1,318 research outputs found

    Performance Analysis of C/U Split Hybrid Satellite Terrestrial Network for 5G Systems

    Get PDF
    Over the last decade, the explosive increase in demand of high-data-rate video services and massive access machine type communication (MTC) requests have become the main challenges for the future 5G wireless network. The hybrid satellite terrestrial network based on the control and user plane (C/U) separation concept is expected to support flexible and customized resource scheduling and management toward global ubiquitous networking and unified service architecture. In this paper, centralized and distributed resource management strategies (CRMS and DRMS) are proposed and compared com- prehensively in terms of throughput, power consumption, spectral and energy efficiency (SE and EE) and coverage probability, utilizing the mature stochastic geometry. Numerical results show that, compared with DRMS strategy, the U-plane cooperation between satellite and terrestrial network under CRMS strategy could improve the throughput and EE by nearly 136% and 60% respectively in ultra-sparse networks and greatly enhance the U-plane coverage probability (approximately 77%). Efficient resource management mechanism is suggested for the hybrid network according to the network deployment for the future 5G wireless network

    Green Hybrid Satellite Terrestrial Networks: Fundamental Trade-Off Analysis

    Get PDF
    With the worldwide evolution of 4G generation and revolution in the information and communications technology(ICT) field to meet the exponential increase of mobile data traffic in the 2020 era, the hybrid satellite and terrestrial network based on the soft defined features is proposed from a perspective of 5G. In this paper, an end-to-end architecture of hybrid satellite and terrestrial network under the control and user Plane (C/U) split concept is studied and the performances are analysed based on stochastic geometry. The relationship between spectral efficiency (SE) and energy efficiency (EE) is investigated, taking consideration of overhead costs, transmission and circuit power, backhaul of gateway (GW), and density of small cells. Numerical results show that, by optimizing the key parameters, the hybrid satellite and terrestrial network can achieve nearly 90% EE gain with only 3% SE loss in relative dense networks, and achieve both higher EE and SE gain (20% and 5% respectively) in sparse networks toward the future 5G green communication networks

    Energy efficient hybrid satellite terrestrial 5G networks with software defined features

    Get PDF
    In order to improve the manageability and adaptability of future 5G wireless networks, the software orchestration mechanism, named software defined networking (SDN) with Control and User plane (C/U-plane) decoupling, has become one of the most promising key techniques. Based on these features, the hybrid satellite terrestrial network is expected to support flexible and customized resource scheduling for both massive machinetype- communication (MTC) and high-quality multimedia requests while achieving broader global coverage, larger capacity and lower power consumption. In this paper, an end-to-end hybrid satellite terrestrial network is proposed and the performance metrics, e. g., coverage probability, spectral and energy efficiency (SE and EE), are analysed in both sparse networks and ultra-dense networks. The fundamental relationship between SE and EE is investigated, considering the overhead costs, fronthaul of the gateway (GW), density of small cells (SCs) and multiple quality-ofservice (QoS) requirements. Numerical results show that compared with current LTE networks, the hybrid system with C/U split can achieve approximately 40% and 80% EE improvement in sparse and ultra-dense networks respectively, and greatly enhance the coverage. Various resource management schemes, bandwidth allocation methods, and on-off approaches are compared, and the applications of the satellite in future 5G networks with software defined features are proposed

    Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites

    Get PDF
    Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201

    Role of satellite communications in 5G ecosystem: perspectives and challenges

    Get PDF
    The next generation of mobile radio communication systems – so-called 5G – will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with a major reduction in energy usage are big challenges. In addition, future systems will need to embody connections to billions of objects – the so-called Internet of Things (IoT) which raises new challenges.Visions of 5G are now available from regions across the world and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what is the place for satellites in such a vision? The chapter examines several potential roles for satellites in 5G including coverage extension, IoT, providing resilience, content caching and multi-cast, and the integrated architecture. Furthermore, the recent advances in satellite communications together with the challenges associated with the use of satellite in the integrated satellite-terrestrial architecture are also discussed

    Design of cellular, satellite, and integrated systems for 5G and beyond

    Get PDF
    5G AgiLe and fLexible integration of SaTellite And cellulaR (5G-ALLSTAR) is a Korea-Europe (KR-EU) collaborative project for developing multi-connectivity (MC) technologies that integrate cellular and satellite networks to provide seamless, reliable, and ubiquitous broadband communication services and improve service continuity for 5G and beyond. The main scope of this project entails the prototype development of a millimeter-wave 5G New Radio (NR)-based cellular system, an investigation of the feasibility of an NR-based satellite system and its integration with cellular systems, and a study of spectrum sharing and interference management techniques for MC. This article reviews recent research activities and presents preliminary results and a plan for the proof of concept (PoC) of three representative use cases (UCs) and one joint KR-EU UC. The feasibility of each UC and superiority of the developed technologies will be validated with key performance indicators using corresponding PoC platforms. The final achievements of the project are expected to eventually contribute to the technical evolution of 5G, which will pave the road for next-generation communications

    Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    This is the peer reviewed version of the following article: Mendoza, F, Ferrus, R, Sallent, O. Experimental proof of concept of an SDN‐based traffic engineering solution for hybrid satellite‐terrestrial mobile backhauling. Int J Satell Commun Network. 2019; 37: 630– 645, which has been published in final form at https://doi.org/10.1002/sat.1303. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingSatellite networks are expected to be an integral part of 5G service deployment. One compelling use case is mobile backhauling, where the exploitation of a satellite component can improve the reach, robustness, and economics of 5G rollout. The envisaged availability of new satellite capacity, together with the development of better integration approaches for the provisioning and operation of the satellite component in a more flexible, agile, and cost-effective manner than done today, are expected to revamp such use case within the 5G ecosystem. In this context, sustained in the architectural designs proposed within H2020 VITAL research project, this paper presents an experimental proof of concept (PoC) of a satellite-terrestrial integration solution that builds upon software-defined networking (SDN) technologies for the realization of end-to-end traffic engineering (E2E TE) in mobile backhauling networks with a satellite component. A laboratory test bed has been developed and validated, consisting of a small-scale private mobile network with a backhaul setting that combines Ethernet-wired links, a satellite link emulator (OpenSAND), OpenFlow switches, and an OpenFlow controller running the network application for E2E TE. Provided results show the operation of a E2E TE application able to enforce different traffic routing and path failure restoration policies as well as the performance impact that it has on the mobile network connectivity services.Peer ReviewedPostprint (author's final draft

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación.Postprint (published version
    corecore