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The performance of the majority of high resolution algorithms designed for either spectral

analysis or Direction-of-Arrival (DoA) estimation drastically degrades when the amplitude

sources are highly correlated or when the number of available snapshots is very small

and possibly less than the number of sources. Under such circumstances, only Maximum

Likelihood (ML) or ML-based techniques can still be effective. The main drawback of such

optimal solutions lies in their high computational load. In this paper we propose a

computationally efficient approximate ML estimator, in the case of two closely spaced

signals, that can be used even in the single snapshot case. Our approach relies on Taylor

series expansion of the projection onto the signal subspace and can be implemented

through 1D Fourier transforms. Its effectiveness is illustrated in complicated scenarios

with very low sample support and possibly correlated sources, where it is shown to

outperform conventional estimators.

1. Introduction

Identifying multiple superimposed exponential signals
in noise is a central problem in many signal processing
applications such as radar, sonar, telecommunications,
seismology, medicine, radio-astronomy [1]. This problem
has received considerable attention during the last 40 years,
both for time series analysis and array processing. In
the first case, one usually has to estimate the frequencies
of complex sine waves from a single experiment data. In the
second case, one looks for the directions of arrival (or
spatial frequencies) of multiple plane waves impinging on
a narrow-band array of sensors using multiple snapshots.
Among the huge variety of solutions, ML was one of the
first to be investigated [2] because of its well grounded
principles and its optimal statistical properties, at least

asymptotically [3]. Two kinds of ML solutions have been
derived depending on the statistical assumptions about the
signals impinging on the array, namely the conditional ML
estimator (CMLE) which considers the sources amplitude as
unknown deterministic variables [4] and the unconditional
ML estimator (UMLE) which assumes the sources amplitude
to be independent and identically distributed random
variables usually drawn from Gaussian distribution. The
corresponding Cramer–Rao Bound (CRB) has been derived
for each model [4] and it has been shown that UMLE is
efficient whereas CMLE is not, mainly because the number
of unknown parameters grows with the number of snap-
shots. However, when the signal to noise ratio (SNR)
increases, the covariance matrix of both UMLE and CMLE
tends to the same asymptotic CRB [4]. In this paper, we
adopt the less constrained CMLE framework: indeed,
assuming that the sources are temporally white Gaussian
process which is a strong hypothesis that could fail in many
real-life applications. Despite their nearly optimal proper-
ties (in the asymptotic regime), ML estimators suffer from
a large computational cost, as they require solving
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a non-linear multidimensional optimization problem.
Hence, the signal processing community has focused on
two different ways to circumvent this problem.

A first approach consists in using sub-optimal techniques
to reduce computational burden. Many methods substitute
the multidimensional search for a simpler one-dimensional
search, see e.g., the well-known Capon [5] or MUSIC [6,7]
methods. In the case of a uniform linear array (ULA), other
techniques directly provide the estimates from a polynomial
root search, see e.g., root-MUSIC [8,9], ESPRIT [10], Min-
Norm [11] and modified versions thereof such as unitary
root-Music [12] or unitary-ESPRIT [13]. All these techniques
could achieve near-ML performance in many cases [14] and,
for instance, MUSIC can be interpreted as a large sample
realization of the MLE if the sources are uncorrelated [15].
The two main drawbacks of subspace-based methods
concern the case where the sources are highly correlated
or coherent (multipath propagation for instance) or when
the number of available snapshots is less than the number
of sources. In the former case, some techniques such as
spatial smoothing [16] have proven to be efficient in
mitigating sources correlation, but at the price of a loss of
resolution, which is problematic in the case of closely
spaced signals where high-resolution is needed. The sample
starving scenario occurs with highly non-stationary envir-
onments such as embedded radars (in automotive, jet-
fighter or missile) where the stationary duration is very
small. In the case of automotive radars, asymptotic perfor-
mance of DoA estimation has been analyzed in [17]
and [18,19] provide a good overview of techniques that
can practically be used in this case. Whenever the number
of snapshots becomes less than the number of sources,
subspace-based methods are no longer appropriate since
the signal subspace cannot be retrieved. However, ML
techniques are still able to handle this type of situation.

Consequently, a second class of methods aims at
exploiting the ML principle but with a reduced computa-
tional burden. Their performance can then come close to
that of the MLE even in the case of coherent sources or
single snapshot data-set. The main idea behind all these
techniques is to split the multidimensional optimization
procedure in a number of recursive and simpler searches.
Two kinds of computational cost reduction have been used
in the literature. The first type of method is based on
relaxation procedures and lead to the Alternating Projec-
tion algorithm when apply to CMLE and to the Alternating
Maximization procedure when apply to UMLE [20]. The
second kind relies on the Expectation Maximization prin-
ciple [21] and has been used in the array processing
context by Weiss [22] for instance. In the case of a ULA,
exploiting the equivalence between the noise subspace
and the prediction polynomial coefficients subspace,
Bresler has developed the so-called IQML algorithm [23]
and Stoica the so-called IMODE algorithm [24] that are
both recursive simplified procedures to minimize the
CMLE criterion. Nevertheless, these simplified implemen-
tations of the MLE require a good initialization point and
are not guaranteed to converge to the global minimum.
Moreover, the recursive nature of these procedures is
hardly compatible with covariance matrix update algo-
rithms optimized for tracking modes [25].

In this paper, we propose a non-recursive, one-dimen-
sional, low cost minimization procedure to estimate the
frequencies of two closely spaced signals. The computa-
tional cost of this new procedure is in the same order of
classical Fourier transforms. Additionally, this solution is a
close approximation of the CMLE and inherits its good
properties, namely robustness to coherent sources and to
low number of snapshots. Moreover, it is shown to be
more accurate than conventional root-MUSIC or ESPRIT
estimators even in the case of uncorrelated sources. At last,
it can also be used in the case of a single snapshot
where high resolution techniques are very scarce despite
the widespread interest of such a scenario. The present
procedure is developed in the case of two sources, a
natural framework when dealing with high resolution
[26–28]. Indeed, in a large number of real-life signal
processing applications, the number of sources to identify
is known to be two or less, because matched pre-
processing techniques have reduced this number. For
instance, in radar or sonar processing, DOA estimation is
performed after delay and frequency filtering so that one
just focuses on a single range-Doppler bin. The joint
problem of detection of the number of sources is out of
the scope of this paper, but we would like to point out that
in some practical situations, one a priori knows that two
sources exactly are present. This is the case for instance
when a radar is looking for a low elevation target over
the sea [29]. The received signal is systematically com-
posed of a direct path and a close angle multipath. Except
MLE, high-resolution procedures cannot be used in
this situation because of a strong correlation between
the two signals, and the approach proposed herein is
relevant.

The paper is organized as follows. Section 2 introduces
the framework at hand and gives a brief reminder on CMLE
and the associated CRB. Then, in Section 3, a Taylor series
expansion of the signal subspace projector with respect
to the frequency difference between sources is carried out,
which results in a closed-form expression of the ML
estimate. When plugged back in the likelihood function,
we end up with a simple one-dimensional search. Numer-
ical simulations illustrate the superiority of this estimate
compared with classical subspace-based techniques in
Section 4, and our conclusions are drawn in Section 5.

2. Data model

We consider a narrow-band uniform linear array of M
sensors with inter-element spacing d. We assume that two
plane waves impinge on the array with respective DoA θ1

and θ2 and we consider a scenario where the two DoA are
very close, typically within a fraction of the array beam
width. Let f i ¼ ðd=λÞ sin θi, i¼1,2 denote the corresponding
spatial frequencies and let us re-parameterize the problem
in terms of f1 and Δf ¼ f 2% f 1, where, by assumption,
Δf 51=M. The model at hand can then be written as
follows:

xt ¼ Aðf 1;Δf Þstþnt ; t ¼ 0;…; ðN%1Þ ð1Þ



where

& Aðf 1;Δf Þ ¼ ½aðf 1Þ aðf 1þΔf Þ(AC
M)2 with

a fð Þ ¼ 1
ffiffiffiffiffi

M
p ½1 e2iπf ⋯ e2iπf ðM%1Þ(T

denoting the normalized steering vector.
& stAC

2 stands for the vector of unknown deterministic
amplitudes of the sources, similar to the CMLE framework.

& ntAC
M denotes the noise vector and is assumed to be

zero-mean circularly Gaussian with covariance matrix
s
2I where s

2 is an unknown scalar. Moreover, nt is
supposed to be temporally white, so that E ntn

H
s

" #

¼
s
2Iδt% s and E ntn

T
s

" #

¼ 0. δ stands for the Kronecker
symbol (δ0 ¼ 1 and δt% s ¼ 0 if tas).

It can be noticed that in the single snapshot case (N¼1),
this model is also valid for spectral analysis in time series
analysis. The problem at hand consists in estimating f1 and
the frequency difference Δf. The ML solution is obtained by
maximizing the log-likelihood function with respect to the
unknown parameters. Concentrating the likelihood func-
tion with respect to s

2 and all st , it is well known that the
MLE of f1 and Δf is given by [14]

f̂ 1; Δ̂f ¼ arg min
f 1 ;Δf

∑
N%1

t ¼ 0

‖xt%Pðf 1;Δf Þxt‖2 ð2Þ

f̂ 1; Δ̂f ¼ arg min
f 1 ;Δf

Tr P
? ðf 1;Δf ÞR̂

n o

ð3Þ

f̂ 1; Δ̂f ¼ arg max
f 1 ;Δf

∑
N%1

t ¼ 0

‖Pðf 1;Δf Þxt‖2 ð4Þ

where Tr{} stands for the trace of the matrix between
braces,

Pðf 1;Δf Þ ¼ Aðf 1;Δf ÞðAHðf 1;Δf ÞAðf 1;Δf ÞÞ%1
A
Hðf 1;Δf Þ

is the projection onto the subspace spanned by the columns
of Aðf 1;Δf Þ (signal subspace) and P

? ðf 1;Δf Þ ¼ I%Pðf 1;Δf Þ is
the projection onto the noise subspace. Finally

R̂ ¼ 1

N
∑

N%1

t ¼ 0

xtx
H
t

is the sample covariance matrix. Eq. (2) proposes an
appealing geometric interpretation of the ML estimates,
viz., we are simply looking for the frequencies that generate
the closest subspace to the data. Associated with this
deterministic model, one can also derive the CRB as [14]

Bc ¼
s
2

2N
Re½R̂s , H

T (%1 ð5Þ

where , stands for the Hadamard (elementwise) product,
R̂s ¼ ð1=NÞ∑N%1

t ¼ 0sts
H
t is the sources amplitude covariance

matrix estimate of Rs ¼ E sts
H
t

" #

, and H ¼Δ
H
P

?
Δ with

Δ¼ ½∂aðf Þ=∂f jf 1 ∂aðf Þ=∂f jf 1 þΔf
(. Of course, this lower bound

on the frequency parameters depends on st and can thus
vary from one set of observed data to another. Hence, some
sort of averaging is usually conducted. Alternatively, one
may wish to compare the performance of any estimator to

the asymptotic ðN-1Þ limit of (5), viz.,

B
as
c ¼ s

2

2N
Re½Rs , H

T (%1: ð6Þ

3. Approximate maximum likelihood estimation for two

closely spaced sources

In this section, we focus on the case of two unresolved
targets or close-frequency signals. In this case, we conduct
a Taylor series expansion of the ML criterion with respect
to the frequency difference Δf. Let us start with the signal
subspace projection matrix. From the definition of Aðf 1;Δf Þ
we have

ðAHðf 1;Δf ÞAðf 1;Δf ÞÞ%1 ¼ 1

1%jcðΔf Þj2
1 %cðΔf Þ

%cðΔf Þn 1

 !

ð7Þ

with cðΔf Þ ¼ aðf 1ÞHaðf 1þΔf Þ. In the case of a ULA one
simply has cðΔf Þ ¼ ð1=MÞeiπðM%1ÞΔf sin πMΔf = sin πΔf . How-
ever, we would like to stress the fact that the only
hypothesis we really need for the derivations to follow is
that c only depends on Δf. Under this hypothesis, we have
that aðf 1þΔf Þ ¼DðΔf Þaðf 1Þ where DðΔf Þ ¼ diag ½1 e2iπΔf ⋯

(

e2iπΔf ðM%1Þ(Þ in the case of ULA. Hence

P ¼ 1

1%jcj2
aa

HþDaa
H
D
H%caaH

D
H%cnDaaH

h i

ð8Þ

where, for the sake of notational simplicity, we have
temporarily dropped the dependence with respect to f1
or Δf, i.e., a¼ aðf 1Þ, c¼ cðΔf Þ, D¼DðΔf Þ and P ¼ Pðf 1;Δf Þ. As
we are interested in the case where Δf 51, we can conduct
a second order Taylor expansion of P, for fixed f1. Towards
this end, let us write the Taylor expansions of both D

and c as

D¼∑DkΔ
k
f with Dk ¼

ð2iπÞk

k!
diag ½0k 1k⋯ðM%1Þk(

+ ,

for ULA ð9Þ

c¼∑ckΔ
k
f ; ck ¼

Tr Dk

" #

M
: ð10Þ

Substituting these expressions into Eq. (8), we obtain, after
some tedious albeit straightforward calculations (see Appen-
dix), the following expansion for P:

PC
1

d2
M2þM3Δf þ M4%

d4
d2

M2

- .

Δ2
f

- .

ð11Þ

where

d2 ¼ 2c2%c21

d4 ¼ 2c4þc22%2c1c3

M2 ¼ %D1aa
H
D1þc1ðD1aa

Hþaa
H
D1Þ%2c2aa

H

M3 ¼D1aa
H
D2%D2aa

H
D1þc1ðD2aa

H%aa
H
D2Þ

%c2ðD1aa
H%aa

H
D1Þ

M4 ¼D2aa
H
D2%D1aa

H
D3%D3aa

H
D1þc1ðD3aa

Hþaa
H
D3Þ

%c2ðD2aa
Hþaa

H
D2Þþc3ðD1aa

Hþaa
H
D1Þ%2c4aa

H :



Substituting (11) into (4) and differentiating with respect to
Δf, the following closed-form expression of the frequency
difference is obtained:

ΔAML
f f 1
( /

¼
Tr M3R̂

n o

2 Tr d4
d2
M2%M4

+ ,

R̂

n o ð12Þ

where we emphasize that ΔAML
f depends on f1. The above

equation constitutes the main result of this paper. It pro-
vides a closed-form expression of the ML estimate of the
difference between the two frequencies. This expression can
be exploited in different ways. We have chosen here a direct
and robust way to solve the ML problem. More precisely, we
search for the global maximum of (4) using the value of Δf in
(12), using a 1D grid-based maximum search of the resulting
function of f1. In other words, we choose to estimate f1 as

f̂
AML

1 ¼ arg max
f 1

∑
N%1

t ¼ 0

‖Pðf 1;ΔAML
f ðf 1ÞÞxt‖2: ð13Þ

Once f̂
AML

1 is obtained, the estimate of Δf follows from (12)

where f1 is substituted for f̂
AML

1 . It is noteworthy that

evaluation of both (4) and (12) can be easily done using
fast Fourier algorithms. Indeed, both equations are linear
combination of terms of the following type:

Tr D
H
ℓ
aðf ÞaHðf ÞDnR̂

n o

ð14Þ

which can be calculated as follows:

Tr D
H
ℓ
aðf ÞaHðf ÞDnR̂

n o

¼ ∑
N%1

t ¼ 0

x
H
t D

H
ℓ
aðf ÞaHðf ÞDnxt

¼ ∑
N%1

t ¼ 0

Xℓ

t ðf ÞnX
n
t ðf Þ ð15Þ

where Xn
t ðf Þ ¼ aðf ÞHDnxt is the Fourier Transform of the

weighted version of xt by the diagonal elements of Dn.

Therefore, ΔAML
f ðf 1Þ in (12) can be computed from combina-

tions of Xn
t ðf Þ for n¼ 0;1;2;3. So we need to compute four

Fourier transforms and eight dot-products of these vectors

to evaluate ΔAML
f ðf 1Þ for all f1.

4. Numerical illustrations

In this section, we evaluate the performance of the
above derived AML estimate and we compare it to the
exact MLE based on a 2D search over f1 and f2, as well as to
two conventional methods namely ESPRIT and root-
MUSIC. The mean square error (MSE) for estimation of
the vector ½f 1 f 2(T will serve as the figure of merit and it
will be compared to the asymptotic CRB of Eq. (6). Three
scenarios are considered:

& An “ideal” scenario where the number of snapshots is
large enough ðN¼ 3MÞ and where the sources are
uncorrelated ðRs ¼ IÞ. This scenario is aimed at compar-
ing the AMLE to subspace-based methods when the
latter are likely to perform very well.

& A scenario where the sources are correlated i.e., Rs ¼
1
ρn

ρ
1

+ ,

yet with a large number of snapshots ðN¼ 3MÞ.

In such a case, we study the sensitivity of the AMLE to
source correlation, knowing that the latter is usually
detrimental to subspace-based methods.

& The single-snapshot scenario (N¼1), where, unless a pre-
processing scheme such as spatial smoothing is used,
classical subspace-based methods cannot be implemented
while MLE is feasible.

In all simulations we consider a uniformly spaced linear
array of M¼8 isotropic sensors. The spatial frequencies
of the sources are f 1 ¼ 0:1 and f 1þΔf with Δf ¼ 1=10M
(Δf ¼ 1=5M in the single snapshot case). The MSE is
computed from 1000 Monte-Carlo runs where the Gaus-
sian vectors nt and st vary in each trial. The signal to noise
ratio (SNR) is defined as

SNR¼
Tr ARsA

H
n o

Ms
2

: ð16Þ

4.1. Large sample scenario, uncorrelated sources

In this first scenario, all conditions are met to have an
optimal behavior for all DOA estimation procedures. In
Fig. 1, the performance comparison is displayed as a
function of SNR in order to identify the so-called threshold
region where the MSE departs from the CRB. We can first
notice that all four methods attain the asymptotic CRB in
the asymptotic region (high SNR). More interesting is the
threshold region where we can notice that both the exact
MLE and AMLE have a similar behavior and depart from
the CRB about 2–3 dB after ESPRIT, and the latter achieves
a 2–3 dB gain compared to root-MUSIC. Therefore, the
proposed AML estimator has a performance very close to
that of the exact MLE in the case of very closely spaced
sources, and performs better than ESPRIT and root-MUSIC
in this simple scenario. We now investigate its perfor-
mance as a function of Δf: indeed, the Taylor series
expansion is valid only for very small Δf and we wish to
investigate its validity whenever Δf increases. This is done
in Fig. 2 where we show the MSE of the AML for a
frequency difference increasing from zero to half the main
lobe width. It can be observed that the AML estimator
remains close to the MLE until source separation reaches
approximately a third of the beam width. We can also
point out that the divergence of the AMLE from this point
is quite progressive, so that the MSE keeps within a 15 dB
range from the CRB even if the sources separation
increases to half the beam width. However, for such large
DoA separation high resolution methods are not really
needed. Therefore, we can conclude that the proposed
procedure is nearly efficient (for a small source separation)
in this ideal scenario. We can even notice a lightly better
behavior of the AMLE in the threshold region that suggests
a kind of robustness of the proposed method.

4.2. Large sample scenario, correlated sources

We now examine the robustness of the AMLE towards
correlation among the two sources. Fig. 3 displays the MSE
of the four previous algorithms for a correlation coefficient



ρ varying from 0 (previous case) to 1 (coherent sources).
The input SNR is 20 dB, for which all algorithms achieve
the CRB in the case of non-correlated sources. We can
see that root-MUSIC departs from the CRB even for small

correlation coefficient values. ESPRIT is more robust to
correlation as its divergence is more progressive. Both MLE
and AMLE are more robust and remain very close to the
CRB up to ρ¼0.5.

Fig. 2. Large sample scenario, uncorrelated sources. MSE of the frequency estimates versus MΔf . M¼8, N¼ 3M, f 1 ¼ 0:1 and SNR¼15 dB.

Fig. 1. Large sample scenario, uncorrelated sources. MSE of the frequency estimates versus SNR. M¼8, N¼ 3M, f 1 ¼ 0:1 and Δf ¼ 1=10M.



Fig. 3. Large sample scenario, correlated sources. MSE of the frequency estimates versus correlation coefficient ρ. M¼8, N¼ 3M, f 1 ¼ 0:1, Δf ¼ 1=10M and

SNR¼20 dB.

Fig. 4. The single snapshot scenario, uncorrelated sources. MSE of the frequency estimates versus SNR. M¼8, f 1 ¼ 0:1 and Δf ¼ 1=5M.



4.3. The single snapshot scenario

In the single snapshot scenario, neither ESPRIT nor
root-MUSIC can be used directly since a rank-two subspace
cannot be retrieved from one snapshot. In fact, very few
direct high resolution methods can be employed in this
case. In order for subspace-based methods to be used, one
has to substitute missing snapshots for real sensor data as
done e.g., in spatial smoothing techniques. The price to be
paid will be a reduction of the array aperture and conse-
quently a loss of resolution. The effects of such a procedure
will be all the more detrimental that the number of
sensors is small and the number of sources is high. In
our case of interest, we have chosen to compare AMLE and
MLE to a spectral estimation based on an AR(2) modeling.
The two AR coefficients are computed from a least-squares
algorithm and the two frequencies of interest from a
polynomial root search. Moreover, we also provide a
comparison with ESPRIT, Unitary ESPRIT and Unitary
ESPRIT with improved aperture [30] procedures. In the
latter cases, we perform averaging over three subarrays,
each one comprising six elements. Fig. 4 compares the
performances of these estimators. The average value of the
exact CRB of (5) is also plotted. We can first see that in this
single snapshot case, no considered methods achieve the
asymptotic CRB, but that both MLE and AMLE are very
close to the exact CRB (nearly efficiency over all SNR
values). AR, ESPRIT and Unitary ESPRIT produce almost
the same performances that are far from those given by
the MLE procedures. Unitary ESPRIT with improved aper-
ture significantly improves the MSE but does not perform
as well as AMLE with gain difference about 10 dB over
large SNR intervals.

5. Conclusions

This paper presented a low computational cost proce-
dure to solve the conditional ML problem for direction
finding of two closely spaced sources. It is based on
an approximation of the concentrated likelihood function,
assuming a small difference between the two DoA. The
algorithm is easy to implement as relies on weighted
Fourier transforms of the data. Its performance is very
close to that of the exact MLE even for quite large DOA
separation. It inherits all desirable properties of the ML
estimator such as robustness to source correlation and
single snapshot capabilities where few successful algo-
rithms are known. To finish with and based on these
results, the complementary problem of estimating the
number of sources or analyzing the resolution threshold
should then be investigated. This detection problem con-
stitutes a natural perspective of this work.

Appendix A. Taylor expansion of P

In this appendix, we provide a sketch of proof for (11).
Substitution of the Taylor expansions D¼∑DkΔ

k
f and

c¼∑ckΔ
k
f into (8) immediately leads to

P ¼
aaHþ∑k;lΔ

kþ l
f

½Dkaa
HD

H
l %ckaa

HD
H
l %cnkDlaa

H(
1%∑k;lΔ

kþ l
f

ckc
n

l

: ðA:1Þ

Now, using the facts that D0 ¼ I (since f 1 ¼ f 2 if Δf ¼ 0) and
that c0 ¼ 1, we have

P ¼ %
∑n ¼ 1Δ

n
f ∑n

k ¼ 0Dkaa
HD

H
n%k%ckaa

HD
H
n%k%cnkDn%kaa

H
+ ,

∑n ¼ 1Δ
n
f ∑n

k ¼ 0ckc
n

n%k

( /

which can be rewritten as

P ¼ %
∑n ¼ 1Δ

n
f Mn

∑n ¼ 1Δ
n
f dn

ðA:2Þ

with

Mn ¼ ∑
n

k ¼ 0

Dkaa
H
D
H
n%k%ckaa

H
D
H
n%k%cnkDn%kaa

H

dn ¼ ∑
n

k ¼ 0

ckc
n

n%k:

Observing that cn1 ¼ %c1 (due to pure complex phase terms
in the steering vector), it follows that M1 ¼ 0 and d1 ¼ 0.
Therefore,

P ¼ %
M2þM3Δf þM4Δ

2
f þOðΔ3

f Þ
d2þd3Δf þd4Δ

2
f þOðΔ3

f Þ

C% 1

d2
M2þM3Δf þ M4%

d4
d2

M2

- .

Δ2
f

- .

þOðΔ3
f Þ ðA:3Þ

where we used the fact that d3 ¼ 0. This proves that the
second-order Taylor expansion of P is given by (11).
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