11 research outputs found

    Denoising of ECG Signal using Soft Thresholding and Empirical Mode Decomposition

    Get PDF
    Electrocardiogram (ECG) is used to record the electrical activity of the heart. Electrocardiogram (ECG), a noninvasive technique which is used generally as a primary diagnostic tool for cardiovascular diseases. A cleaned ECG signal provides necessary information about the electrophysiology of the heart diseases and ischemic changes that may occur. The electrocardiographic signals are often contaminated by noise from diverse sources. Different noises of high frequencies and low frequencies are contaminated with ECG signal that may lead wrong interpretations. The noises that commonly disturb the basic electrocardiogram are power line interference, electrode contact noise, motion artifacts, electromyography (EMG) noise, and instrumentation noise. These noises can be classified according to their frequency content. It becomes very important to minimise these disturbances in ECG signal so that accuracy and the reliability can be improve. In this paper, denoising of the ECG signal is the major objective and technique used for this purpose is based on the Empirical Mode Decomposition (EMD) followed by wavelet based soft thresholding (Rigrsure). The experiments are carried out on MIT-BIH (Massachusetts Institute of Technology Beth Israel Hospital) database

    DE-NOISING ECG SIGNALS CONTAMINATED WITH POWER LINE INTERFERENCE USING NOTCH PRE-FILTERED WAVELET

    Get PDF
    This paper presents the fusion of Notch filter and Wavelet Transform method for denoising ECG signals contaminated with Power line interference. The objective results are compared qualitatively as well as quantitatively while the effectiveness of the method is also validated by Comparing the obtained results with traditional notch filters as well as the wavelet denoising method. The simulation results demonstrate that the purposed method is most effective for removal of power line interference in terms of fast time convergence as well as less complexity of the deployed algorithm.&nbsp

    Wearable armband device for daily life electrocardiogram monitoring

    Get PDF
    A wearable armband electrocardiogram (ECG) monitor has been used for daily life monitoring. The armband records three ECG channels, one electromyogram (EMG) channel, and tri-axial accelerometer signals. Contrary to conventional Holter monitors, the armband-based ECG device is convenient for long-term daily life monitoring because it uses no obstructive leads and has dry electrodes (no hydrogels), which do not cause skin irritation even after a few days. Principal component analysis (PCA) and normalized least mean squares (NLMS) adaptive filtering were used to reduce the EMG noise from the ECG channels. An artifact detector and an optimal channel selector were developed based on a support vector machine (SVM) classifier with a radial basis function (RBF) kernel using features that are related to the ECG signal quality. Mean HR was estimated from the 24-hour armband recordings from 16 volunteers in segments of 10 seconds each. In addition, four classical HR variability (HRV) parameters (SDNN, RMSSD, and powers at low and high frequency bands) were computed. For comparison purposes, the same parameters were estimated also for data from a commercial Holter monitor. The armband provided usable data (difference less than 10% from Holter-estimated mean HR) during 75.25%/11.02% (inter-subject median/interquartile range) of segments when the user was not in bed, and during 98.49%/0.79% of the bed segments. The automatic artifact detector found 53.85%/17.09% of the data to be usable during the non-bed time, and 95.00%/2.35% to be usable during the time in bed. The HRV analysis obtained a relative error with respect to the Holter data not higher than 1.37% (inter-subject median/interquartile range). Although further studies have to be conducted for specific applications, results suggest that the armband device has a good potential for daily life HR monitoring, especially for applications such as arrhythmia or seizure detection, stress assessment, or sleep studies

    Survey and classification of functional characteristics in neural network technique for the diagnosis of ischemic heart disease: A systematic review

    Get PDF
    Background: Nowadays, the prevalence of ischemic heart diseases (IHDs) leads to destructive effects such as patient death. Late diagnosis of such diseases as well as their invasive diagnostic approaches made researchers provide a decision support system based on neural network techniques, while using minimum data set for timely diagnosis. In this regard, selecting minimum useful features is significant for designing neural network structure and it paves the way to attain maximum accuracy in obtaining the results. Methods: In this systematic review, valid databases using sensitive keywords were initially searched out to find articles related to "diagnosing the ischemic heart disease using artificial neural networks" and afterwards, scientific methods were used to analyze and classify the content. Findings: Researchers applied various extractable features from demographic data, medical history, signs and symptoms, and paraclinical examinations, to design the neural network structure. Among them, the features obtained from electrocardiographic test, embedded in paraclinical examinations, had led to a remarkable increase of efficiency in neural network. Conclusion: Utilizing such diagnostic decision support systems in practical environments depends on their high confidence coefficient and physicians� acceptability. Therefore, it can be useful to improve maturity in the design of the neural network structure depending on the choice of the minimum optimal features, and to create required infrastructures to input patients� real, accurate, and flowing data in these systems. © 2018, Isfahan University of Medical Sciences(IUMS). All rights reserved

    Survey and classification of functional characteristics in neural network technique for the diagnosis of ischemic heart disease: A systematic review

    Get PDF
    Background: Nowadays, the prevalence of ischemic heart diseases (IHDs) leads to destructive effects such as patient death. Late diagnosis of such diseases as well as their invasive diagnostic approaches made researchers provide a decision support system based on neural network techniques, while using minimum data set for timely diagnosis. In this regard, selecting minimum useful features is significant for designing neural network structure and it paves the way to attain maximum accuracy in obtaining the results. Methods: In this systematic review, valid databases using sensitive keywords were initially searched out to find articles related to "diagnosing the ischemic heart disease using artificial neural networks" and afterwards, scientific methods were used to analyze and classify the content. Findings: Researchers applied various extractable features from demographic data, medical history, signs and symptoms, and paraclinical examinations, to design the neural network structure. Among them, the features obtained from electrocardiographic test, embedded in paraclinical examinations, had led to a remarkable increase of efficiency in neural network. Conclusion: Utilizing such diagnostic decision support systems in practical environments depends on their high confidence coefficient and physicians� acceptability. Therefore, it can be useful to improve maturity in the design of the neural network structure depending on the choice of the minimum optimal features, and to create required infrastructures to input patients� real, accurate, and flowing data in these systems. © 2018, Isfahan University of Medical Sciences(IUMS). All rights reserved

    Advanced Signal Processing Methods for Animal Electrocardiography

    Get PDF
    Tato diplomová práce se zaměřuje na zpracování elektrokardiogramu (EKG) různých druhů zvířat za účelem sestavení křivky tepové frekvence v čase, vytvoření GUI (grafické uživatelské rozhraní) a význam variability srdeční frekvence ve veterinární praxi. Analýza variability srdeční frekvence je nepříliš prozkoumanou oblastí, která ale může mít velmi významný vliv například při trénování závodních zvířat nebo může mít zásadní vliv na dojivost u skotu. Měření elektrokardiogramu zvířat je velmi významně znehodnoceno pohybovými artefakty, proto se tato práce zaměřuje také na metody filtrace elektrokardiogramu zvířat, jejich srovnání a vyhodnocení. Navržený systém pro zpracování EKG kombinuje filtrační metody a algoritmus založený na kontinuální vlnkové transformaci, který se zde používá pro detekci R vrcholu EKG signálu. Studie je realizována na reálných datech z veterinární praxe z pohledu neinvazivního monitorování tepové frekvence u zvířat, náměr dat byl rovněž součástí této diplomové práce. Tato práce také zkoumá jiné možnosti zaznamenávání tepové frekvence u zvířat, mezi tyto metody patří například metoda měření pomocí balistokardiografie či kardiotokografie. Signály BKG se zde prokázaly jako nevhodné pro detekci tepové frekvence, jelikož obsahují velké množství artefaktů, pocházejících z neklidu zvířat a nemožnosti správného přichycení senzoru, jako je to u elektrod EKG. Měření pomocí KTG prokázalo srovnatelnou kvalitu zaznamenávání srdeční frekvence v čase.This diploma thesis is focused on ECG (electrocardiography) signal processing of different animal species for creation of heart rate curve, GUI (Graphical User Interface) and importance of heart rate variability in the field of veterinary medicine. Analysis of heart rate variability is not explored very well, but It can have huge impact in the field of animal training or milkiness of cows. The Measurement of electrocardiogram is loaded with motion artifacts, that is why this diploma thesis is comparing Filtration Methods and its evaluation. Proposed system for ECG signal processing combines filtration methods and algoritm based on continual wavelet transformation, which is used for R peak detection in this case. Study is realised on real dataset as noninvasive measurement of animal's heart rate, the measurement of data set was also part of this thesis. This thesis explores aalso other Methods for heart rate Assessment, for example balistocardiography or cardiotocography. The result proved that balistocardiography is not right tool for heart rate curve creation but cardiotocography has comparable results as extraction of heart rate curve from ECG.450 - Katedra kybernetiky a biomedicínského inženýrstvívýborn

    Automatic Pain Assessment by Learning from Multiple Biopotentials

    Get PDF
    Kivun täsmällinen arviointi on tärkeää kivunhallinnassa, erityisesti sairaan- hoitoa vaativille ipupotilaille. Kipu on subjektiivista, sillä se ei ole pelkästään aistituntemus, vaan siihen saattaa liittyä myös tunnekokemuksia. Tällöin itsearviointiin perustuvat kipuasteikot ovat tärkein työkalu, niin auan kun potilas pystyy kokemuksensa arvioimaan. Arviointi on kuitenkin haasteellista potilailla, jotka eivät itse pysty kertomaan kivustaan. Kliinisessä hoito- työssä kipua pyritään objektiivisesti arvioimaan esimerkiksi havainnoimalla fysiologisia muuttujia kuten sykettä ja käyttäytymistä esimerkiksi potilaan kasvonilmeiden perusteella. Tutkimuksen päätavoitteena on automatisoida arviointiprosessi hyödyntämällä koneoppimismenetelmiä yhdessä biosignaalien prosessointnin kanssa. Tavoitteen saavuttamiseksi mitattiin autonomista keskushermoston toimintaa kuvastavia biopotentiaaleja: sydänsähkökäyrää, galvaanista ihoreaktiota ja kasvolihasliikkeitä mittaavaa lihassähkökäyrää. Mittaukset tehtiin terveillä vapaaehtoisilla, joille aiheutettiin kokeellista kipuärsykettä. Järestelmän kehittämiseen tarvittavaa tietokantaa varten rakennettiin biopotentiaaleja keräävä Internet of Things -pohjainen tallennusjärjestelmä. Koostetun tietokannan avulla kehitettiin biosignaaleille prosessointimenetelmä jatku- vaan kivun arviointiin. Signaaleista eroteltiin piirteitä sekuntitasoon mukautetuilla aikaikkunoilla. Piirteet visualisoitiin ja tarkasteltiin eri luokittelijoilla kivun ja kiputason tunnistamiseksi. Parhailla luokittelumenetelmillä saavutettiin kivuntunnistukseen 90% herkkyyskyky (sensitivity) ja 84% erottelukyky (specificity) ja kivun voimakkuuden arviointiin 62,5% tarkkuus (accuracy). Tulokset vahvistavat kyseisen käsittelytavan käyttökelpoisuuden erityis- esti tunnistettaessa kipua yksittäisessä arviointi-ikkunassa. Tutkimus vahvistaa biopotentiaalien avulla kehitettävän automatisoidun kivun arvioinnin toteutettavuuden kokeellisella kivulla, rohkaisten etenemään todellisen kivun tutkimiseen samoilla menetelmillä. Menetelmää kehitettäessä suoritettiin lisäksi vertailua ja yhteenvetoa automaattiseen kivuntunnistukseen kehitettyjen eri tutkimusten välisistä samankaltaisuuksista ja eroista. Tarkastelussa löytyi signaalien eroavaisuuksien lisäksi tutkimusmuotojen aiheuttamaa eroa arviointitavoitteisiin, mikä hankaloitti tutkimusten vertailua. Lisäksi pohdit- tiin mitkä perinteisten prosessointitapojen osiot rajoittavat tai edistävät ennustekykyä ja miten, sekä tuoko optimointi läpimurtoa järjestelmän näkökulmasta.Accurate pain assessment plays an important role in proper pain management, especially among hospitalized people experience acute pain. Pain is subjective in nature which is not only a sensory feeling but could also combine affective factors. Therefore self-report pain scales are the main assessment tools as long as patients are able to self-report. However, it remains a challenge to assess the pain from the patients who cannot self-report. In clinical practice, physiological parameters like heart rate and pain behaviors including facial expressions are observed as empirical references to infer pain objectively. The main aim of this study is to automate such process by leveraging machine learning methods and biosignal processing. To achieve this goal, biopotentials reflecting autonomic nervous system activities including electrocardiogram and galvanic skin response, and facial expressions measured with facial electromyograms were recorded from healthy volunteers undergoing experimental pain stimulus. IoT-enabled biopotential acquisition systems were developed to build the database aiming at providing compact and wearable solutions. Using the database, a biosignal processing flow was developed for continuous pain estimation. Signal features were extracted with customized time window lengths and updated every second. The extracted features were visualized and fed into multiple classifiers trained to estimate the presence of pain and pain intensity separately. Among the tested classifiers, the best pain presence estimating sensitivity achieved was 90% (specificity 84%) and the best pain intensity estimation accuracy achieved was 62.5%. The results show the validity of the proposed processing flow, especially in pain presence estimation at window level. This study adds one more piece of evidence on the feasibility of developing an automatic pain assessment tool from biopotentials, thus providing the confidence to move forward to real pain cases. In addition to the method development, the similarities and differences between automatic pain assessment studies were compared and summarized. It was found that in addition to the diversity of signals, the estimation goals also differed as a result of different study designs which made cross dataset comparison challenging. We also tried to discuss which parts in the classical processing flow would limit or boost the prediction performance and whether optimization can bring a breakthrough from the system’s perspective
    corecore