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ABSTRACT

The Multiple Slgnal Classification (MUSIC) algorithm developed in the late 70's
was the first vector subspace approach used to accurately determine the arrival an-
gles of signal wavefronts impinging upon an array o sensors. As facilitated by the
geometry associated with the common uniform linear array of sensors, a root-based
formulation was cleveloped to replace the computationally intensive spectral search
process and was found to offer an enhanced resolution capability in the presence of
two closely-spaced signals. Operation in beamspace, where sectors of space are indi-
vidually probed via a pre-processor operating on the sensor data, was found to offer
both a performance benefit and a reduced computational coinplexity resulting from
the reduced data dimension associated with beamspace processing.

Little progress, however, has been made in the development of a cornputationally
efficient Root-MUSIC algorithmin a heamspace setting. Two approiaches of efficiently
arriving at a Root-MUSIC formulation in beamspace are developed and analyzed in
thisThesis. In thefirst approach, astructural constraint is placed on.the beamforming
vectors that can he exploited to yield a reduced order polynomial whose roots provide
information on the signal arrival angles. The second approach is considerably more
general, and hence, applicable to any vector subspace angle estimation algorithm.
In this approach, classical multirate digital signal processing is applied to effectively
reduce the dimension of the vectors that span the signal subspace, leading to an
efficient beamspace Root-MUSIC (or ESPRIT) algorithm.

An auxiliary, yet important, observation isshown to allow a real-valued eigenanal-

ysis of the beamspace sample covariance matrix to provide a computational savings




as well as a performance benefit, particularly in the case of correlated signal scenes. A
rigorous theoretical analysis, based upon derived large-sample statistics d the signal
subspace eigenvectors, is included to provide insight into the operation of the two
algorithmic methodologies employing the real-valued processing enhancement. Nu-
merous simulations are presented to validate the theoretical angle bias and variance

expressions as well as to assess the merit of the two beamspace approaches.




1. INTRODUCTION

A widely studied problem in radar, sonar, and seismology is the estimation o the
arrival angles o wavefronts based upon measurements from an array of sensors. The
most profitable techniques of signal localization are baaed upon a vector subspace
approach introduced by Schmidt [11] in his MUltiple SIgnal Classification (MUSIC)
algorithm. Aswith most vector subspace formulations [3, 11, 20, 23, 24|, the measured
covariance matrix is eigendecomposed to define two orthogonal spaces, referred to as
the signal and noise subspaces. The signal subspace ideally proviides a description
of the signal-induced component o the measured covariance. The determination of
the arrival angles is then accomplished through the identification and localization of
peaks in a spatial spectrum derived from knowledge of the noise subspace.

Root-MUSIC [1, 10] is a variation of MUSIC applicable in a uniformly-spaced,
linear array (ULA) scenario that offers significant advantages over Spectral MUSIC
[10]. In contrast to Spectral MUSIC, where a nonlinear search over .aone-dimensional
multi-modal surfaceis employedto localize signals, Root-MUSIC ishased on a polyno-
mial formulation of the spectral search facilitated by the ULA structure. The rooting
of a polynomial is a computational task for which there are numerically robust algo-
rithms amenable to parallel implementation [5]. In addition to this advantage with
regard to the search process, Rao and Hari [10] have shown that Root-MUSIC offers
improved estimation performance over Spectral MUSIC. Although their performance
analysis reveals that the asymptotic mean square error o the source angle estimates
obtained with Root-MUSIC is the same as that obtained with Spectral MUSIC, Rao
and Hari present simulations in which the MUSIC spectrum exhibits a single peak
in the vicinity o two closely-spaced sources while the corresponcling Root-MUSIC

polynomial exhibits two clearly distinct signal zeros [10].




As the computational burden o the eigenanalysis of the sensor covariance matrix
increases dramatically with the number of sensors, there has been considerable interest
in the use of a beamforming preprocessor to reduce the dimensionality of the data
snapshot vector while simultaneously maintaining the degree d resolution associated
with element space operation. In addition to the computational savings, it has been
reported that theinclusion d a properly designed beamspace preprocessor leads to a
more robust estimator with regard to sensor placement perturbations and deviations
from the assumed noise model, and aids in the ability to resolve two closely-spaced
signals [2,4, 6, 17,18, 7]. Operation in parallel alowsfor the localization of all signals
in visible space [13]. These benefits are realized at the expense of a higher MUSIC
estimate variance as found in [28], but, once again, a proper design yields an angle
estimate variance in beamspace that is comparable to that obtained with element
space processing [29]. The estimate bias, however, can he made smaller in beamspace
formulations [29].

These observations motivate the development of a beamspace implementation o
Root-MUSIC. Two computationally efficient versions of such are presented in Chap-
ters2and 4. In thefirst approach, areduction in the order of the Root-MUSIC poly-
nomial is accomplished by employing a beam sct exhibiting common nulls at known
locations in visible space. Tho latter approach draws on the field of multirate digital
signal processing where the set o beamspace eigenvectors spanning the beamspace
noise subspace are latently transformed to their element-space counterparts and dec-
imated. Application of the standard element-space Root-MUSIC algorithm is then
possible. As the approach is perfectly general in nature, extensions to include other
well-known direction of arrival estimation techniques in beamspace are alowed. As
such, a beamspace version o ESPRIT [24] is considered.

In conjuction with the use o these two direction of arrival estimation techniques,
the impact d employing conjugate centro-symmetric beamforming vectors on the
computational complexity and attainable localization accuracy is studied. The sym-

metry property is shown in Chapter 2 to alow a real-valued eigendecomposition to




provide valid information on the two orthogonal subspaces. A rigorous performance
analysis detailing the effect of processing only the rea part o the beamspace sample
covariance on the bias and variance of the Spectral MUSIC estimator is contained in
Chapter 3. Theoretical analyses of this sort have become increasingly popular due to
the time-consuming alternative o computer simulation as well as a means to provide
insight into the operation of the estimation algorithm. Kaveh and Barabell [21] were
thefirst to employ the eigenanalysis of the (Wishart distributed) element-space sam-
ple covariance matrix to derive a theoretical expression for the resolution threshold,
1.e., the minimum Signal-to-Noise (SNR) ratio at which two closely-spaced signals are
resolvable, of the MUSIC and Min-Norm algorithms. Later, Lee and Wengrovitz [7]
studied the resolution threshold in a heamspace MUSIC setting for a variety of beam-
forming architectures. Others [33. 34, 28, 29, 35, 36, 37] have extended the analysis
to provide the estimate bias and variance for MUSIC as well as a number o other
direction finding algorithms.

With regard to notation, vectorsare represented by bold, lower-case symbols while
matrices are bold, upper-case symbols. The transpose operation is indicated with a

superscript "T", while “H” refers to conjugate transpose.







2. DEVELOPMENT OF BEAMSPACE ROOT-MUSIC

2.1 Introduction

Tofacilitate reduced computational complexity in the development of a beamspace
Root-MUSIC setting, procedures are presented for designing orthogonal matrix beam-
formers composed o conjugate centro-symmetric weight vectorsand producing beams
exhibiting common out-of-band nulls. The N X N, Discrete Fourier Transform (DFT)
matrix beamformer composed of N, columnsaf the N x N DFT matrix, where N isthe
number of elements, is employed as a prototype matrix beamformer possessing these
properties. In Section 2.3, it is shown that the common out-of-band nulls property
enables one to work with a reduced degree polynomial in the fina stage of Root-
MUSIC. The relationship between the present work and previous work on achieving
a reduced degree polynomial in a beamspace implementation of Root-MUSIC, par-
ticularly the pioneering work of Lee and Wengrovitz in [6], is discussed in Section 2.4.
In Section 2.5, it is shown that the conjugate centro-symmetry of the weight vectors
enables one to work with the rea part, of the beamspace sample covariance matrix in
the eigenanalysis stage d Root-MUSIC, reducing the attendant computational com-
plexity by a factor of four. Procedures for constructing matrix beamformers having
the desired features plus additional features such as producing beams with reduced
out-of-band sidelobes and/or common nulls at prescribed locations are developed in
Sections 2.6 and 2.7, respectively. In Section 2.8, simulations are presented which
illustrate various performance comparisons: beamspace Root-MUSIC versus element
space Root-MUSIC, beamspace Root-MUSIC versus beamspace Spectral MUSIC, and

reduced out-of-hand sidelobes versus in-band performance.




2.2 The Data Model

In this section, the array data model is presented. The ideal form of the sensor
covariance matrix is derived and decomposed into its spectral form to illustrate the
operation of the MUSIC algorithm.

The array geometry assumed is that of a uniform linear array of N identical
sensors. For the sake of simplicity, the inter-element spacing is taken to be equal
to one-haf of the wavelength associated with the center frequency of the band o
operation. The sources are assumed to be located in the far field so that planar
wavefronts are perceived by the array, and all signals are assumed to be narrowband
in nature. In this setting, let x(n) denote the N X 1 sensor space snapshot vector
measured at the n-th sampling interval; x,(n) denotes the :-th component of x(n).

The response of the i-th sensor to a signal arriving at a bearing angle 8 is

xi(n) = s(n) exp (i [ - N; ! Ju) izl 2.1]

where u is the direction sine, u = sin(#) [15], and s(n) is the value of the complex
envelope of the signal at the n-th sampling. Notice that the exponential term repre-
sents a time delay, with reference to the array center, to account for the wavefront
motion along the axis of the array.

In the general case of K signals and additive noise, the sensor response is
x . N-l .
xi(n) = E sk(n) exp(]w [z - ] 'u,k> + n;(n) l=1,..,N [2.2]

k=1 =

where the added subscript k, & = 1,..., I\, refers to the specific arrival, and n;(n) is
the value of the noise process for the i-th sensor at the n-th snapshot. The sensor

space snapshot vector, x(n), can then he written as
x(n) = [x¢(n), X2(n),...,xn(n)]" = As(n) + n(n) [2.3]
where

n(n) = [nl(n,),...,nN(n)]T




s(n) = [si(n),...,sx(n))"

A = [aN(u])s ces EaN(UK)]T

and ay(u), termed the array manifold vector, is
T

R O )

[2.4]

For the sake of simplicity, it is assumed that the noise process at each sensor is
Gaussian in nature with zero mean and variance o2. The noise is assumed to be
independent over both timeand sensor space, and is uncorrelated with respect to the
signals. Notice that this restriction on the noise process is not required for proper
operation of the MUSIC algorithm - the MUSIC algorithm only requires that the

covariance matrix of the noise be known. As aresult of these assumptions, the sensor

space covariance matrix, R,, iseasily shown to be
R, = E[x(n)x(n)f] = APsAY + 521 [2.5]
where Pg is the signal covariance matrix
Ps = E[s(n)s(n)"]. [2.6]

Assuming that no two signals are perfectly correlated, the K X K matrix Py is of
full rank so that the spectral decomposition of the signal component to the sensor

covariance is

N
APsAT =3 Neel [2.7]
k=1
where ey is the k-th unit-length eigenvector associated with the k-th eigenvalue such
that
M >M> 0N >0 [2.8]
/I\“+1 = /\/]\'_l_z = ... = /\Ty\,‘ = 0.

Noticethat it isinherently assumed that the number of signals isless than the number

of sensors. This assumption is necessary for the operation of MUSIC. In addition,



it is easily verified that the spectral decomposition of the sensor covariance matrix

contains the same eigenvectors leading to
N
R, = > Megef [2.9]
k=1

where

M= A+ k=1,..N (2.10]

Thefirst K eigenvectors span the same space as that of the set of signal manifold

vectorssincee;,i = K +1, ..., N, span the orthogonal subspace, i.e.,
efay(up) =0 k=1,..,K i=K+1,..,N [2.11]

Defining the noise-only subspace asthat formed from e;, ¢ = K +1,..., N, one can
construct the projection matrix, P,,, onto the noise-only subspace as
N
P, = > ee [2.12]
i=K+1

The MUSIC spectrum is then defined as [20]

Smusic = 1/ (ai(u)P,an(u)). [2.13]

Noticethat for directions « coinciding with a signal arrival angle, v = ux, k =1,..., K,
Smusic(ux) = oo. This property allows one to locate the directions of arrival of the
various wavefronts as generated from distinct point sources. Furthermore, notice
that this algorithm is intended for use in determining the arrival angles and not in
estimating the spatial spectrum as is true for such algorithms as Capon's Minimum

Variance or Burg's Maximum Entropy.

23 DFT Based Beamspace Root-MUSIC With Reduced Degree Polyno-
mi al
In this section, it is shown that if one employs DFT beamformers, the degree o

the polynomial solved in the find step of MUSIC' ison the order of twice the number

o beamsrather than twice the number of elements as in element space Root-MUSIC.




The development of this result hinges on the so-called common out-of-band nulls
property exhibited by DFT heams to be discussed shortly.
The Discrete Space Fourier Transform (DSFT) [15] of the n-th N X 1 element

space snapshot vector as a function of the direction sine is defined as
N-
Z k(n) exp[—jkny] [2.14]

Note that for a fixed n, f (u; 71) is a periodic function of u with period 2. Typically,
the magnitude and phase of f(u; n) are plotted over the interval -1 < v < 1
corresponding to the angular interval —90° < ¢ < 90°; this is referred to as the
visible region [15]. Computation of the N-point DFT of the N X | snapshot vector,
however, provides N equi-spaced samples o the DSFT over the interval 0 < u < 2.
This should be kept in mind in the following development.

Defining the N X 1 DFT beamforming weight vector as
vn(u) = [1, exp (jru), exp (j27u), ..., exp ([N — 1]7u)]", [2.15]

it follows that the quantity v (w,)x(n) is the DSFT of the n-th snapshot evaluated
at u = u,. Note that vy(u) exhibits a Vandermonde structure (hence the use of the
boldface v). The subscript N is intended to denote the dimension o the vector.

Consider an N x N, beamforming matrix composed o N, DFT beamforming vec-
tors of theform in (2.14) with respective pointing-angles equi-spaced by the amount
Au = 2/N:

m 1 2N . 2\ . . 2
W( ) _ TN [VN (m?\—[) LV ([m + 1]7) DL VN ([m + Ny — Hﬁ)] [2.16]

It iseasily ascertained that the N, columnsof W/

are N, consecutive columns o the
N X N DFT matrix, respectively. The subscript R in Wﬁz’") is intended to emphasize
that DFT beamforming implies (R)ectangular weighting, i.e., no tapering across the
array aperture. This will serve to distinguish the DFT matrix beamformer from
matrix beamformers to he examined in a later section which incorporate tapering

according to one of the classical windows,




It follows that the NV, X 1 beamspace snapshot vector formed as
m m)H
yR(n) = Wi x(n) [2.17)

is composed of N, successive values of the N point DFT of x(n). The N, corresponding
beam pointing angles, m%, (m T 1)Z, ..., (int N, — 1), encompass a particular
(spatial) sub-band of 0 < u < 212, 13] referred to as the m-th sub-band. Again, the
subscript R in yg”)(n) is intended to distinguish y'7"(n) from alternative bearnspace
shapshot vectors composed of beam outputs with tapering to be examined later. As
with WE{"), the superscript (m)in yg”)(n) is intended to denote the sub-band under
examination by indexing it according to the leading DFT value.

The use of MUSIC/Root-MUSIC to estimate the bearings of sources within the m-
th sub-band given M beamspace snapshots constructed a.if (2.17)is now considered.
We will here concentrate on the processing of a single sub-band, the m-th sub-band.
The source content in different sub-bands may be examined by choosing different sets
of N, consecutive DFT values, i.e., different values of m, computed from a single N
point DFT of each snapshot. The processing in each sub-band is identical. Although
it is not necessary that the number of DI'T values comprising each group be the
same, this serves to make the overall procedure highly motlular facilitating efficient
parallel implementation [12]. It should be noted that it is important to (allowsome
percentage of overlap among the sub-bands or sources may liein between the "cracks"
and go undetected. Also, aswill be observed in the [orthcoming simulations, best
performance is achieved for those sources which lie al the center of the band. With
50% overlap among sub-bands, a source at the edge o one band will lie at. the center
of an adjacent sub-band [12].

For the sake of simplicity, it will be assumed that the element level noise is spa-
tially white. Since the columns of Wg”) are mutually orthogonal (recall that they
are N, columns of the N X N DFT matrix), it follows that the beamspace noise co-
variance matrix is ascalar multipled the N, x N, identity matrix. The conventional
beamspace MUSIC method thus proceeds as follows. First, given M snapshots a

Ny X N, beamspace sample correlation matrix (SCM) is formed and, subsequently,
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spectrally decomposed as

. A, Al
R = 3 vy (n) = 3 deell (N x M) [2.18]
n=1

1=1
That is, in the far right hand side of (2.18) A; and e, represent thei-th eigenvalue and
corresponding eigenvector of the beamspace SCM, i=1,...,N,. The eigenvalues, A,
i=1,...,N,, are assumed to he indexed in descending order with respect to magnitude.
At this stage, the eigenvalues and corresponding eigenvectors are partitioned accord-
ing to some criteria, such as AIC or MDL [16], into those which belong to the signal
subspace and those which belong to the noise subspace. Let K denote the estimated
dimension of the signal subspace. The beamspace MUSIC spatial spectral estimate

is then constructed as

N -1
Sg&%sm(u) = {b(Rm)”(“) Z eieflbg%m)(u)}

i=K+1
Ne -1
= {vg(u.)wg") 3 ez-eiHW%n)HvN(u)} 2.19]
=R +1

where b%n)(u) is the N, X 1 beamspace manifold for the in-th sub-band related to

the N x 1 element space manifold as b{™(u) = WMy v (u). The subscript R in

bj(qm)(u) isintended to associate it with rectangular weighting; again, the significance
will become apparent later. The relationship b(,;"’)(u) = Wﬁ;m)HvN(u) 1s invoked

in the far right-hand side of (2.19) in order to convert the spectral search into a
root-finding problem a la Root-MUSIC' [1, 10].

Making the substitution z = €’™ and, subsequently, exploiting the Vandermonde
structure of vy (u), the quadratic form in brackets in the far right-hand side of (2.19)

may be expressed as a polynomial of order 2N — 2 [1, 10] as
p(z) =po+ pz+ ... + pvorz Tl L+ przN=3 4 pra?N-2 [2.20]

where the coefficients p;, j=0.1,...,A-1. may be computed as sums of the elements

along various diagonals of the N X N matrix

Ny

P = wﬁ;’”{ Y eel } wimH [2.21]

z:];'+l




Specifically, denoting P(z,j) as thei,j element o P,i=1,...,N, j=1,...,N,
J
pj=ZP(N—j+i,i+l) 7=0,1,...,.N—-1 [2.22]
i=0
Note that the coefficients of p(z) exhibit conjugate centro-symmetry, i.e., p; —
p;N—2—j’ j =0,1,...,2N — 2. As a consequence, it is easily shown that if z; isa
root of p(z), then 1/z] isaroot o p(z) aswell. In the respective cases o either an in-
finite number of snapshots or no noise, the signal roots z;, = expljru], kK =1,..., K,
where u;, is the direction sine o the k-th source relative to the array axis, are each a
root of p(z) of multiplicity two [1, 10]. Ostensibly, therefore, the roots of p(z) associ-
ated with sources may be extracted from the overall set of 2N-2 roots based on their
proximity to the unit circle. However, it turns out that, irrespective o the specific
beamspace noise eigenvectors obtained from a givell set of snapshots, p(z) formed
according to (2.20)-(2.22) has N — N, roots of multiplicity 2 equi-spaced on the unit
circle at locations corresponding to angles outside the m-th sub-band. This claim is
now substantiated and exploited to reduce the order o the polynomial to be solved
from 2N — 2 to 2N, — 2.
Recall that each of the Ny columns o W%”’) is a (distinct) column of the N x N
DFT matrix. Since the columns o the N x N DFT matrix are mutually orthogonal,
each of the N — N, columns o the N x N DIFT matrix not contained in Wf%m) is

orthogonal to each of the N, columns of W™, Mathematically,

wmH = Opn, | 0.2 = Ny N—1 2
r VN(up) = Op, foru, € N — )N,(rn + | b)N"“’(‘ )N .
[2.23]

This implies that for each of these N — N, values o =, which lie outside of the m-th
sub-band, the quadratic form in brackets in either term on the right-hand side of
(2.19) is identically zero irrespective d the measured eigendata. More importantly,
(2.23) implies that p(z) forinecl according to (2.20)-(2.22) has double roots at the

following N — N, locations on tlie unit circle:

Zn = exp [jﬂn%] ne {0,1,..,m—-1,m+ Ny,...,N—1} [2.24]
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These N — N, double roots may be factored out in order to work with a polynomial
of order 2N, — 2. This is the goal of the following development.

Consider the polynomial representation of a single term in brackets in the far
right-hand side of (2.19). Throughout the ensuing development, the index i is to be
associated with thei-th eigenvectos of f{y where 7 € {f( +1, ...,Nb}. Denoting ¢;, as

the k-th component of e;, direct substitution yields
(m)H, =
Hyy Z e;, Vi <m + A —) v (). (2.25]

The polynomial representation of e W; (m) H vy (), denoted p,(z), is obtained by in-
voking the Vandermonde structure of v () and the relationship z = exp[j#u|. This
yields

pi(z) = € va(z) + eLvmn(2) + .+ € vmpn,-1(3) [2.26]

where vi(z), is the (N — 1)-th order polynomial with coefficients given by the com-

ponents of vN(A =) according to
N-1 )
ve(z) = D exp (—jwn/;—\—,) ' k=mom4 1, ,m+ N, — 1. [2.27]
n=0 N

The N —1 roots of vi(z), k=m,...,m + N, — 1, are located at Znpk = EXP [jw(k"‘ n)‘%]
[15], n=1,2,...,N — 1, such that

ve(z) = exp ( (N — 1)]\%> J:II:_[: (; —exp [ m(k +n) ‘\)’D k=m,...,m+Ny—1.
[2.28]

Comparing the roots of each of the &, polynomials vi(z), k=m,m + 1,...,m N, -
it isfound that they have N — &, roots in common equal to the A — N, roots listed
in (2.24).

Let cg")(z) denote the “common roots" polynomial of order N — /N, whose roots
arethe N — ~, common soots listed in (2.24):

m+N—-1

m P =, 2 .2
ch )(Z) = H exp [N”W] ( — exp []7”17\7]) N (2 — €exp [JWIND

n=m-+N, b n=




m+N-1 9 m+N-1 9 N-Np . .
= H exp [jvrnﬁ] H (z — exp []wnND = Z Cg:) z" [2.29]
n=m+.N, n=m+N, =0

cg‘)' isthe (N - N,+1) x 1 coefficient vector for c%")(z). Note that the constant term

in cg")(z), i. e, the coefficient of z°, isunity. It follows that v;(z) may be factored as
ve(z) = qi(z) c%m)(z) k=mm+1,..,m+ N, —1 [2.30]

where ¢;(z) isa polynomial of order N, —1 whose roots are those of v,(z) not included

in the set of common roots listecl in (2.24):

1 m+Np—1 § m+Ny—1 ] 2
qk(z) — \/—]V ]:I exp <—]7rnﬁ) H <g—exp l:]ﬂ'nﬁ]) ) k= m,...,m+Nb—1.
n#k n{k

[2.31]
q; isthe N, x 1 coefficient vector for ¢.(z). Note that the constant term in qg(z),
i.e., the coefficient of z°, is unity.

It follows from the above observations that p,(z) may be factored as

pi(z) = §2) {enam(2) + enamn(z) + .t €l gmimal2)) = ) nz).

[2.32]
where r;(z) is the (N, — 1)-th order polynomial within brackets as implied. The roots
of ri(z) are the roots of interest. The N, x | coefficient vector for r;(z), rf, may be
expressed as a simple transformation on the :-th beamspace noise eigenvector e;. To
this end, define QS;") as a N, x N, matrix for which each column is the coefficient

vector for one of the N, polynomials defined in (2.31):

anm) = |(Qm Am+1 Sl .:q”H.Nb_[ [233]

It follows from (2.32)that the coefficient vector for 7;(z) may be expressed in compact
form as

r; = Q\e; [2.34)

Equation (2.34) implies that we need only modify each of the beamspace noise eigen-
vectors by the transformation Q(,}m) prior to [orming a heamspace Root-MUSIC poly-

nomial of order 2N, — 2 in the usual fashion. That is, defining the N, X N, matrix
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ngm) as
Ny
m m m)H
PRl = Qi) Y el QR [2.35]
=K +1

the beamspace Root-MUSIC polynomial of order 2N, — 2 for the m-th sub-band is

constructed as
P™(2) = po + prz 4 ...+ pryorz T b pi2NeTS g 2Nl [2.36]

where the coefficients are computed in termsd the elements o Pg”) in (2.35) accord-
ing to _
J

pi =Y PYIN, —j+ii+1) j=0,1,.,Ny~1 [2.37]

1=0

Note that this mode of operation docs nat, require one to clivide the common roots
polynomial, cﬁ;’"’(z) Jin (2.29) out o the (2N — 2)-th order polynomial constructed ac-
cording to (2.20)-(2.22). The latter polynomial is never formed. Once the beamspace
noise eigenvectors are determined, the relevant beamspace Root-MUSIC polynomial
of order 2N, — 2 is simply constructed according to (2.35)-(2.37).

Theproperty in (2.23) wascritical to the reduction in polynomial.order from 2N — 2
to 2N, — 2. Equation (2.23) implies that the Ny, DFT beams formed to encompaas
the m-th sub-band have N — N, nulls in common outside the m-th sub-band. The
N, DFT beams are thus said to possess the common out-of-band nulls property. As
an illustrative example, Figure 21 (a) displays N, = 8 DFT beams encompassing the
null-to-null sub-band —10/N < u < 8/N foran N = 32 uniform linear array. These
were generated from N, = 8 contiguous columns o the 32x32 DFT matrix (alowing
for wrap-around in the use o the word “contiguous™). The common out-of-band nulls
property is apparent: the beams have N — N, = 32 — 8 = 24 out-of-band nulls in
common. Figure 2.1(b) displays the roots of the Root-MUSIC polynomial of order
2N — 2 =62 formed according to (2.20)-(2.22)with &' = 0 corresponding to the no
source case. In agreement with the preceding development, the N — N, = 24 common
out-of-band nulls in Figure 2.1(a) translate into N — N, = 24 roots of multiplicity 2

lying equi-spaced on the unit circle outside the region corresponding to the sub-band.




The beam set in Figure 2.1(a) is employed in the simulations to be presented in a
forthcoming section.

Before leaving this section, an important obscrvation is made with regard to the
computation of qu'"). Each column of Q%”] is the coefficient vector for a (N, — 1)-
th order polynomial having one of the NN, root factorizations in (2.31). Note that
there is no need to ever form CS;“]. For each qr(2), k =m,m+ 1,....m+ Ny — 1,
the locations of the roots are coinpletely specified by the starting DFT point for the
sub-band, m, the number of beams N,, and the number of elements, N. Ostensibly,
one can use any algorithm at one's disposal that takes a set of roots and provides the
coefficients of the polynomial having these roots. However, for even moderately large
valuesof N, N = 48 for example, the roots arc close enough on the unit circle such
that one needs to be concerned about the numerical sensitivity of the algorithm used
to determine the corresponding polynomial coclficients. In Appendix A, a procedure
is developed for computing Qﬂ{") that avoids polynomial determination entirely and
isless sensitive to the condition number of Q(,;n]. This vields the following expression

for qum) for the case where N/N, is an integer.

) = 7 DWj3, G wherefori=1,2,..., Ny, k=1,2,.., Ny : [2.38]
Ny=1,.. Ny+1
D(i, k) = exp [y7 bN {i - b;— H ik
N ) A G N e [ . ~7r]
Gz, k) = N, exp ](z—l)Nb
Ml T (Ny—=1  20(i—1) 2(n+m)
H sin | = —+ -
2\ N N, N
n#E—l

Wy, denotes the N, point DFT matrix, a N, X N, orthogonal matrix, and ¢;; denotes
the Kronecker delta such that D isa N, x A, diagonal matrix. Also, v,, is a scalar
defined in (A.8) of Appendix A. The expression for ~,, is not repeated here since
¥m has unity magnitude and will thus have no influence on the computation of P%n)
according to (2.35)-(2.37). One may thus set v, equal to unity. Asa final note, with

regard to parallelization, it is pointed out that all the sub-hands may be processed
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using the same Q(Rm), i.e., with m set to a particular value such asm = 0, for example,

provided one translates the angle estimates a.-posteriori to the appropriate sub-band.
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Figure 2.1 (a) IV, = 8 unweighted spatial DI'T beams for N=32 element ULA;
beams encompass the null-to-null subband —10/N < u < 8/N. (Is) Roots of
beamspace Root-MUSIC polynomial in no source case.
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2.4 Previous Beamforming Methods to Achieve Reduced Degree Poly-
nomial

As the coefficient sequence for a given vi(z) in (2.30) is just the components of a
particular column of W(Rm)*, the polynomial product on the right-hand side of (2.30)
dictates that each column of Wg”)* isthe linear convolution d the coefficient sequence
o the corresponding in-band roots polynomial ¢x(z) with that d the common out-
of-band roots polynomial cﬁ?) (2). It follows, therefore, that Wg”) may be factored

as

wim = oMl [2.39]

where QU™ is defined in (2.33) and C'I) is the N X N, banded, Toeplitz matrix

c(,;;) 0 0
cg:) cgg) 0
{m) (m) .
cly) = | e c”() ’ [2.40]
0 CRy_ w, 0
0 0 c%’;)
(m)
0 0 Chn_v, |

The factorization in (2.39)-(2.40) reveals that the N x N, DFT matrix beamformer
Wg“) is similar in structure to the orthogonal matrix beamformers studied by Lee
and Wengrovitz in [6]. Lee and Wengrovitz worked with matrix beamformers which
may be factored as

W = c(c”c)z (Nx Ny) [2.41)




where C exhibits a banded-Toeplitz structure similar to that of Cg") in (2.40):

Co U U
C1 Cy 0
C = | cnon, N1 0 (N x Ny) [2.42]
0 CN-N, . 0
0 0 CN-N, |

Aswill beshown shortly, the N x N, DE'T matrix heamformer, ngm), is not. a member
of this class of matrix beamformers. However, VV%”) may be rotated via a unitary
transformation into a member of such. Notwithstanding, similar to the end result in
the previous section, Lee and Wengrovitz in [6] showed that a reduced degree Root-
MUSIC polynomial, of order 2N, — 2, may be achieved employing a mennber of the
class of matrix beamformers described by (2.41)-(2.42).

However, the derivation of this result by Lee and Wengrovitz [6] is quite different
from that in the previous section for the case of the N x Ny DFT matrix beamformer,
Wj(q’"). Their derivation is based on decomposing the element space to beamspace
transformation WH = (C#C)~2C# into the N, x N transformation CH followed by

the Ny X N transformation (C"C)“l? and observing that
Clvy(u) = {c”vN_,\rw(u)}v,vb(u) [2.43]

’CN—NJT

and vy_n,+1(u) and vy, (u) are defined by (2.15) with N replaced by N — N, t1and

where C is defined relative to the elements of C in (2.42)asc = [co, ¢1 s - ..

N,, respectively. Theright-hand side of (2.43) follows from the banded-Toeplitz struc-
tureof Cin (2.42) and the Vandermonde structure of vy (u)in (2.15). Equation (2.43)
states that the beamspace manifold achieved employing the matrix beamformer C
aloneisascalar multipled the N, X 1 Vandermonde vector vy, (u). Asa consequence,

the beamspace manifold achieved employing the orthogonalized beamformer W in
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~

(2.41) is a scalar multiple of (CHC)‘%va(u). The reciprocal of the MUSIC spec-
trum may therefore be expressed as v (u) {(C”C)‘% Yy e,-ef’(CHC)‘]E} v, (1)
which iseasily converted into a polynomial of order 2/, — 2similar to the devel opment
leading to (2.35)-(2.37).

Zoltowski [18] also studied beamforming matricesof theform described by (2.41)-
(2.42) for use in conjunction with a beamspace version of the Iterative Quadratic
Maximum Likelihood (IQML) Method of Bresler and Macovski [3]. The property in
(2.43), also observed by Zoltowski in [18], is critical to the applicability of IQML in
beamspace as IQML is a polynomial based version of the Deterministic ML method.
Both Zoltowski [18] and Lee and Wengrovitz [6] note that application of the matrix
beamformer CH to the elemental data is equivalent to applying the (N — NV, + 1) x1
beamforming weight vector ¢ to each of N, identical, overlapping subarrays. Bienvenu
and Kopp [2] also consider this type of element, space to beamspace transformation
in which beams pointed to the same angle are formed at a number of identical,
overlapping subarrays. Zoltowski [L8] points out that the scalar CHVN—N,,+1(U) in
(2.43) represents a multiplicative gain factor induced on a signal arriving from the
direction u; cMvy_p, 41 (u) is the beam response associated with the weight vector
c at any subarray as a function of w. Bienvenu and Kopp [2], Zoltowski [18], and
Lee and Wengrovitz [6] al note that duc to the overlap between subarrays, the noise
components amongst the N, beams arc correlated; the N, x A, beamspace noise
correlation matrix is ascalar multiple of C#C. The Alyx N, transformation (CHC)"z
may thus be interpreted as a whitening filter.

Comparing the factorization of W™ in (2.39) with the factorization of the matrix
beamformers studied by Lee and Wengrovitz [6] and Zoltowski [18] in (2.41)-(2.42),
one is tempted to associate (C”C)~7 with Q" as well as C with C'7". However,
Q™ £ (CHC)~% since (CHC)~% is Hermitian symmetric while Q% defined by
(2.31) and (2.33), isnot, in general. Thus, W = c‘,;”)(c(g”)”cg"’)-% is not equal to

Wi = Q™ in general. All that can be said is that one is related to the other




viaa N, x N, unitary transformation since the two have the same N,-dimensional
range space.

The above discussion prompts the consideration of a more general class of or-
thogonal beamforming matrices exhibiting the common out-of-band nulls property
described by

W = C(C7C)tU (N x (Ny—1J)) [2.44]

where C is N x N, exhibiting the banded-Toeplitz structure in (2.42) and U is
Ny x (Ny — J),where0 < J < N, —1, composed of N, — J orthogonal columns, i.
e.,

U"U = 1y, [2.45]

Note that the number of beams formed with a member of this class of matrix beam-
formersis Ny = N, — J, where 0 < 7 < N, — 1. The number of common nulls
amongst the N, = Ny — J beams isN — N, =N - (N, - J)—J =N =N,/ =1,
Thus, in general, the number of common nulls may be less than the number of ele-
ments minus the number of beams formed. This isin contrast to the class of matrix
beamformers described by (2.41)-(2.42) for which the number of common nullsis al-
ways the maximum amount equal to the number of elements minus the number of
beams formed. Matrix beamformers described by (2.44) for which U is not square
arise naturally in beamforming scenarios where tapering is employed to achieve low

sidelobes. This issue will be addressed shortly.
2.5 Real Covariance Matrix Processing in Beamspace

In this section, it is shown that througli propet scaling of the N, DFT values
corresponding to a given sub-band, the eigenanalysis may he restricted to that of
the real part of the beamspace sample covariance matrix, 'R,r{f{y}. To thisend, in
the narrowband signal model let the phase of each arriving signal be referenced to

the center of the array. In this case, the expected value of' the element space sample




covariance matrix may be expressed as
R 1 M
R, = £{R,} = E{H > X(n)xH(n)} = APsAY 4 oIy [2.46]

n=1

where A is the NxK Direction-of-Arrival (DOA) matrix associated with the K signal

arrivals,
A= [aN(ul) Law () . faN(uK)] [2.47)

with columns defined by the N X 1 array manifold

N-1 N =3 — T
ay(u) = [exp (——] 5 ’/TU) ,EX] (—]—2—71'U) ye ..y €XP (]ﬁg—lwu” [2.48]

Psin (2.46) is the KxK source covariance matrix. Also, o2 is the noise power at each
element; recall that the element noise is assumed to bc spatially white.
Note that ay(w) in (2.48) exhibits conjugate centro-symmetry. Mathematically,

Iyvan(u) = ajy(u) where Iy is the NxN reverse permutation matrix

[0 0 ]
0 0 0
Iy = | @ : [2.49]
01 - 0
10 0 |
Note that InIy = Iy; this property will be exploited a number of times in this

section. Finally, note that ax (i) and the DFT beamforming vector vy (u) in (2.15)

are related as

N -1
ay(u) = exp (——] 5 7TU> vy(u). [2.50]

With these observations in mind, define the conjugate centro-symmetric form of the
N X N, DFT matrix as
Wi = L [an <m3,) a ([ + 1]3,) tan (fmt N - 1]3)]. (2.51]
VN N N N
It follows from the relationship in (2.50) that the Vandermonde and conjugate centro-

symmetricformsof the N X Ny DFT matrix beamformer are related through a diagonal




unitary matrix as

wir = wirg [2.52]

where

® = (—-1)"diag {exp (%) seey (=)Mo lexp (](m + xb — 1)7r) } ) [2.53]

If beams are computed viaan N point DFT, the elements o ® represent the scalings
to be applied to the N, DFT values corresponding to the m-th sub-band in order to
retroactively achieve beamforming with the conjugate centro-symmetric form of the
N x N, DFT matrix beamformer.

Now, consider the expected value of the beamspace sample covariance matrix

employing the conjugate centro-symmetric form of the N x N, DFT matrix, Wﬁ;"’,

]- M m}F 1 x7(m x7(m
R, =¢ {M > e = WETRWEY = BUPSBIT 4 ol

kS ’

[2.54]
where B(™) isthe DOA matrix associated with the m-th sub-band
B™ = Wgn)HA = Bﬁ;“)(u]) : Bgl)(w)f fl‘)%m)(ul() . [2.55]

The most important observation of this section is that B(™) is a real-valued matrix
since

B = WIHA = Wi iA = WEW)TA* = Bim* [2.56]

where the conjugate centro-symmetry o the columns of W5 and A has been ex-
ploited, and the fact that INIy = Inv. As a consequence, the expected value o the

real part of the beamspace sample covariance matrix may be expressed as
Re{R,} = BURAPsIBM™7T 4 o21y,. (2.57]

Note that if Ps is positive definite, then 'Re{Ps} is positive definite as well; the proof
of this very straightforward and thus not included here. Thus, assuming the number of
sources, K, to beless than thenumber of beams, N, and that no two sources are 100%

correlated, the signal-only component o Re{R,} in (2.57), B/ Re{Ps}B™), is




positive semi-definiteof rank A" with arange space equal to thespan o the K columns
of B(™), o2 isthen thesmallest eigenvalue of Re{R,} = B Re{Ps}BMT 4 521y,
of multiplicity NV, — I{ and the corresponding eigenspace is the orthogonal complement
of the range space o B(™). Denoting e;, 2 = K + 1,...,N,, as anorthonormal basis
for the noise subspace, it follows that eb\™(w;) = 0, i=1,..,K. Re{R,} thus
possesses the asymptotic structure that is a prerequisite for the applicability of the
MUSIC algorithm.

Interestingly, the process of taking the real part of the sample covariancematrix in
beamspace is equivalent to having first performed a single forward-backward average
in element space prior to transforming to beamspace. This claim is substantiated by
the following sequence of manipulations.

'Re{f{y} = %{ﬁu + ﬁ;} = %{W%TUHRIWE,{") + W%m)TiNiNR;iNiNWS{m)*}

= W LR, ¢ TR W = W PR [2.58]
where R = 1/2{R, * IyR:Iy} is the single forward-backward averaged sample
covariance matrix in element space studied by Pllai and Kwon [§], among others.
Pillai and Kwon [8] show that in the case of uncorrelated sources performing a single
forward-backward average in element space has the effect of reducing the asymptotic
bias of the signal eigenvectors by a {actor ol 1wo; the [orward-backward average has
the effect of artificially doubling the number of snapshots, M. Similarly, in Appendix
C it is shown that in the case of uncorrelated Gaussian sources, the real part of
the beamspace sample covariance matrix is Wishart distributed with 2M degrees o
freedom whereas the beamspace sample covariance matrix itself is complex Wishart
distributed with M degrees of freedom. Thus, the snapshot doubling effect may
be obtained in beamspace by simply working with the real part of the beamspace
sample covariance matrix ~ no forward-hackward average at the element level prior
to beamforming is necessary!

The efficacy of working with the rcal part of the beamspace sample covariance

matrix depends solely on the conjugate centro-symmetry of each of the columnsd the
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matrix beamformer. Note that the matrix beamformer structure described by (2.44)-
(2.45) does not guarantee conjugate centro-symmetry of the respective columns. For
the remainder of the chapter, attention is restricted to the use of conjugate centro-
symmetric matrix beamformers so that one may work solely with the real part of
the beamspace sample covariance matrix. With regard to the N x N, DFT matrix
beamformer, the tilde used to denote the conjugate centro-symmetric form will be
dropped. If the beam outputs are computed via an N point DFT, it is assumed
that the N, DFT values corresponding to the m-th sub-hand have been scaled in
accordance with (2.52). This dictates that in the construction of QE{"), each of the
polynomials gx(z), k= m,m+ 1,...,m* N, — 1, be scaled so that the corresponding
coefficient vector exhibit conjugate centro-symmetry. This is possible since in each
case the roots lie on the unit circle. Under this condition, Iy,Q%" = QU*. This
property will be assumed in the remainder of the chapter and is already accounted

for in the expression for Qg”] in (2.38).
2.6 Virtual Tapering

The beamforming operation de-emphasizes out-of-band sources. ldeally, the con-
tributions to the beamspace snapshot vector due to out-of-band sources are negligible.
However, the common out-of-band nulls property leads to common peak sidelobe lo-
cations amongst the beams outside the hand. This is depicted in Figure 2.1 for the
caseof N, = 8 DFT beams with A' =32, Notc that as a consequence of the inherent
rectangular weighting, for each beam the sidelobe peaks start at -13.5 dI3 and only
roll off toaminimum of approximately -30 dB. It is thus deduced that strong sources
lying at or near a common sidelobe peak location within several heamwidths of ei-
ther edge of the band may not be sufficiently de-emphasized to be negligible. Thisis
particularly true if the in-band sources are closely-spaced and/or highly correlated.
Under such conditions, it is difficult to distinguish between small signal eigenvalues
due to the close spacing and/or high correlation amongst the in-band sources, and

small signal eigenvalues clue to to partially filtered out-of-band sources.




Consider the following theorem.
Theorem 1. The beamspace manifold, b(Rm)(u), is a one-to-one vector function of u
over the interval 0 < u < 2 except for those N — NV, discrete values of u listed in
(2.23) where b (1) = 0y,.
Proof: To prove the theorem, it isshown that the N, x 2 matrix [b' (1) i b& (uy)]
is of rank 2 when uy # uy, 0 < u; < 2,i=1,2,and u; ¢ {0,%,...,(m— 1]%,(m+
Nb)%,...,(N - 1)%}, i=1,2. Under the latter three conditions,

rank{[b%* (u1) 1 bY (us)]} = rank{W5 P lay(uy)  an(u2)]}

< min {rank{Wgﬂ)H},ra.nl\'{[a‘\z(ul)faN(u?_)]}} = rank{[ay(u;)an(ug)]} = 2

where thefact that the columns of W%") are linearly independent (they are orthonor-
mal) has been used, neither ay(u;) or ax(uz) isin the null space of wim and ap ()
and ay(uz) arelinearly independent for u; # wus since ay(w) isascalar multipleof the
Vanderinonde manifold vector v y(u) in accordance with (2.50). The result abovedic-
tates that b%" (u;) and b (u,) are linearly independent which proves the Theorem.
O

As a consequence o this theorem, it follows that if the total number of in-band
and out-of-band sources is less than the number of beams formed to encompass a
given sub-band, it is theoretically possible to estimate the direction of any out-of-
band source not lying at a common nuu location as wel as the direction of each
in-band source. However, if the number of strong out-of-hand sources not sufficiently
de-emphasized in the beamforming process combined with the number of in-band
sources is greater than the dimension of the beamspace, beamspace Root-MUSIC is
rendered totally nonfunctional. The use of tapering is thus explored as a means for
reducing out-of-band sidelobes in order to diminish the pejorative effects of strong
out-of-band sources lying at or near a common siclelobe peak |ocation.

In order to achieve a reduced degree polynomial, the beams must exhibit common
out-of-band nulls. One means of retaining the common out-of-band nulls property

is to construct each bheam comprising the set of reduced sidelobe beams as a linear




combination o DFT beams. Sidelobe reduction is achieved by exploiting the fact
that the respective sidelobes of adjacent DFT beams are 180° out-of-phase. A nice
feature of this approach is that the components of the beamspace snapshot vector
are simply linear combinations of the in-hand DFT values; there is no need to taper
at the element level and the initial step remains an N point DFT of each snapshot
vector. Also, the real-valued nature of the beamspace manifold is retained allowing
us to compute the beamspace noise eigenvectors in terms of a real-valued eigenvector
decomposition (or singular value decomposition). These claims are substantiated in

the following development.

2.6.1 The Cosine Window

Consider the N point DFT o the clement space snapshot vector at discrete time
n. N, successive N point DFT values are selected and scaled in accordance with
(2.52). Tapering at the element level in accorclance with the Cosine window may be
alternatively implemented by adding adjacent DFT values pairwise across the m-th
sub-band. This yields a (A, — 1) X 1 beamspace snapshot vector denoted y(™)(n).

Mathematically, y(™)(n) may be expressed in terms o y\™(n) as
y™(n) = Ty ) = {(WIT, }x(n) = WS x(n) [2.59]

where WS = WMT, and T, isthe N, X (N, — 1) transformation matrix

5 0 0 ]
5 5 0
0 .5 0
T.= |0 0 0 [2.60]
0 0 5
0 0 5 |

Thefact that this procedure is equivalent to having formed N, — 1 equi-spaced beams

with a cosine taper at the element level is substantiated by invoking the definition of




Wg") in (2.50) along with the definition of ay(u) in (2.47) to express W(Cm) as

wim = win, [2.61]
= D 2 124+1): YA
- C[aN <mN+N> N <[m+ 15 N) """ <[m+ b ]N N)]

where D, isthe N x N diagonal matrix

D.—d; { <N17r) <N_3i> <N—3_7r_)‘<N—1L)}
.=diag { cos 5 5N cos 5 ON ,...,COS 5N , COS 55N /[

2.62]

Theelementsdo D, effect asymmetrictaper according to a cosine window. Note that
the pointing angles of the N, — 1 beams formed with "virtual" tapering according to
a cosine window in this manner are located at the midpoints between the pointing
angles of the N, DFT beams.

Note that the columns of the N X (N, — 1) beamforming matrix W™ = w{mT,
are not orthogonal as W57 WU = T7T,. Orthogonalization of the beams may

7I'L

be achieved by post-multiplying WC by the transformation (TZTC)‘% creating

W = WT(TTT.) 7 = C {QEIT(TIT.) ¢} (Na(Ny— 1)) [2.63]

where (2.39) has been substituterl. Thus, W(pn;) is @ member of the class of orthogo-
nal matrix beamformers desciibed by (2.44)-(2.45). Note that the columns of W,

exhibit conjugate centro-symmetry as well since
LW = yWIT(TIT) s = W T(TIT) ™7 = WE° [2.64]

where the fact that T, isreal-valued has been exploited. Hence, one may work solely
with the real part of the beamspace sample covariance matrix.

Observing the far right-hand side of (2.63) and recalling the results and discussion
in the previous sections, it follows that the heamspace Root-MUSIC procedure with
orthogonalized, virtual cosine tapering is as follows. First,, construct the (N, — 1) x

(Ny — 1) beamspace sample covariance matrix

)y (n) = TIRe{RI)T, [2.65]

R, ’\[




where R(™ is the Ny X Nj beamspace sample covariance matrix formed from the N;
DFT beam outputs. Second, computean eigenvector decomposition of the "whitened"
beamspace sampl e covariance matrix (T7T,)~ 2 R(™(TTT )2
Ny—1
(TIT,) 2 RUN(TIT,) 2 = Z Aegel [2.66]
Third, partition the eigenvectors into those which belong to the signal subspace and
those which belong to the noise subspace. Let & denote the dimension of the esti-
mated signal subspace. Fourth, construct a (2/V, — 2)-th order polynomial denoted
pg”)(z) according to (2.35)-(2.37) with P\ replaced by
Np—1
P = QM (TIT,)* { Y eel } TIT, )~ TT QM H. [2.67]
i=K+1
Thefinal step is then to determine the signal roots of p(m)( z} in the usual fashion.

Alternatively, one may compute a generalized eigenvector decomposition as
{TIRe{RI™IT.} & = ATIT.e; =12 N, —1 [2.68]

and replace P{™ in the above procedure by
Ny—1
P = QYT ¢ Y &el ) TT QY. [2.69]
i=K+1

Sinceit is easily shown that that e; = [TZTCJ‘%ei, i=1,2,...,N,-1, it follows that the

two procedures are equivalent,.




2.6.2 The Hanning and Hamming Windows

Virtual tapering according to a raised cosine winclow may be effected by letting

the N, x (]Vb - 2) matrix

[ a 0 0 ]
l « 0
a 1 0
Ty = 0 (Y | D [2.70]
0 0 o
0 0 1
I 0 0 «

take on theroleof T, in the version of beamspace Root-MUSIC incorporating tapering
developed above. The Hanning window is effected with a = .5 while the Hamming
window iseffected with &« = .5(.46/.54) = .426. Thisclaim issubstantiated by again
invoking the definition of W™ in (2.50) along with the definition of ay(u) in (2.47)
to express W(m) = Wﬁqm)T” as

wi = witt, [2.71]
2N\, . 2
= Dy [a/\r <[m + ]] \r> apy <[77? + )] f\’) To.clan <[m + Ny — 2Jﬁ>:|

where Dy isthe A' x N diagonal matrix

) T 3n 3n 74
Dy = dlag{l—acos (ﬁ) .1—acos (‘2:’\") ....,1l—acos (ﬁ) ,l1—acos (ﬁ)}

[2.72]

It isapparent that a« = .5 yields virtual Hanning tapering while &« = .5(.46/.54) =
.426 yields virtual Hamming tapering asstated above.,
Similar to (2.63), the orthogonalized version of the Hamming or Hanning beam-

forming matrix may be expressed as

Wi = WIITH(TETH)F = S QP Tu(ThTr) 2} N x(Ny—2). [273)




It follows that Wft}’;) iIs @ member of the class of orthogonal matrix beamformers
described by (2.44)-(2.45). It is also easily shown that the columns of W, exhibit
conjugate centro-symmetry as well.

Asanillustrativeexample, Figure 2.2(a) displays the N, — 2 = 6 beams formed via
virtual Hamming tapering for the case of an N = 32 element ULA. Each beam was
synthesized by weighting and summing three adjacent beams out of the N, =8 DFT
beams plotted in Figure2.1(a) in accordance with (2.70) and (2.73) with « = .426. In
each beam pattern plotted in Figure 2.2(a), observe the equi-ripple sidelobe behavior
characteristic of the spatial frequency response of the Hamming window. Note that
by construction, the N, — 2 = 6 beams depicted in Figure 2.2(a) have the same
N — N, = 32 — 8 = 24 out-of-band common nulls possessed by the N, = 8 beams
plotted in Figure 2.1(a). Thisset of beams represents an example where the number
of common nulls is two less the maximum amount equal to the number of elements
minus the number of beams (23 < 32— 8 = 25). Figure2.2(b) displaysthe N,—2=06
beams formed by applying the orthogonalizing transformation (T,T,,TH)'%’ to the set
of Ny —2 = 6 beams plotted in Figure 2.2(a}. Comparing Figures 2.2(a) and 2.2(b), it
isobserved that orthogonalization of the heams gives rise to an increase in out-of-band
sidelobe level between 5 and 10 dB and a substantial increase in in-band sidelobe level.
Notethat high in-band sidelobes are not undesirable. Also, the number and respective

locations of the common out-of-band nulls are not affected by orthogonalization.
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Figure 2.2 (a) Six equi-spaced beams formed via, virtual Hamming tapering. (b)
Orthogonalized set of beams derived from those in (1a).
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27 Construction of Interference Cancellation Matrix Beamformer

The premise of this section is that with the information gained through initial
probing of multiple, overlapping sub-bands via DFT based beamspace Root-MUSIC
(with or without virtual tapering), we are interested in focusing on a particular sub-
band and have estimates of the directions of out-of-band sources. For the purposes
of this section, these out-of-band sources are referred to as interferers. The goal
then is to design a matrix beamformer for the sub-hband of interest exhibiting the
common out-of-band nulls property, so that one may work with a reduced degree
polynomial, but with a subset of the common nulls aligned with the directions of
out-of-band interferers. The issue then becomes where do we position the remaining
common out-of-band nulls. Since simulations show that the N x N, DFT matrix
beamformer yields the best performance throughout the sub-band, in comparison to
that of weighted beamformers, the interference cancellation matrix beamformer is
designed so as to emulate the N x N, DI'T matrix beamformer as much as possible.
In fact, we will find that we are able to do so well enough that despite the induced
nulls, virtual tapering may be effected by adding weighted beam outputs exactly as
described in Section 2.5. This is important for scenarios in which low out-of-band
sidelobes as well as hard nulls at specified out-of-band locations are desired. Such
scenarios arise in radar, for example, when the radar has to deal with diffuse sources
such as clutter and nonspecular multipath as well as point jammers.

As in previous developments, let N, denote the number of heams formed to en-
compass the sub-band of interest. T'urther, let the sub-band of interest be referred to
as the m-th sub-band and denote the A" X A, out-of-band interference cancellation
matrix beamformer as ng). Note that relative to the initial probing phase, it is
expected that N, should be smaller as some rough information on the locations of
in-band sources is available [6, 7]. Tn accordance with the discussion above, select

an N x N, DFT matrix beamformer Wg”) lor which the corresponding beam set




encompasses the sub-band o interest. W(,m) is then designed to emulate Wg") as
much as possible.
Let uy, 1=1,...,d, denote the directions in which J out-of-band nulls are to be

formed. The null constraints to be satisfied may be mathematically expressed as
W T an(uy) =0, 1=1,...,J [2.74]

Further, let c(,"‘)(z) denote the (N — N, )-th order common roots polynomial. It follows
that Jof the N— N, roots o ¢{™ () are z; = exp[jrur],i=1,....J. Let C'™ denotethe
N x N, banded-Toeplitz matrix constructed from the coefficients of cg’")*(z) according
to (2.42). Imposition o the common out-of-band nulls property relegates WY"’ to
be a member of the class of matrix beamformers described by (2.44)-(2.45) so that it

may be factored as

W™ = lwiiwy o twy, | = C(,m)(C(,m)HC(Im))_%U [2.75]

where U is a N, x N, unitary matrix. U issquare since the number o common nulls
is constrained to be the maximum amount equal to the number of elements minus the
number of beams. Basically, our problem at this point is to determine the remaining
N — N, — J roots of ¢i™(z) and U so as to minimize HW%Cm) - 'ng) %, where F
denotes the Frobenius norm, under the structural const,raintin (2.75).

The approach isto first determine c(I'"‘)(z). To thisend, construct the k-th column
of Wg’”), denoted w; where & € {1,...,N,}, so that it is "close" in a least squares
sense to the k-th column of W™, an([m t k]%), under the constraint that the
corresponding beam exhibit nulls at the J prescribed interference locations and the
same N, — 1 in-band nulls exhibited by the beam corresponding to ay([m * k] %)
c(Im)(z) is then computed as tlie ratio of wi(z) t0 gm4r(z), Where ¢, 4+x(z) is defined

by (2.31) (with the coefficients normalized to exhibit conjugate centro-symmetry).




In order to solve for wy, let {f;, f,, ..., fy_n,—s} denote an orthonormal basis

defined as

span {fy,...,fy_n,—s} = Span {aN (%\—T) Ve [2.76]
5 2\m - *
N (W) ,aN (ﬁl—;}k—*—}—]) y..-AN (Z[—FTM) ,aN(ull),...,aN(ub)}

where L denotes orthogonal complement. It follows from the null constraints on the
beam formed with w; that w; must lie in the subspace described by (2.76). Thus,
denoting F = [fj:fy: ... :fy_n,—s], an N X (N — N, — J) matrix, it follows that
w; = Fd, whered isan (N - N, — J) X 1 vector. d is determined as the solution to

2

2

an ([m + k]z> — Wy z [2.77]

2
= an ([m + Af]N) ~ Fd

min
d

The solution is simply the least square error (I.SE) solution to the linear system of
equations Fd = ay([m + klE), d = Flay([m + k]%). Since the columnsof F are
orthonormal, w; = FF”aN([m + k]%v).

Recall that the solution for w, computed above guarantees that the corresponding
beam exhibits the same N, — 1 in-band nulls exhibited by the beam corresponding
to an([m t k]%). Thus, the corresponding polynomial wi(z) may be factored as
gm+x(2) ¢(z) where g,,41(z) is defined by (2.31) and ¢(z) is a polynomial of order
N — N;. We will take the polynomial ¢(z) to be the common roots polynomial c(Im)(z).

That is,

dmz) = _%’_)_ [2.78]
qm+k(2)

Accordingly, the length N — N, +1 sequence {c(,’")} may be computed by simply
deconvolving the length N, sequence {41} ont of the length N sequence {wy}.
Given the sequence {c!™} determined above. one may construct the banded-
Toeplitz matrix C(,m) according to (2.40)or (2.42). At this point, we have ng) =
c!™ Q™ and desire to choose Q™ so as to minimize || Wi — ¢i™ S’")”%_ One
is tempted to choose Q™ = Q') where Q'7" is defined in (2.33), as this restricts

the in-band nulls of the beam generated by each column of W(,m] = C(I-m) QS{”) to

be the same as that of the corresponding column of Wg”). Note that this claim is




substantiated by the interpretation of the product C(,"‘) 3;") as a convolution as

discussed in Section 2.4. However, the columns of W(,m] = C(,m] QSQ"’) are not, in
general, mutually orthogonal. Orthogonality may be achieved by post-multiplying by
(Q%’")HC([")HCW)Q%’”))_E leading to the general form

w{™ = wWor [2.79]

whereI' isa Ny, X N, unitary matrix and

1
Wo = CiQi” (@ e eimaiY) . [2.80]

It iseasily verified that the form of W™ in (2.79)-(2.80) satisfies W™ Hw ™) = |y,
as desired. T isthen chosen as the solution to the following constrained optimization
problem

min | Wi - Wi P o= |wi - wor | [2.81]

subject to: THT = TTY = Iy,.

Equation (2.81) is recognized as an orthogonal Procrustes rotation problem [5]. The
solution may be coinputed as follows. First, compute the SVD o the N, X N, matrix
WU W, where Wo is given by (2.79). If WM TW, = USVH isthe SVD, the
solution to (2.81)isT = UV,

Note that the above development assumed the conjugate centro-symmetric form
of the N X N, DFT matrix beamformer in (2.51). In the factorization ngm) =
C%’") Qg"), this implies that c(,;”) and each column of Qg”) are scaled to be conjugate
centro-symmetric. This is possible since the corresponding polynomial in each case
has all of its roots on the unit circle. It follows then that Iy Q%Y = QUY* and
iN_NbHchm) = c();n)* which. in turn, yields the property iNC%n)iNb = an)*. Based
on these properties of qum), c(Hm), and C%”, it may be proved that the interference
cancellation matrix beamformer constructed according to the procedure developed
above satisfies iNWY”) = W(I’”) Therefore, similar to the case with the N x N,

DFT matrix beamformer, one may work with the real part of the beamspace SCM

S (m m)HA m
R{™ = wiWAR, wim)




Thus, relative to the beamspace Root-MUSIC procedure based on the use of
the N x N, DFT matrix beamformer, the only difference when employing W(Im)
determined according to the above procedure, is that W{™ takes on the role of wim
and Q{™ = QM Q¥ ¥ ™ Qi) =3T takes on the role of QY. Otherwise,
the procedure is exactly the same with the major computations being a Ny X N,
real-valued EVD and the rooting of a polynomial of order 2N, — 2.

As an illustrative example, an interference cancellation matrix beamformer was
constructed according to the above procedure to probe the same sub-band encom-
passed by the Ny = S DFT beams depicted in Figure 2.1(a) under the constraint that
each beam exhibit a null at each of the two common out-of-band peak sidelobe loca-
tions indicated in Figure 2.1(a). Figure 2.3(a) displays the N, = 8 beam:; generated
by the interference cancellation matrix beamformer thus created. It is observed that
the beams exhibit N — NV, = 24 common out-of-band nulls as desired. Away from the
region of the two prescribed out-of-band nulls, the beam patterns are observed to be
very similar to the DFT beam patterns displayed in Figure 2.1(a). Although it can-
not bediscerned from the magnitutle plot. the beams exhibit the same sidelobe phase
relationships exhibited by the DFT beams in that the respective sidelobes of adja-
cent beams are 180° out-of-phase. This property may be exploited to achieve reduced
out-of-band sidelobes via virtual tapering in exactly the same way it isachieved with
DFT beams. This claim is substantiated by the beam set plotted in Figure 2.3(b)
corresponding to virtual cosine tapering. Here each beam is the sum beam created
by adding an adjacent pair of the N, = 8 beams plotted in Figure 2.3(b). Figure 2.3
demonstrates the efficacy of the interference cancellation matrix beamformer design

procedure developed in this section.
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Figure 2.3 (a) "Adaptetl" beams derivctl from those in Figure 2.1(a) via
interference cancellation matrix beamforming method. Each beam exhibitsa null in
each of the two interferencelocations. (b) Seven beams derived from those in (a);
each beam is the sum of an adjacent pair of beams.
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2.8 Computer Experiments/Simulations

Simulations involvingan N = 32 element ULA with half-wavelength spacing were
conducted to ascertain the efficacy of the Beamspace Root-MUSIC algorithm devel-
oped in this chapter. The sources were mutually uncorrelated in all test cases. The
stated SNR for a particular source is that per element; the noise was spatially white.
All sample biases and sample standard cleviations cited were computed from 250
independent runs and are in units o degrees. Finally, separation by half-Rayleigh
implies a separation of 1/N in the v = sinf domain corresponding to half of the 3
dB beamwidth.

Figure 2.4 compares the performance of element space Root-MUSIC with that
o beamspace Root-MUSIC using the beam set in Figure 2.1(a) for the case o two
in-band sources separated by half-Rayleigh and a strong source located ata common
peak sidelobe just outside the band. In the v = sinf domain, the beam pointing
angles are (—8% 2i)/N, i=0.1,....,7. The in-band sources were equi-powered with
SNR; = SNR; = 3 dB and were located approximately mid-band at v; = 0 and
u; = 1/N. The out-of-band source was located atus = 9/N with SNR; = 20 dB.
Recall that u = 8/N is a common null location marking the edge of the: band; the
next common null location is u = 10/N. Finally, for each trial run the number o
snapshots was M = 32 and the number o signals assumed was three.

The respectivesample standard deviations obtained with beamspace Root-MUSIC
is observed to be nearly identical to that obtained with element space Root-MUSIC
for each of the two in-band sources. However, the sample bias is significantly lower for
beamspace Root-MUSIC. Comparing the root plot in Figure 2.4(a) with that in Fig-
ure 2.4(b), note that the in-band signal roots obtained with heamspace Root-MUSIC
are closer to the unit circle than those obtained with element space Root-MUSIC.
Note that for element space Root-MUSIC, the major computations are the eigen-
decomposition of a complex-valued 32 X 32 mairix and the rooting of a polynomial

of order 2N — 2 = 62. On the other hand, the major computations for beam space




Root-MUSIC are the eigendecomposition of areal-valued SX Smatrix and the rooting
of a polynomial of order 2N, — 2 = 14,

In accordance with the discussion in Section 2.6, beamspace Root-MUSIC is able
to accurately localize the strong out-of-band source. It is important to note, how-
ever, a reduction in the number of assumed signals from three to two has a severe
pejorative effect on the performance o beamspace Root-MUSIC with respect to the
in-band sources. This is demonstrated in the simulation results presented in Figure
2.8(a) for the case of a weaker out-of-band source located at the fourth common peak
sidelobe outside the band! The resultsin Figure 2.S will be discussed shortly. On the
other hand, an increase in the number of assumed signalsfrom three to four has rel-
atively little effect on performance. Thus, aswith spectral MUSIC in either element
space or beamspace, in drawing the line of demarcation between the signal and noise
eigenvalues, it's critical to err on the side of overestimation of the number of sources.

Of course, element space Root-MUSIC significantly outperforms beamspace Root-
MUSIC with regard to localizing the out-of-band source atus; = 9/N. In fact, the
sample bias and sample standard deviation of element space Root-MUSIC for this
source is so small that one cannot discern the scatter of the associated roots in
the root plot of Figure 2.5(h). (Thecluster of roots closest to the origin in Figure
2.5(b) are not signal roots.) It should be pointed out, though, if desired the source
at u3 = 9/N may be more accurately localizecl with beamspace Root-MUSIC by
processing an adjacent sub-band.

In their performance analysis of Root-MUSIC in element space, Rao and Hari [10]
show that the error in each of the signal zeros o the Root-MUSIC polynomial has a
largely radial component. A purely radial error in a given signal zero has no effect
on the corresponding source angle estimate but causes the corresponding signal peak
in the MUSIC spatial spectrum to be less pronounced. Thus, although Rao and Hari
show that the asymptotic mean square error of the source angle estimates obtained
with Root-MUSIC is the same as that. obtained with Spectral MUSIC, they point

out that “implicit in the derivation of the mean square error for Spectral MUSIC
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is the assumption that corresponding to each source there is a peak in the spatial
spectrum.” As Rao and Hari point out, this "is a stronger assumption than distinct
z-plane roots." They demonstrate the improved performance of Root-MUSIC over
Spectral MUSIC by presenting simulations in which the MUSIC spectrum exhibits
a single peak in the vicinity of two closely-spaced sources while the corresponding
Root-MUSIC polynomial exhibits two clearly distinct signal zeros. Thus, the main
advantage of Root-MUSIC over Spectral MUSIC in element space is with respect to
probability of resolution. Nest, simulations show that the sameis truein beamspace.

Figure 2.5 compares the probability o resolution of beamspace Root-MUSIC
with that o Beamspace Spectral MUSIC over a range of SNR values for two equi-
powered, uncorrelated sources separated by half-Rayleigh. The following parameters
were common to each trial run. The two sources were located atw, = 1/(2N) and
uy = —1/(2N); recall that N = 32. N, = 4 consecutive beams out of the eight beams
displayed in Figure 2.1(a), with tliefirst beam having a pointing angle of u = —4/N,
were employed yielding 2N, —2 = 6 roots per run, 3 reciprocal-magnitude pairs. For
each trial run, beamspace Root-MUSIC and beamspace Spectral MUSIC were both
supplied with the same A = 4 snapshots. For each of 17 different SNR values, the
empirical probability o resolution for either algorithm was computed from 1000 in-
dependent trials. For beamspace Spectral MUSIC, tlie two sources were said to be
resolved if the beamspace MUSIC spectrum exhibited a local maximum in each of
the two half-beamwidth sectors, —1/N < u < 0 and 0 < « < 1/N. Note that a
source is located at the center of each of these two half-beamwidth sector:;. In accor-
dance with the relationship z = exp[j=u], the corresponding resolution criterion for
Beamspace Root-MUSIC was as follows: the two sources were declared resolved if the
beamspace Root-MUSIC polynomial yielded aroot in each of two swaths of the com-
plex z-plane described by exp[—j=x/N] < arg{z} < exp[—jx/20N] N .8 < |2| £ 1
and exp[jm/20N] < arg{z} < exp[jr/N] € .8 < |z| < 1, respectively. Thus a
minimum angular separation o one-twentieth of a beamwidth between the two signal

roots, and that each have a magnitude between 0.8 and unity, for the two sources was
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imposed to declare a resolved signal. The resulting probability of resolution curves
are displayed in Figure 2.5.

Comparing the probability o resolution curves in Figure 2.5, it is observed that
the performance o beamspace Root-MUSIC is about 4 dB better on average than
beamspace Spectral MUSIC. That is, on average, beamspace Spectral MUSIC requires
about 4 dB more SNR per element than beamspace Root-MUSIC to achieve roughly
thesame probability o resolution. In accordance with the resolution criteriadescribed
above, the performance differential is due to runs in which the beamspace MUSIC
spectrum exhibits a single peak while the corresponding beamspace Root-MUSIC
polynomial exhibits two clearly distinct signal zeros. Figure 2.6 shows the overlaid
results of five independent runs where this was the case when the SNR o each source
was -3 dB. (Notethat with regard to beamspace Spectral RIUSIC, four different line
types were used so that the solid line was used twice.) The respective positions of each
o theactual signal roots are indicated by aradial linein the beamspace Root-MUSIC
scatter plot. In each o the five runs, tlie heamspace MUSIC spectrum exhibited a
peak in the vicinitv o one o the sources, but not in the direction of the other. The
source it worked well for varied among the five runs. A11 examination d the two
corresponding signal reciprocal-magnitude root pairs for a given run reveals one pair
to be close to the unit circle while tlie other pair was significantly removed from
the unit circle. (Thisis hard to discern with the results o five runs overlaid.) The
simulationresults presented in Figures 2.5 and 2.61llustrate theimproved performance
of beamspace Root-MUSIC over beamspace Spectral MUSIC.

Figure 2.7 tracks the performance o beamspace Root-MUSIC as the position
of two equi-powered sources with half-Rayleigh separation is varied from the center
to the upper edge d the band. This is clone for the heam set displayed in Figure
2.1(a) and for each of three beam scts derived from that in Figure 2.1(a) by virtual
tapering according to either the cosine, Hanning, or Hamming windows. Recall that
u = —10/N and v = §/N are common null locations marking the upper and lower

edges of the band, respectively. The center of the band is thus v = —1/N. For each




trial run, the SNR for each source was 6 di3 and the algorithm was supplied with
M = 16 snapshots. The sample hias and sample standard deviation curves obtained
for the "left" source (i.e., the source having the smaller value of u) are displayed in
Figures 2.7(a) and 2.7(b), respectively. The abscissa in either figure is the u = sind
bearing of the "left" source. Finally, note that regardless of the beam set employed,
theinitial step is the computation d N, = 8 successive 32 point DFT values. Virtual
tapering according to the cosine, Hanning, or Hamming windows was accomplished
by adding successive, weighted DI'T values as discussed in Section 2.6.

Figure 2.7 evokes a number o observations. First, the beam set displayed in
Figure 2.1(a) corresponding to no tapering is observed to yield the hest performance
over the entire half-band. The performance obtained with each o the four beam
sets is observed to degrade towards the edge of the sub-band; the performance of the
Hamming window beam set is observed to fall off first. As we approach the edge of
the sub-band, we have a dynamic range problem in that the "left" source is " passed"
with significantly more gain than the "right" source; when the "left" source is at
u="7/N, the "right" source is at the common null position u = 8/N. These results
emphasize the importance o overlapping the sub-bands. Note that with 50% overlap
among sub-bands, a source at the edge of one band will lieat the center of an adjacent
sub-band [12]. Thus, 50% overlap among sub-bands is recommended.

Although no tapering yielded the bhest performance in the previous set of simula-
tion results, it is important to keep in mind that no tapering also provides the least
amount of out-of-band source filtering. This phenomenon isillustrated in Figure 2.8.
Figure 2.8 displays the performance o beamspace Root-MUSIC assuming two sources
in the case of two in-band sources separated bv half-Rayleigh and a strong out-of-band
source located at a common peak sidelobe. The in-band sources were equi-powered
with SNR; = SNR; = 6 dB and were located at «v; = 0 and u, = 1/N. The
out-of-band source was located at w3 = —17/N with SNR3 = 18 dB. Note that
u = —17/N isthe location of the fourth common peak sidelobe away from the lower

edge of the band marked by the common null location at v = —10/N. The position
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of the actual signal root associated with tlie out-of-band source at uz = —17/N is
indicated by aradial linein Figures 2.8(a) and 2.8(b) asare the actual signal roots as-
sociated with the two in-band sources. For each trial run the number of snapshots was
M = 32. Finally, the performance achieved with no tapering and that achieved with
virtual Hamming tapering are displayed in Figures 2.8(a) and 2.8(b), respectively.
Despite the fact that the out-of-band source was located a number of beamwidths
away from the edge of the band, discounting its contribution to the: eigenstructure of
the beamspace sample correlation matrix is observed to be a fatal mistake in the case
of no tapering. In 38 out of tlie 250 runs, the in-band signal roots were aligned at the
same phase angle corresponding o an unresolved situation. The signal roots obtained
in the other 212 runs were heavily biased. In contrast, tlie use of Hamming tapering
provides adequate filtering of' the out-of-band source as evidenced by the root scatter
plot displayed in Figure 2.8(b). Of course, performance in the case of no tapering
may be improved dramatically by increasing the number of assumed signals from two
to three. However, the point is that isit isimperative to do so with no tapering while
good performance is achieved with virtual Hamming tapering without resorting to
such. This has implications with regard to avoiding a situation in which the number
of in-band sources and inadequately filtered out-of-band sources is greater than the

dimension of tlie beamspace.
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Figure 2.4 Beamspace Root-MUSIC vs. Element-space Root-MUSIC for beam set
o Figure 1. (a) Beamspace Root-MUSIC. (b) Element-space Root-MUSIC
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Figure 2.5 Empirical probability of resolution versus SNR curves: Beamspace
Root-MUSIC versus beamspace spectral MUSIC with two equi-powered and
uncorrelated in-band sources located at —1/(2N) and 1/(2N). N, =4 out of the
eight beams displayed in Figure 2.1(a).
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Figure 2.6 Beamspace Root-MUSIC versus beamspace spectral MUSIC. Same
scenario as that in Figure 2.5 except SNR = 0dB. (a) Root scatter plot obtained
from five independent runs. (b) Corresponding beamspace spectra.
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Figure 2.7 Performance of beamspace Root-MUSIC as a function o position of two
uncorrelated half-Rayleigh sources (SNR = 6dB) within the subband
—10/N <u< §/N. N, = S beams generated with weighting applied to the set
shown in Figure 2.1(a). Statistics for the "left" source computed from 250 runs. (a)
Sample bias. (b) Sample standard deviation.
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Figure 2.8 Beamspace Root-MUSIC scatter plots associated with the use of the
rectangular and Hamming-weighted beam sets o Figures 2.1 (a) and (b). Two 6dB
uncorrelated sources were located at 0 and 1/N while an 18dB out-of-band source

was positioned at —17/N. Theroots in 250 trial runs were computed assuming only
2 signals present. (a) no (rectangular) tapering, (b) Hamming taper
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2.9 Summary

Procedures were presented for designing orthogonal matrix beamformers com-
posed o conjugate centro-symmetric weight vectors and producing beams exhibiting
coinmon out-of-band nulls, for use in conjunction with Root-MUSIC. The former
property enables one to work with the real part of the beamspace sample covariance
matrix in the eigenanalysis stage of Root-MUSIC, while the latter property yields a
reduced degree polynomial in the final stage of Root-MUSIC. It should be noted that
the used conjugate centro-symmetric weight vectors allows one to work with the real
part of the beamspace sample covariance matrix irrespective o the angle-of-arrival
estimation algorithm employed. A number of matrix beamformers possessing the
desirable features were derived from the N x N, DFT matrix beamformer. For ex-
ample, matrix beamformers yielding reduced out-of-band sidelobes were constructed
by adding weighted, adjacent columns of the N x N, DFT matrix beamformer. In
addition, a procedure was developed for constructing a matrix beamformer possess-
ing the aforementioned properties which allows the designer to specify a subset o the
common null locations.

Note that all of the results in this chapter are easily modified if instead of the N x
Ny DFT matrix beamformer Wﬁ{”) defined in (2.16), the prototype matrix beamformer
was defined with each o the N, corresponding pointing angles translated by the some
fraction of thespatial DFT spacing 2/N. All o the necessary properties are retained
under such a translation. That is, it is not necessary to center the beams on DFT

bins.
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3. PERFORMANCE ANALYSIS OF BEAMSPACE ROOT-MUSIC
EMPLOYING CONJUGATE SYMMETRIC BEAMFORMERS

3.1 Introduction

The quality of all high-resolution angle estimators is known to deteriorate as the
correlation amongst the signals increases. A popular approach, used in element-space
formulations, is to employ spatial smoothing {30, 31, 32]. A beamspace analogy
to forward/backward averaging in element-space was noted in the previous chapter.
There, the use of conjugate symmetric heamformers in conjunction with a uniformly-
spaced linear array alows one to compute the noise eigenvectors as the “smallest”
eigenvectors of the real part of the beamspace sample covariance matrix. It was shown
that the effect of taking the real part of the beamspace covariance is equivalent to
that obtained by first applying a forward/backward average in element-space prior
to the beamspace transformation. Thus, a means to achieve signal decorrelation, as
well as a savings in computation, is to employ a real eigenanalysis in beamspace.
It should be noted that the class of conjugate centro-symmetric weight vectors is
a very general one encompassing aperture tapering in accordance with any o the
classical windows, Hamming, Kaiser, Chebyshev, etc. , and theclassof discrete prolate
spheroidal sequences as well [39, 25].

Dueto thefact that the real part ol the beamspace sample covariance matrix is not
Wishart distributed, in general, it was not possible to merely cull previously derived
results. However, the approach taken here is similar in nature to the pioneering
work of Pillai and Kwon [8]. In 8], the asymptotic distribution of the element-space
eigenvectors for a spatially sinoothed sample covariance matrix were derived and used
to determine the bias and variance o the MUSIC null spectrum. The results in [§]

cannot be directly transformed to apply to the case at hand unless the beamforming

s e e N . —
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preprocessor is a square matrix. Even in this non-typical case, the results would
have to be adjusted to insure that the eigenvectors exhibit the required conjugate
symmetry.

The spectral formulation of MUSIC is considered but, as shown in [10], the derived
asymptotic variance applies to the Root-MUSIC form. Asthereis no specific uniform
placement o sensors as dictated for application of Root-MUSIC, only a symmetric
placement of sensors is assumed so that one can reap the computational /performance
benefits associated with the processing of only the real-part of the beamspace sample
covariance matrix.

An outline of Chapter 3 follows. The asymptotic statistics of the signal subspace
eigenvectors pertaining to the real part of the beamspace sample covariance matrix
are presented in Section 3.2.1 and derived in Appendix D. Targetting a beamspace
MUSIC application, the asymptotic bias and variance of the heamspace MUSIC es-
timator incorporating real processing are derived in Section 3.2.2, followed by an
observation and validation of the theorctical result'sin Sections 3.3 and 3.4. Real-
izing the need to attenuate clutter or strong signals that exist at distant locations
in a sector-based processing scheme, the localization performance of several tapered
beamforming architectures are studied in Section 3.5.

For notational simplicity, the Spectral MUSIC algorithm incorporating the eigen-
vectors derived from the real-part of the beamspace sample covariance is termed
as REAL-BS-MUSIC while that incorporating the eigenvectors of the complex co-
variance as COMPLEX-BS-MUSIC. Also, the notation “(m)” used to denote the

processing of a particular (nz'th) subband is omitted.
3.2 Performance Analysis of Real Covariance Beamspace MUSIC

In this section, we derive the theoretical performance of the REAL-13s-MUSIC
algorithm based upon a finite sample estimate of the beamspace covariance. Aside
from the computational advantages of processing only the real part of the beamspace

covariance, a performance benefit, in terms of the estimation accuracy, was observed
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through computer simulations as noted in the previous chapter. A theoretical anal-
ysis serves two purposes: (1) to offer an alternative to computationally burdensome
computer simulations and (2) to provide a means to gain general insight into the
operation of a particular direction finding algorithm and beamforming architecture.
Although the approach of using only the real part of the beamspace covariance
matrix is general in nature so that it applies to all direction finding techniques used
in conjunction with a symmetric array, we here consicler the application to spectral
MUSIC only. The extension to other classes of algorithms is straightforward. The
approach taken here, as similar to earlier studies [33, 34, 35, 36, 37|, consists of two
steps. First, the statistics of the eigenvalues and corresponding eigenvectors of the
real part o the beamspace sample covariance matrix are derived. Second, the mean
and variance o the angle estimate of beamspace MUSIC is obtained from a Taylor
series expansion d the null spectrum. In Section 3.2.1, the statistics of the sample
eigenvalues and eigenvectorsin the signal subspace are derived, while the analysis o

the MUSIC angle estimate is considered in Section 3.2.2.

3.2 1 Statistics of the Signal Subspace Eigenvalues and Eigenvectors

As a result of the normal distribution of the heamspace snapshot vector, the dis-
tribution of the complex sample covariance is Wishart [44]. It is well known that the
asymptotic distribution of the non-repeated signal subspace eigenvalues and corre-
sponding eigenvectors are normal [44]. KKaveh and Barabell [21] modified the asymp-
totic analysis to account for the unit length nature of the eigenvectors to derive the
distribution of the MUSIC null spectrum. This led to a theoretical determination of
the threshold SNR at which two closely spaced signals are resolved. Others [7, 33, 34]
have employed the eigenvector statistics to determine the localization accuracy of
MUSIC.

Note that the real part of the beamspace covariance matrix is not, in general,

Wishart distributed. However, if the sources are uncorrelated the real part of the
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sample covariance is effectively (real) Wishart with 2M degrees of freedom (see Ap-
pendix C). This compares with the A degrees o freedom o the (complex) Wishart
distribution of the complex sample covariance. Recall that A is the number of snap-
shots. Pillai and Kwon [S] encountered and solved a problem that is similar. in nature
to the one posed here in the prediction of the resolution threshold for element-space
MUSIC incorporating spatial smoothing. Using a similar approach, one can show that
the signal subspace eigenvalues and eigenvectors of the real part of the beamspace
covariance matrix are also normal in an asymptotic sense. This leads to the main
contribution of this chapter.

Theorem 2: The asymptotic statistics o the error in the signal subspace eigenvec-

tors, Ae; = &;—e;, 1 =1,..., K, for thereal part of the beamspace covariance matrix

where (2.54) applies are

| Ny X\ /\k 1 K ieTRIeAP
5 i} = -3 =1,...,K [3.
AE{MAe;) 2 e e i =1 K[
A# 1.#:
AE{M Aerdel} = 355" i T 13.2]
= me bl .
¢ ) m=1 n=1 )\k— \ )(AC-—’\TL)e "
m#k n£l
1 1 "
T = 5 Re{ (e Roes)(e;Rier) } + SRe{ (e, Ryes)(e Ryer) }
1
= 3 { \‘ A 5n11571k + )‘r’f \m&mnbl\f
+ (e Rle/ € Rlen)(l - 57)11.’)(1 - 61\'71)
+ (el Rse,)(ef Rye)(1 — 6,n)(1 — bre) },and [3.3]

R; = Im{R,}=BIm{Ps}B", [3.4]

where the notation AE refersto the asymptotic, in M, expectation.

Proof: See appendix D.

For purposes o comparison, the statistics d the corresponding quantities derived

from the complex sample covariance are [34]

12X .
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Ny )\c Ac
AB{M AesAes”} = & S ,A"‘—A‘i)?efneff and [3.6]
mey o=
¢ AT AL T
AE{]‘{ AekAeg } = W €,€, (]. - 6k5), [37]
where E§ = [ef|e5|...| €] and the superscript “c” has been included to refer to

the eigenquantities originating from the complex beamspace sample covariance.
Notice that for the case of uncorrelated signals, the beamspace covariance is real-
valued so that R; = 0. Thus, in the uncorrelated signal case, the expressions for the
asymptotic bias in the signal eigenvectors are the same while the eigenvector variance
statistics are similar in structure with the only difference being the multiplication
factor %; the asymptotic variance of the eigenvectors is reduced by a factor o 2 when
the real part of the covariance matrix is eigendecomposed. This fact would seem to
indicate that a performance benefit in terms of the MUSIC angle estimate should be
realized in an uncorrelatecl signal scene. We will observe that this statement is true
in the case o the bias of the angle estimate (also proven by an alternate approach
in Appendix C) but it is not true for the case of the variance of the angle estimate.
In situations where the signals arc correlated with complex-valued terms on the off-
diagonal of the source correlation matrix P, it is not readily apparent that taking the
real part resultsin alocalization performance benefit. This issue will be addressed in

more detail in the next section.

3.22 Mean and Variance of the Spectral MUSIC Angle Estimate

The derivation of the mean and variance o the Spectral MUSIC angle estimate
is presented in this section. The approach taken is identical to that in [34] so little
explanation or detail is included. As successfully applied elsewhere [33, 34, 35], the
first derivative of the MUSIC null spectrum, i.e., the denominator of the MUSIC
spatial spectrum, with respect to the location angle 0, is expanded in a Taylor series.
Xu and Buckley [34] employed a multivariate second-order expansion of the derivative
of the null spectrum in terms of the error in the :** angle estimate, A#d;, as well as

the error in the signal subspace eigenvectors to derive both the bias and variance



o the estimator. The notable difference between the case at hand and that of the
element-space version in [34] is that their expansion dealt with the differentiation
of a real-valued function of complex-valued terms whereas our expression contains
only real-valued variables. However, the expressions for the eigenvector statistics for
real covariance processing are more complex, so the analysis is much more tedious.
As similar to that in [34], we assume that the first and second derivatives of the
beamspace manifold vector, 5(0) and b(0), respectively, exist.

As only the statistics of the signal subspace eigenvectors are available, one must

consider the form of the MUSIC null spectrum, D(Eg, 0), expressed as
D(Es,0) = b7(0) [Iy, - EsEL] b(0), 3.8]

where Eg = [e15e25 S..ce ] The expansion of the null spectrum derivativeis

I . . K
D(Es, 6;) = D(ES,G.L-)+{ (Es,0:) A0 + 3 (Ve, D(Es, 05)) Aek}ﬁ

k=1
1 {.. i
21 {D (Es, 0; Z (Ve, D(Es,0,)) (AerAd;) +
K K —‘
ST5T Aef (Ve [Ve, D(Es, 0:)]7)T Aeg} + 8. [3.9]
k=1 ¢=1

where the differentiation of D iswith respect to 0, i.e., D(Es,0,) = & D(Es, ) ly—i.»

Es isan N, X K matrix composed o the signal subspace eigenvectors, V represents
the vector gradient, and S is composed of the higher order terms. Carrying through
the differentiation of the quantities in ( 3.9) using the definition in equation ( 3.8)
leads to

D(Es,0;)) = D(Es,0,)=0
D(Es,0:) = 2b(6:)[Ly, — EsET]b(0;)
D (Es,0;) = 6b(6;)[In, — EsEL]b(6))
Ve D(Es,0;) = —2b(0;)elb(0;) — 2b(0;)elb(0;)
Ve, D(Es,0;) = —4b(6)el'b(0;) —2b(0;)elb(0;) — 4b(0;)elb(6;)
(Ve [Ve, D(Es, 0.)]1)T = —2[b(8;,)b7(0;) + b(0:)b7(0,)]6s.
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One can show that, with the aid of the asymptotic relations in the previous section,
the first bracketted term in equation ( 3.0) is O(ﬁ), i.e., if the random variable x is
0(71]\—4) then in the limit of M, (Adz) isfinite. Compare this to the meaning of o(vlﬁ)
which indicates that such a random variable falls to zero in the limit faster than \/#ﬁ
In addition, the second bracketted term of ( 3.9) is O(), while S'is o(3;)-

Thevarianced the MUSIC angle estimateis obtained by working with the O(ﬁ)
term of the Taylor series expansion. In the samestyle as in [34] using the statistics of
the error in the signal subspace eigenvectors described by equations; ( 3.1) and (3.2),
the asymptotic variance of the REAL-BS-MUSIC estimator is derived as

K A 2
AVar(VMAD) = S —27n _(eTh(0;))? [3.10]
. k=1 (’\k - UE)
N T K T
— 2uT(). Chek AL S § NG/ K
= o’b (01){;::1 /\k—f73+gnk:1 (/\k_g%)z} CAK Y '

As will be shown shortly, this result shows a remarkable resemblance to that obtained
when eigendecoinposing the complex-valued covariance. It will be found useful to
express ( 3.11) asdiagonal elements of matrices asin [33]. In the decomposition of

(12.57), it can be shown that

K Ekez T T TT -1 1.

S e = {BP;,B"} =B!'P;.B

k=1 ¢ n
~__erel "p;B'B P;!B! = B P5!(B"B)"'P;!B!
S s - BUPIEBIPLB! - BUPS(BB) PSB!
=1 n

where t denotes the Moore-Penrose pseutlo-inverse, Ps, isthereal part of the source
correlation and B is the left pseudoinverse of B, i.e., Bt = (BTB)~!BT. Also notice
that

BB = I, B'b(0;) = &,

where §; isa K X 1 vector where the ¢** entry is 1 and the remaining components are

zero. With these results, one can convert (3.11) to matrix form as

2
AVar(VMAG) = =" [P5l + o2P5 | (BTB)'P5]] [3.11]

D(0,,Es)

]
11




where [H];; denotes the (i,j) element o H and D(0;,Eg) can alternatively be ex-
pressed as
D(6:;,Es) = 2b7(0;)(In, — BBNb(6;).

For comparitive purposes, the associated asymptotic variance for COMPLEX-BS-
MUSIC issimply [33]

2

AVar(VMAGS) = D(%,E) [

P3' +02P5 (BTB)'PS| 3.12)

where D(B,-, E$) = D(ﬁi, Es). The only differenceis in the source covariance term.
Much can be said about the expected performance of the two processing methodolo-
gies as will be seen shortly.

The bias of the MUSIC estimate is obtained, again, via a technique similar to
that used in [34]. Taking the expectation of cquation ( 3.9), using the asymptotic
eigenvector error expressions d (3.1) and (3.2), and “matricizing” the result leads to

D (Es,0:)

AB(MB0) = — oo
RER4)

AVar(A#;)

o2 (Ny— K —2
D(Eq,o-)

) (B'5(0))7[P5! + 0?P5)(BTB) P55,

ZZZ e/Rrer) (el Rye;) (b7(0,)eceTb(0:))
- k=1 i e D(Es,0;) (M = M) (A — Aj)
itk
The details of deriving this expression are tedious and are thus not included. The

[3.13]

corresponding result for the COMPLIEX-BS-MUSIC case converted to matrix formis
[34]

. D (Es.0;)
AE(MAOS) = — —————=AVar(MA0;
(MA) 6 DEs.0) ur )
_ 20 (N ]‘_1) (Bb(0,)T)Re{P5' + o2P5' (BTB) ' P3'}4.. [3.14]
D(Es, 0;

The differences between these two expressions are (i) the scaling factor on the second
term, (ii) the dependence on Re{Pgs} or Ps in the second term, and (iii) the presence
of the third term in ( 3.13). Note that the latter term is only nonzero in scenarios

involving at least three correlated sources.
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3.3 Observations of the Theoretical Variance Equations

In this section, we look at several signal scenarios in an attempt to quantify the
relative perforinance o the two algorithm types. The observations are made solely
through the use of the theoretical expressions of the preceding section. Due to the
more complex nature of the expressions for the bias, welimit the observations to apply
to the estimate variance only. The relative performance with respect to the bias will
be addressed via specific examples in Section 3.4. We begin with the two-source case
and then proceed into the general situation o three or more sources which we will
separate into the correlated and uncorrelated classes. We will concentrate on the
matrix formulations o the theoretical variance as given in equations 3.11 and 3.12.

For the general correlated two-source case. the source covariance matrix Ps has

the structure
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where oy and o, are the powers ol the two signals and p is the complex correlation
coefficient. This signal model is representative of the low angle tracking scenario [38]
where a low altitudetarget givesriseto both a direct and ground-reflected path signal.
The two returns are highly-correlated and closely spaced in angle. In this situation,
the magnitude of p, 0 < |p| < 1. is often “close” to 1 and the phase depends on the
path difference between the direct and specular path signals. Note that the restriction
that Ps be a full rank matrix previously mentioned requires that |p| < 1. However,
note that the real covariance technique outlined earlier would still function properly
in the case o a rank one Pg as long as an imaginary component exists in p, i.e., the
phase of pis not either 0 or .

The following theorem shows that the REAL-BS-MUSIC algorithm offers a lower
variance estimate relative to that of the COMPLEX-BS-MUSIC formulation for the
general two-source scenario.

Theorem 3. In the presence of two non-coherent sources, the asymptotic variances
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of the REAL-BS-MUSIC and COMPLEX-BS-MUSIC estimators are related by
AVar(vV MADG) < AVar(VMAY) 1=1,2 [3.16]

with equality when the sources are uncorrelated or the correlation phase is 0 or .
Proof: With regard to the structure of the general two-source correlation matrix of
equation (3.15), the inverses P3' and Pg}z exist as guaranteed by the non-coherency

of the signals and are

2
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where pr denotes the real part of the correlation coefficient, satisfying |pr| < |p|
with equality if and only if the phase is 0 or #. The matrix (BTB)~! is a real-
valued, positive definite matrix of the form [(BTB)‘1 }u = f,;. Substituting these
expressions into ( 3.11) and ( 3.12) and simplifying leads to the following results for

the first signal

2 1 B0l — 2B12pro102 + Boaphol
AVar(VMAS,) = ——2= 4,2 Pug RO
( 2 D(0,,Es) [0303(1 — g m oio3(1 — pk)?
AVar(VITAL) = 7 [ l 4 o2 P02 = Wraproron + 522""2"12}
Y D(0,Eg) | otad(1—pl) " otoi(1 ~ |pf?)?

As aresult of D(0,,E3) = D(01,Es), |p)* > ph, and (1— [p?) < (1 = ph), it
follows that AVar(v/MA0S) > AVar( VMAG). Equality is seen to exist whenever
|p| = |pr|- Reversing the indices of the two signals proves the result for the second
signal. Thus, aside from the computational savings of decomposing only the real part
of the beamspace covariance, a performance benefit is expected aswell O.

As similar to the two source case, the presence of uncorrelated signals, or more
generally, in the case of a non-existent imaginary component to the source correlation
matrix, no performance advantage relative to the variance in an asymptotic sense is

realized for more than two signals. However, empirical results, as presented in the




following section, indicate that the biasin the angle estimate is usually smaller when
processing only the real part. Asnoted earlier, the interplay of the various terms in
( 3.13) make it difficult to make general observations regarding the theoretical bias.

In the more general case o three or more correlated signals, the only claim one
can make is that in a moderately high SNR situation, the asymptotic variance o
REAL-BS-MUSIC is less than or equal to that of COMPLEX-BS-MUSIC. This ob-
servation is validated through the use o the matrix expressions o (3.11) and (3.12)
as follows. As D(Es,0;) is exactly equal to D(ES,0;), one need only compare the
termsin the numerators. We are attempting to prove Var(A#,) ; Var(A#), which is

true whenever [28]

Re [02P5' + iP5 (BTB)'P5!| — [o2P5! +5iP5L(BTB)™'P5l| >0, [3.17)

o2 [Re{P5'} - P51 ] + o [Re(P5(B"B)'P5'} - P5L(BTB)'P3}] 20,
[3.18]
i.e., the difference of the two matiices is positive semi-definite!. Denoting the real
and imaginary components d Ps as Ps, and Pg,, respectively, where Pg, = P%_

and Ps, = —P% , one can show that
Pgl = [PSR + PS]PE:QPS,]—] — j[PSR + PS[PE:QPS[]_IPSIPE}IQ-

With regard to equation ( 3.18) observe that Re{P3'} — P35} > 0, is equivalent to
the condition that Ps, — [Re{P35'}]™' > 0. Indeed this is the case

Ps, — [Re{P5'}]"! = Ps, — [Ps, + Ps,P5 Pg)]

R o

= _PSIPEI}{PS(

P§1P§;Ps, > 0.

Theremaining termin equation ( 3.18), Re{P5'(B"B)~'P5'} —P;}(BTB)'Pg], is

indefinite, so that one cannot conclude that Var(Af;) isless than Var(A6). However,

'If the real-valued matrix A 1s positive semi-definite, then yT Ay > 0 Vy. Selecting y as §;
yields the desired result.




note that af’ng; is loosely interpreted as being proportional to 1/SNR relative to the
1/(SNR)? nature of oP5(BTB)"'P3l. Thus, in cases where the signal power is
sufficiently large relative to the noise, the first term in equation ( 3.18) dominates so

that Var(A#f;) < Var(A#¢).
3.4 Validation of the Theoretical Expressions

Computer simulations were carried out in order to verify the theoretical expres-
sions for the bias and variance of the REAL-BS-MUSIC angle estimate as well
as to provide additional insight into the comparison of the REAL-BS-MUSIC and
COMPLEX-BS-MUSIC algorithm formulations. A uniform linear array of N = 32
half-wavelength spaced sensors was employed in conjunction with N, = 4 conjugate
centro-symmetric weight vectors to form beams with no tapering at sine space angles
of u=sin6=~4/N,~2/N,0,and,2/N. Two sources were included in each simula-
tion and wereangularly separated by half of the 3 dB heamwidth in sine space. Unless
otherwise noted, the sample biases and standard deviations were coinputed over 250
independent trials. As noted on the figures, solid/dashed lines represent the theoret-
ical curves while the empirical results are indicated with a “x”/“o” corresponding to
the COMPLEX-BS-MUSIC/REAL-BS-MUSIC algorithms.

Figures 3.1 and 3.2 present the theoretical bias and standard deviation as well
as the empirical standard deviation of the lelt-hand signal for the case of a highly
correlated signal set. The strengths of the equipowered sources was 8 dI3 on a per
sensor basis while the magnitude of the correlation coefficient, p, was set at 0.9. The
phase of p was varied from 0 to 180 degrees to examine the dependence o performance
on the phase.

The theoretical standard deviation curves plotted in Figure 3.1 predict a roughly
quadratic. improvement in performance o REAL-BS-MUSIC over COMPLEX-BS-
MUSIC as the correlation coefficient approaches the state of being purely imaginary
at a phase difference of 90 deg. Also, in accordance with prior discussion, there is

no difference in performance when the correlation coefficient is purely reitl as is the




case at phase differences of 0 deg and 180 cleg. With respect to the estimate bias, the
theoretical performance curves in Figure 3.2 predict that REAL-BS-MUSIC offers a
lower bias than COMPLEX-BS-MUSIC for phase differences less than 150 deg with
the greatest improvement occurring at a phase difference o 0 deg. The magnitude
of the bias, however, is very small, almost negligible: high-bias conditions occur in
situations where the systein parameters of two or moresignals liein the region of the
resolution threshold. In this situation, the signals are on the edge of merging into
one displayed peak in the MUSIC spectrum. We will return to this issue as well as
present a comparison of the theoretical and empirical bias results shortly.

The theoretical standard deviation curves and corresponding simulation results
plotted in Figure 3.3 substantiate claims made carlier that REAL-BS-MUSIC offers
no improvement over COMPLEX-BS-MUSIC with respect to variance in the case
o uncorrelated sources wherein the source covariance matrix is purely real. Note
that the simulation results closely track the theoretically predicted performance as
the number o snapshots decreases 1o as small as 20 with equi-powered 12 dB source
SNR’s. In contrast to the situation with variance, the theoretical bias curves in
Figure 3.4 predict that REAL-BS-MUSIC offers a slightly lower bias in the case
of uncorrelated sources than that achieved with COMPLEX-BS-MUSIC with the
differential between the two increasing as the number o snapshots cecreases or as the
SNR is lowered. Once again, note that the bias is very small.

The theoretical and empirical results o Figure 3.4 begin to deviate as the number
of snapshots reduces to 20. Recall that the theoretical expression:; for the bias and
variance are asymptotic in nature so that a deviation is to be expected. However, the
expressions are still valid if the source SNR’s arc sufliciently large - this is the main
point of Figure 3.5 where the number ol snapshots was held constant at 20 while the
source SNR was varied. Notice the deviation at the low end of the SNR scale. The
deviation is caused by the fact thal the simulation parameters are in the vicinity o
the resolution threshold. In this region o operation, the two signal. peaks are on the

verge of merging into a single peak in the MUSIC spectrum. When only peak exists,




the signals are said to be unresolved. A plot of the empirical probability of resolution,
i.e., the percentage of cases where two signals are resolved, is shown in Figure 3.7.
Here we see that the onset of the deviation in the theoretical and empirical results
directly corresponds to the SNR location where unresolved cases begin to appear.
Also note that Figure 3.7 shows that REAL-BS-MUSIC is substantially more capable
o resolving two signals than the COMPLEX-BS-MUSIC formulation.

Figure 3.6 shows the empirical and theoretical mean o the two MUSIC angle
estimators that apply to the simulation results of Figures 3.5 and 3.7. This figure
clearly shows the merging of the two signal peaks as the SNR is reduced. It is
necessary to go to this extreme to generate a high-bias case.

Once again, these simulations show the value o employing the REAL-BS-MUSIC
algorithm over CONIPLEX-BS-MUSIC. The deviation between the theoretical and
empirical curves is expected as due to earlier comments. Although the theoretical
curves may not track the corresponding simulation curves, it is obvious that the
theoretical expressions as are still valuable as the general trends are indicative o the
obtained empirical results.

A few other comments regarding the cause o the deviation in the high-bias case
are in order. The theoretical expressions are asymptotic in nature so that one may
expect that the experimental and theoretical curves may be more in agreement if the
number o snapshots is increased. This deviation, however, was found to exist with
large M. Nor isthere a problem of not using a sufficient number of trials to estimate
the bias, i.e., the variance o the bias estimate is too large — the same observations
were made when using a greater number o trials. It is believed that the method of
generating the empirical results is also flawed in nature. Unresolved cases where one
centrally located peak is resolved must be included in the tabulation of the empirical
statistics, but some trials show a single peak whose location bears little relation to

one or both signals. However, these cases are still considered.
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The simulations thus validate the theoretical performance expressions and illus-
trate the performance gains achieved via the use conjugate centro-symmetric beam-
forming vectors and executing beamspace MUSIC with only the: real part of the

beamspace sample covariance matrix.
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Figure 3.1 Real vs. complex processing: standard deviation as function of phase
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Bias of the Left Signal Estimate

Theoretical Performance

0.009 — Spectral MUSIC, Complex Covariance
bt s ectral MUSIC, Real Covariance

0.008} 32 elements (d=A/2)
4 beams
0.007+ 8dB SNR
100 snapshots
0.006¢ 1/2 beamwidth sep.

correlated sources, p = .9
91: .9 deg, 92: -9 deg

Bias (Degrees)

0 20 40 60 80 100 120 140 160 180
Relative Phase Difference (Deg.)
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3.5 Merit of Employing Tapered Beamformers

Realizing the need to de-emphasize extended clutter returns and high-strength
signals that arrive from directions outside of the spatial sector o interest: the use of
tapered beamformers is advised. The presence of these additional signals decrease
the number of degrees of freedom and, in the worst case, yields a non-functional
MUSIC estimator due to the non-existence of a noise only subspace. A few candidate
tapering architectures and their effect on the angle estimate bias and variance are
investigated in this section. We assume a linear, equi-spaced array to take advantage
o a computationally efficient implementation scheme.

Stoica and Nehorai [28] showed that the element-space MUSIC algorithm has
an associated estimator variance that is less than or equal to that for a beamspace
formulation with equality when the A" X N, beamspace transformation W satisfies
WWH = Iy, ie.,, Ny, = N. Noticing that a full N x N spatial DFT matrix satis-
fies this constraint, we shall compare the performance of the candidate architectures
against that using the N X N spatial DFT matrix. Notice that if the columns of
the DFT matrix are made to be conjugate centro-symmetric, the real part of the
associated beamspace covariance can be employed thus taking advantage of the lower
bias in the case of uncorrelated signals. Although the N X N DFT transformation
may provide a lower variance estimate, the use of a smaller dimension transforma-
tion matrix leads to a lower SNR resolution threshold [7] in addition to the lower
computational requirements associated with the eigendecomposition.

Inaddition to beamformingwith a N X N, matrix WRNb representing NV, successive
columns of the N X N un-weighted DFT, i.e., the (R)ectangular taper, we consider
the use of cosine and Hamming tapers of Section 2.6. As observed in Section 2.6, the
cosine and Hamming tapers can be realized in the beamspace domain by summing
weighted successive DFT beams. Specifically, the A" X N, Hamming-weighted and

N X (Np — 1) cosine-weighted transformations are, respectively,

Wiy, = Wiy, Th [3.19]
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Wey,., = Wy, TC [3.20]
(0923 054 023 0 0 ... 0 0 0 |
0 023 054 023 0 ... 0 0 O
Ty = S S [3.21]
0 0 0 0 0 .02 05 023 Nyx(N+2)
(05 05 0 0 ... 0 O
0 05050 ... 0 0
TC = . ) . . i . (Nb—l)XNb. [322]
0 0 0 0. 05051

Note that we intend Wg, ., to be an N X (N, + 2) matrix cornposed of N, +2
successive columns of the symmetrized spatial DFT matrix, with an extra beam on
each side of the window relativeto Wp, , so that the pointing angles of the beams via,
WHN,, arealigned with thoseof Wr,, . Thus, application of Wy, yields abeamspace
snapshot of the same dimension as that obtained with WRN,,‘ On the other hand, the
cosine-tapered transformation yields a beamspace snapshot of dimension N, — 1. To
see the effect of the sector size on the theoretical bias and variance, a N X (N, — 2)
Hamming-weighted beamformer, WHNb_2, is also investigated.

Notethat thesets of beamforming vectorsare not orthogonal. Thus the beamspace
noise, i.e., the element-space noise vector operated on by the tapered beamspace
transformation, is not uncorrelated from beam-to-beam. In order for the theoretical
expressions of Section 3.3 to be valid, one must orthogonalize the tapered beamform-
ing matrices. Thisis accomplished quite simply: the resulting effective beamforming

matrices with a re-definition of notation. are

WHNb = WRNb+2 TI{(THTZ)_I/Z [323]
Wy, T&(TeTE) ™2, [3.24]
Plots of the spatial response patterns of the three (effective) tapering techniques is

provided in Figures 3.8 a), b), and c). Note that the beamspace dimensionality is

N, =8for an N = 32 sensor array. As observed in Figure 3.8, the weighting functions




provided at least 15 dB of additional attenuation across the region of space outside
of the sector sin0 € [-10/N,8/N].

The theoretical bias and variance of the MUSIC angle estimate were computed
and plotted in Figures 3.9 and 3.10 for the case of two uncorrelated and equi-powered
signals separated by half the Rayleigh resolution (1/N). Although only M = 16
snapshots were assumed, the signal strength (6 dB) was sufficient to yield an accu-
rate prediction of performance, i.e., we are operating above the resolution threshold.
The bias and variance o the left signal estimate was plotted against the sine-space
midpoint position of the two signals.

The N, consecutive, un-weighted DFT beams are as effective as the full N di-
mensional DFT transformation at locations where the sine-space center of the two
signals are aligned with a lobe of a particular DFT Iseam. The deviation in the bias
and variance curves is minimal outside of these regions so that the savings in com-
putation and anticipated reduction in the resolution threshold suggests the use of a
lower dimensional beamformer. The poor performance at the edges o the sector is
driven by the reduced signal power, proportional to |b(#)[2. Thus, in a search oper-
ation, sectors should be overlapped by somewhere between 25% and 50% to provide
adequate performance.

As expected, the Hamming and cosine tapering architectures reduce the localiza-
tion performance, but only slightly. The A", Hamming beams, for example, are less
sensitive in relation to the standard DFT beams to small variations in signal posi-
tioning within the sector. Obviously, then, MUSIC prefers the use of beams with,
individually, high resolution. Note, though, that the presence o strong signals outside
the sector of interest would warrant tapering as these signals, if unaccounted for in the
estimation of the signal subspace dimensionality, may result in poorer performance
for the unweighted beamformer as was shown in Section 2.8.

Comparison of the two Hamming taper cases suggests that a larger dimension
beamformer is desired in terms of the expected bias and variance. Thisis a result of

the additional signal information in the extra beams. I|-lowever, if the power of the
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signals are in the region of the resolution threshold, the noise will dominate in these
additional beams and provide no beneficial information. Thus, the use of fewer beams
leads to a reduced resolution threshold. In conclusion, the need for the increased
rejection of sidelobe clutter/high strength signals is achieved through tapering with
only a modest decreasein the bias and variance performanced in-band signals relative

to either the NV, or N dimensional unweighted spatial DFT beamformer.
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3.6 Summary

In this chapter, the asymptotic distribution of the signal subspace eigenvectors
corresponding to the real part of the beamspace sample covariance was derived. The
operation of processing only thereal part is permissible in situations where: the beam-
forming vectors exhibit conjugate centro-symmetry. The asymptotic statistics were
used to show the merit of such a technique with regard to the estimate bias and
variance when used in conjunction with beamspace MUSIC. The idea of decomposing
only thereal part, however, is general in nature so that it applies to all eigenstructure
direction finding techniques.

Tofully realizethe advantages of employing a heamspace preprocessor, one should
incorporate a weighting function to insure that clutter and/or strong spatially-distant
signals do not degrade the performance of the estimation algorithm. The 'issue of de-
signing beamspace preprocessors to yield an architecture with the lowest resolution
threshold was considered in [7, 29]. One such preprocessor is based upon the theory
of discrete prolate spheroidal wave functions [39, 25]. In this approach, one would
employ a N x (K + 1) beamformer to localize K closely-spaced signals. However, it
was determined that such aachitectures, although attractive in termsof the resolution
threshold, yield an estimator with a significantly higher bias and variance when op-
erating above the threshold. Candidate tapering functions that provide considerable
rejection levels yet yield comparable bias and variance figures were presented. Note
also that these taper functions can be applied to a set of adjacent spatial FFT beams

to yield a computationally efficient procedure.
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4. BEAMSPACE DOA ESTIMATION FEATURING MULTIRATE
EIGENVECTOR PROCESSING

4.1 Introduction

Chapter 2 was partly concerned with the derivation of an efficient algorithm to
reduce the order of the Root-MUSIC polynomial to 2NV, — 2, which can represent a
tremendous computational savings if only a few beams areformed in the direction of a
previously detected signal to obtain a refined location estimate. The approach was ac-
complished by requiring that the beamforming vectors possess common spatial nulls.
Notice that, as common to this beamspace Root-MUSIC formulation, the adaptation
of ESPRIT to beamspace [40] requires similar restrictions placed upon the form of
the beamforming vectors. Aside from this possihly over-restrictive requirement, two
other problems associated with the beamspace Root-MUSIC algorithm are observed.
First, the technique doesn't exploit the spatially-confined region of operation in the
rooting stage of the algorithm, i.e., as the number of sensors comprising the array in-
creases, the spatial extent of the beamforming sector decreases with constant N, but,
yet, therooting is still defined over all of visible space. Second, the .approachinvolved
the use of an N, X N, matrix transformation Q which can be highly ill-conditioned.
For example, the condition number of Q for an N = 138 element array operated
upon by a spatial Discrete Fourier Transform (DFT) beamformer was computed for
a varying number of heams and plotted in Figure 4.1. In contrast, the other curvein
thefigure (Z transformation) corresponds to an alternative approach that is the key
result of this chapter, having a similar implementation for the MUSIC setting but
fundamentally different to the approach of Chapter 2. Whereas the condition number
associated with the Z-transformation is relatively constant at a value near 3 for all

beamspace dimensions, the corresponding value for the Q-transformation is large for
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even a small number of beams, e.g., for a heamformer comprised of NV, = 8 spatial
DFT beams, the condition number is approximately 8. 10°.

The main purpose o this chapter is to develop a processing methodology that is
based on the transformability of a beamspace noise eigenvector to an element-space
counterpart as noted in passing in Appendix D, and also in [7]. In the intended
application of beamspace processing, a spatial subband is probed so that the trans-
formed beamspace noise eigenvectors are naturally bandlimited in a spatial sense.
This banded characteristic allows for the application of classical multirate digital sig-
nal processing to isolate and spatially enlarge the spatial suhhand o interest. Note
that this methodology departs from the classic implementation in that the pertinent
information liesin thein-hand "signal" nullsinstead o peaks in an in-hand spectrum.
The aim is to preserve in-hand nulls instead o the more difficult task o preserving
sinc patterns associated with the form of asignal dcfincd at the data level. A sensor
level decimation scheme would suffer from the problem of preserving signal contribu-
tions away from the direction of interest whereas this scheme involves signal features
having no components away from the characteristic null in the spectrum.

An important feature of this approach isthat there are no restrictive requirements
on theform of the beamforming vectors. The technique aso resultsin a Root-MUSIC
formulation where the rooting is defined over a spatial window corresponding to the
spatial subband probed by the beamforming vectors. Another major advantage is
that the techniqueis computationally robust as the Z matrix transformation applied
to the beamspace noise eigenvectotsis well conclitioned. e.g., refer to Figure 4.1 where
the condition number of a Z transformation is shown for the same array length and
a suitable decimation procedure.

As the eigenvector transformation-clccimation proceclure is general in nature, the
technique may be applied to any eigenstructure direction finding algorithm. We here
consider the Root-MUSIC and ESPRIT [27] forinulations as these techniques are
fairly representative of the eigenstructure class o angle estimators; application to

other algorithms is straightforward.
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The contents o this chapter are as follows. The development of the beamspace
noise eigenvector transformation-decimation technique and its application to Root-
MUSIC and ESPRIT ideology is contained in Section 4.2. The theoretical perfor-
mance of the MUSIC/ESPRIT formulations is developed, in terms of the estimation
variance, in Section 4.3, using tools from Chapter 3. Finally, the theoretical perfor-
mance expressions are validated in simulations and the optimality of the technique
is observed through a comparison study with the stochastic Cramer-Rao bound in a

variety of experiments in Section 4.4.
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4.2 Development of DOA Estimators Featuring Multiriste Eigenvector
Processing

In this section, the beamspace Root-MUSIC and TLS-ESPRIT DOA estimators
incorporating multirate eigenvector processing are developed. In Section 4.2.1, the
basis of the multirate processing technique of bearnspace noise eigenvectors is dis-
cussed, and an even more coinputationally efficient version is proposed in Section
4.2.2. Finally the techniques are applied to obtain Root-MUSIC and TLS-ESPRIT
DOA estimation algorithms in Sections 4.2.3 and 4.2.4, respectively.

4.2.1 Multirate Noise Eigenvector Processing

A relation necessary for the development of the algorithms presented in this chap-
ter is that a beamspace noise eigenvector can be transformed to a noise eigenvector

in element space as noted in Appendix D. Defining
V; = We,‘, [41]

where e,, ¢ > K, is a noise eigenvector of the ideal beamspace covariance, we see

that v; isindeed an eigenvector lying in the noise subspace of R, as evidenced by
0 = BYe; = (WHA) e, = A" (We;) = Aflv;, i > K. [4.2]

Since A is an NxI matrix composed of the element space direction vectors which
collectively span the signal subspace, v, = We,, i=K+1,...,N;, lies in the element
space noise subspace. Also, given that e, is unit-length, v; is unit-length as guar-
anteed by the orthonormality of the columns o W. Note, however, that no direct
relationship exists between the beamspace and element-space signal subspace eigen-
vectors and that the N, — K transformed noise eigenvectors only partially describe
the N-dimensional element-space noise subspace.

We now focus the development of the multirate eigenvector prescription to the
MUSIC algorithm. To aid in thefollowing development, it will befound useful to work

2md

with spatial locations denoted bv y = 2% sin 0, where X is the wavelength and d isthe
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sensor spacing. Thus, for example, the element space manifold vector with an end-
sensor phase referencing is expressible as an (@) = [1, e ..., edW-Dul Employing
the transformed noise eigenvectors which partially describe the element-space noise

subspace, the associated MUSIC null spectrum [26] is appropriately described as

Ny
Smu(p) = > lap(u)vel’. -7 <p < [4.3]
k=K +1

For the known Vandermonde structured the array manifold given, it isobserved that
each term in (4.3) simply has the form of a N-point spatial Discrete Time Fourier

Transform (DTFT) of a transforined noise eigenvector,

(n—1)

vp(n) e —-r<p<nm [4.4]

™=

Vi(p) = ay(p) v =

n=1

where vg(n) represents the n’th entry in the vector vy

By selecting the set of beamforming vectors to interrogate some sector of space
while attenuating signals that lie elsewhere, the spectrum of the transformed eigen-
vectors are naturally spatially band-limited. This can be viewed in the null spectrum
of a single transformed noise eigenvector as shown in Figure 4.2. The parameters
associated with the figure are as follows. N =128 half-wavelength spaced sensors were
employed in conjunction with a standard spatial DFT beamformer consisting of eight
consecutive beams centered in sine-space at sinf) = 25/N. For reference purposes,
the spatial response of the N, beams are included in Iligure 3.3. There were two equi-
powered signals located near mid-band at 10.4° and 11.5°: the locations are labelled
on the figure. In addition, a high-strength signal was placed at a distant location
of sind = 69/N. A single beamspace noise eigenvector of the ideal covariance was
employed to generate the results in the figure. Note that the presence of the other
null within the band edges, indicative of a signal present at the corresponding angle,
will "disappear” as the collective set of transformed noise eigenvectors are used for
DOA estimation. Although in-band nulls are of interest, the main point of thefigure
is that the spectrum exhibits an elevated response in the spatial region where the
beams are directed. Also, note that the spatial spectrum is not elevated in the region

neighboring the distant signal.
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source was located at sinf = 69/N.
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The banded nature of the null spectra suggests that a multiirate procedure is
in order where the spatial band surrounding sin# = 25/N is spatially base-banded
and more sparsely sampled. In other words, one can extract a spatial region of
interest from the spectrum and represent the information with :€ewer parameters.
Consider decimation by an integer factor D that islessthan or equal to the maximum
allowable value. For the example employing N, spatial DFT beams, the maximum
decimation factor is D, = N/N,.! The sequence associated with the decimated

k'th eigenvector is
vWGi+1) = w(Di+1) i=0,1,..,N/D—1.

From classical multirate digital signal processing theory, the spatial spectrum associ-

ated with the £’th decimated eigenvector is

V(k) 2—: V}; U—Qﬂ'f

[4.5]

where we recognize the periodicity in the variable g, i.e., V(u + 27n) = V(u) for
integer n. By assuming that the spectrum has negligible amplitude outside o the
region o interest, i.e., Vi(g) M 0, |¢| > =/D, only the £ =0 term contributes to the
sum leading to V, ()( ) = Vi(e/D), -7 < p < a.

In the usual application of multirate processing, one must be concerned with the
aliasing of signalsinto the band o interest; here we must insure that aliasing does not
result in the "filling in" of signal nulls within the band of interest. Note that signals
that lie outside of the spatial band of interest do not affect the spectrum, i.e., in fact,
the reduced amplitude in the neighboring region as seen in Figure 4.2 will result in a
smaller aliasing contribution. However, the presence of the large distant signals may
increase the perceived dimension o the signal subspace (k)in the decomposition of
the sample covariance matrix so that their presence is undesired.

If the front-end beamformers have high sidelobes, a spatial filter prior to deci-

mation might be necessary to insure that the null spectrum is not distorted due to

1 Although the terminology "sampling rate alteration” appliesfor non-integer Dqz, We will still
refer to the rate conversion operation as "decimation.”




aliasing, 1.e., the "signal™ nulls are not shifted appreciably. Thefilter should incorpo-
rate a sufficient stopband attenuation to limit the degree of aliasing. In contrast, a
larger stopband attenuation requires a larger filter length. As the ultimate intention
o multirateprocessing is to reducethe dimension o the transformed/decimated noise
eigenvectors, a shorter-length filter is desired. Note that thelength of the noise eigen-
vectors after decimationis [ #£+L=17 where L is thefilter length, D is the decimation
factor which is less than or equal t0 Dyor = N/Ny and [z ] refers to the smallest
integer greater than or equal to x.

Asthere is no need for alinear phase requirement, an IR filter may be employed.
The absence of a linear phase requirement in IR designs should result in a smaller
filter length, L, where L istaken as some appropriate effectivelength o the: associated
impulse response. Note, however, that the classic IR low-pass designs such as the
Butterworth, Chebyshev, Elliptic, etc., filters incorporate poles that are very near
the unit circle so that the associated impulse responses are relatively long. It was
determined that these classic designs offer little or no advantages in terms d lengths
versus band specifications as compared to such FIR techniques as the Hamming,
Hanning, or Blackman windowed low-pass filters (L PF). Also note that a high degree
o passband ripple may not pose a significant problem as there is a procedure, to be
discussed shortly, for the removal of the ripple that follows the decimation. operation.

A major factor in determining an appropriate filter length is the width o the
transition band. The simplest means o increasing the width o the transition band,
and, hence, shortening thefilter length, isto decimate by afactor that isless than the
maximum allowable limit D,,.,.. This would increase the distance between the edges
o the beamforming sector, the region encompassed by the mainlobes of the: N, beams,
and the spatial location 4 = = /D, thelocation that is scaled-up to the spectral edge
(1 = =) after decimation. Thus, by designing a filter with a transition band that lies
within the spatial zonethat isexterior to the passband of the beamforming;sector, the
aliasing effects are essentially confined to this region which we disregard. Another

approach is to simply alow the passband edge to extend within the beamforming




sector as it has been shown in a preceding chapter that beamspace DOA architectures
tend to perform rather poorly in termsd estimation bias/variance at the edges o the
beamforming sector. This effect is attributable to the reduction in the total signal
power, b (4)b(p), as the signal nears the edge of the spatial subband. Thus the
transition band o the filter may be designed to encompass perhaps 25-50% o the
total beamforming sector in which case one would have to allow an .associated overlap
amongst subbands probed in succession or in parallel. Due to the characteristic shape
d the noise eigenvector spectra, the aliasing effects primarily originate just outside of
the pre-decimation subband defined over p € [—n/D, n/D]. Thus specifying that
the transition band o the filter be centered at =/D, the aliasing will be primarily
present in the edges o the beamforming sector which are disregarded. Returning to
the N, = 8 beam example, an N = 128 element Hamming-windowed LPF with a
transition band defined over the region p € [6.57/N,9.57/N], wihere p = 8x /N is
both the edge of the beamforming sector and the edge o the pre-decimation subband,
proved to be a reasonable design. A sketch o the passband associisted with this low
pass filter design can be found in Figure 4.4. The filter response is shown aong
with the MUSIC null spectrum associated with the use d all spatially basebanded
transformed noise eigenvectors to show another feature o this filter selection: the
interlacing of the nullswhich resultsin adramatical reduction in the effectsd aliasing.
As the out-of-band nulls d the basebanded beamspace MUSIC null spectrum are at
known data-independent spatial positions corresponding to the common null locations
o the beam set of Figure4.3, thefilter parameters can be selected to produce the null
interlacing effect as seen in Figure 4.4. Also note that the use o all beamspace noise
eigenvectorsin aMUSIC formulation resulted in the removal o the non-signal in-band
spatial null that was present in the single transformed noise eigenvector spectrum o
Figure 4.2. Theresultingfiltered eigenvector MUSIC null spectrumisshownin Figure
4.5 and the corresponding decimated MUSIC null spectrum isincluded in Figure 4.6.

With the modulation (spatial basebanding), filtering, and decimation operations
notated by M, F, and D, respectively, the decimated/transformed noise eigenvectors



arethen v; = DFM {We;}, 1 > K. Asdecimation, filtering, and modulation
are linear operations, these may be performed a priori on the N, columns of W as

evidenced in

v, = @fM {Zb: Wkei(k)} = ZS [DfM {Wk}] e,'(k) = Zé zke,-(k) = Ze,-,
k=1 k=1 k=l
[4.6]
where

7 = |u — DEM {W). [4.7]

Hence, thematrix Z o dimension Nz X N,, where N; = [ﬂf% 1, may be computed
a priori and applied to the beamspace noise eigenvectors e;, i = K +1,..., N,. In the
more general case o sampling rate conversion where the desired "decimation” factor
is not an integer but can be expressed as a ratio d two integers D = Mp/M;, the

corresponding matrix Z is computed as
Z = Dy, FIy, M {W}, [4.8]

where Dy, represents a decimation operation by a factor o Mp and I, refers to
an interpolation operation by a factor o M;. Note that the filter frequency design
specifications are appropriately modified to reflect the positioning following the in-
terpolator. Also, due to the modulation operation, the matrix Z can be employed
for a common beam set steered to any sector o space. In this mode o operation,
the estimates of the signal p locations provided by the algorithm are relative to the

center o the beamforming sector.
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4.2.2 Incorporation of Filter Deconvolution

Astheinclusion of a properly designed filter will result in negligiblealiasing effects,
it is possible to reduce the row-dimension o the matrix Z, and hence the order o
the polynomial that ultimately needs to be rooted. This computational advantage is
accomplished through the deconvolution d the decimated filter sequence from each
column o Z as substantiated in this section.

Denoting the spatial DTFT d the ¢’th transformed and decimated beamspace
noise eigenvector as VD(}M(;L), we find, as similar to the form in equation (4.4),

Nz .
Viru(p) = 3 vilk) 47D, 4.9
k=1

The above form offers an alternative view d the decimation procedure where the
spatial spectrum VDFM( ) isexpressed in terms of the DTFT’s d the filter and the
i'th modulated-transformed eigenvector. Defining the DTFT’s

. N . )
Vid () = 30 vig(k) e [4.10]
k=1
L .
H(p) = 3 h(k)ert1) [4.11]
k=1
where v§) = M {We; } = M {v; } and h is an Lx1 vector composed d the entries

of thefilter impulse response. One can express Vlg'}M( ) as

D-1 - 27l @ M —2rt
0 1 a i

Notice that the form o (4.12) |mpI|esan integer-valued decimation factor D. Modi-

fications for the more general cases where the sampling rate alteration is expressible
as a non-reducible ratio of two integers, D = Mp/M;, are readily incorporated into
the procedure and will be addressed later in this section.

Assuming that aliasing effects are negligible, the £ = 0 term (region surrounding

baseband) dominates so that the following approximations are equally vaid

i 1 K i) KB
Vieu(n) ~ 'EH(B) W (%)

[Z H( %fﬂ VA()(%). [4.13]

&




Observe that the bracketted term in the latter approximation is simply the DTFT d
the decimated impulse response o thefilter sequence, Ap( k) = h( D k). Acceptance
d the above approximations suggests that one is capable d removing the effects o
the filter from the decimated null spectrum. Thus, we may acquire the pertinent
(signal) information associated with the eigenvector spectrum by viewing an alternate
spectrum, denoted V{9, .- (1), given as

i V(i) (1)
VD, o) = Z?‘IDZM( 7Y [4.14]
=0 D

Equivalently, the spectral division can be accomplished by deconvolving the deci-
mated filter sequence out o the i'th decimated eigenvector, Ze;. As the deconvolu-
tion operation is also linear, one can simply deconvolvethe decimated filter impulse
response out from each column o Z to form a matrix Z'. Denote the deconvolution
operator as G! sothat Z’ = G'DFM {W }. Recall that Z is an NzxN, matrix
where Nz = [%]. Assuming that the deconvolution is exact, the sized Z’ is
NzxNy, where Nz = [22L=17 _ L7 4 1 As the imperfect filtering introduces
a small degree d aliasing, the deconvolution is not exact. Therefore, there exists a
remainder term that must be considered such that the resultant process may not be
causal. Numerically it is better to carry out the deconvolution by way d spectral
division. In this case, the DTFT o a given column o Z is divided, point-wise, by
the DTFT o the decimated filter sequence so that the inverse DTFT o the result
provides the associated deconvolved column o Z'. Depending upon the valuesd N
and N,, simulations have shown that possibly one or two extra points on either side
d the Nz points should be appended to each column d Z'. A suitable criterion em-
ployed in simulation studies is that all points whose magnitudes greater than 5-10%
o the maximum value should be included in Z'.

Returning to the example cited earlier where the beamforming matrix correspond-
ing to an N=128 element ULA with d = A/2 and N,=8 beams is operated on by an
L = 128 length Hamming-windowed LPF and then maximally decimated, the di-

mensionality of the Z matrix is NzxNy, Nz = [#£L=1] = 16. Assuming perfect




deconvolution, the associated value o Nz is 9. Adopting the 10% criteriain the
selection of the row-dimension of Z’, it was found that one extra value per column
was needed. By way of spectral division employing the FFT/IFFT algorithms, the
extra values were the last samples of the IFFT, which were wrapped-around to form
thefirst row of Z'.

In the case of non-integer decimation where thefactor D isexpressible as a ratio of
two integersas D = Mp/M;, asimilar procedure can be implemented. Referring to
Equation (4.12)) the spectrum V,f})(-) is replaced by the pre-filtered spectrum VI(,'&(-)
defined by the DTFT of the:’th transformed, modulated, and interpolated (M) noise
eigenvector. The applicable decimation factor in (4.12) is then Mp. Note that the
filter frequency-band specifications are selected to reflect the presence of the interpo-
lation stage. Asaresult, for the matrix Z defined by Z = Dy, F Iy, M { W }, the
Ny columns of the matrix Z’ are found by deconvolving the decimated filter impulse
response (decimated by the factor Mp) out from the corresponding columns of Z.

The reduced row dimension of Z’ relative to that of Z ultimately results in a
computational savings for DOA estimation at the expense of a dlight performance
degradation as to be shown in a subsequent section. The application of multirate
noise eigenvector processing to the MUSIC algorithm is analyzed in Section 4.2.3
whilean application tothe TLS-ESPRIT algorithmisconsidered in Section 4.2.4. The
two algorithms are considered as representative of the class of eigenstructure DOA

estimators. Extensions to other DOA estimation algorithms are easily accomplished.

4.2.3 Root-MUSIC Incorporating Multirate Eigenvector Processing

The multirate eigenvector techniqueis simply incorporated into the MUSIC ago-
rithm of Schmidt [26]. Asthe transformed beamspace eigenvectors, We;, : > K, are
orthogonal to the element-space manifold vectors corresponding to a signal arrival

angle, an(px), k < K, thefollowing condition holds

Ze;,=DFM {Wei} 1 DFM {aN(uk)} 1> [X', k< K. [4.15]
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Assuming that the filter is ideal with a cutoff at the spatial location x4 = = /D, it
is easily observed that the in-band signal nulls are preserved through the decimation

operation such that

(DFM {We; h' (DF M {an(u)}) = (Ze:)" an,(Dpx) = 0 1 > K, k < K.
[4.16]
If thefilter is properly designed to limit aliasing yet pass all in-bandl signals, equation
(4.16) is a reasonably accurate approximation. Thus a suitable MUSIC null spectrum
can be defined as

Ny

Nou(p) = Y |af,(Du) (Zé)

‘2
k=K+1

= agz(D“)ZEnEszaNz(Dﬂ), [4'17]

where the estimated noise eigenvectors define

B, = [éK+1 TV 2éN,,] [4.18]
and ay, (D p)isan Nz-dimensional element space manifold vector. The MUSIC DOA

estimates are estimated as the peaks of the spectrum, Syu(u) = 1/ Nuu(p), ie.,
jx = max Syy(p) = min Myu(p) i < K, [4.19]
153 s

where the true angles, §; are computed from ji; viafy = sin-' (ju A/27dD), k <
K.

Due to the Vandermonde structure of ay,(Dy), the spectral search for the esti-
mation of the DOA angles as suggested in equation (4.19) can be converted to the
rooting of polynomial ala Root-MUSIC. The technique is included in the summary
of the algorithm included below. Note that the Root-MUSIC algorithm employing
the deconvolved version o Z,Z' = G'DFM {W}, is defined in a similar way

where Z’ and Nz are substituted for Z and Nz, respectively.




98

Summary o Root-MUSIC Application Algorithm

1. form the Nz X N, decimated-filtered-modulated beamforming matrix a-priori:
Z =DFM{W)

2. EVD of R, = =M, y(m)y"(m)/M, where y(m) = WHx(m), m=1,....M.

3. estimate number o sources, K, and place Ny-K “smallest” eigenvectors as

columns of E,,

4. with pr = S5 P(Nz — kti,i 1), k=0,1,...,Nz-1, where P = Z E,EH ZH,

construct

p(z2) =po+prz+ .. —f—pNZ_IzNZ_1 + ...+ p’{z?NZ_3 + p("J‘zm’Z_2

5. root p(z), select K signal roots: 0 = sin~(angle{2:}2/2xdD) k =1,2,.., |?

Comparing the above prescription to the approach delineated in Chapter 2, the
Nz x N, transformation Z replaces an N, x N, matrix Q. The only disadvantage is
a dight increase in computation as the polynomial to be rooted is slightly higher in
order. However, the dimension Nz can be selected to be only dlightly larger than N,
if the deconvolution operation, G~!, is incorporated. The advantages of using the Z
approach over that o Q are robustness to the computational accuracy o the rooting
algorithm and removal o the over-restrictive structural requirementson the type o
beamformer employed.

The accuracy o the Z and Z' transformations was assessed by observing the signal
root locations when the ideal sample covariance is decomposed for use in. the Root-
MUSIC algorithm. The parametersd thearray, beamformer, and decimator are those
presented earlier in the example o Figures 4.2-4.6. The resulting root locations are
shown in Figure 4.7 and the actual signal root locations for the two transformation
types are included in the figure. The extremely accurate signal-root placement asso-

ciated with the use o Z suggests that the orthogonality criterion Ze; L an,(Dp),




1 > K, k < K, isvadid. Also note that the effects of the filter can be removed
via deconvolution without appreciably affecting the performance of the algorithm as
indicated by the locations o the roots associated with the use of Z'.

To visualize the removal o the passband ripple as induced by the filter when
deconvolution is employed, an example involving an FIR filter designed via the
Parks-McClellan [41] algorithm with a "large" passband ripple was analyzed. In
addition, to verify the validity o the general multirate procedure, an N = 90 sen-
sor array with N, = 6 beams was used in a scenario involving decimation by a
non-integer fraction D = 11.25 = 45/4 which is less than the maximum allow-
able value of D,,.. = N/N, = 15. The filter was designed to be of length 270
- note that the filtering is accomplished at the output o the interpolator stage
(D; = 4). The sub-maximal decimation factor alowed for a wide filter transition
band, (1/4)(5/N)r < u < (1/4)(11/N)=, and, combined with a frequency band
weighting favoring a high stopband attenuation, resulted in a 67 dB stopband atten-
uation with a 1.8dB passband ripple. A plot o the spatial responses of the filter
(dashed line) and interpolated beamformers (solid line) is presented in Figure 4.8.
The beamforming weight vectors were interpolated, by a factor o 4, to alow a visual
comparison with the filter response curve.

Figure 4.9 shows the response o the NV, = 6 transformed, filtered, and decimated
beamforming vectors along with the spectrum o the decimated filter. Note that the
decimated filter magnitude spectrum (dashed curve) appears to follow the shape of
the beam peaks.

Thespectral MUSIC algorithm was employed with an ideal noise-only beamspace
covariance matrix to comparetheeffectsd using Z or Z'. Asthissituation is effected
using E,E¥ = |, the MUSIC spectrum characterizes the imparted distortion to a
white noise input spectrum by theinclusion of filtering or filtering with deconvolution.
Figure 4.10 shows the MUSIC spatial spectra for a noise-only input employing the Z
and Z’ techniques. The results show that the deconvolution operation was effective

in removing the filter shape from the spectrum leaving only a d'ight ripple that is
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representative o the finite spatial window associated with the beamformer. Again,
the deviation at the edges o the spatial spectrum from the anticipated constant
level is expected: the beamforming sector does not extend to the edge of the band
p=m/D.
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Figure 4.8 Spatial responses d an L = 270 length equi-ripple filter and interpolated
Ny = 6 beam set derived from an N = 90 sensor array. The spatial foldover
frequency for the sub-maximal decimation architecture is located at
sinf = (1/4)(8/N).
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Figure 4.9 Decimated filter/beamformer spectra associated with the filter/beam set
d Figure 4.8.
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Figure 410 MUSIC spectra associated with ideal white-noise beamspace covariance
with the use o the Z and Z’ transformations derived from the beamforming/filter
architectured Figure 4.8.
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4.2.4 TLS-ESPRIT Incorporating Multirate Eigenvector Processing

As with the beamspace Root-MUSIC algorithm of Chapter 2, the beamspace
ESPRIT formulation of Xu, et.al. [40] requires a rather restrictive specification on
the form of the beamforming vectors. As we will see in this section, the common-
place uniformly-spaced line array of sensors allows an ESPRIT application of the
transformed-decimated beamspace eigenvector approach of Section 4.2.2.

Given the N,-K transformed and decimated noise eigenvectors, define an Nz x
([Nz — N]  K) matrix Ez, whose columns form a subspace that; is orthogonal to
that formed from the vectors Ze;, ¢ > K. An efficient means of computing Ez, is
by way of a QR decomposition of ZE,. Note that the standard ESPRIT approach
employs a matrix whose K columns span an estimate of the signal subspace; here we
have a set of vectors in Ez, whose span encompasses the (decimated element-space)

subspace, since Nz > N,. Assuming aliasing effects to be negligible, we have

span{an, (Dur), k=1,..,K} C range{Egz,}. [4.20]

Although beamspace signal eigenvectors are not transformable to their element
space counterparts, there is an alternative means of finding a set o vectors that are
related to the beamspace signal eigenvectors and also span the orthogonal subspace of
span {Ze;,i = K t1,.... N,}. The Nz x N, matrix transformation Z has full column
rank so that the orthogonal subspace of span {Ze;,: = K +1,..., N,} isexpressible as
a collection of Nz — NV, spanning vectors which are orthogonal to the columnsof Z as
well as to the K vectors lying in the column space of Z. A permissable set of vectors

which span the orthogonal subspace are the columns of
Ez, = lZ(ZHZ)'leIE L Z(ZPZ) ek By .. ngZ_NbJ , [4.21]

where{ﬂl, oy Bng-nN, } is a set o vectors that span the subspace orthogonal to the
column space of Z. Noticethat theset of vectorsin (4.21) are not orthogonal but still
are adequate for usein ESPRIT. In addition to the computational savings in avoiding

a QR-decomposition, construction of Ez, according to (4.21) also allows one to derive
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the theoretical angle estimation performance using available asymptotic expressions
for the beamspace eigenvector statistics as we shall see in Section 4.3.

We will return to the "over-specification™” issue of the decimated signal subspace in
this section and show that judicious beamforming and filter design allows for proper
operation of a suitably defined ESPRIT algorithm. Assuming that the beamform-
ing and filtering operations produce little aliasing effects so that equation (4.20)is
a reasonably accurate approximation, we may define a TLS-ESPRIT procedure to
estimatethe directions o the K signal arrivals based upon the Vandermon.deform o

an,(:). The algorithm is summarized as follows.

Summary of TLS-ESPRIT Application Algorithm

1. form Nz x N, decimated-filtered-modulated beamforming matrix a-priori: Z =
DFM {W). formaset of vectors, B;,i = 1,..., Nz— N,, that span asubspace
orthogonal to range{Z).

2. EVD o R, = TM_ y(m)y#(m)/M, where y(m) = WHx(m) m=1,...,M.

3. estimate number of sources, K, and form the matrix Ez, composed of vectors

which span the estimated decimated signal subspace:

By = [Z(ZHZ)‘lél L Z(ZT) e B, zﬁNz_Nb}

4. form (Nz = 1) x 2(Nz — N, + k)matrix B, = [El | EQ] where E; and E,
are the first and last Nz-1 rows of Ez,, and compute the 2(Nz — N, T 1;') x
2(Nz - N, t1?) EVD EE E,, = ESE”

5. partition Einto (Nz — N, + |?) X (Nz -V, + R’) submatrices:

E _ E:]H ]?12
E21 E22
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6. compute the (Nz — Ny + K) x (N7 — N, T K) EVD T®T! = —E,,E3}

7. for those K nearly unit-magnitude eigenvalues \; = ®;;, estimate the corre-

sponding signal arrival direction as §; = sin~(angle{\;}\/27dD)

4.2.4.1 Location of Extraneous Roots Created by Filtering

A major concernisthat theextracolumn dimension of Ez, over the K-dimensional
signal subspace will result in the declaration o ambiguous signals. First of all, note
that we've already at this point estimated the number of signal arrivals. Here, an
argument is presented that suggests that the extraneous roots will not lie near the
unit circle. This claim is also verified via a simulation examplein Section 4.4.

First, note that in the case o ideal decimation where thefilter exhibits a perfect
low-pass nature, equation (4.20)applies. Recall that the £’th diagonal element of
® has unit magnitude, ®;, = e’P#*, Now consider the inclusion. of a linear filter
in the decimation operation. The aliasing effects caused by decimation will result
in an ESPRIT signal eigenvalue that will not have a unit magnitude characteristic,
even if the ideal beamspace covariance matrix is available. However, a judicious
filter and beamformer design will result in an approximate unit-magnitude eigenvalue
characteristic.

In addition to ESPRIT eigenvalues directly corresponding to signals, assume that

there is an extraneous unit magnitude eigenvalue, A,, i.e.,
hEz — AT Ez =0.

This suggests that, in addition to the Vandermonde components arising from the
true signals, a Vandermonde vector corresponding to the angle Dp, also liesin the
decimated signal subspace. Equivalently, aJHVZ(D,u,,) is orthogonal to the range of
ZE,, so that

all (Du.) [ZE.EZ"] an,(Dp.) = 0.




Thus the spectrum of every transformed and decimated beamspace noise eigenvector
exhibits a null at the spatial location Dy.. By design, there are no common in-band
beamformer nulls and the filter response is also non-zero across the spatial sector o
interest so that A, must be an ESPRIT eigenvalue associated with a signal arrival.
Refer to Figure 4.6 where a Hamming-weighted L PF was employed as the dec-
imation filter applied to noise eigenvectors generated from an N, = 8 spatial DFT
beamformer. Thefilter has an associated spatial response that isrelatively flat across
the subband and there are no common in-band nulls in the set of beamforming vec-
tors. Note that the only nulls in the MUSIC null spectrum correspond to signal
arrival angles. The behavior at the edges o the band is expected from the presence
o aroot near 7 at a radius o 0.9 as shown in Figure 4.7. Asa result o the relation-
ship between the ESPRIT eigenvalues and the roots generated from Root-MUSIC, it
is anticipated that an extraneous ESPRIT eigenvalue will lie in the complex plane
near the unit circle at = and that all other non-signal eigenvalues will be sufficiently
displaced from the unit circle. Thisis acceptable since these eigenvalues are discarded
anyway as a result of previous discussion. In summary, an ESPRIT eigenvalue with a
nearly unit magnitude suggests the presence of a signal at an associated spatial angle

as long as thefilter and beamforming vectors are judiciously designed.

4.3 Theoretical Performance Analysis

As previously observed, the use o conjugate centro-symmetric beamforming in
conjunction with uniformly-spaced linear arrays with phase referencing at the array
center results in a purely real-valued beamspace manifold. The real-valued property
o the manifold allows one to decompose only the real part o the sample covariance
matrix to determine the signal or noise subspaces. In addition to the obvious compu-
tational advantages o a real-valued decomposition, a performance benefit is realized
through the decorrelation o correlated signals. In uncorrelated signal environments,
the real and complex-valued procedures result in similar performances in terms o

estimation variance; however, the bias is, in general, smaller with the use o red
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covariance processing. As a result d these advantages as well as the applicability
d either approach with regard to the Root-MUSIC and ESPRIT based procedures
incorporating eigenvector decimation, the theoretical performance d the two ago-
rithmic approaches are derived for the case d real-covariance processing. Extension
for the case d complex processing is readily determined.

As before, define Ae; = e; — e;, i=1,...,K as the error in the i'th eigenvector
due to the use d a sample estimated the covariance matrix where é; and e; are the
respective i’th eigenvectors obtained from the beamspace sample covariance matrix
and the ideal covariance, under some common uniqueness criterion. The distribution
d Ae; was shown in Appendix D to be asymptotically Gaussian with zero mean and
covariance

an
E{MAepel} = S Y% i )&‘A )emeg, k6=1,..,K [4.22]

e = % { MeAebmebnk + AeAnbmnbie
+ (eI Rep)(efRyen) (1 — 6me)(1 — k)
+ (el Ryen)(ef Rrer)(1 — 8mn)(1 — ie) | 4.23]
R; = Im{R}=BIm{Ps}BT. [4.24]

To allow for the use o previous MUSIC and ESPRIT (42] performance analyses,
it is assumed that the aliasing effects are negligible. As noted earlier, the assump-
tion is valid when the decimation operation includes a judiciously designed filter.
This condition may be verified by observing the placement o the (signal) MUSIC
roots/ESPRIT eigenvalues in the case of a known ideal covariance. Once again, the
Root-MUSIC signal locations for the motivational example shown in Figure 4.7 con-
firm the validity d the assumption, particularly in the case where deconvolution is

not employed.
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431 Performance Analysisof Root-MUSIC Formulation

The asymptotic variance d the Root-MUSIC estimator is readily obtained us
ing available results when assuming orthogonality between the transformed-filtered-
decimated beamspace noise eigenvectors and the decimated el ement-space manifold,
ie.,Ze; A an,(0k), k=1,....,K,7:= K +1,...,N,. By observing that the spectral
and Root-MUSIC formulations offer the same asymptotic performancein termsd the
variance as shown in [10], the expression for the spectral MUSIC estimate variance
employing real-covariance processing in Chapter 3 can be easily amended to the case

at hand. Specifically, the null spectrum can be written as

Nuy(0) = aﬁz(‘)){ Zb (Zé,-)(Zéi)H}aNZ(G)

1=K+1
Ny
= af,(0)Z {IN,, I é?} Z" ap, (9). [4.25]
1=K +1

Observing the results in Chapter 3, the asymptotic variance of the Root-MUSIC

estimator is easily shown to be expressed by

2 2
. TR o (el ZH ap, (6;
AVar{f;} = S Queal | * ’,VZ( ) i=1,..,K, [4.26]
MaNZ (Bi)ZEnEZZHaNZ (9,)

where M isthe number o snapshots, ay,(6;) is the derivative o an,(8) with respect

to the location parameter § and evaluated at § = 6;, and (X, e), k=1,...,.K, are
the signal eigenvalues and corresponding eigenvectors d the real part o the idea

beamspace covariance matrix.

4.3.2 Performance Analysis of ESPRIT Formulation

The alternate expression in equation (4.21) for the decimated signal subspace
involving the transformed beamspace signa eigenvectors and a non-random basis for
the orthogonal subspace o the columns o Z alows for an asymptotic analysis o the
ESPRIT formulation. The error in the matrix whose columns form a basis for the

decimated signal subspace, AEz,, is simply

AEg, = Z(ZHZ)“AeIE...EZ(ZHZ)‘IAeKEONZx(NZ_Nb)]. 14.27]
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In thisform, theerror isonly afunction of theerror in the eigenvectors associated with
the signal eigenvalues of the beamspace covariance. This alows for an asymptotic
variance analysis similar to that found in [42]. The analysis in [42] is valid for the
Least-Squares (LS) and Total Least-Squares (TLS) versionsof ESPRIT. The variance
analysis, for real beamspace covariance processing, is included in Appendix E. The
asymptotic variance associated with thei'th angle estimatein the case of uncorrelated

sources is

(a0} = [2nd;cos0-]2 oM [Z Ak —02 7 [t (k)BT s}

i (
Y
+ 12;%; )\k_k_)‘g (Im{ (feka}
- Im{xi(f)e{ai}Im{xi(k)efai}”, [4.28]
a = (Z7Z)7ZA[T - T (T, E] e, 4.29]
E., = [eK“f...fer}, [4.30]

where 1 denotes pseudoinverse, x; and q; are the right and left eigenvectors associated
with the i'th (signal) eigenvalue of F = (I Ez,)IT,Ez,, and T, and T'; are (Nz —
1) X Nz matricesthat select thefirst and last Nz — 1 rows of a matrix with Nz rows,
respectively. Note that the expressions contained in Appendix E may be applied to
the more general case of correlated signals; only the result for the uncorrelated signal

scenario is summarized here due to its simpler form.
44 Computer Simulations

A number of simulations were conducted to assess the validity of the noise eigen-
vector transformation/decimation techniques with regard to angle estimation. Specif-
ically, the theoretical and empirical standard deviations of the Root-MUSIC and
TLS-ESPRIT estimators were compared in a variety of source/processing scenarios.
Also, the performance o the decimation approach was compared to the stochastic

Cramer-Rao Lower Bound [26, 43].
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Common to all experiments, 600 trials were employed to derive the empirical
results and only M = 16 snapshots were used to estimate the beamspace covariance
matrix. Although this situation can hardly be classified as asymptotic in the number
of snapshots, the theoretical performance curves were observed to compare rather
closely to the derived experimental results.

The empirical standard deviations were computed in a variety d scenarios in-
volving one or two uncorrelated, closely-spaced signals. A MUSIC root or ESPRIT
eigenvalue was classified as arising from a signal if the root/eigenvalue location was
within a 0.15 radia distance from the unit circleand lying in an angular (decimated)
region encompassing 85% o the unit circle, i.e., in the region [—0.857, 0.857]. All
trial cases, including those unresolved situations where only one signal was observed
in the neighborhood d a signal pair, were used to compute the location statistics.

Experiment 1: The simulation parametersd this experiment associated with the
array, beamformer, and decimation components are similar to those outlined in the
exampled Section 3, namely, an N = 128 element ULA with half-wavelength spacing
was operated on with an N, = 8 channel spatial DFT beamformer. The spatial
window was centered at broadside so that the spatial region — N, /N < sinf < N,/N
was probed. An L = 128 length Hamming-weighted low-pass filter was employed in
the decimation procedure configured for maximal decimation, i.e., D = N/N;.

Two half-Rayleigh spaced signals of equal power were embedded in additive com-
plex Gaussian noise so that a sensor level 10 dB SNR was achieved. To assess the
effects of signal placement within the spatial beamforming sector on the estimation
variance, the center o the signal set was shifted from baseband (sin0O = 0) to the
edge of the window (sin0 = 8/N). The empirical standard deviation o the two
Root-MUSIC angle estimators, i.e., those formed using the matrix Z as well as the
deconvolved version Z’, were computed. Note that thedimensiond Z was 16 x 8 while
Z' wasformed by adding one additional (remainder) row to therequired (Nb+1) X N

matrix to form a 10 X 8 eigenvector transformation. The results are shown, along
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with the theoretical prediction as obtained from equation (4.26) and the stochastic
Cramer-Rao Lower bound (26, 43] in Figure 4.11.

Several comments relating to Figure 4.11 are in order. Although the number of
snapshots is relatively small, the theoretical performance curve is still a reasonably
accurate representation of the empirically derived result. The rippled nature of the
variance curves is due to the limited number of beams that are implemented in the
approach. This characteristic is the result of a varying spatial power gain as similar
to that depicted in Figure 4.10. As noted earlier, the degradation in performance
near the band edge suggests the need for sub-band overlap if one is interested in
the detection and localization of all signals across the visible spatial spectrum. The
variance of the estimate at the extreme right edge is not shown as the experimental
and theoretical curves exhibit an exponential rise. In the central region of the band,
however, the eigenvector transformation-decimation technique is seen to produce an
accurate estimate in this Root-MUSIC formulation as evidenced by the closeness of
theresultsto the Cramer-Rao Bound. Note that the curves related to the theoretical
variance associated with the use o Z and the Cramer-Rao Bound overlap.

Experiment 2: Employing the same decimation transformations as in Experiment
1, the variance of the Root-MUSIC estimators were observed for a varying SNR for
two signals located at 10.6° and 11.5°, as used in the motivational example of Figures
4.2 through 4.7. The empirical and theoretical standard deviations were computed
and are depicted in Figure 4.12.

Note that the theoretically derived curve, defined for the 16 X 8 transformation
Z, closely tracks the corresponding empirical counterpart at moderate to high SNR
values. The deviation at the lower SNR values is attributed to the signal-merging
effects in the resolution threshold regime o operation as noted in Chapter 3. Al-
though the stochastic Cramer-Rao Bound is based upon the statistics of the available
beamspace data and does not assume the presence o any sub-optimal techniques

such as decimation, the Root-MUSIC procedure incorporating decimation is readily
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observed to essentially offer the optimum performance associated with un-biased es
timators. Also, the similarity between the empirical variance curves corresponding
to the competing approaches (Z versus Z') suggests that the computational savings
associated with the smaller Root-MUSIC polynomial viathe used Z’ is not obtained
at the expense o a higher estimation variance. In fact, simulations have shown that
the estimation variance is usually smaller for decimation architectures incorporating
deconvolution. However, the imperfect deconvolution usually results in an induced
estimate bias as will be observed in Experiment 3.

Experiment 3: The main purpose o this experiment is to show that thefiltering
operation in the decimator may not be warranted in certain situations. A single
signal was positioned at 1° and the bias performance was studied for the use of two
beamforming architectures. In one situation, N, = 6 DFT beams were formed from
an N = 36 element ULA. The beamspace to element-space eigenvector transformation
was configured for maximal decimation, D = 6, with and without the use d a Parks-
McClellan equiripple FIR filter exhibiting approximately 50 dB attenuation in the
stopband region. In theother beamforming scenario, a practical application o N, =6
Taylor weighted beams [45], exhibiting a 50 dB sidelobe level, were spaced at the half-
power pointsand employed in asimilar schemeinvolving the use/absence of additional
filtering in the decimation operation. Note that the latter approach will produce
an angle estimate exhibiting a substandard resolution ability due to the attendant
wider mainlobes relativeto DFT beams. However, this methodology is often required
in practice to reduce the deleterious effects o sidelobe clutter, i.e., the masking o
signals within a given beam by a strong clutter signal in the sidelobes of' the beam.
The beam spacing/aperture weighting associated with this case results in no common
spatial nulls amongst the beam set so that the application o past beamspace MUSIC
(Chapter 2) and ESPRIT [40] formulations is precluded.

The empirically derived mean location estimates were determined for a varying

SNR for various schemes incorporating the two beamforming architectures and are




plotted in Figure 4.13. Again, the purpose hereis not to compare the two beamform-
ing approaches, rather, it is to observe the effects on performance of the inclusion
o afilter in the decimation operation. Also, the inclusion o a filter increases the
order d the polynomia to be rooted thereby increasing computation and creating
extraneous roots. With reference to Figure 4.13, note that the use o a filtering oper-
ation in the decimator with no additional deconvolution stage resultsin essentially an
unbiased estimator for both beamforming architectures. As observed in the results,
the Taylor-based sensor weighting provides sufficient attenuation so that a negligible
aliasing effect is incurred, i.e., the induced estimation bias is small. However, with
the filter incorporated into the decimation operation, the imperfect deconvolution
stage imparts a small bias o —0.02". Thus the filtering operation is unnecessary as
evidenced in the bias plot and a smaller standard deviation should be reaized on
account o the smaller dimension d the resulting Root-MUSIC polynomial.

Essentially the opposite is observed for the case o unweighted spatial DFT beam-
forming. Here the sidelobe levels are large so that aliasing effects are present as
evidenced by the top curve indicating a 0.05° bias in the unfiltered mode o oper-
ation. With filtering as well as a deconvolution stage included in the decimation
operation, a smaller bias d 0.025" is realized. The need for filtering is evident from
observing the required dimension o the transformation Z’. Comparing the necessary
row dimension o the decimation transformation incorporating deconvolution, Z’ for
the unweighted DFT and Taylor beamformers, the required sizes were 10 x 6 and
7 x 6, respectively. These required sizes were determined according to the criteria
discussed in Section 4.2.

Experiment 4: In this experiment, we test the validity d the TLS-ESPRIT for-
mulation o the noise eigenvector transformation-decimation procedure and verify the
theoretical variance expression o Section 4.3, equation (4.28). The source/processing

parameters are the same as those of Experiment 2.
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The theoretical and empirical standard deviation were computed over a varying
SNR and the results are depicted in Figure 4.14. The results show that the per-
formance predictor of Section 4.3 accurately tracks the empirical results. Also, the
variance associated with the decimation architecture incorporating a filter deconvo-
lution stage outperforms the "undeconvolved" counterpart. To verify the conjecture
that the quiescent locations of the extraneous eigenvalues are sufficiently away from
the unit circle, the ESPRIT eigenvalues were calculated in the absence o noise and
plotted in Figure 4.15. Note that only the eigenvalues interior to the unit circle are
plotted as the closest exterior eigenvalueislocated at a radius of 5.4 (associated with
the Z transformation). Referring to Figure4.15, in the absence o deconvolution, two
"signal" eigenvalues appear at the correct location and the eigenvalue closest to the
unit circle of the remaining is located at a radius of 0.62 and an angle very near 7.
When deconvolution is incorporated, the closest non-signal eigenvalue is located at
7 at a radius of 0.09. However, the signal eigenvalues exhibit a small bias at the

perceived (translated) angular locations of 10.587° and 11.465.
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Figure4.11 Experiment 1: Empirical and theoretical left signal standard deviation

versus spatial position d a 10dB, half-Rayleigh spaced signal set. Central position

d signal set varied from mid-band to 6/N. The N, = 8 spatial DFT beams were
formed on an N = 128 sensor ULA.
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Figure 4.12 Experiment 2. Left signal standard deviation versus source SNR for the
two in-band signal, N, = 8 beam example scenario depicted in Figure 4.3.
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Figure 4.13 Experiment 3: Location bias versus source SNR for an N, = 6 beam
pre-processor (un-weighted DFT or Taylor-weighted beamformers) operating on an
N = 36 sensor ULA. The mean angle estimate for asignal located at 1° was
computed over 600 trials.
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Figure 4.14 Experiment 4. TLS-ESPRIT left signal standard deviation versus
source SNR for the two signal exampled Figure 4.12.
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Figure 4.15 Experiment 4. Quiescent locations d the TLS-ESPRIT eigenvalues
associated with the decomposition o the ideal beamspace covariance input.
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4.5 Conclusions

In this chapter, a novel approach to angle estimation in the beamspace domain
was developed. The approach offers a computationally attractive and non-restrictive
procedure relative to the type o beamformer employed that is easily implemented
in the MUSIC and ESPRIT algorithms. Theoretical expressions for the estimate
variance were obtained in an asymptotical analysis and confirmed in a variety o
simulations. Although the technique was applied to the uniform linear array geometry,
an extension to a two-dimensional array to provide simultaneous azimuth/elevation

angle estimates is evident and currently under investigation.
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5. CONCLUDING REMARKS

In this report, two computationally efficient formulations o a beamspace Root-
MUSIC algorithm were developed. Although similar implementations were obtained,
the two methodologies were designed under fundamentally different approaches. The
first approach o Chapter 2 resulted in a slightly more efficient implementation, rel-
ative to the algorithm in Chapter 4, but at the expense o a restrictive constraint
placed on the form o the beamforming transformation.

A conjugate centro-symmetric structural requirement on the form o the beam-
forming vectors was shown to alow for a real-valued decomposition of the beamspace
sample covariance to derive information on the estimated signal subspace. The con-
straint is not a severe one as a symmetric weighting/sensor placernent is commonly
used in practice. Although the performance benefit of incorporating real-valued pro-
cessing in a MUSIC formulation was somewhat discussed in Chapter 2, the perfor-
manceanalysis in Chapter 3 provided detailed insight into the merit o such a process-
ing approach. The derived large-sample statistics for the signal subspace eigenvectors
o thereal part of the beamspace sample covariance matrix were employed to develop
the theoretical estimate bias/variance o the algorithms in Chapters 2 and 4. The
accompanying simulations verified the theoretical expressions and served to validate
the merit of the two algorithms.

Two extensions d thiswork are currently under investigation. First, as mentioned
in Section 4.5, the multirate noise eigenvector processing technique may be applied to
a two-dimensional planar array o sensors situated in a rectangular lattice to provide
the elevation and azimuth coordinates d an impinging wavefront. In this mode, the
beams are pointed to spatial locations in a two-dimensional grid and decimation is

performed along the vertical and horizontal axes d the array. Another extension to
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the algorithm of Chapter 4 is the incorporation d procedures to allow for adaptive
beamforming, where beams are adaptively derived to exhibit nulls in the (out-of-
sector) locations corresponding to interfering sources.

A sensitivity comparison between the two approaches is also under consideration.
The application to data from a digital line array would allow a comparison between
the two techniques with regard to the sensitivity in the presence d sensor placement
perturbations, mutual coupling, etc. It is anticipated that the algorithm o Chapter 4
will be found to be more robust due to the absence o the common-null beamforming

constraint.
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Appendix A: Simple Expression for Q%’")

A simple, closed-form expression for the N, x 1 beamspace vector bg")(u) =
W}(,")HaN(u) isfirst developed assuming the conjugate centro-symmetric form o the
N x N, DFT matrix beamformer in (2.51). To thisend, consider the inner product of
an(u), where u is variable, with ay(u) evaluated at some specific angle, say u = uy.

By direct substitution

N N1
ay(wan(u) = 2 eXIO[—j (’ - )W(u - “k)] = Sn(u —we)  [A]
i=1
where Sy(u) is the real-valued periodic sinc function
sin (%Wu)
sin (%WU) .

It follows then that bg")(u) may be expressed in terms o shifted periodic sinc func-

Sn(u) = [A.2]

tions as -

Sn(u — m¥)

Sn(u — [mt 1]E)

b (w) = WM ay(u) = [A.3]

i Sn(u — [m+ Ny — ].]1—2;) |
Invoking the banded, Toeplitz structure of C%’”) and thefact that ax(u) isascalar

multiple of the Vandermonde manifold vector vy(u), one arrives at a result similar

to (2.43):
b (u) = Wi Hay(u) = QEVHIC Hay (u) = P (w)QYY Tan,(v)  [A4]

where an,(u) is given by equation by (2.48)with N replaced by A}, Here c%m)(u) =

cﬁT)HaN_NbH(u), a scalar function o u equal to the DSFT o the sequence {cg‘)}.
In Appendix B, it isshown that if N may befactored as NV, D where D = N/N, isan
integer, <7 (v) may be expressed as

m+Np—1
S(u) = (-1)™ exp [_jm%] exp lj%(Nb = 18)(1) =Rl I So(u - m%)

. [A.5]




where Sp(u) is defined by (A.2) with N replaced by D = N/N,.
Consider the equality in (A.4) for N, distinct values of u, i.e.,

an)(u,')Qg?m)HaNb(u;) = bgn)(u;), 1= 1, ceny Nb.
Collectively, this yields the matrix equation

Q™ [awau) (1) - g ()| ding el ), wa), - o))
[A.6]
- [bg")(ul) b (ug) . b )] -

As long as the beamspace manifold vectors bg”)(u;), i=1,2,...,Ns, are linearly inde-
pendent, (A.6) uniquely defines Qg"). In Appendix C, it is shown that this is the
case as long as the values u;, i=1,2,...,N,, are distinct with none equal to any o the
common null locations listed in (2.23). To simplify the solution of (A.6) for Qg”),
consider selecting the values u;, i=1,2,...,N;, such that ay,(u;), i=1,2,...,N;, are mu-
tually orthogonal. Any set of N, angles equi-spaced by 2/N, will suffice. One is
immediately tempted to choose u; = (: — 1)2/N,, i=1,2,...,N,. However, since Ny is
assumed to be factor of N, i.e., N = N,D, at least one member of this particular set
of u values will lie at a common null location for which bg")(u) is identically zero.
To insure against this and yet retain mutual orthogonality, these values are offset by
2k/N wherek € {1,2,..., N,—1). It has been determined that an offset of (N, —1)/N
works best. Thus, with u; = (N, — 1)/N T (i = 1)2/N,, i=1,2,...,N,, (A.6) is easily

manipulated to yield a simple expression for QS;"):

lem) = Nib [aNb(ul) D Ea]\'r;.(’u’]\'b)] diag{l/cg?m)(ul) 3 ey l/cg?m)(uNb)}
T
- [bg")(ul)s - sbg")(uNb)] . [A.7]

The computation in (A.7) may be simplified by observing that the first matrix
on the right-hand side of (A.7) is related to the N, point DFT matrix, denoted
Wy, through a diagonal, unitary matrix. The diagonal elements of the latter matrix

account for the offset of (N, — 1)/N in the DFT bins and the relationship between




an(u) and vy (u) in (2.50). In addition, the product o 1/c{7”(u;) with b{™ (u;) may
be simplified invoking the expressions for bg")(u) and c%")(u) in (A.3)and (A.5),
respectively. Ultimately, (A.7)may be simplified as in (2.38) where v, is defined as

1] exp [.w (N - 1YD — 1) AS]

o = (1" op-im ] oo i




132




Appendix B: Simple Expression for DSFT of Coefficient Vector for Com-
mon Roots Polynomial

Given that ay_n,+1(u) is defined by (2.48) with N replaced by N — N, + 1, it

follows that ¢ (u) = {M#

an_n,+1(u) is the Discrete Space Fourier Transform
(DSFT) of the coefficient vector o the common roots polynomial of order N — N
defined in (2.29) (normalized to exhibit conjugate centro-symmetry) multiplied by
exp[—jmu(N — N;)/2] in accordance with (2.50). Therefore,

— il\‘fb v m+N-1 ! | )

2 ﬂu) n=mH+N,, exp (-jﬂnﬁ> (eXP [j7u] — exp []rn—]\—[])
[B.1]

Recall that it is assumed that N is selected such that D = N/N, is an integer. In

) / _il\f
(u) = exp (-

this case, consider grouping the N — N, roots into N, sets having D — 1 roots each

as signified by the following factorization

(m) N— Nb m+Np—1 D-1 9
cr’ (u) = nm exp (—] 7ru> 11 H (exp [jru] — exp |jr(n + ka)N

" B.2)
where

m+Ny—1 D-1

m = ]] Hexp( jx(n + Nok)— )

n=m

= exp (—jm%) exp ( ]mQ@B_—I]) exp ( jmg[D - 1]) [B.3]

where we have used the identity

K-1
g exp (kz) = exp (-‘g‘K[K - 1]) . [B.4]

Factoring the half-angle out of each term in the product on the right-hand side of
(B.2) yields

m m+Np—1 D-1 u n + ka u n + ka
cflz)(“):’?mé’ U H exp (]7( [2 + N ])2] sin SN
i [B.5]

m+Ny—1 D—1 Nok u k=
= Nmo nH Hexp(]ﬂ[— nt b] 51n(7r £—§ +5)
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where p = exp (—-jN—_—Mlﬂ'u). Using the identity

2

sin(Kz) Ko ( kw)
(@) kl;Il sin {2 + [B.6]

and the onein (B.4), simple agebraic manipulation yields

Cgim)(“) = (—1)™ exp ( D 2 D x 2

nem  SIN (5 [u — nﬁ]

B.7]

T e (11 5= 10 - 1) " u=nd])




Appendix C: OntheDistribution of the Real Part of the Beamspace Sam-
ple Covariance Matrix inthe Case of Uncorrelated Gaussian

Sources
Recall that N, denotes the number of beamsformed and K the number of sources.

Irrespective of the tapering employed, the beamspace snapshot vector has the follow-

ing general structure:
y(n) = Bs(n) + n(n) n=1,..,.M [C.1]

where Bis N, xIC, s(n) is K x1,n(n) is N, X1, and M isthetotal number of snapshots.
(Notethat the superscript (m)’s and tildes have been dropped for notational simplic-

ity.) B is the beamspace DOA matrix and is real-valued as proved in (2.56). The
components of s(n) are the complex source amplitudes at the n-th snapshot, denoted
sg(n), k=1,..., K. As in [7], it is assumed that sy(n), k =1,..., K, are statistically
independent, zero-mean, circular Gaussian random variables with £{|sx(n)|?} = oZ,
k = 1,...,IC. The source covariance matrix is Ps = diag{c?, o2, ..., 0%}. Under

these conditions, one can decompose s(n) into its real and imaginary parts as
s(n) = s,(n) + jsi(n) n=1,.,.M [C.2]

so that s,(n) and s;(n) are statistically independent and identically distributed (i.i.d.)
with

E(s:(msT(m)} = Efsi(msl ()} = 5Ps n=1,.,M [C.3]
Similarly, with respect to the noise, it is assumed that the elements of n(n) are
samples of statistically independent, zero-mean, circular Gaussian random variables
having a common variance of ¢2. Note that this assumes the use of orthonormal

weight vectors in forming the beamspace snapshot vector. Similar to the above, one

can decompose n(n) into its real and imaginary parts as
n(n) = n(n) + jn;(n) n=1,..M [C.4]
so that n,(n) and n;(n) arei.i.d. with

E{n.(Mnl(n)} = E{ni(n)nl ()} = Bo7Ly, N=1,...,M. [C-5]




Finaly, it is assumed that s(n), n =1,...,M, arei.id., n(n),n=1,..., M, arei.i.d.,
and s(n) and n(n) are statistically independent, n =1,...M.
The real part of the beamspace sample covariance matrix may be expressed in

terms of the real and imaginary parts of each beamspace snapshot vector as

. 1 M
Reffy} = Re {33 (vn(o) + v (r(o) = vl T} [C]
1 M T 1 M r
= 37 2 ¥ ¥IC) + 3 iy

y-(n) = Re{y(n)} = Bs,(n) + n.(n) [C.7]

yi(n) = Im{y(n)} = Bsi(n) + ni(n). [C.8]
It followsfrom previous assumptions that y.(r) and y;(n) arei.i.d. with

1
-R, n=1,..,M.

2
[C.9]
Now, in accordance with (C.6) M Re{R,} may be expressed as 2, z(n)z"(n)
where z(n) = y.(n), n=1,..,M, and z(M * n) = yi(n), n=1,...,M. From (C.7),
(C.8), and (C.9), z(n) are independent and identically distributed as A'(0, 1/2R,),

where N'(p, B) denotes the multivariate Gaussian distribution with mean vector p

E{y.(n)yT(n)} = E{y:(n)yT(n)} = ~BPsBT + 02

1 —
2 9 n N

and covariance matrix B. It follows then that M Re{R,} is Wishart distributed
with 2M degrees o freedom. Thisisin contrast to M R,, which is complex Wishart
distributed with M degrees of freedom.
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Appendix D: Derivation of the Asymptotic Distribution of the Signal
Subspace Eigenvalues/Eigenvectors

Here the asymptotic distribution of the signal subspace eigenvalues and corre-
sponding eigenvectors of the real part o the sample covariance matrix are derived.
The performance prediction of eigenstructure direction of arrival algorithms based
upon the Wishart distribution of the sample covariance matrix first appeared in [21],
adapting tools from the statistical community, e.g., [44]. As is different in the case
at hand, the real part of the beamspace sample covariance matrix is not Wishart
distributed, but the analysis follows closely to the case of element-space processing
in conjunction with a single forward/backward average as reported in [8]. Although
there is a direct relationship between the sample covariance matrices obtained by
taking the real part in beamspace and that obtained with a single forward-backward
average in element-space, the results in [8] cannot be manipulated to apply here -
there is no one-to-one relationship between the signal subspace eigenvectors in the
two methodologies. It can be shown that a relationship does exist between the signal
subspace eigenvectors, however, when the beamforming preprocessor is a full-rank,
N X N matrix; but we focus on the use of beamforming architectures that transform
the element-space data to a lower dimensional space. Presented here is an outline o
the derivation regarding the distribution of the signal subspace eigenvectors.

As defined in the text, the real part of the true beamspace covariance matrix is

spectrally decomposed as

Re{R,} = B Re{Ps} BT + 021 = EAET [D.1]
where
E=[eiie:... en,] Ny X N,
A = diag( M, A2, ..., An, ), and

AL> A > 0. > Ak > Akq1 = Akg2 = ... = AN,-




Knowledge of the signal/noise subspace needed for the MUSIC prescription is derived

from the real part of the sample beamspace covariance matrix

Refity) = Re {3 5 y(mly ()}

1 X 1 aas
=537 2 [ y(m)y"(m) + (y(m)y™(m))* | = EAET [D.2]
m=1
where
E = [él éz éNb],
/Al = diag( 5\1, :\2, ey 5‘Nb ), and

}1>A2>...>5\K>}K+1 >...>5\Nb.

As before, all estimated quantities originating from the sample covariance matrix
are denoted with a “*”. Recall that the choice of the eigenvectors is riot unique;
the noise-only subspace is characterized by repeated eigenvalues so that the set of
noise eigenvectors simply need to span the particular subspace while the eigenvectors
corresporiding to the unique signal subspace eigenvalues may be multiplied by some
unit magnitude scalar to maintain the unit length constraint. Here we will work with
real-valued eigenvectors and need only, for a unique specification of the desired end

result, stipulate that the eigenvectors satisfy a diagonal entry constraint
e, Y;>0 whee Y = ETE. [D.3]

The asymptotic distribution o the eigenstatistics will be found to be completely

expressiblein terms of the elements o the mean and covariance o the matrix
U=vM(T - A) [D.4]

where
T =ET Re{R,} E = ETEARETE = YTAY". [D.5]

The matrix E diagonalizes Re{R,} to Aasin ( D.I). Thus U essentially represents

an error matrix driven by the finite sample estimate o the covariance when operated
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on by E. Substitution of ( D.2) leads to

where

z(m) = ETy(m), z*(m)=ETy*(m) ecCV.

The signal amplitude and noise processes are assumed to spatially and temporally in-
dependent and governed by zero-mean circular Gaussian random processes, hence
z(m) and z*(m) are zero-mean Gaussian processes with covariance ETR,E and
ETR;‘E, respectively. Direct application of the central limit theorem suggests that
the limiting distribution o the elements o U are normal. The mean of U is easily
shown to be zero. As as result o the independency from snapshot to snapshot, we

have

1 M
E{ugui) = or 2 [ E{m(m)zi(m)zu(m)zi(m)}+

m=1

E{zi(m)z;(m)zi(m)ze(m)} + E{z](m)z;(m)zs(m)zz(m) }+
E{z;(m)z;(m)zi(m)ze(m)} | — Xidibi;bne [D.7]

Through the useof the gaussian expansion d four zero-mean jointly gaussian variables

X;, t=1— 4,
E{x1xaX3Xq} = E{x1%2}E{xax4} + E{x1X3}E{xaxa} + E{x1%4}E{x2x3},
and the relations
E{zp(m)z;(m)} = egRyeq = eqTR;ep
E{zp(m)z,(m)} =0 Vp,g
one obtains, after simplification,
E{uijuke} = %Re{ (el Ryec)(e;Ryer) } + %Re{ (e7Ryer)(e] Ryer) } = Lijer [D.§]

Notice that the signal subspace eigenvectors o the complex covariance R, as well

as those o only the real part, Re{R,}, span the same space, namely, the subspace




spanned by the columns o B. Thus we have
e/Rye; =0, i<K, j>K.

Making use o this property as wel as the orthogonality of the noise eigenvectors
suggests that
eZRye,- = /\kéik +] eZRIQ,'(l — 5ik)

where R; = Im{R,}, leading to

1 :
Cijex = 3 { MAebiibs + MeAebribe; + (efRye;)(ef Rye))(1 — 6k)(1 — éu) +
(efRye;)(e] Rre;)(1 — 6k)(1 — &;) } [D.9]

Notice that the terms involving the imaginary part o the beamspace covariance
matrix, Ry, represent the only structural difference to that found in the complex
processing case as studied in [21, 33, 34].

The ultimategoal is to relate the mean and variance o the eigenvalues and eigen-
vectors of the sample covariance matrix to the elementsdf U. The taken approach is
to define the first order perturbation o Y in W as

Y =1y, + \/LMW. [D.10]

Aswe areonly alowed to determine the perturbation in the eigenquantitiesrelated to

the non-repeated eigenvalues in the signal subspace, we partition the various matrices

A, 0
U=
0 Ugle—K

W [Wu Wi

Ull U12
U?l U22

A= , and

W21 W22

The partitioning d these matricesare such that the dimension d the upper left hand

elementsis that of the signal subspace, namely K. As a result we see that,

| Yn Y| IK+71MW11 71]7“’12 D.11]
Y Yo \717—,W21 Yoo




The derivation o the statistics d the sample-based eigenvalues and eigenvectors
is accomplished in two parts. Thefirst involvesequating thefirst order perturbation
termsin T via( D.4), (D.5), and ( D.Il) as

1 1
T - A+ WUII TMU” _ A, 0 4
71=A7U21 o2In,—x + VlﬁUzz 0 o02Y,Y]
1 AWT + VM AA + WAy AW, +02W, YT +of 1 ), [D.12]
VM | Wy +0?YnWE, VI YuAA, Y, VM

where AA; = A, — A;, 2=1,2 and o(ﬁ) represents those terms o order less than
A Equating the upper- and bottom-left hand partitioned terms and discarding the

higher order terms leads to
Uy = AAWL 4+ VM AA, + WiA;, and [D.13]

U21 = W21A1 + UZY22W1T2 [D14]

Additional asymptotic relations are obtained through

Ix O Wl + W w7l
Ly, =YYT = | L L T W Wa Ly pag)
0 YYI, VM | W, + Y,W!, o VM
leading to
Wi+ W] =0 [D.16]
Wi +Y,Wh =0 [D.17]
Assembling equations (D.13), (D.14), (D.16), and (D.17) yields
VM AN =VM (i—=X)=u; fori=1,2,...,K, and [D.18]
0 i=1,...,K j=i
Wi = 5o i, j=1,...,K i#j [D.19]

Mo —wr =K +1,...,N, j=1,... K
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With the aid o (D.18), the asymptotic bias d the error in the signal eigenvalues is
shown to be zero to order —\/L—M, ie, E{\; - A} = o(zz) i =1,...,K, while the

associated covariance is

.Ag{MA/\zA/\J} = Fijji

1
= 3 { X1+ 65) — | eTRyejf?}. [D.20]
Notice that
VMAE=vM|[E-E]=vME[Y -1]|=EW, [D.21]
so that

. 1
e, =e; + \/—ﬁ ; W;€e;. [D22]

J#i
Accounting for the orthogonality of é; | and

finding the associated mean and covariance yields, after simplification,

AE(M Ae;) = —+ % Ppbs
b= Dn— )2 €
k;él
I eTRIek '2
_ , D.23
Z oW e;, and [ ]
k;éz
AE{M Ae;AeT} % %: Lieji erel [D.24]
i . e e .
’ k=1 =1 /\—/\k)(/\j_/\f) s
k#i £#£j

_ b T X K (elRye;)(elRyer)
= 3\ X O —w* Z 2 ™ A0 = )
O

(1=6;5) | =X} ejel i: (e[ Rre;)(er Rre)
T2 =202 T (A = A — AR SR
ik )




Appendix E: Asymptotic Variance of ESPRIT Formulation

Given that z; is a (signal) unit-magnitude eigenvalue of the matrix
F = (I'1Ez)(T;Ez,) = [(T1Ez, )" (T1Ez,)](T1Ez,)" (T2:Ez,), (E.1]

with x; and g; the corresponding right and left eigenvectors, Rao and Hari [42] showed
that, to o(M™1),

AZ,‘ = qu AF X;. [Ez]
Theerror in F, AF, due to thefinite sample estimation of the beamspace covariance

matrix is
AF = (T1Ez,) (T,AEz) — (T1Ez,)' (T AEZ,)F, [E.3]

which is applicable to either the Least Squares (LS) or Total Least Squares (TLS)
versions of ESPRIT. Substituting the form of AEg, in equation (4.27) into equation

(E.2), one obtains
S{ JAZ;P} = af’ I:ZZ .’L‘,(k) mf(f)E{Aek Ae{}] O [E4]

(PE((An)) = of [I;;xi(kmwwmemez‘}] o[BS

where a; and the signal eigenvector error statistics were stated in equations (4.29)

and (4.22), respectively. Following [42], these quantities are then substituted into

g{(Mi)?}z{ A } [e{mzil?}—Re{éz:)?&(Az@} -

2ndD cosS§;

to yield the desired theoretical asymptotic estimation variance.
In the case of uncorrelated signals, the asymptotic error in the signal subspace

eigenvectors reduces to

e o AkAm T (1 —bke)  AkAe T

oM 2= Dp— o) o IM (e — N2k

m=1

m#k

E{Aer Nel } = [E.7]
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After substituting and simplifying, the asymptotic variance of the ESPRIT angle

estimate for uncorrelated sources reduces to
A 2
6,)%} = ET i
E(20)7) [QWdDCOSHJ oM [Z (Akﬂﬂ 7 [tm {ai (k) B }

K 2
¥ zz e 5 (m {0t e}

k=1 =1
e;ek

— Im{a;,(f Ve, a,} Irn{ eka,})] : (E.8]

where E,, isan N, x (N, — K) matrix composed of the noise eigenvectors associated

with the ideal beamspace covariance.
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