1,798 research outputs found

    Performance Analysis, Resource Allocation and Optimization of Cooperative Communication Systems under Generalized Fading Channels

    Get PDF
    The increasing demands for high-speed data transmission, efficient wireless access, high quality of service (QoS) and reliable network coverage with reduced power consumption impose demanding intensive research efforts on the design of novel wireless communication system architectures. A notable development in the area of communication theory is the introduction of cooperative communication systems. These technologies become promising solution for the next-generation wireless transmission systems due to their applicability in size, power, hardware and price constrained devices, such as cellular mobile devices, wireless sensors, ad-hoc networks and military communications, being able to provide, e.g., diversity gain against fading channels without the need for installing multiple antennas in a single terminal. The performance of the cooperative systems can in general be signiïŹcantly increased by allocating the limited power efficiently. In this thesis, we address in detail the performance analysis, resource allocation and optimization of such cooperative communication systems under generalized fading channels. We focus ïŹrst on energy-efficiency (EE) optimization and optimal power allocation (OPA) of regenerative cooperative network with spatial correlation effects under given power constraint and QoS requirement. The thesis also investigates the end-to-end performance and power allocation of a regenerative multi-relay cooperative network over non-homogeneous scattering environment, which is realistic case in practical wireless communication scenarios. Furthermore, the study investigates the end-to-end performance, OPA and energy optimization analysis under total power constraint and performance requirement of full-duplex (FD) relaying transmission scheme over asymmetric generalized fading models with relay self-interference (SI) effects.The study ïŹrst focuses on exact error analysis and EE optimization of regenerative relay systems under spatial correlation effects. It ïŹrst derives novel exact and asymptotic expressions for the symbol-error-rates (SERs) of M -ary quadrature amplitude and M -ary phase-shift keying (M -QAM) and (M -PSK) modulations, respectively, assuming a dual-hop decode-and-forward relay system, spatial correlation, path-loss effects and maximum-ratio-combing (MRC) at the destination. Based on this, EEoptimization and OPA are carried out under certain QoS requirement and transmit power constraints.Furthermore, the second part of the study investigates the end-to-end performance and power allocation of MRC based regenerative multi-relay cooperative system over non-homogeneous scattering environment. Novel exact and asymptotic expressions are derived for the end-to-end average SER for M -QAM and M -PSK modulations.The offered results are employed in performance investigations and power allocation formulations under total transmit power constraints.Finally, the thesis investigates outage performance, OPA and energy optimization analysis under certain system constraints for the FD and half-duplex (HD) relaying systems. Unlike the previous studies that considered the scenario of information transmission over symmetric fading conditions, in this study we considered the scenario of information transmission over the most generalized asymmetric fading environments.The obtained results indicate that depending on the severity of multipath fading, the spatial correlation between the direct and relayed paths and the relay location, the direct transmission is more energy-efficient only for rather short transmission distances and until a certain threshold. Beyond this, the system beneïŹts substantially from the cooperative transmission approach where the cooperation gain increases as the transmission distance increases. Furthermore, the investigations on the power allocation for the multi-relay system over the generalized small-scale fading model show that substantial performance gain can be achieved by the proposed power allocation scheme over the conventional equal power allocation (EPA) scheme when the source-relay and relay-destination paths are highly unbalanced. Extensive studies on the FD relay system also show that OPA provides signiïŹcant performance gain over the EPA scheme when the relay SI level is relatively strong. In addition, it is shown that the FD relaying scheme is more energy-efficient than the reference HD relaying scheme at long transmission distances and for moderate relay SI levels.In general, the investigations in this thesis provide tools, results and useful insights for implementing space-efficient, low-cost and energy-efficient cooperative networks, speciïŹcally, towards the future green communication era where the optimization of the scarce resources is critical

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Resource Allocation for Secure Gaussian Parallel Relay Channels with Finite-Length Coding and Discrete Constellations

    Full text link
    We investigate the transmission of a secret message from Alice to Bob in the presence of an eavesdropper (Eve) and many of decode-and-forward relay nodes. Each link comprises a set of parallel channels, modeling for example an orthogonal frequency division multiplexing transmission. We consider the impact of discrete constellations and finite-length coding, defining an achievable secrecy rate under a constraint on the equivocation rate at Eve. Then we propose a power and channel allocation algorithm that maximizes the achievable secrecy rate by resorting to two coupled Gale-Shapley algorithms for stable matching problem. We consider the scenarios of both full and partial channel state information at Alice. In the latter case, we only guarantee an outage secrecy rate, i.e., the rate of a message that remains secret with a given probability. Numerical results are provided for Rayleigh fading channels in terms of average outage secrecy rate, showing that practical schemes achieve a performance quite close to that of ideal ones

    Distributed space-time coding for two-way wireless relay networks

    Get PDF
    In this paper, we consider distributed space-time coding for two-way wireless relay networks, where communication between two terminals is assisted by relay nodes. Relaying protocols using two, three, and four time slots are proposed. The protocols using four time slots are the traditional amplify-and-forward (AF) and decode-and-forward (DF) protocols, which do not consider the property of the two-way traffic. A new class of relaying protocols, termed as partial decode-and-forward (PDF), is developed for the two time slots transmission, where each relay first removes part of the noise before sending the signal to the two terminals. Protocols using three time slots are proposed to compensate the fact that the two time slots protocols cannot make use of direct transmission between the two terminals. For all protocols, after processing their received signals, the relays encode the resulting signals using a distributed linear dispersion (LD) code. The proposed AF protocols are shown to achieve the diversity order of min{N,K}(1- (log log P/log P)), where N is the number of relays, P is the total power of the network, and K is the number of symbols transmitted during each time slot. When random unitary matrix is used for LD code, the proposed PDF protocols resemble random linear network coding, where the former operates on the unitary group and the latter works on the finite field. Moreover, PDF achieves the diversity order of min{N,K} but the conventional DF can only achieve the diversity order of 1. Finally, we find that two time slots protocols also have advantages over four-time-slot protocols in media access control (MAC) layer

    Optimal space-time codes for the MIMO amplify-and-forward cooperative channel

    Full text link
    In this work, we extend the non-orthogonal amplify-and-forward (NAF) cooperative diversity scheme to the MIMO channel. A family of space-time block codes for a half-duplex MIMO NAF fading cooperative channel with N relays is constructed. The code construction is based on the non-vanishing determinant criterion (NVD) and is shown to achieve the optimal diversity-multiplexing tradeoff (DMT) of the channel. We provide a general explicit algebraic construction, followed by some examples. In particular, in the single relay case, it is proved that the Golden code and the 4x4 Perfect code are optimal for the single-antenna and two-antenna case, respectively. Simulation results reveal that a significant gain (up to 10dB) can be obtained with the proposed codes, especially in the single-antenna case.Comment: submitted to IEEE Transactions on Information Theory, revised versio
    • 

    corecore