely-spaced 

signals [2, 4, 6, 17, 18, 71. Operation in parallel allows for the localization of' all signals 

in visible space [13]. These benefits a.re realized a.t t,he expense of a higher MUSIC 

estimate variance as found in [28], but, once again, a. proper design yields an angle 

estimate varia,nce in bea,mspa.ce tJ1a.t is compa,ra.ble t,o t,ha,t obta.ined with element 

space processing [29]. The estimate bia.s, however, ca.11 he made smaller in beamspace 

formulations [29]. 

These observations motivate the development of a beamspa.ce implementation of 

Root-MUSIC. Two computationally efficient versions of such are presente'd in Chap- 

ters 2 and 4. In the first approa.c.11, a. recltlct.ion in the older of the Root,-MIJSIC poly- 

nomial is accomplished by employing a heain sct  exhibiting common nulls at known 

locations in visible space. Tho la.t,t.er a.l>p~.oacl-~ draws on the field of multita.te digital 

signal processing where the set of 11eamspa.c~ eigenvectors spanning the beamspace 

noise subspace are latently transformed to their element-space counterpari;~ and dec- 

imated. Application of the stancla.rc1 element-spa.ce Root-\/I USIC a.lgorithm is then 

possible. As the approa.ch is perfectly genera.1 in nature, extensions to include other 

well-known direction of arrival estimation techniques in bea,mspace are allowed. As 

such, a beamspace version of ESPRIT [24] is considered. 

In conjuction with the use of these two direction of a.rriva,l estima.tion iiechniques, 

the impact of employing conjugate centro-symmetric bea.mforming vect,ors on the 

computational complexity and a.tta.inable 1ocaliza.tion a.ccura.cy is studied. The sym- 

metry property is shown in Cha.pter 2 to allow a, red-valued eigendecomposition to 



provide valid information on the two orthogona.1 subspa,ces. A rigorous performance 

analysis detailing the effect of processing only the real part of the b'eamspace sample 

covariance on the bias and va.ria,nce of the Spectral hilUSIC estimat,or is contained in 

Chapter 3. Theoretical analyses of this sort have become increasingly popular due to 

the time-consuming alternative of computer simulation a,s well as a means to provide 

insight into the operation of the estima,tion algorithm. I<aveh and Barabell [21] were 

the first to employ the eigenanalysis of the (Wisha.rt distributed) element-space sam- 

ple covariance matrix to derive a theoretical expression for the resolution threshold, 

i.e., the minimum Signal-to-Noise (SNR) ra,tio at which two closely-spaced signals are 

resolvable, of the MUSIC a,nd Min-Norm algorithms. Later, Lee and Wengrovitz [7] 

studied the resolution thresl~olcl i l l  a hean-~spa.ce n'l USIC setting for ;z variety of beam- 

forming architectures. Others [:3:3. :3~1, 28, 29, 3.5, 36, 371 ha.ve extended the analysis 

to  provide the estimate bia.s a.nd varia.nce for h11JSIC as well as a number of other 

direction finding algorithms. 

With regard to notation, vectors are represented by bold, lower-c.ase symbols while 

matrices are bold, upper-case symbols. The transpose operation is indicated with a 

superscript "T", while "1-1" refers to conjugate transpose. 





2. DEVELOPMENT OF BEAMSPACE ROOT-MUSIC 

To facilitate reduced compiita.tiona~1 complexity in the development of a beamspace 

R,oot-MUSIC setting, procedures are presented for designing orthogonal matrix beam- 

formers composed of conjuga.te c,entro-symmetric weight vectors a,nd producing bea.ms 

exhibiting common out-of-band nulls. The A' x Nb Discrete Fourier Transform (DFT) 

matrix beamformer composed of L4Tb columns of the N x A' DFT matrix, where N is the 

number of elements, is employecl a,s a prototype matrix beamformer possessing these 

properties. In Section 2.3, it is s h o ~ ~ n  that the comlnon out-of-ba,nd nulls property 

enables one to work with a reduced degree polynomia.1 in the final stage of Root- 

MUSIC. The rela.tionship between t.he present work a.nd previous work on achieving 

a reduced degree poly nomia.1 in a. 1)eamspa.ce implemen ta.t,ion of Rloot-MUSIC, par- 

ticularly the pioneering worlc of Lee and \Vengrovitz in [ G I ,  is discussed in Section 2.4. 

In Section 2.5, it is shown t,liat t,llc conjl~gat,e ccntro-symmetry of the weight vectors 

enables one to worlc with the real part, of t l ~ e  hea.mspa.ce sa.mple covariance matrix in 

the eigenanalysis stage of Root-l\,IUSTC, reducing the a.ttendant computational com- 

plexity by a factor of four. Procedures for constructing matrix be,amformers having 

the desired features plus additional feakures such a.s producing be.ams with reduced 

out-of-band sidelobes and/or comnlon nulls a.t prescribed locations are developed in 

Sections 2.6 a,nd 2.7, respectively. In Sect.ion 2.8, simula.t,ions axe presented which 

illustrate various performamce comparisons: bea.mspa.ce R.oot-MUSIC versus element 

space Root-MUSIC, beamspace Root-MTJSIC versus bea.mspa.ce Spectral MUSIC, and 

reduced out-of-hand sidelobes versus in-Imnd perfo~.n~ance. 



2.2 The Data Model 

In this section, the array data model is presented. The ideal form of the sensor 

covariance matrix is derived and decoillposed into its spectral forin to illustrate the 

operation of the MUSIC algorithm. 

The array geometry assumed is that of a uniform linear array of N identical 

sensors. For the sake of simplicity, the inter-element spacing is taken to be equal 

to one-half of the wavelength associated with the center frequency of the band of 

operation. The sources are assumed to be locarted in the far field so that planar 

wavefronts are perceived by the a,rra.y, a.nd a.11 signals a.re a,ssumed to be narrowband 

in nature. In this setting, let x(iz) cle11ot.e tlle M x 1 sensor spa.ce sna.pshot vector 

measured at the n- th sa,mpling in ter\la,l; x, ( 1 2 )  denotes the 2-  th component of x(n) .  

The response of the i-th sensor to a, signal a.~.l.i\:ing a,t a. bearing a.ngle 8 is 

iY - I 
xi(n) = s(n) exp (jn [ I  - -------I u) 

2 

where u is the direction sine, u = sill(#) [15], a,nd s(n) is the value of the complex 

envelope of the signal a.t the n-th sampling. Not,ice t11a.t the exponential term repre- 

sents a time delay, with reference to the arra.y center, to a,ccount for the wavefront 

motion along the axis of the a,rra.y. 

In the general case of Ir' signa,ls and a.ddit.ivc noise, the sensor respons'e is 

K 

xi(n) = x sx(n) exp ) + ( n )  i = 1, ..., N [2.2] 
k=1 

where the added subscript k, k = 1, ..., I<, reSc:rs to the specific a.rriva1, and ni(n) is 

the value of the noise process for the i - th  sensor at the 12-tll sna.pshot. The sensor 

space snapshot vector, x(72), can then he written as 

where 



and a N ( u ) ,  termed the array ma.nifold vector, is 

. N  - 1 N - 3  
a  = [ e x  ( j - r u )  2 , exp ( - j  ,ru) u , . . . , exp ( , j E r u ) ]  2 T .  

P.41 

For the sake of simplicity, it is assumed that the noise process a t  each sensor is 

Gaussian in nature with zero mean ant1 varia.nce a;. The noise is assumed to be 

independent over both time and sensor spa.ce, and is uncorrela.ted with respect to the 

signals. Notice that this rest,rict,ion on t,he noise process is not required for proper 

operation of the h4TISIC a.lgorit1ini - t,he MIJSIC algorithm only requires that the 

covaxiance ma.trix of the noise l ~ e  I < I I o \ \ . I - I .  :Is a I-esult, of these a.ssumptions, the sensor 

space cova.ria,nce ma.t,rix, R,, is ea.sil~: s1ion.n t.o be 

where Ps is the signal cova.ria.nce matrix 

Assuming that no two sigi1a.l~ are perfect,ly correla.ted, the Ir' x 4; matrix Ps is of 

full rank so that the spectral cleco~nposition of the signal component to  the sensor 

covariance is 
N 

where el, is the k-th unit-length eigcn\rect,or associat,ecl with the k-t,h eigenvalue such 

that  

Notice that it is inherently a.ssumed t11a.t the numl~er of signa.1~ is less than the number 

of sensors. This assumption is necessary for the operation of MIJSIC!. In addition, 



it is easily verified that the spectral decoml>osition of the sensor covariance matrix 

contains the same eigenvectors 1ea.ding to 

where 

The first I( eigenvectors span the sa.me spa.ce as tha,t of the set of signal manifold 

vectors since e;,  i = I{ + 1, ..., N ,  span the orthogona,l subspa,ce, i.e., 

Defining the noise-only subspace a.s tha.t formed from e;, i = Ii' + 1, . .. , iV, one can 

construct the projection ma,trix, P,, ont,o the noise-only subspace a.s 

The MUSIC spectrum is then defilletl a.s [2G] 

SA4usrc = 1 / ( a; ( u )  P, a N ( u )  ) .  [2.13] 

Notice that for directions tr. coinciding \vit.h a, signal arriva,l a.ngle, ~ r .  = t ~ k ,  k = 1, ..., I<, 

SMUsrc(uk) = m. This property a.llo\vs one t,o loca,t,c the directions of arrival of the 

various wavefronts as generated fro111 distitlct point sources. Furthermore, notice 

that this algorithm is intended for use in det,erinining the a.rriva.1 angles and not in 

estimating the spatia.1 spectruin a,s is true for such algorithnls a.s Capon's Minimum 

Variance or Burg's Maximum Entropy. 

2.3 DFT Based  Beamspace  R o o t - M U S I C  W i t h  Reduced Degree  Polyno- 
m i a l  

In this section, it is shown that if onc eml>lo\,s DFT beamformel-s, the degree of 

the polynomial solved in the final step of hlllvST(' is 011 the ol.tlcl of twice t,he number 

of beams rather than twice the number of'elcmei~ts as i l l  element space Rolot-MUSIC. 



The development of this result hinges on the so-called common out-of-band nulls 

property exhibited by DFT heains to he discussed shortly. 

The Discrete Space Fourier Transform (DSFT) [15] of the n-th N x 1 element 

space snapshot vector as a function of the direction sine is defined as 

Note that for a fixed n, f (11 ; 71) is a periodic f~~liction of u with period 2. Typically, 

the magnitude aad plmse of f ( z r ;  l a )  are pIot,t,ed over the interval -1 5 u 5 1 

corresponding to  the angular inter\la.l -90' 5 O 5 90'; this is referred to as the 

visible region [15]. Computat,ioli of t(l1e .A'-point DFT of N x I snapshot vector, 

however, provides N eclui-spa.ced samples of the DSFT over the int,erval 0 5 71 5 2. 

This should be kept in mind in the folloiving cle~:eloprnent. 

Defining the N x 1 DFT beamforming \veight vector as 

i t  follows that the quantity v;(.zr,)x(l~) is the DSFT of the n-th snapshot evaluated 

at u = v,. Note that vN(.zi) exhibits a Vanderrnonde structure (hence the use of the 

boldface v). The subscript A' is intended to denote the dimension of the vector. 

Consider an 11' x Arb beamformir~g 1i1a t ris composed of Nb DFT beamforming vec- 

tors of the form in (2.14) \v i t  l l  1.csl1c3ctii.c. jmin t ing-angles equi-spaced by the amount 

Au = 2 / N :  

It is easily ascerhined that the .W6 columns of wkm) are .w6 consecut,ive columns of the 

N x N DFT matrix, respectively. Tlie subscript R in WE) is intended to emphasize 

that DFT bea,mforming implies (R.)ecta.ng~~la,r \veight,ing, i.e., no tapering across the 

array aperture. This will serve t.o distinguish the DFT matrix beamformer from 

matrix beamformers to be exa.mined in a, la,ter section which incorporate tapering 

according to one of the cla.ssica.1 w i n d o ~ ~ s .  



It follows tha t  the Nb x 1 bea,n~sl>ace sna.pshot vector formed a.s 

y P ' ( n )  = ~ k " ) ~ x ( n )  [2.17] 

is composed of Nb successive values of the N point DFT of x(n) .  The  Nb coriresponding 

2 2 beam pointing angles, m z ,  (nz + 1 ) z ,  ..., (in + Nb - 1) 5, encompass a pa.rticular 

(spatial) sub-band of 0 5 u 5 2 [12, 131 referred to as the m-th sub-band. Again, the 

subscript R in ykrn)(n) is intended to clisting~lish yLm)(n) from alternative bearnspace 

snapshot vectors composed of bean1 outputs with tapering to be examineld later. As 

with wkrn), the superscript ( m )  in ykrn)(n) is intended to denote the sub-band under 

examination by indexing it according t,o t,he leading DFT value. 

The  use of MUSIC/Root-MUSIC to estima.te the bea.rings of sources within the m- 

t h  sub-band given A4 bea.mspace s~la.psliots const,rr~cted a . ~  i n  (2.17) is now considered. 

We will here concentrate on the processing of a, single sub-ba.nd, the m-th sub-band. 

The  source content in different sub-ba.nds may be esa.ininec1 by choosing different sets 

of Nb consecutive D F T  values, i.e., different values of m ,  colllputed from a single N 

point DFT of each sna.pshot,. The  processing in each sub-band is identica.1. Although 

it is not necessary that the number of DFT vall~es comprising each group be the 

same, this serves to malie the overall procetll~re highly motlular facilitating efficient 

parallel implementation [12]. It shoultl be noted that it is important to  (allow some 

percentage of overlap among the sub-11a.ntls or sources limy lie in I~etween the "cracks" 

and go undetected. Also, a.s  ill Ilc ol~sc~.\:ctl i l l  t.hc Fort,hcorning siinulations, best 

performance is achieved for those sources u:hicll lie a.t the center of the band. With 

50% overlap among sub-bands, a. source a.t t,he edge of or~e  I~antl will lie at. the center 

of an  adjacent sub-band [12]. 

For the sa.ke of simplicity, it will be a s s ~ ~ m e d  that the element level nloise is spa- 

tially white. Since the columns of WE' arc i n u t ~ ~ a l l y  orthogonal (recall that  they 

are Nb columns of the N x A' DFT ma.tris), it follo\z~s tha.t the 11ea.mspace noise co- 

variance matrix is a sca.lar multiple of the ATl, x Nl, identity matrix. The conventional 

beamspace MUSIC method thus procecds a,s follo\vs. First, given A4 snapshots a 

Nb x Nb beamspa,ce sample correla.tion ma.t,~.is (SChll) is formed a.nd, subsequently, 



spectrally decomposed a,s 

Tha t  is, in the far right hand side of (2.1s) A; and e; represent the i -th  eigenvalue and 

corresponding eigenvector of the beamspace SCM, i= l ,  ..., Nb. The  eigenvalues, A, ,  

i=1, ..., Nb, are assumed to  he inclexecl in clescending order with respect t o  magnitude. 

At this stage, the eigenvalues and corresponding eigenvectors are partitioned accord- 

ing t o  some criteria, such as AIC or h1DL [16], into those which belong to  the signal 

subspace and those which belong to  the noise subspace. Let I? denote the estimated 

dimension of the signal sul~space. Tlle beamspace PIIUSIC spatial spectral estimate 

is then constructed a.s 

where bkm)(u) is the Nb x 1 l,eamspa,ce ~na,nifold for the in-th sub-band related to  

the  N x 1 element space manifold a,s b(,"')(z~) = WIP) H ~ N ( ~ ~ ) .  The  subscript R in 

bkm) (u)  is intended to associa,t,r it wi t , l l  i,r>ct,a,ngl~la,~. weightling; a,gain, the significance 

( m )  15' will become apparent la,ter. 'I'hc ir.lnt,io~lship b(6ni(,t,,) = WR v N ( u )  is invoked 

in the far right-ha,nd side of (2.19) i11 order t,o convest the spectral search into a 

root-finding problem a la R.oot-h41JSIC [ I ,  101. 

Making the substitution z = eJ"'" a,ncl, sul~sequently, exploiting the Vandermonde 

structure of v N  (u) ,  the  clua.clra,tic form in bra,cl<ets in the fa.r right-hand side of (2.19) 

may be expressed a,s a polynoinia,l of order 2 N  - 2 [ l ,  101 a,s 

where the coefficients p , ,  j=O,l, ..., A'-1. may I>e computed as surrls of the elements 

along various diagonals of the n' x !Y matrix 



Specifically, denoting P ( i ,  j) a.s the i , j  element of P, i=1, ..., N ,  j=1, ..., N,  

- Note that the coefficients of ~ ( z )  exhibit conjugate centro-symmetry, i.e., pj - 

paN-2-j, j = 0,1, ..., 2 N  - 2. As a consequence, it is easily shown that if z; is a 

root of p(z),  then l/z,* is a root of p ( z )  as well. In the respective ca.ses of either an in- 

finite number of snapshots or no noise, the signal roots zk = e x p [ j ~ z ~ ~ ] ,  k = 1, ..., I<, 

where uk is the direction sine of tlie k-tli source relative to the a.rray axis, are each a 

root of p(z) of multiplicity two [ I ,  101. Ost~ensibly, therefore, the roots of p(z) associ- 

ated with sources may be extra.ct,ecl froni the ovcra.11 set of 2,4[-2 roots based on their 

proximity to the unit circle. However, it turns out t,ha.t, irrespective of the specific 

beamspace noise eigenvec,t,ors oht,a,inctl fro111 il give]-I sct ot' sna.l>shots, p(z) formed 

according to  (2.20)-(2.22) hams N - M6 roots ol ~ilultiplicity 2 eclui-spaced on the unit 

circle at locations correspoiiding to a.ngles outside tlie na-th sltb-Isand. Tliis claim is 

now substantiated and exploited to reduce the order of the polynomial to be solved 

from 2 N  - 2 to 2Nb - 2. 

Recall that each of the N6 colurnns of w/;") is a (distinct) column of the N x N 

DFT matrix. Since the columns of t,lie N x h' DFT nia,trix a.re mutually orthogonal, 

each of the N - N6 columns of the N  x lr DFT ma,trix not contained in wkm) is 

orthogonal to  each of the Nb columns of w:;'). hlathemntica,lly. 

') ') d 2 
~ k ~ ) ~ ~ ~ ( u ~ )  = oNb FOTIL,, E - [ ) < , ( T , ~  + ! I I~) -  , . . . , ( A ~ : -  I ) - } .  

,'I( M N 
[2.23] 

This implies that for ea,ch of these .A' - ATr, values of 7 1 ,  which lie outside of the m-th 

sub-band, the quadratic form in Is~.a.cl;ets i l l  cit.llcr t#cr~n on the right-hand side of 

(2.19) is identically zero irrespective of the measured eigencla.ta. More importantly, 

(2.23) implies that ~ ( z )  forinecl according to (2.20)-(2.2'5) has double roots at the 

following N - Nb loca,tions on tlie unit circle: 



These N - Nb double roots nlay be fa.ctored out in order to work with a polynomial 

of order 2Nb - 2. This is the g o d  of t , l~e following development. 

Consider the polyno~llial rel>resenta.tion of a. single t ,es~n in bi:ackets in the far 

right-hand side of (2.19). Thsougllout the ensuing development, the index i is to be 

associated with the  i-th eigenvectos of R, where i E { k  + 1, ..., ~ b ) .  Denoting e,, as 

the  k-th component of e;, direct substitution yields 

T h e  polynomial representation of e ~ ~ \ ; " ' ~ v , ~ ( u ) .  denoted p,(z), is obtained by in- 

voking the Vandermonde structure of V ! ~ ( ~ I )  a n d  t,he relationship z = e x p [ j ~ u ] .  This 

yields 

p z ( ~ )  = v n ( )  + e,",7L+l(z) + . . + erNb11m+~b-l(2) [2.26] 

where vk(z) ,  is the ( N  - 1)-th order po1ynomia.l with coefficients given by the com- 

ponents of v>(k$) according to 

T h e  N - 1 roots of vk(z) ,  k = n ,  ..., n, + IVb - 1, are located at  z,+k = exp [ j a ( k  + n ) ~ ]  

[15], n = l , 2 ,  ..., N - 1, such t11a.t 

[a .28] 

Comparing the roots of eacli of the Arb [~o ly~~on i i a l s  evk(z) ,  ~ = I I Z , I I Z  -t 1, ..., rn + Nb - 1, 

i t  is found that  they have X - :\;I, root5 i l l  colnlrion cclnal to the A - Nb roots listed 

in (2.24). 

Let cam'(z) denote the "cornmoli roots" polynomial of order N - Nb whose roots 

are  the  N - Nb common soots listed in (2.24): 

m+N-1 
ckm)(z) = n exp ( - e x  [ z ] )  (i - exp 

n=m+Nb 11 = n=m+Nb 



ckm)' is the ( N  - N b +  1 )  x 1 coefficient vector for ckm)( z ) .  Note that the constant term 

in ckm)(z) ,  i. e., the coefficient of io ,  is i ~ n i  ty. I t  follo\\~ that trk(z) may be factored as 

where q k ( z )  is a polynomial of order Arb - 1 whose roots are those of v k ( z )  not included 

in the set of common roots listecl in (2.24): 

1 m+Nb-l 3 m+hrb-1 
q k ( z )  = - n exp ( - j a n ~ )  n ( z n p  , t = m ,..., r n + ~ b - I .  fl n=m n = m  

n#k TI# b 
[2.31] 

q; is the Nb x 1 coefficient vector for q k ( z ) .  Note t11a.t the constant term in q k ( z ) ,  

i.e., the coefficient of zO,  is unity. 

It  follows from the above ol)serva.tions that p ; ( c ' )  may be factored as 

~ i ( z )  = ckm)(z)  - { e ; l q m ( z )  + e: ,uTn+l(z)  + . . . + ~ ~ , v , , ~ , L + ~ ~ r , - ~ j ~ ) }  = C g ) ( Z ) r i ( z ) .  

[2.32] 

where r ; (z )  is the ( N b  - 1)-t,li orcler pol~inon1ia.l cvit,liin h~.a.cket,s as implied. The  roots 

of r ; ( z )  a.re the roots of interest. Thc Nb x 1 coefficient vector for r , ( z ) ,  r f ,  may be 

expressed as a simple transformat,ion on t,hc i-t,h bea.mspa.ce noise eigenvector e;. To 

this end, define Qkm) as a AT,] x .Yh illat,ris for which each column is the coefficient 

vector for one of the Nb ~olynomials  clefinecl in (2.31): 

It  follows from ( 2 . 3 2 )  that  the coefficient vect,or for I - ; ( : )  may be expressed in compact 

form as 

(nx)  r; = Q ,  e; 

Equation (2 .34 )  implies that we need only ~noclify each of the heamspace noise eigen- 

vectors by the transforn~ation Q%) prior to C,r~ning ,I 1)earnsj)nce Root-MUSIC poly- 

nomial of order 2 N b  - 'I! in the usual fashioll. 'I'hat is, defining the ATb x Nb matrix 



i=Ii+l 

the beamspace Root-MUSIC polynonlial of order 2A$ - 2 for the m-th sub-band is 

constructed as 

where the coefficieri ts a,re computed i n  terms of the elements of pkm) in (2.35) accord- 

ing to 

Note that this mode of opera.t.ion docs not, recluire one to clivide the common roots 

(m) polynomial, c~ ( z ) ,  in (2.29) out of the (2M - 2)-th order polynomial constructed ac- 

cording to (2.20)-(2.22). The latter polynomial is never formed. Once the beamspace 

noise eigenvectors are determined, the releva,nt bea.mspa,ce Root-M:USIC polynomial 

of order 2 N b  - 2 is siinply conslructecl a.ccorc1ing to (2.35)-(2.37).  

The property in (2.23) was critical to the reduction in polynomial. order from 2 N- 2  

to 2N6 - 2. Equa.tion (2.23) implies t,lla,t t,he Arb DFT l3ea.m~ forrned to encompaas 

the m-th sub-ba.nd have -A' - nulls i n  common outside the m-th sub-band. The 

N 6  DFT beams a.re thus mid t'o possess t,he commoi~ out-of-band nulls property. As 

an illustrative example, Figure 2.1 ( a )  t1ispla.y~ A:!, = 8 DFT I~ea,ms encompassing the 

null-to-null sub-l~and - l o / %  < 1 1  < S/:Y Sol- an  N = 132 uuiform linear arra,y. These 

were generated from ;'ITb = 8 cont,igr~or(s columns of t,lle 32x32 DF'T matrix (allowing 

for wrap-a.round in the use of t,lie ~zlord "cont3iguousn). The coillmor~~ out-of-band nulls 

property is apparent: the beams Ilave :Y - .2c, = 32 - 8 = 24 out-of-band nulls in 

common. Figure 2 . l ( b )  displays the root,s of the Root-MUSIC polynomial of order 

2 N  - 2 = 62 formed according to (2.20)-(2.22) with I< = 0 corresponding to the no 

source case. In agreement wit11 the preceding development, the N -- N6 = 24 common 

out-of-band nulls in Figure 2. l(a)  translate into N - Arb = 24 roots of multiplicity 2 

lying equi-spaced on the uiiit circle orllsicle the region corresponding to the sub-band. 



The beam set in Figure 2. l (a)  is employccl i n  t,he s im~~la t ions  to be presented in a 

forthcoming sect ion. 

Before leaving this section, an im11orta.n t, ol)scrva t,ion is ma.de with regard to the 

computation of QLrn). Each column of Q ~ )  is tJhe coefficient vector for il (Nb - 1)- 

t h  order polynomial having one of the AT6 root fa.ctorizations in (2.31). Note that 

there is no need to ever form cP). For ea,ch q k ( z ) ,  A: = m ,  nz + 1, ..., n2 + Nb - 1, 

the locations of the roots are coinpletely specified 11y the sta.rting DFT point for the 

sub-band, m, the number of beams AT6, a,nd the numl~er  of elements, N. ~Ostensibly, 

one can use any a,lgoritJhin a t  one's rlisposal that t,a.lies a set of roots a.nd provides the 

coefficients of the polynomial having t.liesc roots. Mowc\:er, for eve11 modera.tely large 

values of N, N = 48 for exa.mple, the root,s arc close enough on the unit circle such 

tha t  one needs to be concernecl a l~ou t  t l ~ e  uurnc~.ica.l scnsit,ivi[,y of t,he a.lgorithm used 

t o  determine the  corresponcling po1ynornia.l coc.ffic,ient,s. I n  Appendix A ,  a. procedure 

is developed for computing Q ~ )  that aioiils poly~o111ial rletermination entirely and 

is less sensitive to  the conclition nr~rn l~e l  ol  ~ j ; " ) .  Tllis yields t , l~c :  following expression 

for 4krn) for the  case wlrere N/Arb is an il~t,cgcr. 

ATb - 1 
D ( i ,  k) = e s p  [ IT------ {i - Nb+l)] SLk 

.4T '2. 

WNb denotes the Arb point DFT lllrlt,riu, .\'I] x ,Ir,, o~tliogolrdl matrix, and 6,k denotes 

the Kronecker delta such that D is a ill,, x :\" tliagonal niatris. Also, y, is a scalar 

defined in (A.8) of Appendix A .  The ex1,ression for y,, is not repeated here since 

ym has unity magnitude and \ r ~ i l l  tl1115 lir~i.(. 110 i ~ ~ f l ~ ~ c ~ i r e  011 t h ~  con~pu ta t~on  of parn) 

according to  (2.35)-(2.37). One t1111s wt  3,, equal to unity. As a final note, with 

regard t o  parallelization, it is pointerl out that all the sub-hands may be processed 



using the same QL"), i.e., with ni set to  a particular d u e  such as rn = 0, for example, 

provided one tra,~lslates the a.ngle est,irna,tes a.-posteriori to the appropriate sub-band. 
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Figure 2.1 (a) Nb = 8 i~nweight~ecl spatial 1>1:7' bealms for N=32 element ULA; 
beams encompass the null-to-null suhband -10/n' < u < S / N .  (Is) Floots of 

beamspace Root-MUSIC polyllolllial in no source case. 



2.4 Prev ious  B e a m f o r m i ~ l g  M e t h o d s  t o  Achieve R e d u c e d  Degree  Poly- 
nomia l  

As the coefficient sequence for a given u k ( z )  in (2.30) is just the components of a 

particular column of wLrn)', the polynomial product o n  the right-hand side of (2.30) 

dictates that each column of wkrn)* is the linear convolution of the coefficient sequence 

of the corresponding in-band root,s polynomial f I k ( z )  with that of the common out- 

of-band roots polynomial ckm)(r ). It follo\vs, therefore, that wkm) may be factored 

where 4km) is defined in (2.33) a,nd ckm) is the N x ATb handed, Toeplitz matrix 

Tlle factoriza.tion in (2.39)-(2.40) revea.ls t,hat t,he N  x ATb DFT matrix beamformer 

warn) is similar in structure to t,he orthogonal matrix bea,mformers studied by Lee 

and Wengrovitz in [GI .  Lee and \Vengro17itz  orl lied with matrix beamformers which 

may be factored as 

W = c(ciic)-; ( N  x .Nb) [2.41] 



where C exhibits a banded-Toeplitz structure similar to tha,t of cam) in (2.40): 

As will be shown shortly, the N x ATa DFT matrir  branrlormr~., wkrn)_ is not. a member 

of this class of matrix beamformers. However, ~ j ; ' )  ma,y be rotated via a unita,ry 

transformation into a member of such. Not~~it l~stancl ing,  simi1a.r to the end result in 

the previous section, Lee and Weilgrovitz in [6] showed that a, reduced degree Root- 

MUSIC polynomial, of order 2Nb - 2, Irlay be achievecl employing a mennber of the 

class of matrix beamformers described by (2.41)-(2.42). 

However, the derivation of this result by Lee a.nd \2iengrovitz [6] is quite different 

from that  in the previous section for the ca.se of the AT x Arb DFT matrix beamformer, 

warn). Their derivation is b a e d  on clecon~posing the element spa,ce to beamspace 

transformation WH = ( c H c ) - + c H  int,o t,l,e !\$ x n' t,~.a.nsformat,ion CH followed by 

the  Nb x Nb transforma,tion (c"c)- I; alicl ol~srrvi~ig t11a.t 

where c is defined relative to the elellleilts of C in (2.42) as c = [co , cl , . . . , C N - N ~ ]  T 

and V N - N ~ + ~ ( U )  and viy,(u) are defined by (2.15) with M replaced by N - Nb + 1 and 

Nb, respectively. The  right-hand side of (2.43) follo~vs from the banded-Toeplitz struc- 

ture of C in (2.42) and the Vailderrnollde structure of v N ( u )  in (2.15). Ecluation (2.43) 

states tha t  the beamspace manifold achieved employing the matris bea~nformer C 

alone is a scalar multiple of the Nb x 1 Vandcrmoncle vector vNh(u) .  As a consequence, 

the beamspace manifold achieved employing the orthogonalized beamformer W in 



(2.41) is a scalar multiple of ( c H c ) - i v N , ( u ) .  The  reciprocal of the MUSIC spec- 

t rum may therefore be expressed as v a ( a )  {(c"c)-$ z?- z = 11- e , e " c H ~ ) - + )  vNb(u)  

which is easily converted into a l ~ o l y ~ ~ o m i a l  of order 2Alb - 2 similar tts the development 

leading to  (2.35)-(2.37). 

Zoltowski [l8] a.lso studied beamforming matrices of the form described by (2.41)- 

(2.42) for use in conjunction w'ith a bea,msl>ace version of the Iterative Quadratic 

Maximum Likelihood (IQML) Met,llod of Bresler a,nd R~Ia.covski [3]. The  property in 

(2.43), also observed by Zo1towsl;i in [ l s ] ,  is critical to  the appli~a~bili ty of IQNIL in 

beamspace as IQML is a. polyilo~nial l>a.sed version of the Deterministic ML method. 

Both Zoltowski [18] ancl Lee and \I1cl~gl.o\;itz [(i] note t,ha.t applica,i;ion of the matrix 

beamformer CH to the elenle11t~a.l da.t,a. is equivalent t,o a.pplying the (N  - Nb + 1) x 1 

beamforming weight vector c to  ea.c,h of Arb identical, o\~erlapping suba.rrays. Bienvenu 

and Kopp [2] also consider tfhis type of element, space to  bea.mspace transformation 

in which beams pointed to  the sa,me a.ngle a.re formed a.t a. number of identical, 

overlapping ~ubar ra~ys .  Zo1towsl;i [IS] pointjs o11t tha.t the scalar C ~ V ~ - ~ , + ~ ( U )  in 

(2.43) represents a inultiplica.tive ga.in fa.ct,or intluccd on a. signal arriving from the 

H direction 11; c V N - N ~ + ~  ( u )  is t l ~ e  I~clilrn response a.ssociated with the weight vector 

c a t  any subarra.y a.s a, func,t,ioli of 11. 13icnvenl1 a,nd 1i;opp [2], Zoltowski [IS], and 

Lee and Wengrovi tz [GI all not c I h a t  clr~c.  to 1 l ip o\.erlap I~ct~veen subarrays, the noise 

components amongst the A',] beams arc correlated; the Nb x Ar
b beamspace noise 

correlation matrix is a scalar multiple of C ~ C .  The  AT
b x Arb transformation (cHc)-$ 

may thus be interpreted as a wl~itening filter. 

Comparing the factorization of w jj':) i n  (2.39) witch the factorization of the matrix 

beamformers studied by Lee and \Yengrovitz [6] and Zoltowski [18] in (2.41)-(2.42), 

one is tempted to  associate (cHc)-; with 9km) as well as C with ckrn). However, 

4km) # ( c H c ) - $  since (cHc)-: is Hermitian symmetric while 4krn), defined by 
( m ) H  (m) \ - l .  (2.31) and (2.33), is not, in general. Thus, W = cLm)(cR CR ) 2 is not equal to 

wkm) = C L ~ ) Q ~ ) ,  in general. .All that can 11c said is tlrat one is related t o  the other 



via a Nb x Nb unitary tra.nsforma.tion since the two have the sa.me Nb-dimensional 

range space. 

The  above discussion prompts the consideration of a more general class of or- 

thogonal beamforming matrices exhibiting the common out-of-band nulls property 

described by 

W = c(cHc)-iu (Ar x - J ) )  [2.44] 

where C is N x Nb exhibiting the hanclecl-Toeplitz structure in (2.42) and U is 

Nb x (Nb - J), where 0 < J  < Arb - 1, coinposetl of Arb - J  orthogonal columns, i. 

Note that  the number of beams formecl \\.it,l~ a men~l le~ .  of tliis cla.ss of ma,trix beam- 

formers is Nbl = Nb - J ,  where 0 < .I < .A[,, - 1. The number of conimon nulls 

amongst the Nbl = Arb - J  bea.ms is AT- :Yb = ,Ir - ( N b  - .J) - .I = N - N b l -  J .  

Thus, in general, the number of coinlnon nulls may be less than the number of ele- 

ments minus the number of beams formed. This is in contrast to the class of matrix 

beamformers described by (2.41)-(2.42) for nrhich the numher of common nulls is al- 

ways the maximum a.mouut equal t,o t,hc nunlber of elements minus the number of 

beams formed. Matrix bea.mformers descril~ecl by (2.44) for which U is not square 

arise naturally in beamforming scena.rios \vllere ta.periug is enlployecl to achieve low 

sidelobes. This issue will be a.dc1ressed shortly. 

2.5 R e a l  Covariai ice M a t r i x  P roces s ing  in B e a m s p a c e  

In this section, it is shown t,llat th~or~gl l  pl.opc~ scaling of the 1% DFT values 

corresponding to a given su11-band, the eigcvanalysis may he restricted to that of 

the real part of the beamspace sanlplc ro\, i~ric~~~cc. ~riat ris. R ~ { R , } .  To this end, in 

the narrowband signal inodel let the phase of each arri\,iiig signal be rererenced to 

the center of the array. In this case, the expected value of' the element space sample 



covariance matrix may be expressed as 

where A is the NxI< Direction-of-Arrival (DOA) ma.trix a.ssocia.ted with the Ii' signal 

arrivals, 

with columns defined by the N x 1 a.rray manifold 

N - 1  A T - 3  
a N ( u )  = [exp (-jTnel) , exp (-j-ru) 2 , . . . , exp (j--ru . N - l  2 )lT [2.48] 

Ps in (2.46) is the I<sI< source covariancc mat ris. Al.;o, a: is the noise power at  each 

element; recall that  the element ~ ~ o i s c  is assumed to bc spatially white. 

Note that a N ( u )  i n  (2.4s) csllibit s con j~~ga tc  c~~ i t~ .o - s j~ rnn~e t ry .  Mathematically, 
- 
I N a N ( u )  = a>(el) where I,v is the NxN rcvclw permutation matrix 

Note that  ~ N I N  = I N ;  this ~) ro l~er ty  will be exploited a number of times in this 

section. Finally, note that anr(u) and the DFT heamforming vector v N ( u )  in (2.15) 

are related as 

[2.50] 

With these observations in t~~ inc l ,  clcfinc t l ~ ~  con j~~ga tc  ccntro-symmetric form of the 

N x Nb D F T  matrix as 

It  follows from the rela,tionsl-tip in (2.50) Illat the \/a.ndermonde and conjugate centro- 

symmetric forms of the N x Arb DFT ma,tsi.\: 11ea.t~lformer a.re related through a diagonal 



unitary matrix as 

where 

@ = (-1)" diag {exp (s) ,. . . , ( - ~ ) ~ ~ - l  exp ) } . [2-531 

If beams are computed via a.n N point DFT, the elements of @ represent the scalings 

to be applied to the Nb DFT values corl.esponcling to the m-th sub-band in order to 

retroactively achieve beamformiilg with the conjugate centro-symmetric form of the 

N x Nb DFT matrix bea,mformer. 

Now, consider the expected valuc of t,l-~e 11eamspa.ce sample cova,ria.mce matrix 

employing the conjuga,te centro-symmetric h s n ~  of t.lie S x .Arb DFT ma,tria, wkrn), 

where B(") is the DOA matrix as~ociat~ed \\..it11 t,he m-t.h sub-band 

The most important observa.tion of this secLion is tha,t B("~) is a, rea,l-valued matrix 

since 

WTA* = ~ ( m ) *  B(") = w p ) H ~  = ~ ~ m ) H ~ N ~ N ~  = w, [2.56] 

where the conjugate centro-symmetl-y of the columns of wR and A  has been ex- 

ploited, and the fact that ININ = I,%.. As a consecpence, the expected value of the 

real part of the beamspace sample covasianco matrix may 11e expressed as; 

Note that if Ps is positive definite, then 'R e {PSI is positive definite as well; the proof 

of this very straightforward and thus not incl~~tlctl 11(.1~,.  Thus, assuming the number of 

sources, I(,  to be less than the number of beams, :Vb, and  that no two sources are 100% 

correlated, the signal-only component of R ~ { R , }  in (2.57), B ( ' " ) R ~ { P ~ } B ( ~ ) ,  is 



positive semi-definiteof rank I< with a range spa.ce equal to the span of the Ii' columns 

of ~ ( " 1 .  0: is then the sma,llest eigenvalue of , R ~ { R , )  = B ( ' " ) R ~ { F ' ~ ) B ( ~ ) ~  + cr:INb 

of multiplicity Nb - Ii' and the corresporlclirig eigenspa.ce is the orthol;onal complement 

of the range spa,ce of B("). Denot,ing e;, i = Ii + 1, ..., Arb, as a.n orthonorma.1 basis 

for the noise subspace, it follows that el'bj;")(z,,i) = 0 1 ,  i ' .  R ~ { R , )  thus 

possesses the a.sympt,otic st,ruct,ure t,lia.t is a prerequi~it~e for the xpplicability of the 

MUSIC algorithm. 

Interestingly, the process of ta.l;ing the rea.1 pa,rt of the sa.mple covariance matrix in 

beamspace is equivalent to ha,\ring first performed a single forward-backward average 

in element space prior to transforming to bea.mspace. This claim is substantiated by 

the following sequence of ~na.nipul a.tions. 

,. . 
where ~i~ = l / % { ~ ~  + I . ~ ~ R ; I ~ }  is blie single for\~~a~~~cl-l>a~ckwarcl averaged sample 

covariance ma.tris in elemelit spa,cc st,~~tlictl 1)). Pi 1la.i and I< won [S], among others. 

Pillai and Kwon [8] show tl1a.t. in  t,l~e of ~~ncol.rela,t'ed sources perfor~ning a single 

forward-backward a,verage in elen~ent space has the effect of reducing the asymptotic 

bias of the signal cigcnvectors by a fac.t,ol. ol' l , \~o;  tllc fot,ward-backward average has 

the effect of artificially doubling the nl1n111c.r of snapshots, A4. Similarly, in Appendix 

C it is shown tha't in the ca.se of uncorrela.ted Ga.ussia.n sources, the real part of 

the beamspace sa.mple cova.ria.nce in;l,tris is LVisha.rt distributed with 2114 degrees of 

freedom whereas the beamspa.ce sa.mp1e cova.ri a.1-1ce ma,trix itself is complex Wishart 

distributed with Af degrees of freecloin. Thus, the snapshot doubling effect may 

be obtained in beamspace by simply \4.0t.liilig \vit,h the rea,l part of the beamspace 

sample c0varia.nc.e ma.t,rix - no fo~~\varcl-l)a.c.li\~~a.l~d avcra.ge a.t the element level prior 

t o  beamforming is necessa.ry! 

The efficacy of \~orliing \vit,h t,lrc ~.cal [)art of t,hc 1)eamspace sample covariance 

matrix depends solely on the conjugal(. ccnt 1~1-5ymmet ry of each of the columns of the 



matrix beamformer. Note tlmt the matrix beam former structure described by (2.44)- 

(2.45) does not guara.nt,ee conjugate centro-symmetry of t,he respective col.umns. For 

the remainder of the chapter, attention is restricted to the use of conjugate centro- 

symmetric matrix beamformers so t11a.t one 1na.y \~or l i  solely with the real part of 

the  beamspace sample cova.ria.nce matrix. \&Tit11 regard to the N x Nb D F T  matrix 

beamformer, the tilde used to  denote the conj11ga.te centro-symmetric form will be 

dropped. If the beam outputs are co~-nputed via. a.n N point DFT,  it i.s assumed 

that the  Nb LIFT values corresponcling t,o l,llc 111,-t11 s1.111-l~ancl ha.ve been scaled in 

( accordance with (2.52). This dicta,tes tha,t i n  the construction of QT), each of the  

polynomials q k ( z ) ,  k = m, n2 + 1, ..., m + Mb - 1 ,  11e sca.led so that the corresponding 

coefficient vector exhibit conjuga.te centro-symmetry. This is possible since in each 

case t he  roots lie on the unit circle. Uniler this condition, I ~ Q ~ )  = Q L ~ ) * .  This 

property will be  assumed in the remainiler of t,he cliapt.er and is already accounted 

for in t he  expression for QF) in (2.38). 

2.6 V i r t u a l  T a p e r i n g  

T h e  beamforming operation cle-emplla.sizes ou t-of-11a.ncl sources. Ideally, the con- 

tributions t o  the  beamspa.ce sna.ps11ot \:ect,or ~ I I E  to ou t-of-11a.ncl sollrces a,re negligible. 

However, t he  common out-of-band nulls 11rol1c1.t.y lea.ds t.o common peak sidelobe lo- 

cations amongst the beams outside 1 . 1 1 ~  l ia~ld. 'I'llis is tlcl~ict,eil i n  Figure 2.1 for the 

case of Nb = 8 D F T  beams ~ l i t ~ l i  A' = 32. N o k  1l1a.t a.s ;I collsccjrlence of the inherent 

rectangular weighting, for ea.ch 11ea.m the sitlclol~c peaks sta.rt. a.t -13.5 dl3 and only 

roll off t o  a minimum of approxima.t.ely -30 (In. I t  is t1111s deduced t11a.t strong sources 

lying a t  or near a common sidelobe peak location wi tllin several hea.mwidths of ei- 

ther edge of the band n1a.y not be sufficiently de-empha.sized to be negligible. This is 

particularly t rue  if the  in-band sources are closely-spa.ced and/or highly correlated. 

Under such conditions, it is dif ic l~l t  to  clisti~~guish between sma.11 signal eigenvalues 

due t o  the close spacing a~nd/or high correlat.io~l a,rnongst the in-ba.nd sources, and 

small signal eigenvalues clue to to pa.rt,ia.lly fi l t,eretl ou t8-of-hail tl sources. 



Consider the following theorem. 

Theorem 1. The beamspace manifold, bam)(u), is a one-to-one vector function of u 

over the interval 0 5 21 < 2 except for those N - illb discrete values of u listed in 

( (2.23) where b ~ ' ( u )  = 0 , ~ ~ .  

Proof: To prove the theorem, it is shown that the ATb x 2 matrix [bF1(al)  i bkm'(zr2)] 

is of rank 2 when ul # u2, 0 5 u; < 2, i=1,2, and u; 6 (0,  $, .. . , ( m  - l ) $ , ( m  + 
Nb)$, . . . , ( N  - I)$}, i=1,2. Under the latter three conditions, 

5 min rank{wkm) H}, r a , n k { [ a , ~ ~ ( u ~ )  i a ,~ (21~) ]}}  = r a ,nk{ [a~(u l )  i a ~ ( 2 1 2 ) ] }  = 2 { 
where the fact that the co l~ i~nns  of wI;") are linearly independent (ithey are orthonor- 

ma]) has been used, neither aN(211) or aa(u2)  is in the null space of wLm), and a N ( u l )  

and aN(uz )  are linearly iildependeilt for 2 ~ 1  # 212 since a,v(u) is a scalar multipleof the 

Vanderinonde illailifold vector vN(u)  in accorclailce with (2.50). The  result above dic- 

tates that bkm)(zil ) and b(nrn)(u2) are linearly indepenclent which proves the Theorem. 

As a consequence of this theorem, it follows that if the total number of in-band 

and out-of-band sources is leqs t,l-Ian the nuinber of beams formed to encompass a 

given sub-band, it is theoretically possible to estinlate the direction of any out-of- 

band source not lying at a colnnlon 111111 Iocatioil as  well as  the direction of each 

in-band source. I-Iowever, if the num1~c.r of strong out-of-hand sources not sufficiently 

de-emphasized in the bean~forii-~ii~g process combinccl wit 1-1 the number of in-band 

sources is greater than the climension of the bea~nspace, beamspace Root-MUSIC is 

rendered totally nonfunctional. The use of tapering is t.hus explored as a means for 

reducing out-of-band sidelobes in order to  climinish the pejorative effects of strong 

out-of-band sources lying a t  or near a common siclelobe peak location. 

In order to  a.chieve a reduced degree polynomia.1, the beams must exhibit common 

out-of-band nulls. One means of retaining the common out-of-ba.nd nulls property 

is to  construct ea.ch 13ea.m comprising the set of reduced sidelobe beams as a linear 



combination of D F T  beams. Sidelobe recluc.tion is a.chievec1 by exploitiilg the fact 

that the respective sidelobes of adjacent DFT beams a.re lSOO out-of-phase. A nice 

feature of this approach is that the com~~onen t s  of the 11ea.mspa.ce snapshot vector 

are simply linear combinations of the in-hand DFT va.lues; there is no need to  taper 

a t  the element level and the initial step remains a.n N point D F T  of each snapshot 

vector. Also, the real-valued nature of the bea.mspace manifold is retained allowing 

us t o  compute the beamspa.ce noise eigenvectors in terms of a real-valued eigenvector 

decomposition (or singular value decomposition). These cla.ims are subst.antiated in 

the following development. 

2.6.1 The C o s i n e  Wii ldow 

Consider the N point DFT of tlie c l e ~ ~ ~ c n t  \pace snapsl~ot \.ector at discrete time 

n. Nb successive N point D F T  \.alucs are sclccted and scaled in accorclance with 

(2.52). Tapering a t  the element levcl in accorclance \vith the Cosine window may be 

alternatively implemented by adding acljacen t DFT values pairwise across the m-th 

sub-band. This yields a (Ar
b - I )  x 1 hcams~~ace  snapshot vector denoted yLm)(n). 

Mathematically, yim)(n)  may be erpresrecl in terms of ykm)(n) as 

where w ~ )  = wF'T, and T, is the lVb x (AFb - 1) tra,nsformation matrix 

The  fact that this procedure is ecluivalent to having forn~ecl .Nb - 1 equi-spaced beams 

with a cosine ta.per at  the element level is sul~st,a.ntiatecl 11y involiing the definition of 



wP) in (2.50) along with the definition of a N ( u )  in (2.47) to express wLm) as 

where D, is the N x N diagonal matrix 

The  elements of D, effect a symmetric ta.per a.ccording to a cosine window. Note that 

the pointing angles of the AAlb - 1 beams formecl with "virtual" ta,plering according to 

a cosine window in this ma,nner are 1oca.ted a,t the midpoints bet,ween the pointing 

angles of the  Nb DFT beams. 

Note that the columns of the N x (ATb - 1 )  hea,informing matrix wLm) = wkm)Tc 
are not orthogonal as WF)"WP) = TTT, .  Orthogonaliza~tion of the beams may 

be achieved by post-multiplying we)  by the tra,nsforma,tion (TyT,)- ;  creating 

where (2.39) has been sul3stiti1 terl. ' l ' h r~c .  w&) i, a member of the class of orthogo- 

nal matrix beamformers clesc~ ibed 1 3 ~ .  (2.11)-(2.4 5 ) .  Note that the columns of Wc, 

exhibit conjugate centro-symnletry as well since 

where the fact that  T, is rea.1-valued has been exploited. Hence, one may work solely 

with the real pa,rt of the 13eamspa.ce sa,nlple cova.riance 111a.trix. 

Observing the fa.r right-hand side of (2.63) a.nd r e d l i n g  the results and discussion 

in the previous sections, it follo~zrs t1ia.t the 13ea.mspa.ce R.oot-MUS1:C procedure with 

orthogonalized, virtual cosil-~e ta.pering is as follo\vs. First,, construct the ( N b  - 1)  x 

(Nb  - 1 )  beamspa,ce sa.mple co\;a.ria.nce ma.ttrix 



where R:~) is the Nb x Nb bea,mspa,ce sample cova,riance matrix formed from the Nb 

D F T  beam outputs. Second, compute a,n eigenvector decomposition of the "whitened" 

beamspace sample covariance rna,tris (TTT,)- i R!~)(T:T,)- i : 

Third, partition the eigenvectors into those which belong to the signal subspace and 

those which belong to the noise s~~hspace .  Let fi denote the dimension (sf the esti- 

mated signal subspa,ce. Fourth, construct a (2nTb - 2)-th order polynomia.1 denoted 

p F ) ( z )  according to (2.35)-(2.37) with pim) replaced by 

T h e  final step is then to determine the signal roots of pL*)(z) in the usual fashion. 

Alternatively, one may compute a generalized eigenvector decomposition as 

and replace pLm) in the a,l)ove procetl~~re by 

Since it is easily shown that t11a.t ei = (TTTC)-3ei ,  i=1 ,2,...,Nb-1, it follor~s that the 

two procedures are ecluiva.lent. 



2.6.2 T h e  Harming and Haillilliilg Wiildows 

Virtual tapering accordiilg to a. raised cosiile winclow ma.y be effected by letting 

the Arb x (Arb - 2 )  ma.trix 

take on the role of T, in the version of beainspace Rool-MUSIC inco1:porating tapering 

developed above. Tlle Haniliilg ~viildo~v is effected with cr = .5 while the Hamming 

window is effected with cu = .5(.46/.54) = .426. This claim is substantiated by again 

invoking the definition of wF' in (2.50) along with the definition of a N ( u )  in (2.47) 

to  express WP) = w ~ ~ ) T ~ ~  as 

where DH is the A' x M diagonal nia.tris 

It  is apparent that  cr = .5 yields virtual Hanning tapering while cu = .5(.46/.54) = 

.426 yields virtual Hamming tapering a.s st,a.ted a.bove. 

Similar t o  (2.63),  the orthogona.lizec1 version of the Ha.mniing or Hanning beam- 

forming matrix 1na.y be expressed a s  



It follows that WP: is a me1n11er of the class of orthogonal matrix beamformers 

described by (2.44)-(2.45). It is a.lso ea.sily shown t11a.t the columns of W ' H ~  exhibit 

conjugate centro-symmetry a.s well. 

As an  illustrative example, Figure 2.2(a) displays the Nb - 2 = 6 beams formed via 

virtual Hamming tapering for the case of a.n N = 32 elenlent ULA. Each beam was 

synthesized by weighting and summing three adjacent beams out of the .Wb = 8 DFT 

beams plotted in Figure 3.l(a) ill accordance with (2.70) and (2.73) with a = .426. In 

each beam pattern plotted in Figure '>.2(a.), observe the equi-ripple sidelobe behavior 

characteristic of the spatial frequency response of the Ha.mming window. Note that 

by construction, the -Arb - 2 = 6 11ea.111~ ~lcpict~etl in Figure ?.'>(a,) ha.ve the same 

N - N b  = 3 2 - 8  = 94 out-of-ba.nd co~nnlo~i  nulls 1)ossessecl I)y the ATb = 8 beams 

plotted in Figure fl.l(a.). This set of I-)ea~iis ~.cprcscnts a.11 esa.ml,le where the number 

of common nulls is two less the rna.xilnu~n a.mouu t eclual to the number of elements 

minus the number of beams (23 < 32 - S = 25). Figure 2.2(13) displays the Nb - 2 = 6 

beams formed by applying the ortl~ogonalizi~l:, transibrma~ttion (TT,T~)-I  to the set 

of Nb - 2 = 6 beams plotted in Figure 2.2ja). (>oinpa.ring Figures 2.2(a) and fl.fl(b), it 

is observed that ort hogonalizatioi~ of the 1)ea.m~ gives rise to an increase in out-of-band 

sidelobe level between 5 and 10 dB and a. substa.~ltial increa.se in in-band sidelobe level. 

Note that  high in-band sidelobes are not undesirahle. Also, the number and respective 

locations of the common out-of-band nulls a.re not affect,ed by o~.thogonalization. 
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Figure 2.2 (a)  Six equi-spaced beams formed via, virtua.1 Hamming tapering. (b) 
Orthogonalized set of bea.111~ derived from those in (la). 



2.7 Construction of Interfereilce Cailcellatioil Matrix Beamfor~ner 

The  premise of this section is that with the information gained thro'ugh initial 

probing of multiple, overlapping sub-bands via. DFT based beamspace Root-MUSIC 

(with or without virtual tapering), we are interested in focusing on a particular sub- 

band and have estimates of the directions of out-of-band sources. For the purposes 

of this section, these out-of-hand sources are referred to  as interferers. The  goal 

then is to  design a ma.trix hea.mformer for the suh-hancl of interest exhibiting the 

common out-of-band nulls property, so t1-1a.t one may work with a reduced degree 

polynomial, but with a subset of the common nulls aligned with the directions of 

out-of-band interferers. The  issue then becomes where do we position the remaining 

common out-of-band nulls. Since sirnulat,ions show that tlle .ji x Nb D F T  matrix 

beamformer yields the best performance tllroughout tile sub-ba.ncl, in conlparison to 

that of weighted bea.mformers, the interference ca.ncella.tion nla.trix bea.mformer is 

designed so as to  emulate t,he N x )\Ih D1:T ~iiat,rix I)ca.mfo~.nier as lnucll as possible. 

In fact, we will find that we a.re a.ble to <lo so well e~lough t,ha.t despite the induced 

nulls, virtual tapering may be effected l ~ y  adding weigh tetl bea,m outputs exactly as 

described in Section 2.5. This is important for scenarios in which low out-of-band 

sidelobes as well as hard nulls at  specified out-of-band 1oca.tions are desired. Such 

scenarios arise in rada.r, for example, when the radar has to deal with diffuse sources 

such as clutter and nonspecula,r 1nultipa.th as well as point jammers. 

As in previous developments, let A',, cleilot,e the nu~nher  of hea.ms formed to  en- 

compass the sub-band of interest. 17urt,her, let tho sub-ba.ncl of interest be referred to 

as the m-th sub-band a.nd denote thc A' x AT,, ol~t,-of-l)a.ncl intkrference cancellation 

matrix beamformer as wjrn). Note tlla,t rrln,t,ive to t,he initial probing phase, it is 

expected that  Nb should be smaller as some rough information on the locations of 

in-band sources is availa.ble [6, 71. 111 accorc1a.nce witall the discussion above, select 

an N x Nb D F T  matrix benmfornler ~ i f i '  lor wliicll the corresponding beam set 



encompasses the sub-band of interest. w!") is then designed to emulate warn) as 

much as possible. 

Let u ~ , ,  i=1, ..., J ,  denote the tlircctions in which J out-of-band nulls are to be 

formed. The null constra.ints to be sat,isfiecl may be matheina,tically expressed as 

Further, let cjrn)(z) denote the (N- Arb)-th order common roots polynomial. It follows 

that J of the N -Arb roots of c P ) ( z )  a,re zi = exp[j~zcIt],  i=1, ..., J. Let c\") denote the 

N x Nb banded-Toeplitz matrix constructed from the coefficients of cjm)*(z) according 

to  (2.42). Imposition of the common out-of-barid nulls property relegates wlm) to 

be a member of the class of ina.trix bea.inforn~ers descril~ed by (2.44)-(2.45) so that it 

may be factored as 

where U is a Arb x 11nit.al.y ma,tsis. U is scll1al.e since t,he number of common nulls 

is constrained to Ile the ina.xin111n1 a.~nount, cqua.l t.o t . 1 1 ~  11umher of elements minus the 

number of beams. Ba.sically, our pro1)lem at this point is to determine the remaining 

N - Nb - J roots of clm)(z)  R I I C ~  U SO as to lli i l i i~niz~ I warn) - w/") I/;, where F 

denotes the Frobenius norm, under t,he stJruct,ura1 const,ra.int in (2.75). 

The approach is to first determine cj'")(z). To this end, construct the k-th column 

of w!"), denoted w~ where t E {l, ..., N b } ,  so that it is "close" in a least squares 

sense to the k-th column of ~ j ; " ) ,  aN([nz + t]$). ~inder the constraint that the 

corresponding beam exhihi t nulls at the J prescribed interference locations and the 

same Nb - 1 in-ba,nd ilulls exl~ibitetl I,y t,he I,ea,m corresponding to aN([m + k]$). 

cjrn)(z) is then computed as tlie ri?t,io of mk(r) to qm+r(r) ,  where 'q,+*(r) is defined 

by (2.31) (with the coefficients nosma.lizetl to exhibit conjuga.te centro-symmetry). 



In order to solve for wk, let {fl , f 2 ,  . . . , fN-,\r,-J) denote an orthonormal basis 

defined as 

span i f l , .  . . , f N - ~ , -  J )  = span [2.76] 

where I denotes orthogonal complement. It follows from the null constraints on the 

beam formed with wk that wk nlust lie in the subspace described by (2.76). Thus, 

denoting F = [fi i fi i . . . i fN-n7b-J], an ,AT x ( N  - Nb - J)  matrix, it follows that 

wk = Fd, where d is an (N - Nb - J )  x 1 vector. d is deternlined as the solution to  

The  solution is simply the least square error (1,SE) .;oll~tion to the linear system of 

equations Fd = aN([ ln  + k]$), d = Ff'anr([,n + k]+) .  Since t-he columns of F are 

orthonormal, wk = FF" an([m + k]&).  

Recall that the solution for wk computed above guarantees that the corresponding 

beam exhibits the same Arb - 1 in-band nulls esl~il~itccl 13~. t h e  beam corresponding 

to  aN([m + k]$). Thus, the corresponclii~g polynomial tok(--) may be factored as 

Q ~ + ~ ( z ) c ( z )  where qm+k(z) is defiilecl IIJT (2.31) and c(z) is a polynomial of order 

N - Na. We will take the polynomial r (z )  to be the common roots polynomial cim)(z). 

That  is, 

Accordingly, the length N - Arb + 1 secluelrce { c y ) )  may be computed by simply 

deconvolving the length Nb sequence {q,,,+A) O I I ~  of thc Iengt 11 M sequence {wk) .  

Given the sequence {cim)) clete~.niinecl al~ove. onr niay construct the banded- 

Toeplitz matrix cjm) according to (2.40) or (2.42). AI this point, we have wjm) = 

lim) 2 c!") Q$"') and desire to choose Q j"') io  as to mini~niar I ~ j ; " )  - c!") Q, I I F .  One 

is tempted to  choose Qjm) = Q);". \vl~ere QLm) is clefrllecl in (2 .33 ) ,  as this restricts 

the in-band nulls of the beam generated by each colun~n of ~ j " ' )  = clm) Qkm) to 

be the same as that  of the c ~ r r e s p o n r l i i ~ ~  colunln of wkm) .  Note that this claim is 



substantiated by the interpreta,tion of the product cjm) Qam) as a convolution as 

discussed in Section 2.4. the columns of w)") = c!"' Qkm) are not, in 

general, mutually orthogonal. 0rthogona.lity may be achieved by post-multiplying by 

(m)HC$")HC$")QR 
(QR ("))-' leading to the general form 

where r is a Nb x Nb ui1ita.r~ matrix and 

It  is easily verified that the rorrn ol' win" i l l  (2.79)-(2.80) sa,tisfies u')") H ~ $ m )  = IN, 

as desired. r is then chosen as tal l ( .  solt~tion to t llc follo\ving constra,ined optimization 

problem 
2 

min 11 wkm) - ~ ) n i )  11; = I wLm) - wor 11, 
r [2.81] 

tI subject to : r r = rr" = IN,. 

Equation (2.81) is recognizer1 as an orthogonal Procrustes rotation problem [ 5 ] .  The 

solution may be coinputed as follows. First, coinpute the SVD of the Nb x Nb matrix 

W ~ " ) ~ W ~ ,  where Wo is given 13j (2.79). If w ~ ; ' ) ~ w o  = U E V ~  is the SVD, the 

solution to (2.81) is r = UV". 

Note that  the above development assumed the conjugate centro-symmetric form 

of the N x Nb DFT inatrir  beaillfor~licr in (2.51). In the factorization WLm) = 

ckm) Q L ~ ) ,  this implies that c(nm) alld ~ a c l l  coli111111 of Qkm) are scaled to  be conjugate 

centro-symmetric. This is possil,lc sinw t l ~ c  col.rcsl~ontling polynomial in each case 

has all of its roots on t l ~ r  1111it c~I.cI(.. 11. t'oIlo\~~\ tl1r11 t,llat I ~ , Q ~ ~ )  = QLm)* and 

(nt)* inr-N,+lckm) = CR W I I ~ C I I .  in  t111.11. yields t l l r l  l , ro~~cl~ty I , ~ c ( R ~ ) I ~ ,  = cam)*. Based 

on these properties of QLm). ~ ( H n l ) ,  and ckm) ,  it may be ],roved that the interference 

cancellation matrix beamfo~.nier constructed according to the procedure developed 

above satisfies I ~ w ~ ~ )  = Wlm'*. Therefore, similar to the case with the N x Nb 

D F T  matrix beamformer, one may worl; ~ ~ i t l ~  the real part of the bea.mspa.ce SCM 

= w(m)HfiZWy) 
I 



Thus, relative to the beamspace Root-PIdUSIC procedure based on the use of 

the N x Nb D F T  matrix beaniformer, tile o~rly dillcrence when employing wjm) 
determined according to the above 111-oced~~rc, is that ~ j " ' )  tal-cs or1 the role of wLm) 
and 4irn) = Q ~ ~ ) ( Q ~ ) ~ c ~ ~ ) ~ c ) ~ ~ ~ ) Q ~ ) ) - ~ ~  lakes oil the role of QF). Otherwise, 

the  procedure is exactly the same with the major computations being a Nb x Nb 

real-valued EVD and the rooting of a polynolnial of order 2?A1(, - 2. 

As an  illustrative example, an interfereilce cancellation matrix beamformer was 

constructed according to the al~ove procedure to probe the saine sub-band encom- 

passed by the Nb = S D F T  beams depicted in Figure 2.l(a) under the constraint that 

each beam exhibit a null a t  each of the t1r.o conllnoil out-of-band peak sidelobe loca- 

tions indicated in Figure 2. l (a) .  Figure 2.3(a) displays the AT6 = 8 beam:; generated 

by the interference cancella tion mat1. i~ l ~ e a n ~ f o ~ ~ m e r  thus created. It is observed that 

the  beams exhibit N - Arb = 24 comnlon out-of-lmnd nulls as desired. Away from the 

region of the two prescribed ou t-of- ha.n tl n111 Is, t,he I3ea.m pa.t tei.ns are observed to be 

very similar to  the D F T  beam patte1.n~ clisl,layed in Figure 2.l(a.). Although it can- 

not be  discerned from the magni tu  tle ],lot.. t lic 11ea.m~ exhibit t.he same sidelobe phase 

relationships exhibited by the DFT 11cil nis in t,lia.t, the respective sidelobes of adja- 

cent beams are lSOO out-of-pha.se. TI1 is pl.o],c~t,l\: ]nay I)(: exploi t.ed to a.chit:ve reduced 

out-of-band sidelobes via virtua.1 ta.pesing in esa.ct,ly t,he sa.nle \iJa,y it is a,chieved with 

D F T  beams. This cla.im is suhstantia.ted Ijy t'lie heam set plotted in Figure 2.3(b) 

corresponding to virtual cosine tapering. I-Iere each I~eam is the sum beam created 

by adding an adjacent pair of the Arb = F beams plotted in Figure 2.3(b). Figure 2.3 

demonstrates the efficacy of the interference cancellatioil inatris beamformer design 

procedure developed in this section. 
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Figure 2.3 (a) "Adaptetl" bcams derivctl from those in Figure 2.l(a) via 
interference cancellation matrix l~eainfori~ling metllod. Each beam exhibits a null in 

each of the two interference locations. (11) S e ~ ~ e n  beams derived fl-om those in (a); 
each beam is the su111 of an adjacent pair of beams. 



2.8 Computer Experiinents/Simulations 

Simulations involving a.n N = 32 elelllent ULA wi t,li ha,lf-wa,velength spacing were 

conducted to ascertain the effica,cy of the Bearnspa.ce Root-MUSIC algorithm devel- 

oped in this chapter. The sources were mutua,lly uncorrela.ted in a.11 test cases. The 

stated SNR for a particula,r source is that per element; the noise was spatially white. 

All sample biases and sample sta.nda.rcl cleviations cited were computed from 250 

independent runs and are in units of degrees. Finally, separation by half-Rayleigh 

implies a separation of 1 /N in the zl = sin 0 doma,in corresponding to half of the 3 

dB beamwidth. 

Figure 2.4 compares the perfosma.nce of element space Root-MUSIC with tha,t 

of beamspace Root-MUSIC using the 11ea.m set in Figure 2.lja.) for the case of two 

in-band sources separated 1)y ha,lf-R.a,yleigl-I a.nd a. st,rong source loca,ted a.t a common 

peak sidelobe just outside the )>and. Tn t , l~c ri = sin 0 domain, the bea,in pointing 

angles are (-8 + 2i) I N ,  i=0,1,. . . ,7. ?'he in- bancl sources were eclui-powered with 

SNRl = SNR2 = 3 dB and were loca,t,ed a,pprosin~at.ely mid-ba.nd a.t ul = 0 a.nd 

u2 = 1/N. The out-of-band source wa.s 1oca.tetl a.t ,113 = 9/N with SNR3 = 20 dB. 

Recall that u = 8 / N  is a common null 1oca.tion n~a.rliing t.lle edge of the: band; the 

next common null locat,ioil is u = 10/N. Fina.lly, for ea.ch trial run the number of 

snapshots was M = 32 a,nd the number of signals a.ss~tmed wa.s three. 

The respective sample st,a,nda,rd devia,t,ions oht.a.ined witch beamspace Root-MUSIC 

is observed to be nearly identical to tha.t obta,iued wit,l~ element space Root-MUSIC 

for each of the two in-ba,nd sources. I-Io\\.ever, the sa.ml,le bias is significantly lower for 

beamspace Root-MUSIC. Compa.ring the root plot in Figure 2.4(a.) with that in Fig- 

ure 2.4(b), note that the in-ba.nd signa.1 roots ohta.ined with I,ea.lnspa.ce R . C ) O ~ - ~ ~ U S I C  

are closer to the unit circle than t.Ilose obtained with element space Ro'ot-MUSIC. 

Note that for element spa.ce Root,-A![ I~ISIC!, t,l~c: ~najol* con1 out.a tjions are the ejgen- 

decomposition of a complex-va,luecl 32 x 32 nia.~,rix ancl  t,he rooting of a polynomial 

of order 2 N  - 2 = 63. On the other lmnd, t.he ma.jor computations for beam space 



Root-MUSIC are the eigendeconlposition of a rea.1-valued S x S matrix and the rooting 

of a polynomial of order 2Nb - 2 = 14. 

In accordance with the discussion i l l  Section 2.6, bea,mspa.ce Root-MUSIC is able 

to accurately localize the stroiig out-of-ba,nd source. It is important to note, how- 

ever, a reduction in the number of assumed signals from three to two has a severe 

pejorative effect on the performance of beamspa,ce Root-MUSIC with respect to the 

in-band sources. This is demonstra.ted in the siinulation results presented in Figure 

2.8(a) for the case of a, weaker out-of-11a.ncl source located at the fourth common peak 

sidelobe outside the band! The  results in Figure 2.S will be discussed shortly. On the 

other hand, an increase in the number of a.ssumec1 signals from three to four has rel- 

atively little effect on performance. Thus, a.s with spectral MUSIC in either element 

space or bea.mspace, in dra.wing the line of c1ema.rcation between the signal and noise 

eigenvalues, it's critical to err on the side of overestinlation of the number of sources. 

Of course, element spa.ce R.oot-hIUSJC significantly outperforms beamspace Root- 

MUSIC with regard to 1oca.liziiig the out-of-11a.ncl source a.t ,u3 = 9 / N .  In fact, the 

sample bias and sample sta.nda.rd clc\ria.tion of cleraent spa.ce Root-MUSIC for this 

source is so small tha.t one cannot tlisccl-11 the sca.t,t,er of t,he associated roots in 

the root plot of Figure 2.5(11). (The cluster of rooth closest to the origin in Figure 

2.5(b) are not signa,l roots.) It shoultl be poir~tecl out,  though, if (desired the source 

a t  US = 9 / N  may be more accurately localizecl with bea.mspace. Root-MUSIC by 

processing a.n a.dj a.cent s~~b-I~a.ncl.  

In their perforinance analysis of Root-I\,IlJSIC in element space, Rao and Hari [ lo]  

show that the error in each of the signal zeros of the Root-h4USIC polynomial ha.s a 

largely radial component. A purely ra.dia.1 error in a. given signal zero has no effect 

on the corresponding source angle estimate but ca.uses tlie corresponding signal peak 

in the MUSIC spatial spectrum to be less pronounced. Thus, although Rao and Hari 

show that the a,sympt,otic mean squa.re error of the source angle estimates obtained 

with R.oot-MUSIC is the sa.me as that. ohta.ined wit11 Spectra.1 MUSIC, they point 

out that itimplicit in tlie de~.ivation oC t l ~ e  mean scl11a.l-e error for Spectral MUSIC 



is the assumption that corresponding to each source there is a. pea,k in the spatial 

spectrum." As Rao and Hari point out, this "is a. stronger assumption than distinct 

z-plane roots." They demoilstrate the improved performance of Root-MUSIC over 

Spectral MUSIC by presenting simulations in which the MUSIC spectrum exhibits 

a single peak in the vicinity of two closely-spaced sources while the corresponding 

Root-MUSIC polynomia.1 exhibits two clearly distinct signal zeros. Thus, the main 

advanta.ge of Root-MUSIC over S11ect~ra.l MUSIC in element space is with respect to 

probability of resolution. Nest, sin~ula.t,ions sho~v tha,t the same is true in beamspace. 

Figure 2.5 compares tlie prol~al~ili try of i~esolutioii of 11ea.mspa.ce Root-MUSIC 

with that of Bea.mspa,ce Spect,ra.l h:[liSI(: o1.w a, range of SNII va.lues for two equi- 

powered, uncorrelated sources separa.tet1 I I ~  lia,lf-Raylcigh. The following parameters 

were common to  ea.ch trial run. The two sources were loca,tecl a.t t ~ 1  = 1/(2N) and 

u2 = -1/(2N); recall that A' = 32. ,ATL, = 4 consecuti~re beanls out of the eight beams 

displayed in Figure 2.1 (a) ,  with tlie first beam llaving a. pointing a.ilgle of u = -4/N, 

were employed yielding 2nTb - 2 = (3 roots per run, 3 reciproca.1-1na.gnitude pairs. For 

each trial run, beamspa.ce Root-MUSIC and bea.mspace Spect,ra.l MUSIC were both 

supplied with the same 44 = 4 sna.ps1iots. For ea.ch of 17 different SNR values, the 

empirical probability of resolutio~i for either algorithm cva.s computed from 1000 in- 

dependent trials. For bea.mspa.ce Spe~t~ra.1 MUSIC, tlie t~vo sources were said to be 

resolved if the beamspace A'IUSIC spectrum exliil~it.ed a 1oca.l maximum in each of 

the two half-beam~idt~h sectors, - l /Ar  < I L  < 0 alitl 0 < LL < 1/N. Note that a 

source is located a.t the cent,er of eacl~ ol' t,l~c~sr. t\vo 11al I'-ljea,rn\vidt,h sector:;. In accor- 

dance with the relationship z = esp[ j x t r ] ,  the correspo~lcling resolution criterion for 

Beamspace Root-MUSIC was a.s follows: the two sources were clecla.red res'olved if the 

beamspace Root-MUSIC polynomia,l yielded a. root i n  each of two stva,tlis of the com- 

plex z-plane described by exp[- j.rr/N] 5 arg{z} 5 exp[-j.rr/20N] n .8 5 lzl 5 1 

and e x p [ j ~ / 2 0 N ]  5 arg{z) 5 esp[jn/M] E .8 < I z I  5 I ,  respectively. Thus a 

minimum angular sepa.ra,tion of one-twent.iet11 of a 11ca.inwiclt11 between the two signal 

roots, and that each ha,ve a. ma.guituc1e bet,ween 0.S and unity, for t,he two sources was 



imposed to declare a. resolved signal. The resul t,ing proba.bili ty of resolution curves 

are displayed in Figure 2.5. 

Comparing the probability of resolution curves in Figure 2.5, i.t is observed that 

the performance of heamspa.ce R,.oot.-h;IUSIC is a.bout 4 dB better on average tha.n 

beamspace Spectra,l MUSIC. That is, on a.vera.ge, bea,mspa.ce Spectral MUSIC requires 

about 4 dB more SNR per element than beamspace Root-MUSIC to achieve roughly 

the same probability of resolution. In accordance with the resolution criteria described 

above, the performance clifferentia.1 is clue to runs in which the beamspace MUSIC 

spectrum exhibits a single 11ea.k ivliile the corresponding beamspace Root-MUSIC 

polynomial exhibits two clearly distinct signa.1 zeros. Figure 2.6 shows the overlaid 

results of five independent ru i~s  where this was the case when the SNR of each source 

was -3 dB. (Note that wit.11 rega.rc1 to 11ca.nlspa.ce Spectral RIUSIC, four different line 

types were usecl so tha.t t'he solitl 1i1ie wa.s usecl t\vice.) T l ~ e  respective positions of each 

of the actual signa.1 rootss are indica.tdcd hy a ra,clia.l line i n  tlie beamspace Root-MUSIC 

scatter plot. In each of t.lw five ~.uos, tlie I~ea.nlspa,ce ilI1JSIC spectrum exhibited a 

peak in the viciiii tv of one of tlic sources, bu t, not in tlie direction of the other. The 

source it worked well for variccl a.mong the fi\.c runs. A11 exa.mination of the two 

corresponding signa,l reciprocal-i~ia,gnitude root pairs for a, given run reveals one pair 

to be close to the unit circle while tlie ot,lier pa.ir wa.s significa.ntly removed from 

the unit circle. (This is ha.rd to clisceril \vith the result,s of five runs overlaid.) The 

simulation results presented in Figures 2.5 ancl 2.6 illustra,te the impi:oved performance 

of beamspa.ce Root-hllUSIC over bca.msl~a,ce Spect~.al MUSIC. 

Figure 2.7 tra,cks tlie perfo~~ma,nce of 11ea~inspa.ce Root-MUSIC a.s the position 

of two equi-powered sources \\:i t , l l  1 ~a,l f-R aylcigli sepa,ra.t,ion is va.ried from the center 

to  the upper edge of the I)atlcl. This is clone for the liea.rn set displayed in Figure 

2.l(a.) and for each of three I:)ea.ni scts dcri\lcd flum tlla.t, in Figure 2.l(a) by virtual 

tapering according to either t,he cosine, I-Ia.nning, or Ha,mming windows. Recall that 

u = -10/N a.nd t i  = S / N  are common n u l l  loca,tioiis ma.rking the upper and lower 

edges of the hancl, respectively. TI-lr. cetit,cr of t.he 1)allcl is t,hus u == -1/N. For each 



trial run, the SNR for each source wa.s 6 dl3 a,nd the algorithm wa.s supplied with 

M = 16 snapshots. The sa.mple bias a.nd sample sta,ndard deviation curve:s obtained 

for the "left" source (i.e., the source having the slnaller value of u)  are displayed in 

Figures 2.7(a) and 2.7(b), respecti\;ely. The a.l?scissa. in either figure is th'e u = sin 8 

bearing of the "left" source. Fina,lly, not,c t,l-1a.t rcgarclless of t,lie beam set employed, 

the initial step is the computation of Nb = S successive 32 point DFT valules. Virtual 

tapering according to the cosine, Ha,nning, or Ha,mming windows wa.s accomplished 

by adding successive, weighted DFT va,llles a.s tliscussed in Section 2.6. 

Figure 2.7 evokes a nunlber of ol~sesvations. First, the beam set displayed in 

Figure 2.l(a) correspondiilg to no tapering is observed to yield the hest performance 

over the entire half-band. The performa.nce 011ta.inecl with ea.cl1 of the four beam 

sets is observed to  degrade towarcls t,he eclge of the sub-hand: the performance of the 

Hamming window beam set is ohser\:ed to fa,]] off first. As we a,pproa.ch the edge of 

the sub-band, we have a dynamic range problem in that the "left" source i~s "passed" 

with significantly more ga,in t11a.n the "right" source; when the "left" source is at 

u = 7/N, the "right" source is a,t t'he colnn-1011 n u l l  posit.ion u = SIN. These results 

emphasize the import.a.nce of overlal)l~ing i.hc s~~l)-hantls.  Note t.1ia.t with 50% overlap 

among sub-bands, a source a.t the edgr ol'oncx h a n d  wil l  lie at, the center of an adjacent 

sub-band [12]. Thus, 50% over1a.p a.mong sub-11a.ncls is recommended. 

Although no ta.pering yielded the hest, pcrforn~alice i n  t.hc pre\lious set of sirnula,- 

tion results, it is importa.nt to 1;eep in mind tha.t no t,a,pering also provides the least 

amount of out-of-band source filtering. This phenomenon is illustra.ted in Figure 2.8. 

Figure 2.8 displays the performa.nce of bealnspace Root-h.1USIC assuming t,wo sources 

in the case of two in-band sources separa.ted bv half- Raj.leigh a,nd a, stroilg out-of-band 

source located at a comnloll pea,li siclelol>e. The in-lmnd sources were equi-powered 

with SNRl = SNRz = 6 dB a.ilc1 were loca,tecl at ti1 = 0 a.nd 212 = 1/N. The 

out-of-band source was located at 113 = -17/.W with SNR3 = 1s  dB. Note that 

u = -17/N is the 1oca.tion of the follrt,h common pea,l; sidelol~c awa.y from the lower 

edge of the band ma.rketl IIJI the con-llnon I . I I I I I  location a,t 11 = - l O / N .  The position 



of the  actual signal root associa.tec1 ~vitli tlie out-of-band source at, u3 = -17/N is 

indicated by a ra.dia1 line in Figures 2.8(a,) and 2.S(b) as a,re the a.ctual signal roots as- 

sociated with the two in-ba,ncl sources. For each trial run the number of snapshots was 

M = 32. Fina.lly, the performa.nce a.chievec1 with no tapering and that achieved with 

vilbtual Hamming tapering a.re displa.yed in Figures 2.S(a) and 2.8(11), respectively. 

Despite the fa,ct that the out-of-band source wa.s located a number of beamwidths 

away from the edge of the band, discounting its contribution to the: eigenstructure of 

t he  beamspace sa.mple correla~tioii ma.trix is ol~scrved to be a fa.ta1 mistake in the case 

of no tapering. In 35 out of tlie 250 ~-uns,  the in-band signa,l roots were aligned at  the 

same phase angle correspondiiig 1,o i\n un~.esol\;ccl situation. The  signal roots obtained 

in the other 212 runs were hea,vily biased. In cont,ra,st, tlie use of Hamming tapering 

provides adequa,te filtering of' t,he olit,-of-band so~~ l - cc  as eviclenced by the root scatter 

plot displayed in Figure 2.8(11). Of course, performa.nce in the case of no tapering 

may be  improved c1ra.ma.tically by increa,siug the number of a.ssumecS signals from two 

t o  three. However, the point is t1ia.t is it is impera.tive to  do so with no tapering while 

good performa.nce is a,chievecl n:itli ~7irt~ua.l Ha.mming t,a.pering wit,hout resorting to  

such. This has implica.tions with sega,rd to avoiding a situation in .which the number 

of in-band sources a.ncl ina.dequa.tely filt,esecl out-of-11a.rld sources i:; greater tha.n the 

dimension of tlie hea.mspa.ce. 
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Figure 2.4 Beamspace Root-MUSIC vs. Element-space Root-MUSIC for beam set 
of Figure 1. (a) Bea.mspace Root-hlU SIC. (b) Element-spa.ce Root-Nv'[USIC 
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Figure 2.5 Empirical probability of resolutioil versus SNR curves: Beamspace 
Root-MUSIC versus bea.mspace spectral MUSIC with two equi-powered and 

uncorrelated in-band sources located at -1/(2N) and 1/(2N). ATb = 4 out of the 
eight beams displayed in Figure 2.l(a).  



-351 ' J 
-0.15 -0.1 -0.05 0 0.05 

Sin 0 

(4 

Figure 2.6 Beamspace Root-MUSIC versus beamspace spectral MUSIC. Same 
scenario as that in Figure 2.5 escept SNR = OdB. (a,) Root sca.tter plot obtained 

from five independent runs. (b)  Corresponding bea.mspace spectra. 
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Figure 2.7 Performance of beamspace Root-MUSIC a.s a function of position of two 
uncorrelated half-Rayleigh sources (SNR = GdB) within the subband 

-10/N < u < SIN. Nb = S beams generated with weighting a.pplied to the set 
shown in Figure 2.l(a). Statistics for the "left" source computed from 250 runs. (a) 

Sample bias. (11) Sample standard deviation. 
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Figure 2.8 Beamspace Root-MUSIC scatter plots associated with the use of the 
rectangular and Hamming-weighted bea.m sets of Figures 2.1 (a) and (b) .  Two 6dB 
uncorrelated sources were located at 0 a.nd 1 /N while an lSdB out-of-ba.nd source 

was positioned at -17/N. The roots in 250 trial runs were computed assuming only 
2 signals present. (a) no (rectangula.1.) tapering, (b) Hamming taper 



2.9 Summary 

Procedures were presented for designing orthogonal matrix beamformers com- 

posed of conjugate centro-symmetric weight vectors and producing beams exhibiting 

coinmon out-of-band nulls, for use in conjunction with Root-MUSIC. The former 

property enables one to work with the real part of the beamspace sample covariance 

matrix in the eigenanalysis stage of Root-MUSIC, while the latter property yields a 

reduced degree polynomial in the final stage of Root-MUSIC. It should be noted that 

the use of conjugate centro-symmetric weight vectors allows one to work with the real 

part of the beamspace sample covariance matrix irrespective of the angle-of-arrival 

estimation algorithm employed. A number of matrix beamformers possessing the 

desirable features were derived from the AT x ,Wh DFT matrix beamformer. For ex- 

ample, matrix beamformers yielding reduced out-of-band sidelobes were constructed 

by adding weighted, adjacent colunlns of the N x DFT matrix beamformer. In 

addition, a procedure was de~leloped for constructing a matrix beamformer possess- 

ing the aforementioned propertiei \\rllicli all014 s the designer to specify a subset of the 

common null loca tioils. 

Note that all of the results in this chapter are easily modified if instead of the N x 

Nl, DFT matrix beamformer wLm) defined in (?.16), the prototype matrix beamformer 

was defined with each of the Arb corresponding pointing angles translated by the some 

fraction of the spatial DFT spaci~lg 2 / N .  All of the necessary properties are retained 

under such a translation. That is, it is not necessary to center the beams on DFT 

bins. 





3. PERFORMANCE ANALYSIS OF BEAMSPACE ROOT-MUSIC 
EMPLOYING CONJUGATE SYMMETRIC BEAMFORMERS 

3.1 Introduction 

The quality of all high-resolution angle estimators is known to  deteriorate as the 

correlation amongst the signals increases. A popular approa.ch, used in element-space 

formulations, is to employ spa.tia.1 smoothing [:30, 31? 321. A beamspace analogy 

to forward/ba.ck\va.rcl a.veraging i l l  eleii~ent,-space cvas not.cd in the previous chapter. 

There, the use of conjuga.te symmetric 11ea.mformers in conjunction with a uniformly- 

spaced linear a,rray allows one to compute the noise eigenvectors as the 'Lsmallest" 

eigenvectors of the real part of the 11ea.mspa.ce sa.mple cova.riance matrix. It was shown 

that  the effect of taking the rea.1 pa.rt of the bea.mspa.ce covariance is equivalent to 

that obtained by first applying a. for\$~a.rd/ba.ckwa.rd average in element-space prior 

to the beamspace transformation. Thus, a mea,ns to achieve signal decorrelation, as 

well as a savings in computa.tion, is to employ a rea.1 eigenanalyrjis in beamspace. 

It should be noted that the class of conjuga.te centro-symmetric weight vectors is 

a very general one encompassing a.perture tapering in accordance with any of the 

classical windows, Hamming, Ibiser ,  Chebyshev, etc. , and the class of discrete prolate 

spheroidal sequences as well [39, 251. 

Due to the fa.ct that the rea.1 parI, or t,l.~e 11ea.rnspace sa.mple covariance matrix is not 

Wishart distributed, in genel-a.1, i t  wa.s not possil~le t,o ~nercly cull previously derived 

results. However, the approach ta,l;en here is simila,r in na.ture to the pioneering 

work of Pillai and Kwon [8]. I11 [S], the a.symptotic distribution of the element-space 

eigenvectors for a spatially sinoothed sa.mple covariance ma,trix were derived and used 

to  determine the bias and variance of the RfUSIC null spectrum. The results in [8] 

cannot be directly transformed to a,pply to the ca,se a t  ha.nd unless the beamforming 



preprocessor is a square matrix. Even in this non-typical case, the results would 

have to  be adjusted to insure that the eigenvectors exhihit the required conjugate 

symmetry. 

The spectral formulatioil of MUSIC is co~isidered but, as shown in [lo],  the derived 

asymptotic variance applies to the Root-MUSIC form. As there is no specific uniform 

placement of sensors as dictated for a.pplica.tion of Root-MUSIC, only a symmetric 

placement of sensors is assumed so that one can rea.p the computa.tional/performance 

benefits associated with the processiilg of only the real-part of the beamspace sample 

covariance matrix. 

An outline of Chapter 3 follows. The asymptotic sta.tistics of the signal subspace 

eigenvectors pertaining to the rea.1 part of the 11eamspa.ce sa,mple covariance matrix 

are presented in Section 3.2.1 a.nd derived in Appeiiclix D. Ta.rgetting a l~eamspace 

MUSIC applica.tion, the a,symptotic I3ia.s a,nd va.ria.nce of t,he I>ea.mspa,ce MUSIC es- 

timator incorporating real processing are derived in Section 3.2.2, followed by an 

observation and valida.tion of the theorct~ic~al result's in Sections 3.3 and 3.4. Real- 

izing the need to  a,ttenuat,e clutt,er or st,rong sig~ia,ls t,hat exist a,t dista.111; locations 

in a sector-based processing scl~eme, t,he localization performa.nce of several tapered 

beamforming architectures axe studied in Section 3.5. 

For notational simplicity, the Spectra,l MUSIC algorit,hin incorporating the eigen- 

vectors derived from the real-pa.rt of the 11ea.irlspa.ce sa.mple covariance is termed 

as REAL-BS-MUSIC while that incorpora.ting the eigenvectors of the complex co- 

variance as COMPLEX-BS-MUSIC. Also, the nota.tion "(?n)" used to denote the 

processing of a particular (nz'th) subl~a.nd is omitted. 

3.2 P e r f o r m a n c e  Analys is  of R e a l  Covar iance  B e a m s p a c e  MUSIC 

In this section, we derive the theoretica.1 l~erforma,nce of the REAL-13s-MUSIC 

algorithm based upon a. finite sa,mple estima.t,e of the bea.msl~nce covariance. Aside 

from the computational a.dva.nta.ges of processing only 1,he real ~ m r t  of the beamspace 

covariance, a performance benefit, in terms of the estima.tion a.ccura.cy, was observed 



through computer simulations as noted in the previous c1ia.pter. A theoretical anal- 

ysis serves two purposes: (1) to offer an alternakive to ~ o i n ~ u t a ~ t i o r ~ a l l y  burdensome 

computer simulations and (2) to provide a mea,ns to gain general insight into the 

operation of a particular direction fincliilg algorithm a,nd bea.mforming architecture. 

Although the approach of using only the rea.1 part of the beamspace covariance 

matrix is general in nature so t11a.t it a.pplies to a.11 direction finding techniques used 

in conjunction with a symmetric array, we here consicler the application to spectral 

MUSIC only. The extension to other cla.sses of a.lgorithms is straightforward. The 

approach taken here, as sirni1a.r to ea,rlier studies [33, 34, 35, 36, 3'71, consists of two 

steps. First, the sta.t)istics of the eigenva.lues a,ncl corresponding eigenvectors of the 

real part of the beamspa.ce sa.nlple cova,ria,uce ma.t,ris are derived. Second, the mean 

and variance of the a,ngle estimate of 11eamspa.ce MUSIC is obtained from a Taylor 

series expansion of the null spectrum. In Section 3.2.1, the statistics of the sample 

eigenvalues and eigenvectors in the signal subspace a,re derived, while the analysis of 

the MUSIC angle esti~na.te is considered in Section 3.2.2. 

3.2.1 Sta t i s t i c s  of t h e  Signal  Subspace  Eigenvalues a n d  Eigenvectors  

As a result of the norn1a.l clist,~.il,~~tion of the 1)ea.nlspa.ce snapshot vector, the dis- 

tribution of the complex sample co\:ari;~,~~ce is \Yislia,~~t, [4.:1]. It is well known that the 

asymptotic distril~ution of the non-1-cpcat.ecl signa.1 suhsl~ace eigenva.lues and corre- 

sponding eigenvectors a.re normal [44]. I<a,veh and Ba,ra.bell [21] modified the asymp- 

totic analysis to  a.ccount for the u n i t  Icngt'h nature of the eigenvec.tors to  derive the 

distribution of the MUSIC null spectrum. This led to a tlleoretical determination of 

the threshold SNR a.t which two closely spa.ced signa.1~ a.re resolved. Others [7, 33, 341 

have employed the eigenvector sta.tistics to det,ermine the 1oca.lization accuracy of 

MUSIC. 

Note that  the real pa.rt of the 1)ea.mspa.ce cova'ria.nce ma,trix is not, in general, 

Wishart distributed. However, if the sources a.re uncorrela,ted th'e real part of the 



sample covariance is effectively (real) Wis11a.rt with 244 degrees of freedom (see Ap- 

pendix C). This compares with the A f  degrees of freedom of the (complex) Wishart 

distribution of the complex sample covariance. Recall that A4 is the number of snap- 

shots. Pillai and Kwon [S] encountered and solved a problem that is similar. in nature 

t o  the one posed here in the predict,ion of t,he resolut'ion threshold for element-space 

MUSIC incorporating spatia.1 sinoot,l~i~lg. Using a. simi1a.r a.pproa.ch, one can show that 

the signal subspace eigenvalues and eigeiivect~ors of the real paat of the beamspace 

covariance matrix are also normal in an a,s)rmptotic sense. This leads to the main 

contribution of this cha,pter. 

T h e o r e m  2: The asymptotic statistics of the error in the signal subspace eigenvec- 

tors, Ae; = 6;-ei, i = 1 , .  . . , K ,  for the real pa,]? of the bea.nlspace covariance matrix 

where (2.54) applies a.re 

m f k  n#C 

where the notation AE refers to the asymptotic, in M, expectation. 

Proof :  See appendix D. 

For pilrposes of comparison, the stat  ist,ics of the correspo~icling q~ant i t~ ies  derived 

from the complex sample cova.ri a,iice a,ve [:34] 

k f i  



N" x;x; 
AE{M n e f A e l H }  = 6 k t  eke$ and 

m= 1 ( x i  - 

where Eg = [ e f  1 e; ( . . . / e & ]  and the superscript "c'? has been included to refer to 

the eigenquantities originating from t,he complex beamspa.ce sample covariance. 

Notice t11a.t for t,he case of i~ncorrelat~ed signa.ls, t,he bea.mspace covariance is real- 

valued so that RI = 0. Thus, in the uncorrelated signal ca.se, the expressions for the 

asymptotic bias in the signal eigenr:ectors are the same while the eigenvector variance 

statistics are simila,r in structure \vith t,he only difference being tlie multiplication 

factor i; the a,syrnptotic va~riance of t.hc eigenvectors is reduced by a factor of 2 when 

the real part of the cova.riance ma.tris is eigendecomposed. This fact would seem to  

indicate that a performance benefit in terms of the MUSIC angle estimate should be 

realized in an uncorrelatecl signal scene. \Z'e \{:ill observe that this statement is true 

in the case of the bias of the angle estimate (also proven by an alternate approach 

in Appendix C) but it is not true for the case of the variance of the angle estimate. 

In situations where the signals arc correlated \+?it11 complex-valued terms on the off- 

diagonal of the source correlat,ioi~ mat.r is  Ps, i t  is not reaclily a.pparemt that taking the 

real part results in a localizatioi~ p c ~ f o r m a n c ~  I~onefil,. 'I'liis issue will be addressed in 

more detail in the next s ec t io~~ .  

3.2.2 M e a n  a n d  Var iance  of t h e  Spec t r a l  MUSIC Angle  E s t i m a t e  

The  deriva,tion of the nlea,il a.ntl va.ria,nce of t,he S11ect~ra.l MTJS.I[C angle estimate 

is presented in this section. The a.l,proa.ch t'aken is ide~lt~ical to that in [34] so little 

explanation or deta.il is inclucletl. :4s succcssf~~lly applied elsewher'e [33, 34, 351, the 

first derivative of the MTJSIC: null spc.ct,ri~m, i.e., t,he deuomina.tor of the MUSIC 

spatial spectrum, with respect to tl-ie loca,tion angle 0, is expanded in a Taylor series. 

Xu and Buckley [34] employed a multivaria,te second-order expa.nsion of the derivative 

of the null spectrum in terms of the error in the ith angle estimat,e, AB;, as well as 

the error in the signa,l subspace eigerl\~cctors to derive both the bias and variance 



of the estimator. The  notable difference between the case a.t hand and that of the 

element-space version in [34] is that their expansion dealt with the differentiation 

of a real-valued function of complex-valued terms whereas our expressior~ contains 

only real-valued variables. However, the expressions for the eigenvector statistics for 

real covariance processing are Inore complex, so the analysis is much more tedious. 

As similar to that in [34], we assume that the first and second derivatives of the 

beamspace manifold vector, b(0) alrd b(0) ,  rcs,iectively, exist. 

As only the statistics of the signal subspace eigeni~ectors are available, one must 

consider the form of the MUSIC null spectrum, D(Es,  O), expressed as 

eliez:.  . . :e~\-  . The expa.nsion of the null spectrum derivative is . I 

. A  ,. . ,. 
where the differentiation of D is with rcsliect to 0, i.e., D(Es ,  0,) = % D ( E s ,  6) 

Es is an Nb x I< ma.trix composed of tlic signal sl~l~s],a,ce eigenvectors, V represents 

the vector gradient, a,nd ,_$ is composccl ol' thc liigher order terms. Ca,rryirig through 

the differentiation of the quantities i l l  ( :3.9)  sing t,lie clefinition in equation ( 3.8) 

leads t o  



One can show that,  with the aid of t,lle asymptotic relations in the previous section, 

the first bracketted term in equation ( 3.0) is O(&),  i.e., if the random variable x is 

O(&) then in the limit of M, (Ad x) is finite. Compare this to the meaning of o(&) 

which indicates that  such a random varia.ble falls to zero in the limit faster than &. 
In addition, the second bra.cketted term of ( 3.9) is O(&),  while S is o(&). 

The  variance of the MUSIC angle estimate is obtained by working with the O(&) 

term of the Taylor series expansion. In the same style as in [34] using the statistics of 

the error in the signal subspace eigen\rectors described by equations; ( 3.1) and (3.2), 

the asymptotic variance of the REAL-BS-MUSIC estimator is derived as 

As will be shown shortly, this result slio\vs a rerna,rl;a.hle I-esemblance to that obta.ined 

when eigendecoinposing the complex-va.luetl cova.ria,nce. It will be found useful to 

express ( 3.11) a.s cliagona.1 elements of ma.trices a.s in [33]. In the decomposition of 

( 2.57), it can be shown that 

where t denotes the Moore-Penrose pseutlo-inverse, Ps, is the real part of the source 

correlation and B t  is the left pseut1oi1-,verse of B ,  i.e., B t  = (BTB)-- lBT.  Also notice 

that 

B ~ B  = I,,. ~ + b ( ( l ; )  = 6,? 

where 6; is a. K x 1 \lector wliere the it". ent,r?; is 1 a n d  the rema.ining components are 

zero. With these results, one ca,n convert (3.11 j t,o ma.trix form as 



where [HI, denotes tlie ( i ,  j )  element of H a,nd D ( o ~ ,  Es) can alternatively be ex- 

pressed as 

~ ( s i ,  ~ s )  = 2bT(0; ) (~Nb - BBt)b(ei) .  

For comparitive purposes, the associated asymptotic variance for COMPLEX-BS- 

MUSIC is simply [33] 

where bpi, E:) = Bpi,  Es). The only difference is in the source covariance term. 

Much can be said about the expected performa.nce of the two processing rnethodolo- 

gies as will be seen shortly. 

The bias of the MUSIC est.irnat.e is ol~t,a,inecl. again, via a, technique similar to 

that used in [34]. Taking the espect'a,t,ion of' ccluatio1.1 ( 3.9), using the alsymptotic 

eigenvector error expressions of (3.1) a,nd (3.2),  a.nd "ina.tricizingn the result leads to 

" I' ( e z ~ l e t )  (e:Rre,) (bT(0,)eFe:b(oi)) 
- C C C  

k=l  (= I  I=1 B ( E ~ .  0,) (,lr - (4 - A,) 

The details of deriving this espression a.re t'edious ant1 a.re t'hus not included. The 

corresponding result for the COR4P J,EX- BS- IlUSIC caw con~rerted to matrix form is 

The differences between these two expl.essions are ( i )  t,he scaliilg factor on the second 

term, (ii) the dependence on Re{Ps) or Ps in the secorld term, and (iii) the presence 

of the third term in ( 3.13). Note that tlie latter tern1 is oilly nonzero i l l  scenarios 

involving at least three correlated sources. 



3.3 Observatioi ls  of t h e  Theore t ica l  Variance Equa t ions  

In this section, we 1001; at sevcral signal scenarios in an attempt to quantify the 

relative perforinance of the two algorithm types. The obser~lations are made solely 

through the use of the theoretical expressions of the preceding section. Due to the 

more complex nakure of the expressions for the bias, we limit the observations to apply 

to  the estimate variance only. The relative performance with respect to the bias will 

be addressed via specific examples in Section 3.4. M1e begin with the two-source case 

and then proceed into the general situation of three or more sources which we will 

separate into the correlated and uncorrelated classes. I l e  will concentrate on the 

matrix formulations of the theoretical variance as given in equations 3.11 and 3.12. 

For the general correlated two-source case. the source covariance matrix Ps has 

the structure 

where a1 and a2 a.1-e the powel-s ol' t . l ~ c :  two sigila.1~ a.nrl p is the complex correlation 

coefficient. This signal inoclel is represeilta.tive of the low angle tracking scenario [38] 

where a low altitude target gives rise to both a. direct a.nd ground-reflected path signal. 

The two returns a.re 11ighlj.-coi.rela,ted a.nd closely s],a.cecl in  a.ngle. In this situation, 

the magnitude of p, 0 5 lpl 5 1. is oft,en to 1 a,nd the phas'e depends on the 

path difference between the clirect a.nd specula,r pa,th signals. Note that the restriction 

that Ps be a full rank matrix previously inentioned requires that lpl < 1. However, 

note that the real cova.riance technique out,lined ea,rlier would still function properly 

in the case of a raak one Ps a.s long a.s a.n ima.gina,ry component exists in p, i.e., the 

phase of p is not either 0 or .rr. 

The following theorem shows tlla,t the REA1,-BS-PI'IUSIC a.lgorithm offers a lower 

variance estimate rela.tive to that of t.he C:OMPLEX-DS-MUSIC fc,rmulation for the 

general two-source scena.rin. 

T h e o r e m  3. In the presence of t,\\ro non-colicrcn t sources, t,he a.symptotic variances 



of the REAL-BS-MUSIC a,nd COh4PLEX-BS-MUSIC estimators are relat'ed by 

with equality when the sources a.re uncorrelated or the correla.tion phase is 0 or T. 

Proof: With  regard t o  the structure of the genera.1 two-source correlation matrix of 

equation (3.15), the  inverses P;' a,nd P;: exist a,s gr~a,ra,nteed by the non-coherency 

of the  signals and are 

where PR denotes the  real part of thc c o ~ ~ ~ l a t i o n  coefficient, satisfying l P R l  5 lpl 

with equality if and only if the phase is 0 or T .  The niatsis ( B T ~ ) - '  is a real- 

valued, positive definite matrix of the form [(BTB)-' I k ,  = J a , .  Substituting these 

expressions into ( 3.11) and ( 3.12) ancl sirnplifj~ing leacls to tlie followi~lg results for 

the first signal 

As a result of D ( B ~ , E $ )  = b ( ( l l , E s ) ,  l p 1 2  > pk, aild (1  - Ipl2) 5 ( 1  - p i ) ,  it 

follows that  d ~ a r ( f l A 0 ~ )  > A\iar (J l l i l i l~ ,  ). Equality is seen to exist whenever 

(pl = (pRI. Reversing the indices of the two signa,ls proves the result for the second 

signal. Thus, aside from the computa.tio11a.l savings of' clccomposing only the real part 

of the beamspace cova.riance, a perfor~na.nce benefit is exl>ect,ed a.s well 0.  

As similar t o  the tw7o source ca.se, t.lle presence of uncorrela.tec1 signals, or more 

generally, in the  ca,se of a non-exist.en t in-la,gina.rj. component to t,J~e source correlation 

matrix,  no pe r f~ rma~nce  a.dvantage rela.tive to the va.riance in a.n a.symptotic sense is 

realized for more than two signals. I-Io\vever, enipirical results, a.s presented in the 



following section, indicate tha.t the bias in the angle estima,te is usu,ally smaller when 

processing only the real part. As notcd earlier, t,lle interplay of the various terms in 

( 3.13) make it difficult to 121alie general observations l,ega,rding the theoretical bias. 

In the more general ca.se of three or more correla.ted signals, the only claim one 

can make is that in a moderately high SNR situa.tion, the asymptotic variance of 

REAL-BS-MUSIC is less t11a.n or equal to t11a.t of COhJPLEX-BS-MUSIC. This ob- 

servation is va.lida,ted through the use of the matrix expressions of (3.11) and (3.12) 

as follows. As D ( E ~ , o ~ )  is exactly equal to D(E;,o~),  one need only compare the 
? 

terms in the numeramtors. W e  are attempting to prove Va.r(AOi) 5 Var(AO;"), which is 

true whenever [2S] 

2 
0, [ R e { p s 1 }  - pie] + l~;: [ R ~ { P , ~ ( B ~ B ) - ' P ; ' }  - P;:(B~B)-'P;:] $ 0, 

[3.18] 

i.e., the difference of the t1z.o ~ i l i l i , ~  ices i h  posii i1.c scl~li-cl(-finite'. Denoting the real 

and imaginary component5 of Ps a* PsR and Ps,, respectively, where PsR = pTR 

and PSI = -PZI, one can sho\v that 

With regard to equation ( 3.18) observe t,ha,t 7 2 e { P ~ ' }  - P z  2 0, is equivalent to 

the condition that Ps, - [ R e { P s l ) ] - '  > 0. Indeed this is the case 

The remaining term in eqoa,t,ion ( 3.181, R ~ { P ; ' ( B ~ B ) - ~ P J ~ }  -P;;(B~B)-~P;;, is 

indefinite, so tha.t one ca.nnot co~lcl  u t l c  1 lia,r. \!a.~.(Afl,) is less t,lia,n Vi~r(Ae,"). However, 

'If the real-valued matrix A IS ,msi(lvc> .c:m~-tlclil~~tc>, then y T ~ y  > 0 V y .  Selecting y as 6, 
yields the desired result. 



note tha t  o:~ik is loosely interpreted as being proportioilal to 1/SNR relative to  the 

~ / ( s N R ) ~  nature of o;Ps:(BTB)-l~;:. Thus, in cases ivllere the signal power is 

sufficiently large relative to the noise, the first term in equation ( 3.18) dominates so 

that  Var(A6;) 5 Var(A0;). 

3.4 Val ida t ion  of t h e  Theore t i ca l  Expres s ions  

Computer simulations were ca.rriec1 out in order to verify the theoretical expres- 

sions for the bias a.nd varia.nce of the REAL-HS-A,IUSIC a.ngle estimate as well 

as t o  provide additional insight into t,he compa.rison of the REAL-BS-MUSIC and 

COMPLEX-BS-MUSIC a.lgorithm formulations. .4 uniforiii linear array of ILr = 32 

half-wavelength spaced sensors wa.s employed in ~onjuuct~ion wit,h ATb = 4 conjugate 

centro-symmetric weight vectors to forin 1)eams with no tapering a.t sine space angles 

of u = sill 6 = - 4 / N ,  -2/iV, 0,  a.ncl,?/N. Two sources were included in each simula- 

tion and were angularly separa,tecl by 11a.lf of the 3 dB I~ea.rn\viclth in sine space. Unless 

otherwise noted, the sample biases a.nd sta.ncla.rc1 deviations were coinputed over 250 

independent trials. As noted on the figures, solicl/dashed lines represent tlne theoret- 

ical curves while the em11irica.l resul t8s are intlica.ted with a "s"/"on corres.ponding to 

the COMPLEX-BS-R4USIC/R.EAL-BS-hn4USIC algorit,l~~ns. 

Figures 3.1 a.nd 3.2 present the t,lieoreiical bias ancl sta.ntla.rc1 devia.tion as well 

as the  empirical standard deviation of the left-l~and sigua.1 for the ca.se of a highly 

correlated signal set. The  strengths of the eq~~ipowerecl sources was 8 dl3 on a per 

sensor basis while the magllitude of t,he correla.ttio11 coefficient, p ,  1va.s set at  0.9. The  

phase of p wa.s vaaied from 0 t,o 1 SO deg~.ecs tto exnlni n e  t 11 e rlcpcn tlen ce of performa.nce 

on the  phase. 

The  theoretical standard cleviatiol~ c.ur\Tes plotted in Figure 3.1 preclici; a roughly 

quadratic. improvement in performance of REAL-BS-MUSIC: over COMPLEX-BS- 

MUSIC as the correla.tion coefficient approaches the state of l~eing purely imaginary 

a t  a phase difference of 90 deg. Also, i l l  a.ccorda.nce with prior discussion, there is 

no difference in performance when the corl,elation coefficient is purely reitl as is the 



case at phase differences of 0 cleg a.nc1 180 cleg. With respect to the estimate bias, the 

theoretical performance curves in Figure 3.2 predict tha.t REAL-BS-h4USIC offers a 

lower bias than COh4PLEX-BS-h4USIC for pha.se differences less than 150 deg with 

the greatest improvemellt occurriilg a.t a, pha.se difference of 0 deg. The magnitude 

of the bias, however, is very small, a.linost negligible: high-bias conditions occur in 

situations where the systein pa.ra.meters of two or more signals lie in the region of the 

resolution threshold. In this situa.tion, the signa.ls a.se on the edge of merging into 

one displa.yec1 pea.1; in the h4lJSIC spectrum. We will return tJo this issue as well as 

present a compal.ison of the tl1eoretica.l and empirica.1 11ia.s results shortly. 

The theoretical standa.scl cleviatio~l curves a.nd corresponding :simulation results 

plotted in Figure 3.3 sul>st,antiilt'e cla,in~s 111adc: c;l,~.licr that REAL-BS-MUSIC offers 

no improvement over COh/IP LEX-DS- h4T; SIC wi tli res1,ec.t to variance in the case 

of uncorrelated sources \\illerein the source covariance matrix is purely real. Note 

that the simula.tion result,s closely t,ra.ck t,lle t,heoret,ica,lly predicted performance as 

the number of sna.pshots decreases lo a.s sillall a.s 20 with equi-powered 12 dB source 

SNR's. In contrast to the situation xvith variance, the t,heoreti<:al bias curves in 

Figure 3.4 predict that REAL-BS-h4USIC offers a, slightly lower bias in the case 

of uncorrelated sources tha,il t-11a.t a.chievet1 with COMPLEX-BS-h/lUSIC with the 

differential between the two increa~sing as the number of sna,pshots decreases or as the 

SNR is lowered. Once a.ga.in, not,e t11a.t t ' l~e bia.s is very small. 

The theoretical and enlpii.ica,l resul t,s of Figure 3.4 begin to deviate as the number 

of sna.pshots reduces t,o 20. R eca.1 l t'li;l,t t,lie t311eoi~c.t,ica~l expression:; for the bias and 

variance a.re a.symptotic in na.t'~~~-c- so iIia,t a tlc\:iat.ion is t,o be expected. However, the 

expressions are still va.lid if t l ~ e  soul.cc SNll 's  arc sufliiciently luge  - this is the main 

point of Figure 3.5 where the nl~lnber oS sna,psliots was held constant at 20 while the 

source SNR wa,s varied. Notice the cleviatioil a,t the lo\v end of the SNR scale. The 

deviation is ca.used by the l'a,ct, t,ha.t t,Ilc simulat,ion pa.ra.met.ers are in the vicinity of 

the resolution threshold. I11 t,his region of operat!ion, the two signal. peaks are on the 

verge of merging into a, single peal; in the MUSIC spectrum. When. only peak exists, 



the signals are said to be unresolved. A plot of the empirical probability of resolution, 

i.e., the percentage of cases where two signals axe resolved, is shown in Figure 3.7 .  

Here we see that the onset of the deviakion in the theoretical and empiriical results 

directly corresponds to the SNR location where unresolved cases begin to appear. 

Also note that Figure 3.7 shows that REAL-BS-MUSIC is substantially more capable 

of resolving two signa,ls than the COhTPLEX-BS-MUSIC formulation. 

Figure 3.6 shows the empirical and theoretical mean of the two MlJSIC angle 

estimators that apply to the simulation results of Figures 3.5 aad 3.7.  'This figure 

clearly shows the merging of the two signa,l pea.ks as the SNR is reduced. It is 

necessary to  go to this extreme to generate a high-bias case. 

Once again, these simulations show the value of employing the REAL-BS-MUSIC 

algorithm over CONIPLEX-BS-MUSIC. The deviation between the theo:retical and 

empirical curves is expected as due to earlier comments. Although the theoretical 

curves may not track the corresl>onding simula.tion curves, it is obvious that the 

theoretical expressions as are still valuable as the genera.1 trends a.re indicative of the 

obtained empirical results. 

A few other comments regarding the cause of the deviation in the high-bias case 

are in order. The theoretica.1 expressions are a.symptot>ic in na,ture so that one may 

expect that the experimenta,l and tl-~eoret.ica.l crirves ma,y be more in a.greement if the 

number of snapshots is increased. This clc\;ia.tion, however, \iia.s found to exist with 

large M. Nor is there a. problem of not using a sufficient number of trials to estimate 

the bias, i.e., the va.riance of the 1)ia.s estima,te is too 1a.rge - the sa.me observations 

were made when using a greater nurnl~er of tria.1~. It is believed tha.t the method of 

generating the empirical results is also flawed in nature. Unresolved cases where one 

centrally located peak is resolved must be included in the ta,bula.tion of thle empirical 

statistics, but some trials show a, single pea.1~ whose 10ca.t~ion 1)ea.r~ little relation to 

one or both signals. However, these ca.ses are still considered. 



The simulations thus va,lida.te the theoretical performance exp1:essions and illus- 

trate the performance gains a.chievec1 via the use conjugate centro-symmetric beam- 

forming vectors and executing beamspace R4USIC with only the: real part of the 

beamspace sample covaria.nce matris. 
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3.5 Merit of  E m p l o y i n g  T a p e r e d  B e a i ~ ~ f o r m e r s  

Realizing the need to de-emphasize extended clutter returns and high-strength 

signals that  arrive from directions outside of the spatial sector of interest: the use of 

tapered beamformers is a,dvised. The  presence of these a.dc1itiona.l signals decrease 

the number of degrees of freedom and, in the worst ca.se, yields a non-functional 

MUSIC estimator due to  the non-existence of a noise only subspace. A few candidate 

tapering architectures a.nd their effect on the angle estimate bias and variance are 

investigated in this section. We assuille a linear, equi-spaced array to take advantage 

of a computationally efficient implementation sc,heme. 

Stoica and Neh0ra.i [2S] showed tha.t t,he element-spa.ce MUSIC algorithm has 

an  associated estimator variance that is less than or equa.1 to tha.t for a beamspace 

formulation with equality when the A' x Arb 11ea.mspa.ce transforma.tion ''W satisfies 

WWH = IN, i.e., Nb = N. Noticing tha.t a full N x N spatial DFT ~na t r ix  satis- 

fies this constraint, we shall compare the performance of the candidate architectures 

against that using the N x AT spa,tial DFT matrix. Notice that if the lcolumns of 

the D F T  matrix are made to  be conjugate centro-symmetric, the real part of the 

associated beamspace covariance can be emploged thus ta.king a.dva.ntage of the lower 

bias in the  case of uncorrela.tec1 signals. .4lt,hough the AT x AT DFT transforma.tion 

may provide a lower variance estiina.te, the use of a, smaller dimension transforma- 

tion matrix leads to a lower SNR resolution threshold [7] in addition to the lower 

computational requirements associated with the eigendecomposition. 

In addition to  beamforming with a A' x A4'b matrix WnNb representing Nt, successive 

columns of the N x N un-weighted DFT,  i.e., the (R)ecta.ngular taper, vve consider 

the use of cosine and Ha.mming tapers of Section 2.6. As observed in Section 2.6, the 

cosine and Hamming tapers can be realized in the bea,mspace domain by summing 

weighted successive D F T  beams. Specifi~a~lly, the AT x ATl, Ha.mming-weighted and 

N x (Na - 1) cosine-weighted transforma.tions a.re, respectively, 
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Note that  we intend WRjVht2 to 11' an AT x (ni, + 2) matrix cornposed of Nb + 2 

successive coluinns of the syminetrized spatial DFT ina.trix, with an extra beam on 

each side of the window relative t,o WRArb, SO thRt the pointing angles of the beams via, 

WHNb are aligned with those of WR, \ ,~ .  Thus, applica.tion of WHNb yields a beamspace 

snapshot of the sa.me diineilsion as t11a.t ol~ka.ined with W R N b .  On the other hand, the 

cosine-tapered transformation yields a, bea.mspace snapshot of dim'ension Nb - 1. To 

see the  effect of the sector size on the theoretica.1 bias a.nd variancle, a N x ( N b  - 2) 

Hamming-weighted beamformer, WHNb-2i is a,lso investigated. 

Note that  the sets of bea,mforining vectors are not ~r thogona~l .  Tlius the beamspace 

noise, i.e., the element-space noise vector operated on by the ta~pered beamspace 

transformation, is not uncorrelated from beam-to- beam. In order for the theoretical 

expressions of Section 3.3 to be valid, one must orthogona.lize the tapered beamform- 

ing matrices. This is a.ccomplishccl q~i i t~e  simply: the resulting effec:tive beamforming 

matrices with a re-definition of notation. are 

Plots of the spatial response pa,tterns of the three (effective) tapering techniques is 

provided in Figures 3.8 a ) ,  b),  and c). Note that the beamspace dimensionality is 

Nb = 8 for an N = 32 sensor array. .4s observed in Figure 3.8, the weighting functions 



provided at least 15 dB of additional attenua.tion across the region of space outside 

of the sector sin 0 E [-10/N, SIN]. 

The theoretical bias and va.riance of the R4USIC angle estimate were computed 

and plotted in Figures 3.9 and 3.10 for the case of two uncorrelated and equi-powered 

signals separated by half the Rayleigh resolution (11N). Although only M = 16 

snapshots were assumed, the signal strength (6 dB)  was sufficient to yield an accu- 

rate prediction of performance, i.e., we are operating above the resolution threshold. 

The bias and variance of the left signal estima.te was plotted against the sine-space 

midpoint position of the two signals. 

The Nb consecutive, un-weighted DFT lsea,ills are as effective as the full N di- 

mensional DFT transforma.tion a.t loca.t,ions where t,he sine-spa,ce center of the two 

signals are aligned with a lobe of a pa.rticu1a.r DFT lseam. The clevia.tion in the bias 

and variance curves is minimal out.side of these regions so that the savings in com- 

putation and anticipa.ted reduction in the resol~t~ion threshold suggests the use of a 

lower dimensional bea.mforiner. The poor performance at t,he edges of the sector is 

driven by the reduced signal power, pro1,ortional t,o lb(0)I2. Thus, in a. search oper- 

ation, sectors should be overlappecl Ily so~ne\vhere I~et~ween 25% and 50% to  provide 

adequate performance. 

As expected, the Hamming and cosine ta,pering architectures reduce the localiza- 

tion performance, but oilly slightly. The Ar
b Ha.n~n~ing beams, for example, are less 

sensitive in relation to the standard DFT beams to sma.11 variations in signal posi- 

tioning within the sector. Obviously, then, h/lUSIC prefers the use of beams with, 

individually, high resolution. Note, though, that the presence of strong signals outside 

the sector of interest would warra.nt tapering as these signa.ls, if una.ccounted for in the 

estimation of the signa.1 subspace dimensiona.litty, ma.y result in poorer performance 

for the unweighted beamformer as wa.s shown i n  Sect,ion 2.8. 

Comparison of the two Hamming t,aper ca.ses suggests t,hat a, la.rger dimension 

beamformer is desired in terms of the espectecl bia.s and varia.nce. This is a result of 

the additional signal inforlllatioll in the esi,l-a Ixams. I-Iowever, if the power of the 



signals are in the region of the resolution tl~reshold, the noise will dominate in these 

additional beams and provide no beneficial information. Thus, the use of fewer beams 

leads t o  a reduced resolution threshold. In conclusion, the need for the increased 

re-jection of sidelobe clutter/high strength signals is achieved through tapering with 

only a modest decrease in the bias and variance performance of in-band signals relative 

t o  either the Nb or N dimensional unweighted spatial DFT beamformer. 
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3.6 Summary 

In this chapter, the asymptotic distribution of the signa.1 subspace eigenvectors 

corresponding t o  the  real part of the bea,mspace sample cova.riance was derived. The  

operation of processing only the real pa.rt is permissible in situations where: the beam- 

forming vectors exhibit conjugate centro-symmetry. The asymptotic statistics were 

used to  show the merit of such a technique with regard to  the estimat,e bias and 

variance when used in conjunction with beainspa.ce R4USIC. The idea of decomposing 

only the real part, however, is general in nature so that it applies to a.11 eigenstructure 

direction finding techniques. 

To fully realize the a,dvanta.ges of employiilg a, hea,mspa.ce preprocessor, one should 

incorporate a weighting furlctiorl to insusc t11a.t clutter a,nd/or strong spatially-distant 

signals do not degrade the perfornlance of the estima.tion algorithm. The  'issue of de- 

signing beamspace preprocessors to yield a.n a.rchi tect ure with the lowest resolution 

threshold was considered in [7, 291. Oiie such preprocessor is based upon the theory 

of discrete prolate spheroidal wave functions [39, 251. In this a.pproach, one would 

employ a N x (Ii' + 1) bea.mformer to 1oca.lize Ii' closely-spaced signals. However, it 

was determined tha t  such aachitectures, a.lt,hough attra.ctive in terms of the resolution 

threshold, yield an estimator with a. significa.ntly higher bia.s and variance when op- 

erating above the threshold. Candida.te ta.pel-ing functions tha.t provide considerable 

reject ion levels yet yield comparable 11ia.s and va,riance figures were presented. Note 

also tha t  these taper f~~nc t ions  ca.n be a.ppliec1 to a. set of adja.cent ~pa.t~ia.1 FFT bea.ms 

t o  yield a computationally efficient procedure. 



4. BEAMSPACE DOA ESTIMATION FEATURING MULTIRATE 
EIGENVECTOR PROCESSING 

Chapter 2 was partly concerned with the derivation of an efficient algorithm to 

reduce the order of the Root-MUSIC polynomial to  2Nb - 2, which can represent a 

tremendous computational savings if only a few beams are formed i11 the direction of a 

previously detected signal to  obtain a refined location estiina.te. The  approach was ac- 

complished by requiring t11a.t the bearnforining vect,ors possess common spatial nulls. 

Notice that ,  a.s common to t,his bea.msl,a.ce Root-MTJSIC formula.tion, the adaptation 

of ESPRIT to  beamspace [40] requires simi1a.r restrictions placed upon the form of 

the beamforming vectors. Aside from this possihly over-restrictive requirement, two 

other problems associated with the bea.mspace R.oot-MUSIC algorithm are observed. 

First, the technique doesn't exploit the s~,at,ially-confined region of operation in the 

rooting stage of the algorithm, i.e., a.s t , l ~ t :  number of sensors comprising the array in- 

creases, the spatia.1 extent of the 11ea.mforining sector decreases wit11 constant Nb but, 

yet, the rooting is still defined over a.11 of visible spa.ce. Second, the .approach involved 

the use of an Nb x ATb matrix tra.nsforrnat,ion Q cvhich ca.n be highly ill-conditioned. 

For example, the condition number of Q for a.n N = 138 element array operated 

upon by a spatial Discrete Fourier Transform (DFT) bea.mformer was computed for 

a varying number of heams a.nd plotted in Figure 4.1. In contrast, the other curve in 

the figure ( Z  transforma,tion) corresponds to a.n a.lterna.tive approa.ch that is the key 

result of this chapter, having a. similar inlpleinentation for the MUSIC setting but 

fundamentally different to the approach of Chapter 2. LV11erea.s the condition number 

associated with the Z-transformatioi is rela.tively consta.nt a.t a value near 3 for all 

beamspace dimensions, the correspoilcling va.lue for the Q-tra.nsformation is large for 



even a small number of beams, e.g., for a heamformer comprised of Nb -= 8 spatial 

DFT beams, the condition number is approximately 8 . 10'. 

The main purpose of this chapter is to develop a processing methodology that is 

based on the transformability of a beamspace noise eigenvector to an element-space 

counterpart as noted in passing in Appendix Dl  and also in [7]. In the intended 

application of beamspace processing, a spatial suhband is probed so that the trans- 

formed beamspace noise eigenvectors are naturally bandlimited in a spatial sense. 

This banded characteristic allows for the application of classical multirate digital sig- 

nal processing to  isolate and spatially enlarge the spatial suhhand of interest. Note 

that this methodology departs from tlle classic implementation in that thle pertinent 

information lies in the in-hand "signal" nulls instead of peaks in an in-hand spectrum. 

The aim is to preserve in-hand nulls iilsteacl of the more difficult task of preserving 

sinc patterns associated with the form of a signal dcfincd at the clata level. A sensor 

level decimation scheme would suffer froin the problern of preserving signa.1 contribu- 

tions away from the direction of interest whereas this scl~eine involves signal features 

having no components away from the characteristic null in the spectrum. 

An important feature of this approach is that there are no restrictive requirements 

on the form of the beamforming vectors. The techniclue also results in a Root-MUSIC 

formulation where the rooting is clefinecl over a spatial wiildow corresponding to the 

spatial subband probed by the l~ea~nforming vectors. Anotl~er major advantage is 

that the technique js computationally robust as the Z matrix transformat  on applied 

to the beamspace noise eigenvecto~ s is well concli t,ionecl. e.g., refer to Figure 4.1 where 

the condition number of a Z transformatioil is shown for the sailie array length and 

a suitable decimation procedure. 

As the eigenvector transformation-clccimation proceclure is general in nature, the 

technique may be applied to any eigenstructure direction finding algorithm. We here 

consider the Root-MUSIC and ESPRIT [27] forinulations as these techniques are 

fairly representative of the eigenstructure class of angle estimators; application to 

other algorithms is straightforward. 



The contents of this cl~a.pt,er are a s  follows. The de~~elopment of the beamspace 

noise eigenvector tra.nsfol-ma.tion-decima.ttion technique a.nd its application to Root- 

MUSIC and ESPRIT ideology is coiltailled in Section 4.2. The theoretical perfor- 

mance of the MUSIC/ESPR.IT for~il~.~lat,ioiis is developed, in terms of the estimation 

variance, in Section 4.3, using tools from Chapter 3. Finally, the theoretical perfor- 

mance expressioils are va.lic1a.ted in simulations and the optimalitjr of the technique 

is observed through a. cornparisoil study with the stocha.stic Cramer-Rao bound in a 

variety of experiments in Section 4.4. 
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Figure 4.1 Condition number versus number of spatial DFT bea.ms, N b ,  for an 
AT = 12s scnsor array. 



4.2 Deve lopmei l t  of D O A  E s t i m a t o r s  F e a t u r i n g  Mult i r is te  Eigenvec tor  
Process i i lg  

In this section, the bearnspace Root-MUSIC a.nd TLS-ESPRIT DOA estimators 

incorporating multirate eigenvector processing are developed. In Section 4.2.1, the 

basis of the multirate processiilg technique of bearnspace noise eigenvectors is dis- 

cussed, and an  even more coinputationally efficient version is proposed in Section 

4.2.2. Finally the techniques are applied to obtain Root-MUSIC and TLS-ESPRIT 

DOA estimation algorithms in Sections 4.2.3 and 4.2.4, respectively. 

4.2.1 M u l t i r a t e  Noise  Eigei lvector  Processi i lg  

A relation necessary for the development of the algorithms presented in this chap- 

ter is that  a beamspace noise eigenvector can be transformed to a noise eigenvector 

in element space as noted in Appendix D. Defining 

V; = W e ; ,  L4.11 

where e,, i > I<, is a noise cigc~~~\~c~ct ,oi  of thc ideal I~ea,inspace covariance, we see 

that  v, is indeed an eigenvcctor lying i u  the noise subspace of R, as evidenced by 

Since A is an NxIi' matrix conlposed of the element space direction vectors which 

collectively span the signal subspace, v ,  = W e,,  i=Ii '+l, ..., Nb, lies in the element 

space noise subspace. Also, given t,hat e, is unit-length, v,  is unit-length as guar- 

anteed by the orthonormality of the columns of W. Note, however, that no direct 

relationship exists between the Isearnspace and element-space signd subspace eigen- 

vectors and that  the Nb - Ii' transformed noise eigenvectors only partially describe 

the N-dimensional element-space noise s~~bspace .  

We now focus the development of the multirate eigenvector prescription to  the 

MUSIC algorithm. To aid in the following clevc~lol,n~cnt. it will be found useful to work 

with spatial locations denoted lw /I = 7 sill 0 ,  \\-here A is the wavelength and d is the 



sensor spacing. Thus, for example, the element spa.ce ma.nifold vector with an end- 

sensor phase referencing is expressible as a N ( p )  = [ I ,  eip, . . . , e j ( ~ - ' ) ~ ]  . Employing 

the transformed noise eigenvectors which pa.rtially describe the element-space noise 

subspace, the associated MUSIC null spectrum [26] is a.ppropriately described as 

For the known Vandermonde structure of the array manifold given, it is observed that 

each term in (4.3) simply ha.s the form of a N-point spa.tia.1 Discrete Tiime Fourier 

Transform (DTFT)  of a transforined noise eigenvector, 

where vk(n) represents the ~z ' t h  entry in the iPec,tor vk 

By selecting the set of beamforming vectors to interrogate some sector of space 

while attenuating signals that lie elsewhere, the spect,runl of the trallsforrned eigen- 

vectors are naturally spatially band-limited. This can be \/ie\ved in the null spectrum 

of a single transformed noise eigen\~ect,or as shown in Figure 4.2. The parameters 

associated with the figure are as fo l lo~~~s .  AT= 12s half-~vavelength spaced sensors were 

employed in conjunctio~i cvi th a standard spatial DFT beamformer consisting of eight 

consecutive beams centered in sine-space at sin 19 = 25/l\i. For reference purposes, 

the spatial response of the ATb beams a r e  incl~itlcd in Figure 3 .:3. There were two equi- 

powered signals located near micl-bantl at 10.-1' ancl 11.5': the locations a,re labelled 

on the figure. In addition, a high-st,rengt h signa.1 \va.s placed a.t a. distaint location 

of s ine  = 69/N.  A single bea.mspace noise eigenvec1,or of the ideal cova.riance was 

employed to generate the results in t.he figu~.c. Note t,hat the presence of the other 

null within the  band edges, indicative of a signal present a t  the corresponding angle, 

will "disappear" as the collecti\re set of transformed noise eigcnvectors are used for 

DOA estimation. Although in-band nulls are of interest, the main point of the figure 

is tha t  the  spectrum exhibits an eleva.t,ed resl3oi1se in the spatial region where the 

beams are directed. Also, note t>hat tthe spat,ial spect8rum is not eleva.t,ed in the region 

neighboring the distant signal. 



Sine of Bearing Angle 

Figure 4.2 Spectrum of a transformed noise eigenvector derived from the 
decomposition of the ideal beamspace covariance associated with am N = 128 sensor 
U L A  operated on by a Nb = 8 dimension spatial DFT beamformer centered in space 
at 25/N. Two in-band signals were located at 10.6' and 11.5' and one out-of-band 

source was located at sin r3 = 69/N. 



Sine of Bearing Angle 

Figure 4.3 Angular responses of Nb = 8 successive DFT beamforming vectors. 
Beamforming sector centered at at sin 8 = 2 5 / N .  



The banded nature of the null spectra suggests that a multiirate procedure is 

in order where the spatial band surrounding sin8 = 25/N is spatmially base-banded 

and more sparsely sampled. In other words, one can extract a spatial region of 

interest from the spectrum and represent the information with :€ewer parameters. 

Consider decimation by an integer factor D that is less than or equa.1 to the maximum 

allowable value. For the example employing Nb spatial DFT beams, the maximum 

decimation factor is Dm,, = N/Nb.' The sequence associated w:ith the decimated 

k'th eigenvector is 

From classical multirate digital signal processing theory, the spatia,l spectrum associ- 

ated with the k't h decimated eigenvector is 

where we recognize the ~ e r i o d i c i t ~  in the variable p, i.e., V(p + 2an) = V(p) for 

integer n. By assuming that the spectrum has negligible amplitude outside of the 

region of interest, i.e., h ( p )  M 0, 1p1 > a/D, only the l = 0 term contributes to  the 

sum leading to  v#)(p) M Vk(p/D), -a < p < a .  

In the usual application of multirate processing, one must be cconcerned with the 

aliasing of signals into the band of interest; here we must insure that aliasing does not 

result in the "filling in" of signal nulls within the band of interest. Note that signals 

that lie outside of the spatial band of interest do not affect the spectrum, i.e., in fact, 

the reduced amplitude in the neighboring region as seen in Figure 4.2 will result in a 

smaller aliasing contribution. However, the presence of the large distant signals may 

increase the perceived dimension of the signal subspace (k) in the decomposition of 

the sample covariance matrix so that their presence is undesired. 

If the front-end beamformers have high sidelobes, a spatial filter prior to  deci- 

mation might be necessary to  insure that the null spectrum is not distorted due to 

'Although the terminology "sampling rate alteration" applies for non-integer D,,,, we will still 
refer to the rate conversion operation as "decimation." 



aliasing, i.e., the "signal" nulls are not shifted appreciably. The filter should incorpo- 

rate a sufficient stopband attenuation to limit the degree of aliasing. In contrast, a 

larger stopband attenuation requires a larger filter length. As the ultimate intention 

of multirate processing is to reduce the dimension of the transformed/decirnated noise 

eigenvectors, a shorter-length filter is desired. Note that the length of the noise eigen- 

vectors after decimation is [ 9 1, where L is the filter length, D is the decimation 

factor which is less than or equal to Dm,, = N/Nb and [ X I  refers to tlne smallest 

integer greater than or equal to x. 

As there is no need for a linear phase requirement, an IIR filter may be: employed. 

The absence of a linear phase requirement in IIR designs should result in a smaller 

filter length, L, where L is taken as some appropriate effective length of the: associated 

impulse response. Note, however, that the classic IIR low-pass designs such as the 

Butterworth, Chebyshev, Elliptic, etc., filters incorporate poles that are very near 

the unit circle so that the associated impulse responses are relatively long. It was 

determined that these classic designs offer little or no advantages in terms of lengths 

versus band specifications as compared to such FIR techniques as the Hamming, 

Hanning, or Blackman windowed low-pass filters (LPF). Also note that a high degree 

of passband ripple may not pose a significant problem as there is a procedure, to be 

discussed shortly, for the removal of the ripple that follows the decimation. operation. 

A major factor in determining an appropriate filter length is the width of the 

transition band. The simplest means of increasing the width of the transition band, 

and, hence, shortening the filter length, is to decimate by a factor that is less than the 

maximum allowable limit Dm,,. This would increase the distance between the edges 

of the beamforming sector, the region encompassed by the mainlobes of the: Nb beams, 

and the spatial location p = x/D,  the location that is scaled-up to the spectral edge 

( p  = X) after decimation. Thus, by designing a filter with a transition band that lies 

within the spatial zone that is exterior to the passband of the beamforming; sector, the 

aliasing effects are essentially confined to this region which we disregard. Another 

approach is to simply allow the passband edge to extend within the be:amforming 



sector as it has been shown in a preceding chapter that beamspace IIOA architectures 

tend to perform rather poorly in terms of estimation biaslvariance ist the edges of the 

beamforming sector. This effect is attributable to the reduction in the total signal 

power, bH(p) b(p), as the signal nears the edge of the spatial subband. Thus the 

transition band of the filter may be designed to encompass perhaps 25-50% of the 

total beamforming sector in which case one would have to allow an .associated overlap 

amongst subbands probed in succession or in parallel. Due to the characteristic shape 

of the noise eigenvector spectra, the aliasing effects primarily originate just outside of 

the pre-decimation subband defined over p E [-.rr/D, .rr/D]. Thus specifying that 

the transition band of the filter be centered at n/D, the aliasing will be primarily 

present in the edges of the beamforming sector which are disregarded. Returning to 

the Nb = 8 beam example, an N = 128 element Hamming-windowed LPF with a 

transition band defined over the region p E [6.5.rr/N, 9.5.rr/N], wlhere p = 8.rrlN is 

both the edge of the beamforming sector and the edge of the pre-decimation subband, 

proved to be a reasonable design. A sketch of the passband associisted with this low 

pass filter design can be found in Figure 4.4. The filter response is shown along 

with the MUSIC null spectrum associated with the use of all spastially basebanded 

transformed noise eigenvectors to show another feature of this fil.ter selection: the 

interlacing of the nulls which results in a dramatical reduction in the effects of aliasing. 

As the out-of-band nulls of the basebanded beamspace MUSIC null spectrum are at 

known data-independent spatial positions corresponding to the common null locations 

of the beam set of Figure 4.3, the filter parameters can be selected to produce the null 

interlacing effect as seen in Figure 4.4. Also note that the use of all beamspace noise 

eigenvectors in a MUSIC formulation resulted in the removal of the non-signal in-band 

spatial null that was present in the single transformed noise eigenvector spectrum of 

Figure 4.2. The resulting filtered eigenvector MUSIC null spectrum is shown in Figure 

4.5 and the corresponding decimated MUSIC null spectrum is included in Figure 4.6. 

With the modulation (spatial basebanding), filtering, and decimation operations 

notated by M,  F, and D, respectively, the decimated/transformed noise eigenvectors 



are then v; = D F M { W e; }, i > K. As decimation, filtering, and modulation 

are linear operations, these may be performed a priori on the Nb columr~s of W as 

evidenced in 

Nb Nb 

V; = D F M  [ D F M  {wk}] ei(k) = C zkei(k) = Zei ,  
k = l  

[4.61 

where 

= D F M  {W). [4.7I 

Hence, the matrix Z of dimension Nz x Nb, where Nz = I-], may be computed 

a priori and applied to the beamspace noise eigenvectors e , ,  i = Ir' + 1, ...: Nb. In the 

more general case of sampling rate conversion where the desired "decimation7' factor 

is not an integer but can be expressed as a ratio of two integers D = hrD/MI, the 

corresponding matrix Z is computed as 

where DMD represents a decimation operation by a factor of MD and ZhfI refers to 

an interpolation operation by a factor of MI. Note that the filter freque:ncy design 

specifications are appropriately modified to reflect the positioning following the in- 

terpolator. Also, due to the modulation operation, the matrix Z can be employed 

for a common beam set steered to any sector of space. In this mode of operation, 

the estimates of the signal p locations provided by the algorithm are rela~tive to the 

center of the beamforming sector. 



Sine of Bearing Angle 

Figure 4.4 MUSIC null spectrum after modulation to baseband and filter response 
associated with the L = 128 length Hamming-weighted LPF. 



Figure filtering. 
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Figure 4.6 MUSIC null spectrum after decimation by factor o'f 12818 = 16. 



4.2.2 Incorporat ion of Fi l ter  Deconvolution 

As the inclusion of a properly designed filter will result in negligible aliasing effects, 

it is possible to reduce the row-dimension of the matrix Z, and hence the order of 

the polynomial that ultimately needs to be rooted. This computational advantage is 

accomplished through the deconvolution of the decimated filter sequence from each 

column of Z as substantiated in this section. 

Denoting the spatial DTFT of the i'th transformed and decimated beamspace 

(4 noise eigenvector as VDFM(p), we find, as similar to the form in equation (4.4), 

The above form offers an alternative view of the decimation procedure where the 

(4 spatial spectrum VDFM(p) is expressed in terms of the DTFT's of the filter and the 

i'th modulated-transformed eigenvector. Defining the DTFT's 

where vf j  = M { Wei ) = M { vi } and h is an Lxl vector composed of the entries 

(i) of the filter impulse response. One can express VDFM(p) as 

I D-1 p - 27rl j p - b e  
v ~ Y J ~ ( ~ = ~ c H (  e=o D ) V M (  i) ) .  

Notice that the form of (4.12) implies an integer-valued decimation factor D. Modi- 

fications for the more general cases where the sampling rate alteration is expressible 

as a non-reducible ratio of two integers, D = MD/MI, are readily incorpcorated into 

the procedure and will be addressed later in this section. 

Assuming that aliasing effects are negligible, the l = 0 term (region surrounding 

baseband) dominates so that the following approximations are equally valid 



Observe that the bracketted term in the latter approximation is simply the DTFT of 

the decimated impulse response of the filter sequence, hD( k ) = h( D k ). Acceptance 

of the above approximations suggests that one is capable of removing the effects of 

the filter from the decimated null spectrum. Thus, we may acquire the pertinent 

(signal) information associated with the eigenvector spectrum by viewing an alternate 

spectrum, denoted ~ $ 2 ,  DFM (I"), given as 

Equivalently, the spectral division can be accomplished by deco~ivolving the deci- 

mated filter sequence out of the i 7th decimated eigenvector, Ze;. ,4s the deconvolu- 

tion operation is also linear, one can simply deconvolve the decimated filter impulse 

response out from each column of Z to form a matrix Z'. Denote the deconvolution 

operator as G - l  so that Z' = G-' D F  M { W ). Recall that Z is an NzxNb matrix 

N+L-1 where Nz = [ 1. Assuming that the deconvolution is exaci;, the size of Z' is 
N+L-1 Nz,xNb, where Nz, = [ 7 1 - [ 5 1 + 1. As the imperfect filtering introduces 

a small degree of aliasing, the deconvolution is not exact. Therefore, there exists a 

remainder term that must be considered such that the resultant pirocess may not be 

causal. Numerically it is better to carry out the deconvolution bly way of spectral 

division. In this case, the DTFT of a given column of Z is dividled, point-wise, by 

the DTFT of the decimated filter sequence so that the inverse DTFT of the result 

provides the associated deconvolved column of Z'. Depending upon the values of N 

and Nb, simulations have shown that possibly one or two extra points on either side 

of the Nz, points should be appended to each column of Z'. A suitable criterion em- 

ployed in simulation studies is that all points whose magnitudes greater than 5-10% 

of the maximum value should be included in Z'. 

Returning to the example cited earlier where the beamforming matrix correspond- 

ing to an N=128 element ULA with d = X/2 and Nb=8 beams is operated on by an 

L = 128 length Hamming-windowed LPF and then maximally decimated, the di- 

mensionality of the Z matrix is NzxNb, Nz = [ 1 = 16. Assuming perfect 



deconvolution, the associated value of Nzt is 9. Adopting the 10% criteria in the 

selection of the row-dimension of Z', it was found that one extra value per column 

was needed. By way of spectral division employing the FFT/IFFT algorithms, the 

extra values were the last samples of the IFFT, which were wrapped-arouind to form 

the first row of 2'. 

In the case of non-integer decimation where the factor D is expressible as a ratio of 

two integers as D = MD/MI, a similar procedure can be implemented. R.eferring to 

Equation (4.12)) the spectrum v$)(.) is replaced by the pre-filtered spectrum V/G(.) 

defined by the DTFT of the i ' th transformed, modulated, and interpolated (MI) noise 

eigenvector. The applicable decimation factor in (4.12) is then MD. Nol,e that the 

filter frequency-band specifications are selected to reflect the presence of the interpo- 

lation stage. As a result, for the matrix Z defined by Z = DMD 3ZM, M { W }, the 

Nb columns of the matrix Z' are found by deconvolving the decimated filter impulse 

response (decimated by the factor MD) out from the corresponding colurrlns of 2. 

The reduced row dimension of 2' relative to that of Z ultimately results in a 

computational savings for DOA estimation at the expense of a slight performance 

degradation as to be shown in a subsequent section. The application of multirate 

noise eigenvector processing to the MUSIC algorithm is analyzed in Section 4.2.3 

while an application to the TLS-ESPRIT algorithm is considered in Section 4.2.4. The 

two algorithms are considered as representative of the class of eigenstructure DOA 

estimators. Extensions to other DOA estimation algorithms are easily accomplished. 

4.2.3 R o o t - M U S I C  Incorpora t ing  M u l t i r a t e  Eigenvector  Process ing 

The multirate eigenvector technique is simply incorporated into the MUSIC algo- 

rithm of Schmidt [26]. As the transformed beamspace eigenvectors, We;, :i > Ii', are 

orthogonal to the element-space manifold vectors corresponding to a signal arrival 

angle, anr(pk), k 5 I(, the following condition holds 

Z e ; = D F M  { W e ; }  1 D F M  { a N ( p k ) )  z>I{, k < I i ' .  [4.15] 



Assuming that the filter is ideal with a cutoff at the spatial location p = r / D ,  it 

is easily observed that the in-band signal nulls are preserved through the decimation 

operation such that 

( D  F M  { We; ( D  F M  { a N ( p k )  )) = ( ~ e ; ) ~  a N z  ( D p k )  = O i > K ,  k 5 I<. 

[4.16] 

If the filter is properly designed to limit aliasing yet pass all in-bandl signals, equation 

(4.16) is a reasonably accurate approximation. Thus a suitable MUlSIC null spectrum 

can be defined as 

where the estimated noise eigenvectors define 

and a ~ ,  ( D p )  is an Nz-dimensional element space manifold vector. The MUSIC DOA 

estimates are estimated as the peaks of the spectrum, S M u ( p )  = IL/NMU(p) ,  i.e., 

bk = max S M u ( p )  = min N M U ( ~ )  i 5 I(,  [4.19] 
P P 

where the true angles, ik are computed from irk via jk = sin-' ( b k  X / 2 ~ d D  ), k < - 

I(. 

Due to the Vandermonde structure of a ~ , ( D p ) ,  the spectral search for the esti- 

mation of the DOA angles as suggested in equation (4.19) can be converted to the 

rooting of polynomial a la Root-MUSIC. The technique is included in the summary 

of the algorithm included below. Note that the Root-MUSIC algorithm employing 

the deconvolved version of Z, Z' = 6-' D F M { W ), is defined in a similar way 

where Z' and Nz, are substituted for Z and Nz, respectively. 



Summary of Root-MUSIC Application Algorithm 

1. form the Nz x Nb decimated-filtered-modulated beamforming matrix a-priori: 

Z = D 3 M  { W )  

2. EVD of R~ = c%=:=, y(m)yH(m)/M, where y(m) = WHx(m), m=1, ..., M. 

3. estimate number of sources, K, and place N~-I? 'Lsmallest" eigenvectors as 

columns of En 

4. with pk = c:=~ P(Nz - k + i ,  i + I), k=O,l, ..., Nz-1, where P = Z E,E: ZH, 

construct 

5. root p(z), select K signal roots: dk = sin-'(angle{ik}X/2?rdD) k == 1,2, ..., I? 

Comparing the above prescription to the approach delineated in Cha:pter 2, the 

Nz x Nb transformation Z replaces an Nb x Nb matrix Q. The only disadvantage is 

a slight increase in computation as the polynomial to be rooted is s1ightl;y higher in 

order. However, the dimension Nz can be selected to be only slightly larger than Nb 

if the deconvolution operation, G - l ,  is incorporated. The advantages of using the Z 

approach over that of Q are robustness to the computational accuracy of ithe rooting 

algorithm and removal of the over-restrictive structural requirements on the type of 

beamformer employed. 

The accuracy of the Z and Z' transformations was assessed by observing the signal 

root locations when the ideal sample covariance is decomposed for use in. the Root- 

MUSIC algorithm. The parameters of the array, beamformer, and decimator are those 

presented earlier in the example of Figures 4.2-4.6. The resulting root locations are 

shown in Figure 4.7 and the actual signal root locations for the two tran-sformation 

types are included in the figure. The extremely accurate signal-root placement asso- 

ciated with the use of Z suggests that the orthogonality criterion Ze,  I aNz (Dpk), 



i > K ,  k 5 I<, is valid. Also note that the effects of the filter can be removed 

via deconvolution without appreciably affecting the performance of the algorithm as 

indicated by the locations of the roots associated with the use of 2;'. 

To visualize the removal of the passband ripple as induced by the filter when 

deconvolution is employed, an example involving an FIR filter designed via the 

Parks-McClellan [41] algorithm with a "large" passband ripple was analyzed. In 

addition, to verify the validity of the general multirate procedure, an N = 90 sen- 

sor array with Nb = 6 beams was used in a scenario involving decimation by a 

non-integer fraction D = 11.25 = 4514 which is less than the maximum allow- 

able value of Dm,, = N/Nb = 15. The filter was designed to be of length 270 

- note that the filtering is accomplished a t  the output of the interpolator stage 

(Dr = 4). The sub-maximal decimation factor allowed for a wicle filter transition 

band, (1/4)(5/N)n 5 p 5 (1/4)(11/N)n, and, combined with a frequency band 

weighting favoring a high stopband attenuation, resulted in a 67dB stopband atten- 

ua.tion with a 1.8dB passband ripple. A plot of the spatial resplonses of the filter 

(dashed line) and interpolated beamformers (solid line) is presented in Figure 4.8. 

The beamforming weight vectors were interpolated, by a factor of 4 ,  to allow a visual 

comparison with the filter response curve. 

Figure 4.9 shows the response of the Nb = 6 transformed, filtered, and decimated 

beamforming vectors along with the spectrum of the decimated filter. Note that the 

decimated filter magnitude spectrum (dashed curve) appears to follow the shape of 

the beam peaks. 

The spectral MUSIC algorithm was employed with an ideal noise-only beamspace 

covariance matrix to compare the effects of using Z or Z'. As this situation is effected 

using E , E ~  = I, the MUSIC spectrum characterizes the imparted distortion to a 

white noise input spectrum by the inclusion of filtering or filtering with deconvolution. 

Figure 4.10 shows the MUSIC spatial spectra for a noise-only input employing the Z 

and Z' techniques. The results show that the deconvolution operation was effective 

in removing the filter shape from the spectrum leaving only a sl'ight ripple that is 



representative of the finite spatial window associated with the beamformer. Again, 

the deviation at the edges of the spatial spectrum from the anticipated constant 

level is expected: the beamforming sector does not extend to the edge o:E the band 

p = T / D .  
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jn16(sin 11.g-  25/N) 

jx16(sin 1 0 . ~  - 2YN) 

'0' - Roots Associated with 16 x 8 Z 
'x' - Roots A:;sociated with 10 x 8 2' 

Figure 4.7 Roots using transformed-modulated-filtered-deci-mated noise 
eigenvectors for both the Z and (deconvolved) Z' transformations,. Quiescent root 
locations computed with the use of the ideal beamspace covaria~lce. True signal 

locations: 10.6' and 11.5'. 
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(1/4)(8/N) : Post-Declmatlon 
(1/4)(5/N) : Filter Passband Edg 

Direction Sine 

Figure 4.8 Spatial responses of an L = 270 length equi-ripple filter and interpolated 
Nb = 6 beam set derived from an N  = 90 sensor array. The spatial foldover 

frequency for the sub-maximal decimation architecture is located at 
sin 6 = ( 1 / 4 ) ( 8 / N ) .  



Figure 4.9 Decimated filterlbeamformer spectra associated with the filterlbeam set 
of Figure 4.8. 
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Figure 4.10 MUSIC spectra associated with ideal white-noise beamspace covariance 
with the use of the Z and Z' transformations derived from the beamforming/filter 

architecture of Figure 4.8. 



4.2.4 TLS-ESPRIT Incorpora t ing  M u l t i r a t e  Eigenvector  Process ing 

As with the beamspace Root-MUSIC algorithm of Chapter f!, the beamspace 

ESPRIT formulation of Xu, et.al. [4CI] requires a rather restrictivte specification on 

thc: form of the beamforming vectors. As we will see in this section, the common- 

place uniformly-spaced line array of sensors allows an ESPRIT a,pplication of the 

transformed-decimated beamspace eigenvector approach of Section 4.2.2. 

Given the Nb- K transformed and decimated noise eigenvectors, define an Nz x 

([Nz - Nb] + K) matrix Ez, whose columns form a subspace that; is orthogonal to 

that formed from the vectors Ze;, i > I(. An efficient means of computing Ezs is 

by way of a QR decomposition of ZE,. Note that the standard ESPRIT approach 

employs a matrix whose K columns span an estimate of the signal subspace; here we 

have a set of vectors in Ez, whose span encompasses the (decimatled element-space) 

subspace, since Nz > Nb. Assuming aliasing effects to be negligible, we have 

span { aNz (Dpk), k = 1, ..., I( } C range { Ez, } . [4.20] 

Although beamspace signal eigenvectors are not transformable to their element 

space counterparts, there is an alternative means of finding a set of vectors that are 

related to  the beamspace signal eigenvectors and also span the orthogonal subspace of 

span {Ze;, i = I( + 1, ..., Nb}. The Nz x Nb matrix transformation Z has full column 

rank so that the orthogonal subspace of span {Ze;, i = I( + 1 ,  ... , Nt.) is expressible as 

a collection of Nz - Nb spanning vectors which are orthogonal to th,e columns of Z as 

well as to the I( vectors lying in the column space of Z. A permissable set of vectors 

which span the orthogonal subspace are the columns of 

where { PI, ..., /?Nz-Nb} is a set of vectors that span the subspace orthogonal to the 

column space of Z. Notice that the set of vectors in (4.21) are not orthogonal but still 

are adequate for use in ESPRIT. In addition to the computational savings in avoiding 

a QR-decomposition, construction of Ez, according to (4.21) also alllows one to  derive 



the theoretical angle estimation performance using available asymptotic expressions 

for the beamspace eigenvector statistics as we shall see in Section 4.3. 

We will return to the "over-specification" issue of the decimated signal subspace in 

this section and show that judicious beamforming and filter design allows for proper 

operation of a suitably defined ESPRIT algorithm. Assuming that the beamform- 

ing and filtering operations produce little aliasing effects so that equatio:n (4.20) is 

a reasonably accurate approximation, we may define a TLS-ESPRIT procedure to 

estimate the directions of the I< signal arrivals based upon the Vandermon.de form of 

aNz(-). The algorithm is summarized as follows. 

Summary of TLS-ESPRIT Application Algorithm 

1. form Nz x Nb decimated-filtered-modulated beamforming matrix a-priori: Z = 

2) F M { W ). form a set of vectors, pi, i = 1 ,  ..., Nz - Nb, that span a subspace 

orthogonal to range {Z) .  

2. EVD of $ = rz=, y ( r n ) y H ( m ) / ~ ,  where ~ ( m )  = w H x ( m )  m=1, ..., M .  

3. estimate number of sources, K, and form the matrix Ez, composed of vectors 

which span the estimated decimated signal subspace: 

4. form ( N z  - 1) x 2(Nz  - Nb + k )  matrix E,, [ E ~  1 E 2 ]  where and E2 
are the first and last Nz-1 rows of Ez,  , and compute the 2(Nz  - iVb + I;') x 

2 (Nz  - Nb + I?) EVD Eg E,, = EkeH 

5. partition E into ( N z  - Na + I?) x ( N z  - Nb + I?) submatrices: 



6. compute the ( N z  - Nb + k )  x ( N z  - Nb + 2) EVD T@T-' = -E12$2;' 

7. for those K nearly unit-magnitude eigenvalues X i  = a;;, estimate the corre- 

sponding signal arrival direction as ik = sin-'(angle{Ai)A/2rrdD) 

4.2.4.1 Location o f  Extraneous Roots  Created by Filtering 

A major concern is that the extra column dimension of Ez,  over the K-dimensional 

signal subspace will result in the declaration of ambiguous signals. First of all, note 

that we've already at this point estimated the number of signal a~rrivals. Here, an 

argument is presented that suggests that the extraneous roots will not lie near the 

unit circle. This claim is also verified via a simulation example in Section 4.4. 

First, note that in the case of ideal decimation where the filter exhibits a perfect 

low-pass nature, equation (4.20) applies. Recall that the k'th diagonal element of 

Qi has unit magnitude, ak = ejDp\ Now consider the inclusion. of a linear filter 

in the decimation operation. The aliasing effects caused by decimation will result 

in an ESPRIT signal eigenvalue that will not have a unit magnitude characteristic, 

even if the ideal beamspace covariance matrix is available. However, a judicious 

filter and beamformer design will result in an approximate unit-magnitude eigenvalue 

characteristic. 

In addition to  ESPRIT eigenvalues directly corresponding to signals, assume that 

there is an extraneous unit magnitude eigenvalue, A, ,  i.e., 

This suggests that,  in addition to the Vandermonde components arising from the 

true signals, a Vandermonde vector corresponding to the angle Dp, also lies in the 

decimated signal subspace. Equivalently, agZ(Dp, )  is orthogona~l to  the range of 

ZE,, so that 

H H  a$z ( D P , )  [ z E n E n  Z ] aIVZ (Dp*)  = 0. 



Thus the spectrum of every transformed and decimated beamspace noise eigenvector 

exhibits a null at the spatial location Dp,. By design, there are no common in-band 

beamformer nulls and the filter response is also non-zero across the spatial sector of 

interest so that A, must be an ESPRIT eigenvalue associated with a signa.1 arrival. 

Refer to Figure 4.6 where a Hamming-weighted LPF was employed a.s the dec- 

imation filter applied to noise eigenvectors generated from an Nb = 8 spatial DFT 

beamformer. The filter has an associated spatial response that is relatively flat across 

the subband and there are no common in-band nulls in the set of beamforming vec- 

tors. Note that the only nulls in the MUSIC null spectrum corresponcl to signal 

arrival angles. The behavior at the edges of the band is expected from the presence 

of a root near T at a radius of 0.9 as shown in Figure 4.7. As a result of th~e relation- 

ship between the ESPRIT eigenvalues and the roots generated from Root-MUSIC, it 

is anticipated that an extraneous ESPRIT eigenvalue will lie in the complex plane 

near the unit circle at T and that all other non-signal eigenvalues will be sufficiently 

displaced from the unit circle. This is acceptable since these eigenvalues are discarded 

anyway as a result of previous discussion. In summary, an ESPRIT eigenvalue with a 

nearly unit magnitude suggests the presence of a signal at an associated spatial angle 

as long as the filter and beamforming vectors are judiciously designed. 

4.3 Theoretical Performance Analysis 

As previously observed, the use of conjugate centro-symmetric beamforming in 

conjunction with uniformly-spaced linear arrays with phase referencing at the array 

center results in a purely real-valued beamspace manifold. The real-va1ue:d property 

of the manifold allows one to decompose only the real part of the sample covariance 

matrix to determine the signal or noise subspaces. In addition to the obvious compu- 

tational advantages of a real-valued decomposition, a performance benefit is realized 

through the decorrelation of correlated signals. In uncorrelated signal environments, 

the real and complex-valued procedures result in similar performances in terms of 

estimation variance; however, the bias is, in general, smaller with the use of real 



covariance processing. As a result of these advantages as well as the applicability 

of either approach with regard to the Root-MUSIC and ESPRIT based procedures 

incorporating eigenvector decimation, the theoretical performance of the two algo- 

rithmic approaches are derived for the case of real-covariance processing. Extension 

for the case of complex processing is readily determined. 

As before, define Ae; = 6; - ei, i=1, ..., K as the error in thle i'th eigenvector 

due to the use of a sample estimate of the covariance matrix where 6i and ei are the 

respective i'th eigenvectors obtained from the beamspace sample covariance matrix 

and the ideal covariance, under some common uniqueness criterion. The distribution 

of Ae; was shown in Appendix D to be asymptotically Gaussian with zero mean and 

covariance 

Nb Nb 

& { M ~ e k ~ e : }  = 
rmntk  T emen,  k , l =  1 ,...,I( [4.22] 

m=l n=l ( X k  - X r n ) ( X e  - An) 

To allow for the use of previous MUSIC and ESPRIT [42] performance analyses, 

it is assumed that the aliasing effects are negligible. As noted earlier, the assump- 

tion is valid when the decimation operation includes a judiciously designed filter. 

This condition may be verified by observing the placement of the (signal) MUSIC 

roots/ESPRIT eigenvalues in the case of a known ideal covariance. Once again, the 

Root-MUSIC signal locations for the motivational example shown in Figure 4.7 con- 

firm the validity of the assumption, particularly in the case where deconvolution is 

not employed. 



4.3.1 Performance Analysis of Root-MUSIC Formulation 

The asymptotic variance of the Root-MUSIC estimator is readily obtained us- 

ing available results when assuming orthogonality between the transformed-filtered- 

decimated beamspace noise eigenvectors and the decimated element-space manifold, 
I i.e., Z e; N aNZ(dk), k = 1, ..., I(, z = + 1, ..., Nb. By observing that the spectral 

and Root-MUSIC formulations offer the same asymptotic performance in terms of the 

variance as shown in [lo], the expression for the spectral MUSIC estimate variance 

employing real-covariance processing in Chapter 3 can be easily amended .to the case 

at hand. Specifically, the null spectrum can be written as 

Observing the results in Chapter 3, the asymptotic variance of the Rolot-MUSIC 

estimator is easily shown to be expressed by 

where M is the number of snapshots, aNz (Oi) is the derivative of a ~ ,  (8) with respect 

to the location parameter 6 and evaluated at 8 = O;, and ( A k ,  ek),  k=1, ..., K, are 

the signal eigenvalues and corresponding eigenvectors of the real part of the ideal 

beamspace covariance matrix. 

4.3.2 Performance Analysis of ESPRIT Formulation 

The alternate expression in equation (4.21) for the decima.ted signal subspace 

involving the transformed bea.mspa.ce signal eigenvectors and a non-random basis for 

the orthogonal subspace of the columns of Z allows for an a.symptotic analysis of the 

ESPRIT formulation. The error in the matrix whose columns form a bitsis for the 

decimated signal subspace, AEzS, is simply 



In this form, the error is only a function of the error in the eigenvectors associated with 

the signal eigenvalues of the beamspace covariance. This allows for an asymptotic 

variance analysis similar to that found in [42]. The analysis in [42] is valid for the 

Least-Squares (LS) and Total Least-Squares (TLS) versions of ESPRIT. The variance 

analysis, for real beamspace covariance processing, is included in Appendix E. The 

asymptotic variance associated with the i'th angle estimate in the ca,se of uncorrelated 

sources is 

where t denotes pseudoinverse, xi and qi are the right and left eigenvectors associated 

with the i 'th (signal) eigenvalue of F = (rlEz,)tl?2Ez,, and rl and r2 are (Nz - 

1) x Nz matrices that select the first and last Nz - 1 rows of a matrix with Nz rows, 

respectively. Note that the expressions contained in Appendix E may be applied to 

the more general case of correlated signals; only the result for the uncorrelated signal 

scenario is summarized here due to its simpler form. 

4.4 C o m p u t e r  Simulat ions  

A number of simulations were conducted to assess the validity of the noise eigen- 

vector transformation/decimation techniques with regard to angle estimation. Specif- 

ically, the theoretical and empirical standard deviations of the Root-MUSIC and 

TLS-ESPRIT estimators were compared in a variety of source/processing scenarios. 

Also, the performance of the decimation approach was compared to the stochastic 

Cramer-Rao Lower Bound [26, 431. 



Common to all experiments, 600 trials were employed to derive the empirical 

results and only M = 16 snapshots were used to estimate the beamspace covariance 

matrix. Although this situation can hardly be classified as asymptotic in the number 

of snapshots, the theoretical performance curves were observed to compare rather 

closely to the derived experimental results. 

The empirical standard deviations were computed in a variety of scenarios in- 

volving one or two uncorrelated, closely-spaced signals. A MUSIC root olr ESPRIT 

eigenvalue was classified as arising from a signal if the root/eigenvalue location was 

within a 0.15 radial distance from the unit circle and lying in an angular (decimated) 

region encompassing 85% of the unit circle, i.e., in the region [ -0 .85~,  0.85~1. All 

trial cases, including those unresolved situations where only one signal was observed 

in the neighborhood of a signal pair, were used to compute the location statistics. 

Experiment 1: The simulation parameters of this experiment associated with the 

array, beamformer, and decimation components are similar to those outlined in the 

example of Section 3, namely, an N = 128 element ULA with half-wavelength spacing 

was operated on with an Nb = 8 channel spatial DFT beamformer. The spatial 

window was centered at broadside so that the spatial region -Nb/N < sin 0 5 Nb/N 

was probed. An L = 128 length Hamming-weighted low-pass filter was employed in 

the decimation procedure configured for maximal decimation, i.e., D = N/Nb. 

Two half-Rayleigh spaced signals of equal power were embedded in additive com- 

plex Gaussian noise so that a sensor level 10 dB SNR was achieved. To assess the 

effects of signal placement within the spatial beamforming sector on the estimation 

variance, the center of the signal set was shifted from baseband (sin0 =I 0) to the 

edge of the window (sin0 = 8/N). The empirical standard deviation of the two 

Root-MUSIC angle estimators, i.e., those formed using the matrix Z as well as the 

deconvolved version Z', were computed. Note that the dimension of Z was :l6 x 8 while 

Z' was formed by adding one additional (remainder) row to the required (IVb + 1) x Nb 

matrix to  form a 10 x 8 eigenvector transformation. The results are shown, along 



with the theoretical prediction as obtained from equation (4.26) a.nd the stochastic 

Cramer-Rao Lower bound [26, 431 in Figure 4.11. 

Several comments relating to Figure 4.11 are in order. Although the number of 

snapshots is relatively small, the theoretical performance curve is still a reasonably 

accurate representation of the empirically derived result. The rippled nature of the 

variance curves is due to the limited number of beams that are implemented in the 

approach. This characteristic is the result of a varying spatial power gain as similar 

to  that depicted in Figure 4.10. As noted earlier, the degradation in performance 

near the band edge suggests the need for sub-band overlap if one is interested in 

the detection and localization of all signals across the visible spatial spectrum. The 

variance of the estimate at the extreme right edge is not shown as the experimental 

and theoretical curves exhibit an exponential rise. In the central region of the band, 

however, the eigenvector transformation-decimation technique is seen to produce an 

accurate estimate in this Root-MUSIC formulation as evidenced bly the closeness of 

the results to  the Cramer-Rao Bound. Note that the curves related to  the theoretical 

variance associated with the use of Z and the Cramer-Rao Bound overlap. 

Experiment 2: Employing the same decimation transformations as in Experiment 

1, the variance of the Root-MUSIC estimators were observed for a varying SNR for 

two signals located a t  10.6" and 11.5") as used in the motivational example of Figures 

4.2 through 4.7. The empirical and theoretical standard deviations were computed 

and are depicted in Figure 4.12. 

Note that the theoretically derived curve, defined for the 16 x 8 transformation 

Z: closely tracks the corresponding empirical counterpart at moderate to  high SNR 

values. The deviation at the lower SNR values is attributed to the signal-merging 

effects in the resolution threshold regime of operation as noted in Chapter 3. Al- 

though the stochastic Cramer-Rao Bound is based upon the statistics of the available 

beamspace data and does not assume the presence of any sub-optimal techniques 

such as decimation, the Root-MUSIC procedure incorporating decimation is readily 



observed to essentially offer the optimum performance associated with un-biased es- 

timators. Also, the similarity between the empirical variance curves tori-esponding 

to the competing approaches (2 versus 2') suggests that the computatioilal savings 

associatetl with the smaller Root-MUSIC polynomial via the use of 2' is not obtained 

at the expense of a higher estimation variance. In fact, simulations have shown that 

the estimation variance is usually smaller for decimation architectures incorporating 

deconvolution. However, the imperfect deconvolution usually results in iin induced 

estimate bias as will be observed in Experiment 3. 

Experiment 3: The main purpose of this experiment is to show that the filtering 

operation in the decimator may not be warranted in certain situations. A single 

signal was positioned at lo and the bias performance was studied for the use of two 

beamforming architectures. In one situation, hTb = 6 DFT beams were farmed from 

an N = 36 element ULA. The beamspace to element-space eigenvector transformation 

was configured for maximal decimation, D = 6, with and without the use of a Parks- 

McClellan equiripple FIR filter exhibiting approximately 50 dB attenuation in the 

stopband region. In the other beamforming scenario, a practical application of Nb = 6 

Taylor weighted beams [45], exhibiting a 50 dB sidelobe level, were spaced at the half- 

power points and employed in a similar scheme involving the use/absence of additional 

filtering in the decimation operation. Note that the latter approach will produce 

an angle estimate exhibiting a substandard resolution ability due to the attendant 

wider mainlobes relative to DFT beams. However, this methodology is oftmen required 

in practice to reduce the deleterious effects of sidelobe clutter, i.e., the masking of 

signals within a given beam by a strong clutter signal in the sidelobes of' the beam. 

The beam spacing/aperture weighting associated with this case results in no common 

spatial nulls amongst the beam set so that the application of past beamspace MUSIC 

(Chapter 2) and ESPRIT [40] formulations is precluded. 

The empirically derived mean location estimates were determined for a varying 

SNR for various schemes incorporating the two beamforming architectures and are 



plotted in Figure 4.13. Again, the purpose here is not to compare the two beamform- 

ing approaches, rather, it is to observe the effects on performance of the inclusion 

of a filter in the decimation operation. Also, the inclusion of a filter increases the 

order of the polynomial to be rooted thereby increasing computation and creating 

extraneous roots. With reference to Figure 4.13, note that the use of a filtering oper- 

ation in the decimator with no additional deconvolution stage results in essentially an 

unbiased estimator for both beamforming architectures. As observed in the results, 

the Taylor-based sensor weighting provides sufficient attenuation so that a negligible 

aliasing effect is incurred, i.e., the induced estimation bias is smal'l. However, with 

the filter incorporated into the decimation operation, the imperfect deconvolution 

stage imparts a small bias of -0.02". Thus the filtering operation is unnecessary as 

evidenced in the bias plot and a smaller standard deviation shou1,d be realized on 

account of the smaller dimension of the resulting Root-MUSIC polynomial. 

Essentially the opposite is observed for the case of unweighted spatial DFT beam- 

forming. Here the sidelobe levels are large so that aliasing effects are present as 

evidenced by the top curve indicating a 0.05" bias in the unfiltered mode of oper- 

ation. With filtering as well as a deconvolution stage included i n  the decimation 

operation, a smaller bias of 0.025" is realized. The need for filtering is evident from 

observing the required dimension of the transformation 2'. Comparing the necessary 

row dimension of the decimation transformation incorporating declonvolution, Z' for 

the unweighted DFT and Taylor beamformers, the required sizes were 10 x 6 and 

7 :K 6, respectively. These required sizes were determined according to the criteria 

discussed in Section 4.2. 

Experiment 4: In this experiment, we test the validity of the 'I'LS-ESPRIT for- 

mulation of the noise eigenvector transformation-decimation procedure and verify the 

theoretical variance expression of Section 4.3, equation (4.28). The source/processing 

pa,rameters are the same as those of Experiment 2. 



The theoretical and empirical standard deviation were computed over a varying 

SNR and the results are depicted in Figure 4.14. The results show that the per- 

formance ]>redictor of Section 4.3 accurately tracks the empirical results. Also, the 

variance associated with the decimation architecture incorporating a filter deconvo- 

lution stage outperforms the "undeconvolved" counterpart. To verify the conjecture 

that the quiescent locations of the extraneous eigenvalues are sufficiently a~way from 

the unit circle, the ESPRIT eigenvalues were calculated in the absence of noise and 

plotted in Figure 4.15. Note that only the eigenvalues interior to the unit circle are 

plotted as the closest exterior eigenvalue is located at a radius of 5.4 (associated with 

the Z transformation). Referring to Figure 4.15, in the absence of deconvolution, two 

"signal" eigenvalues appear at the correct locat ion and the eigenvalue c1oa.e~ t to the 

unit circle of the remaining is located at a radius of 0.62 and an angle very near n. 

When deconvolution is incorporated, the closest non-signal eigenvalue is located at 

7r at a radius of 0.09. However, the signal eigenvalues exhibit a small bias at the 

perceived (translated) angular locations of 10.587' and 11.465'. 
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Figure 4.11 Experiment 1 : Empirical and theoretical left signal standard deviation 
versus spatial position of a 10dB, half-Rayleigh spaced signal set. Central position 
of signal set varied from mid-band to 6 / N .  The Nb = 8 spatial DFT beams were 

formed on an N = 128 sensor ULA. 
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12 Experiment 2: Left signal standard deviation versus source SYR for 
in-band signal, Nb = 8 beam example scenario depicted in Figure 4.3. 
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Figure 4.13 Experiment 3: Location bias versus source SNR for an Nb = 6 beam 
pl-e-processor (un-weighted DFT or Taylor-weighted beamformers11 operating on an 

N = 36 sensor ULA. The mean angle estimate for a signal locaked at lo was 
computed over 600 trials. 
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Figure 4.14 Experiment 4: TLS-ESPRIT left signal standard deviation versus 
source SNR for the two signal example of Figure 4.12. 
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Figure 4.15 Experiment 4: Quiescent locations of the TLS-ESPRIT eigenvalues 
associated with the decomposition of the ideal beamspace covariance input. 



122 

4.5 Conclusions 

In this chapter, a novel approach to angle estimation in the beamspace domain 

was developed. The approach offers a computationally attractive and non-restrictive 

procedure relative to the type of beamformer employed that is easily implemented 

in the MlJSIC and ESPRIT algorithms. Theoretical expressions for the estimate 

variance were obtained in an asymptotical analysis and confirmed in a variety of 

simulatio~is. Although the technique was applied to the uniform linear array geometry, 

an extension to a two-dimensional array to provide simultaneous azimuth/elevation 

angle estimates is evident and currently under investigation. 



5. CONCLUDING REMARKS 

In this report, two computationally efficient formulations of a beamspace Root- 

MlJSIC algorithm were developed. Although similar implementations were obtained, 

the two methodologies were designed under fundamentally different approaches. The 

first approach of Chapter 2 resulted in a slightly more efficient implementation, rel- 

ative to  the algorithm in Chapter 4, but at the expense of a restrictive constraint 

placed on the form of the beamforming transformation. 

A conjugate centro-symmetric structural requirement on the form of the beam- 

forming vectors was shown to allow for a real-valued decomposition of the beamspace 

sample covariance to derive information on the estimated signal subspace. The con- 

straint is not a severe one as a symmetric weighting/sensor placement is commonly 

used in practice. Although the performance benefit of incorporating real-valued pro- 

cessing in a MUSIC formulation was somewhat discussed in Chapter 2, the perfor- 

mance analysis in Chapter 3 provided detailed insight into the merit of such a process- 

ing approach. The derived large-sa,mple ~ta~tistics for the signa.1 subrjpace eigenvectors 

of the real part of the beamspace sample covariance matrix were errlployed to develop 

the theoretical estimate bias/variance of the algorithms in Chapters 2 and 4. The 

accompanying simulations verified the theoretical expressions and served to validate 

the merit of the two algorithms. 

Two extensions of this work are currently under investigation. First, as mentioned 

in Section 4.5, the multirate noise eigenvector processing technique may be applied to 

a two-dimensional planar array of sensors situated in a rectangular lattice to provide 

the elevation and azimuth coordinates of an impinging wavefront. In this mode, the 

beams are pointed to  spatial locations in a two-dimensional grid and decimation is 

performed along the vertical and horizontal axes of the array. Another extension to 



the algorithm of Chapter 4 is the incorporation of procedures to allow for adaptive 

beamforming, where beams are adaptively derived to exhibit nulls in the (out-of- 

sector) locations corresponding to interfering sources. 

A sensitivity comparison between the two approaches is also under consideration. 

The application to data from a digital line array would allow a compariscln between 

the two techniques with regard to the sensitivity in the presence of sensor placement 

perturbations, mutual coupling, etc. It is anticipated that the algorithm of Chapter 4 

will be found to be more robust due to the absence of the common-null beamforming 

constraint . 
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APPENDICES 



Appendix A: Simple Expression for 4Lm) 

A simple, closed-form expression for the Nb x 1 beamspace vector bkm)(u) = 

~ t ) ~ a ~ ( u )  is first developed assuming the conjugate centro-symmetric form of the 

N x Nb DFT matrix beamformer in (2.51). To this end, consider thte inner product of 

anr(u), where u is variable, with a N ( u )  evaluated at some specific a.ngle, say u  = uk. 

By direct substitution 

N N + 1  
a;(u)aN(uk) = exp [ - j  (i - T) ~ ( u  - uk)] = s N ( 1 ' 1  - uk) [A.l]  

i=l 

where S N ( u )  is the real-valued periodic sinc function 

sin ( T a u )  
S N ( U )  = 

sin (;..u) ' 

It follows then that bkm)(u) may be expressed in terms of shifted periodic sinc func- 

[ SN ( U  - [m + Nb - 1-1 $) ] 
Invoking the banded, Toeplitz structure of ckm) and the fact that a N ( u )  is a scalar 

multiple of the Vandermonde manifold vector v N ( u ) ,  one arrives #at a result similar 

to (2.43): 

tions as - 

where aNb(u)  is given by equation by (2.48) with N replaced by Ar
b. Here cam)(u) = 

(m)  } cr)HaN-Nb+,(u),  a scalar function of u  equal to the DSFT of the sequence {cR  . 

In  Appendix B, it is shown that if N may be factored as NbD where D = N/Nb is an 

integer, cam)(u) may be expressed as 

bam)(u) = W E  l H a N ( u )  = 

... (Nb - 1) (D  - 1 )  
exp [ - j m D ]  exp [J -  2 D n=m N 

SN(U - m $ )  

SN ( U  - [ m  + 11 5) 



where SD(u) is defined by (A.2) with N replaced by D = N/Nb. 

Consider the equality in (A.4) for Nb distinct values of u, i.e., 

Collectively, this yields the matrix equation 

As long as the beamspace manifold vectors bkm)(u;), i=1,2,. .., Nb, are linearly inde- 

pendent, (A.6) uniquely defines QLrn). In Appendix C, it is shown that this is the 

case as long as the values u;, i=1,2, ..., Nb, are distinct with none equal to  any of the 

common null locations listed in (2.23). To simplify the solution of (A.6) for Q L ~ ) ,  

consider selecting the values u;, i=1,2 ,..., Nb, such that aNb(u;), i=1,2 ,..., lVb, are mu- 

tually orthogonal. Any set of Nb angles equi-spaced by 2/Nb will suffice. One is 

immediately tempted to  choose u; = (i - 1)2/Nb, i=1,2, ..., Nb. However, since Nb is 

assumed t o  be factor of N, i.e., N = NbD, at least one member of this particular set 

of u values will lie at a common null location for which bam)(u) is identically zero. 

To insure against this and yet retain mutual orthogonality, these values are offset by 

2k/N where k E {1,2, ..., Nb - 1). It has been determined that an offset of (Nb - 1 ) l N  

works best. Thus, with u; = (Nb - 1) /N + (i - 1)2/Nb, i=1,2, ..., Nb, (A.6) is easily 

manipulated to  yield a simple expression for 4km': 

The computation in (A.7) may be simplified by observing that the first matrix 

on the right-hand side of (A.7) is rela.ted to the Nb point DFT matrix, denoted 

W N ~ ,  through a diagonal, unitary ma.trix. The diagonal elements of the 1a.tter matrix 

account for the offset of (Nb - 1) lN in the DFT bins and the relationship between 



aN(u)  and v N ( u )  in (2.50). In addition, the product of l/ckm)(ui) with bkm)(u,) may 

be simplified invoking the expressions for b F ) ( u )  and ckm)(u) in (A.3) and (A.5), 

respectively. Ultimately, (A.7) may be simplified as in (2.38) whe~e  7 ,  is defined as 

.. (Nb - 1)(D - 1 )  
ym = exp [ - j m g ]  exp [ j 2  D -1 





Appendix B: Simple Expression for DSFT of Coefficient Vector for Com- 
mon Roots Polynomial 

Given that a N - ~ b + l ( u )  is defined by (2.48) with N replaced by N - Nb + 1, it 

follows that cam)(u) = is the Discrete Space l?ourier Transform 

(DSFT) of the coefficient vector of the common roots polynomiall of order N - Nb 

defined in (2.29) (normalized to exhibit conjugate centro-symme~try) multiplied by 

exp [- j nu (N  - Nb)/2] in accordance with (2.50). Therefore, 

m+N-1 

cLm)(u) = exp 
2 n=m+Nb 

[B-11 

Recall that it is assumed that Nb is selected such that D = N/Nt, is an integer. In 

this case, consider grouping the N - Nb roots into Nb sets having D - 1 roots each 

as signified by the following factorization 

where 

7r " INb - I )  e x  ( - m -  - 11) [B.i] = exp (-jma exp (-I"l D 2 

where we have used the identity 

K-1 , exp(kx) = exp ('IC[K 2 - I ] ) .  P.41 
k= 1 

Factoring the half-angle out of each term in the product on the right-hand side of 

(1) .2) yields 



N - N  where p -- exp (- j +XU). Using the identity 

and the one in (B.4), simple algebraic manipulation yields 

jr [ N ~  - I ] [ D  - 11 (9 1:. - n f ] )  
D 

P.71 



A p p e n d i x  C: O n  t h e  Dis t r ibut ion  of t h e  Rea l  Part of t h e  Beamspace  Sam-  
ple  Covariance M a t r i x  in  t h e  Case  of Uncorre la ted  Gaussian 
Sources  

Recall that Nb denotes the number of beams formed and I( the number of sources. 

Irrespective of the tapering employed, the beamspace snapshot vector has the follow- 

ing general structure: 

where B is Nb x IC, ~ ( n )  is IC x 1, n(n)  is Nb x 1, and M is the total nuimber of snapshots. 

(Note that the superscript (m)'s and tildes have been dropped for rlotational simplic- 

ity.) B is the beamspace DOA matrix and is real-valued as proved in (2.56). The 

components of s (n)  are the complex source amplitudes at the n-th snapshot, denoted 

sk(n), k = 1, ..., I(. As in [TI, it is a.ssumed that sk(n) ,  k = 1, ..., I<, are statistically 

independent, zero-mean, circular Gaussian random variables with &{(sk(n) 1 2 )  = a;, 

k = 1, ..., IC. The source covariance matrix is Ps = diag{a,2, a:, . . . , a;). Under 

th.ese conditions, one can decompose s (n)  into its real and imaginary parts as 

so that sT(n) and s;(n) are statistically independent and identically distributed (i.i.d.) 

Similarly, with respect to  the noise, it is assumed that the elements of n(n)  are 

samples of statistically independent, zero-mean, circular Gaussian random variables 

having a common variance of 02. Note that this assumes the use of orthonormal 

weight vectors in forming the beamspace snapshot vector. Similar to the above, one 

cam decompose n(n)  into its real and imaginary parts as 

so that n,(n) and ni(n)  are i.i.d. with 

T 1 
f{nT(n)nT(n)) = f{ni(n)ni (n))  = - a : ~ ~ ,  2 n = 1,. .., M .  [C.51 



Finally, it is assumed that s(n),  n = 1, .. . , M,  are i.i.d., n(n),  n = 1, ... , M, are i.i.d., 

and s(n)  and n (n)  are statistically independent, n = 1, ... M .  

The real part of the beamspace sample covariance matrix may be expressed in 

terms of the real and imaginary parts of each beamspace snapshot vector as 

where, exploiting the fact that B is real-valued, y,(n) and y;(n) may be expressed as 

It follows from previous assumptions that y,(n) and yi(n) are i.i.d. with 

P.91 

Now, in accordance with (C.6) M R~{R,)  may be expressed as xiyl z(n)zT(n) 

where z(n) = y,(n), n=1, ..., M, and z (M + n) = yi(n), n=1, ..., M. From (C.7), 

(C.8), and (C.9), z(n) are independent and identically distributed as N ( 0 ,  1/2R,), 

where N ( p ,  B )  denotes the multivariate Gaussian distribution with mean vector p 

and covariance matrix B .  It follows then that MR~{R,}  is Wishart distributed 

with 2M degrees of freedom. This is in contrast to M & which is complex Wishart 

distributed with M degrees of freedom. 



Appendix D: Derivation of the Asymptotic Distributioin of the Signal 
Subspace Eigenvalues/Eigenvectors 

Here the asymptotic distribution of the signal subspace eigenvalues and corre- 

sponding eigenvectors of the real part of the sample covariance 11-~atrix are derived. 

The performance prediction of eigenstructure direction of arrival algorithms based 

upon the Wishart distribution of the sample covariance matrix firs.t appeared in [21], 

adapting tools from the statistical community, e.g., [44]. As is different in the case 

a t  hand, the real part of the beamspace sample covariance matrix is not Wishart 

distributed, but the analysis follows closely to the case of element-space processing 

in conjunction with a single forward/backward average as reported in [8]. Although 

there is a direct relationship between the sample covariance matrices obtained by 

taking the real part in beamspace and that obtained with a single forward-backward 

average in element-space, the results in [8] cannot be manipulated to apply here - 

there is no one-to-one relationship between the signal subspace eigenvectors in the 

two methodologies. It can be shown that a relationship does exist between the signal 

subspace eigenvectors, however, when the beamforming preprocessor is a full-rank, 

N x N matrix; but we focus on the use of beamforming architectures that transform 

the element-space data to  a lower dimensional space. Presented here is an outline of 

the derivation regarding the distribution of the signal subspace eigenvectors. 

As defined in the text, the real part of the true beamspace covariance matrix is 

spectrally decomposed as 

where 
. . 

E = [ e l  : e 2 :  . . .  i e ~ , ]  Nb x Nb, 



Knowledge of the signal/noise subspace needed for the MUSIC prescriptioin is derived 

from the real part of the sample beamspace covariance matrix 

where 
. A  . 

E =  [ G l  : e 2 :  . . .  iiNb], 

.. a 

A =  diag(hl ,  X 2 ,  . . . ,  iNb), and 

i 1  > A2 > . . . > i K  > i K + l  > . . . > iNb. 

As before, all estimated quantities originating from the sample covariance matrix 

are denoted with a "-". Recall that the choice of the eigenvectors is riot unique; 

the noise-only subspace is characterized by repeated eigenvalues so that the set of 

noise eigenvectors simply need to span the particular subspace while the eigenvectors 

corresporiding to the unique signal subspace eigenvalues may be multiplied by some 

unit magnitude scalar to maintain the unit length constraint. Here we will work with 

real-valued eigenvectors and need only, for a unique specification of the desired end 

result, stipulate that the eigenvectors satisfy a diagonal entry constraint 

eii, Yii > 0 where Y = E ~ E .  [D.31 

The asymptotic distribution of the eigenstatistics will be found to be completely 

expressible in terms of the elements of the mean and covariance of the matrix 

where 

T = E~ R ~ { R ~ }  E = E ~ E A E T E  = y T ~ y T .  P.51 

The matrix E diagonalizes Re{Ry) to A as in ( D.l). Thus U essentially represents 

an error matrix driven by the finite sample estimate of the covariance when operated 



on by E. Substitution of ( D.2) leads to 

where 

z ( m )  = ~ ~ y ( m ) ,  z* (m)  = ~ ~ y * ( m )  E cN.  

Tlle signal amplitude and noise processes are assumed to spatially and temporally in- 

dependent and governed by zero-mean circular Gaussian random, processes, hence 

z ( m )  and z * ( m )  are zero-mean Gaussian processes with covariance ETR,E and 

ErrR jE ,  respectively. Direct application of the central limit theorem suggests that 

the limiting distribution of the elements of U are normal. The mean of U is easily 

shown to be zero. As as result of the independency from snapshot to snapshot, we 

have 

Through the use of the gaussian expansion of four zero-mean jointly gaussian variables 

xi, i = 1- 4 ,  

and the relations 

one obtains, after simplification, 

Notice that the signal subspace eigenvectors of the complex cov.ariance R, as well 

as those of only the real part, Re{R,}, span the same space, namely, the subspace 



spanned by the columns of B. Thus we have 

Making use of this property as well as the orthogonality of the noise eigenvectors 

suggests that 

e;R,e; = Akbik + j e;RIei(l - hik) 

where RI = Zm{R,), leading to 

Notice that the terms involving the imaginary part of the beamspace covariance 

matrix, RI, represent the only structural difference to that found in the complex 

processing case as studied in [21, 33, 341. 

The ultimate goal is to relate the mean and variance of the eigenvalues and eigen- 

vectors of the sample covariance matrix to the elements of U. The taken approach is 

to define the first order perturbation of Y in W as 

[D. 101 

As we are only allowed to determine the perturbation in the eigenquantities related to 

the non-repeated eigenvalues in the signal subspace, we partition the various matrices 

The partitioning of these matrices are such that the dimension of the upper left hand 

elements is that of the signal subspace, namely K. As a result we see that, 



The derivation of the st at is tics of the sample- based eigenvalues and eigenvectors 

is accomplished in two parts. The first involves equating the first order perturbation 

terms in T via ( D.4), ( D.5), and ( D . l l )  as 

where AA; = A; - A;, 2 = 1,2 and o(&) represents those terms of order less than 

Equating the upper- and bottom-left hand partitioned terms and discarding the ma 
higher order terms leads to 

Additional asymptotic relations are obtained through 

leading to 

w11+ wT1 = 0 

Assembling equations (D. 13), (D. 14), (D. 16), and (D. 17) yields 

~ A A , = ~ ( ~ ~ - A ~ ) = u ~ ~  for i = 1 , 2  , . . . ,  I{, and [D.18] 



With the aid of (D.18), the asymptotic bias of the error in the signal eigenvalues is 

1 shown to be zero to order I, i.e., E{X; - A;} = o ( ~ ) ,  i = 1,. . . ,K ,  while the rn 
associated covariance is 

Notice that 

so that 

Accountiilg for the orthogonality of the eigenvectors by dividing (D.22) by I ei I and 

finding the associated mean and covariance yields, after simplification, 

- 1 Nb I eTRIek 1' 
- 2' (hi  - Ax) '  

e;, and 
k=l 

K h' ( ~ T R I ~ ~ )  ( e z R ~ e t )  
+ 

2 
  eke^ + C C ( A ,  - A k ) ( A j  - A,!) 

k=l L=l 



A p p e n d i x  E: A s y m p t o t i c  Variance of ESPRIT Formu1atio:n 

Given that z; is a (signal) unit-magnitude eigenvalue of the matrix 

with xi and q; the corresponding right and left eigenvectors, Rao and Hari [42] showed 

that,  to  o(M-l),  

Az; = $ A F x ; .  P.21 

The error in F, O F ,  due to the finite sample estimation of the beamspace covariance 

matrix is 

A F  = ( I ' ~ E z , ) ~  ( r2AEzs)  - ( ~ I E z , ) ~  ( ~ I A E z , )  F', iE.31 

which is applicable to  either the Least Squares (LS) or Total Least Squares (TLS) 

ve1:sions of ESPRIT. Substituting the form of AEz, in equation (4.27) into equation 

(E.2), one obtains 

where a; and the signal eigenvector error statistics were stated in equations (4.29) 

and (4.22), respectively. Following [42], these quantities are then substituted into 

X I {  (Az;I2 ) - Re{ ( ~ f ) ~  &{ ( 0 ~ : ; ) ~  } ) 
2 --I [E.,] 27rdD cos 8; 

to  yield the desired theoretical asymptotic estimation variance. 

In the case of uncorrelated signals, the asymptotic error in th.e signal subspace 

eigenvectors reduces to  



After substituting and simplifying, the asymptotic variance of the ESPRIT angle 

estimate for uncorrelated sources reduces to 

t # k  

- 1m { x , ( e ) e : a i )  Irn { x i ( k ) e T a i ) )  ] , 

where En is an Nb x ( N b  - I ( )  matrix composed of the noise eigenvectors associated 

with the ideal beamspace covariance. 
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