2,144 research outputs found

    Entropy/IP: Uncovering Structure in IPv6 Addresses

    Full text link
    In this paper, we introduce Entropy/IP: a system that discovers Internet address structure based on analyses of a subset of IPv6 addresses known to be active, i.e., training data, gleaned by readily available passive and active means. The system is completely automated and employs a combination of information-theoretic and machine learning techniques to probabilistically model IPv6 addresses. We present results showing that our system is effective in exposing structural characteristics of portions of the IPv6 Internet address space populated by active client, service, and router addresses. In addition to visualizing the address structure for exploration, the system uses its models to generate candidate target addresses for scanning. For each of 15 evaluated datasets, we train on 1K addresses and generate 1M candidates for scanning. We achieve some success in 14 datasets, finding up to 40% of the generated addresses to be active. In 11 of these datasets, we find active network identifiers (e.g., /64 prefixes or `subnets') not seen in training. Thus, we provide the first evidence that it is practical to discover subnets and hosts by scanning probabilistically selected areas of the IPv6 address space not known to contain active hosts a priori.Comment: Paper presented at the ACM IMC 2016 in Santa Monica, USA (https://dl.acm.org/citation.cfm?id=2987445). Live Demo site available at http://www.entropy-ip.com

    Practical Evaluation of a Network Mobility Solution

    Get PDF
    IFIP International Workshop on Networked Applications, Colmenarejo, Madrid/Spain, 6–8 July, 2005As the demand of ubiquitous Internet access and the current trend of all-IP communications keep growing, the necessity of a protocol that provides mobility management increases. The IETF has specified protocols to provide mobility support to individual nodes and networks. The Network Mobility (NEMO) Basic Support protocol is designed for providing mobility at IP level to complete networks, allowing a Mobile Network to change its point of attachment to the Internet, while maintaining ongoing sessions of the nodes of the network. All the mobility management is done by the mobile router whilst the nodes of the network are not even aware of the mobility. The main aim of this article is evaluating the performance of the NEMO Basic Support protocol by using our implementation. We also discuss the design of an implementation of the NEMO Basic Support protocol.Publicad

    A Multi-perspective Analysis of Carrier-Grade NAT Deployment

    Full text link
    As ISPs face IPv4 address scarcity they increasingly turn to network address translation (NAT) to accommodate the address needs of their customers. Recently, ISPs have moved beyond employing NATs only directly at individual customers and instead begun deploying Carrier-Grade NATs (CGNs) to apply address translation to many independent and disparate endpoints spanning physical locations, a phenomenon that so far has received little in the way of empirical assessment. In this work we present a broad and systematic study of the deployment and behavior of these middleboxes. We develop a methodology to detect the existence of hosts behind CGNs by extracting non-routable IP addresses from peer lists we obtain by crawling the BitTorrent DHT. We complement this approach with improvements to our Netalyzr troubleshooting service, enabling us to determine a range of indicators of CGN presence as well as detailed insights into key properties of CGNs. Combining the two data sources we illustrate the scope of CGN deployment on today's Internet, and report on characteristics of commonly deployed CGNs and their effect on end users

    EVALUATING INTERNET PROTOCOL VERSION 6 (IPv6) AGAINST VERSION 4 (IPv4)

    Get PDF
    This paper evaluates the performance of IPv6 against IPv4. IPv4 has address space shortages. The use of Classless Inter-Domain Routing (CIDR) and Network Address Translation (NAT) helped to address these shortages. However, Featuresbuilt into IPv6 such as autoconfiguration, IPSec, Mobility, Multiple addresses for hosts and networks, Multicastcommunication make it well worth the cost, time and effort required to migrate to it. Performance metrics used in order toanalyze the protocols are network delay, network drop, and throughput. Results showed that IPv6 is not better in terms ofpacket management than IPv4. The results also showed that IPv6 has higher delay, and packet drop than IPv4; though themargin between the values are however small. It was also found that IPv6 has a higher throughput. It is hereby concluded,that even though IPv4 is performing better, it will not solve the address limitation problem. This has made it inevitable torecommend IPv6 as a replacement for the IPv4.Keywords: Latency, Throughput, PacketDrop, NAT, Mobility, Autoconfiguration

    Performance Analysis of IPv6 Transition Mechanisms over MPLS

    Get PDF
     Exhaustion of current version of Internet Protocol version 4 (IPv4) addresses initiated development of next-generation Internet Protocol version 6 (IPv6). IPv6 is acknowledged to provide more address space, better address design, and greater security; however, IPv6 and IPv4 are not fully compatible. For the two protocols to coexist, various IPv6 transition mechanisms have been developed. This research will analyze a series of IPv6 transition mechanisms over the Multiprotocol Label Switching (MPLS) backbone using a simulation tool (OPNET) and will evaluate and compare their performances. The analysis will include comparing the end-to-end delay, jitter, and throughput performance metrics using tunneling mechanisms, specifically Manual Tunnel, Generic Routing Encapsulation (GRE) Tunnel, Automatic IPv4-Compatible Tunnel, and 6to4 Tunnel between Customer Edge (CE)-to-CE routers and between Provider Edge (PE)-to-PE routers. The results are then compared against 6PE, Native IPv6, and Dual Stack, all using the MPLS backbone. The traffic generated for this comparison are database access, email, File Transfer, File Print, Telnet, Video Conferencing over IP, Voice over IP, Web Browsing, and Remote Login. A statistical analysis is performed to compare the performance metrics of these mechanisms to evaluate any statistically-significant differences among them. The main objective of this research is to rank the aforementioned IPv6 transition mechanism and identify the superior mechanism(s) that offer lowest delay, lowest jitter, and highest throughput

    A practical approach to network-based processing

    Get PDF
    The usage of general-purpose processors externally attached to routers to play virtually the role of active coprocessors seems a safe and cost-effective approach to add active network capabilities to existing routers. This paper reviews this router-assistant way of making active nodes, addresses the benefits and limitations of this technique, and describes a new platform based on it using an enhanced commercial router. The features new to this type of architecture are transparency, IPv4 and IPv6 support, and full control over layer 3 and above. A practical experience with two applications for path characterization and a transport gateway managing multi-QoS is described.Most of this work has been funded by the IST project GCAP (Global Communication Architecture and Protocols for new QoS services over IPv6 networks) IST-1999-10 504. Further development and application to practical scenarios is being supported by IST project Opium (Open Platform for Integration of UMTS Middleware) IST-2001-36063 and the Spanish MCYT under projects TEL99-0988-C02-01 and AURAS TIC2001-1650-C02-01.Publicad
    • …
    corecore