5 research outputs found

    Space sharing job scheduling policies for parallel computers

    Get PDF
    The distinguishing characteristic of space sharing parallel job scheduling policies is that applications are allocated non-overlapping processor subsets. The interference among jobs is reduced, the synchronization delays and message latencies can be predictable, and distinct processors may be allocated to cooperating processes so as to avoid the overhead of context switches associated with traditional time-multiplexing;The processor allocation strategy, the job selection criteria, and workload characteristics are fundamental factors that influence system performance under space sharing. Allocation can be static or dynamic. The processor subset allocated to an application is fixed under static space sharing, whereas it can change during execution under dynamic space sharing. Static allocation can produce more predictable run times, permits a wide range of compiler optimizations (e.g., static data distribution and binding), and avoids the processor releases and reallocations associated with dynamic allocation. Its major problem is that it can induce high processor fragmentation;In this dissertation, alternative static and dynamic space sharing policies that differ in the allocation discipline and the job selection criteria are studied. The results show that significantly superior performance can be achieved under static space sharing if applications can be folded (i.e., allocated fewer processors than they requested). Folding typically increases program efficiency and can reduce processor fragmentation. Policies that increase folding with the system load are proposed and compared to schemes that use unconstrained folding, no folding, and fixed maximum folding factors. The adaptive policies produced higher and more stable system utilization, significantly shorter mean response times, and good fairness curves. However, unconstrained folding resulted in considerably more severe processor fragmentation than no folding. Its advantage is that it exploits the efficiency improvement that typically results when an application is allocated fewer processors. Consequently, it can produce shorter mean response times than no folding under medium to heavy loads;Also because of this efficiency improvement, dynamic policies that reduce waiting times by executing a large number of jobs simultaneously are more promising than schemes that limit the number of active jobs. However, limiting the number of active applications can be the superior approach when folding does not improve application efficiency

    Categorization And Visualization Of Parallel Programming Systems

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005Yükesek kazanımlı programlama olarak da bilinen paralel programlama, bir problemi daha hızlı çözmek için aynı anda birden çok işlemci kullanılmasına denir. Günümüzde, ağır işlemler içeren birçok problem paralel olarak uygulanmaya çalışılmaktadır, buna örnek olarak nehir sularının simüle edilmesi, fizik veya kimya problemleri, astrolojik simülasyonlar verilebilir. Bu tezin amacı, bilimsel hesaplama veya mühendislik amaçlı kullanılan yüksek kazanımlı yazılımları tartışmaktır. Paralel programlama sistemleri ile kastedilen kütüphaneler, diller, derleyiciler, derleyici yönlendiricileri veya bunun dışında kalan, programcının paralel algoritmasını ifade edebileceği yapılardır. Yükesek kazanımlı program tasarımı için programcının dikkat etmesi gereken iki önemli nokta vardır: problemi iyi kavrayıp uygun bir çözüm önermek, doğru sisteme karar verebilmek. Doğru karar verebilmek için kullanıcının sistemler hakkında oldukça iyi bilgiye sahip olması gerekir. Bazen, birden çok yazılım ve donanımı bir arada kullanmak da gerekebilir. Bu tezde var olan paralel programlama sistemleri tanımlanır ve sınıflandırılır, bunun için güncel bildiriler esas alınmıştır. Özellikle algoritmik taslaklar ve fonsiyonel paralel programlama üzerinde durulmuştur.Ayrica güncel bilgileri depolamak ve bir kaynak yaratmak için wiki temelli bir web kaynağı oluşturulmuştur. Sistemlerin grafik gösterimini sağlayıp daha anlaşılır bir sınıflandırma yapabilmek için yeni bir sözdizimi tasarlanıp dinamik ağ çizebilecek webdot aracı ile bir araya getirilerek sistemleri temsil edecek ağı çizecek araç geliştirilmiştir. Bu sözdiziminin öğrenilmesi ve kullanılması son derece kolaydır. Son olarak iki temel paralel programlama tipi, paylaşılan bellek ve mesajlaşma, iki farklı tipte algoritma kullanılarak karşılaştırılmıştır. Programlar OpenMP ve MPI ile gerçeklenmiştir, farklı paralel makinelerde koşturulup sonuçları karşılaştırılmıştır. Paralel makineler için Almanya nın Aachen Üniversitesi nin SMP ağı ve Ulakbim in dağıtık bellekli paralel makineleri kullanılmıştır.Parallel computing, also called high-performance computing, refers to solving problems faster by using multiple processors simultaneously. Nowadays, almost every computationally-intensive problem that one could imagine is tried to be implemented in parallel. This thesis is aimed at discussing high-performance software for scientific or engineering applications. The term parallel programming systems here means libraries, languages, compiler directives or other means through which a programmer can express a parallel algorithm. To design high performance programs, there are two keys for the programmer: to understand the problem and find a solution for parallelization, and to decide on the right system for the implementation, which requires a good knowledge about existing parallel programming systems. The programmer, after having understood the problem, has to choose between many systems, some of which are closely related, whereas others have big differences. This thesis describes and classifies existing parallel programming systems, thus bringing existing surveys up to date. It describes a wiki-based web portal for collecting information about most recent systems, which has been developed as part of the thesis. A special syntax and a visualization tool has been developed. This syntax and tool allow users to have their own categorization scheme. Fourth, it compares two major programming styles message passing and shared memory with two different algorithms in order show performance differences of these styles. Algorithms are implemented in OpenMP and MPI, performance of both programs are measured on the SMP Cluster of Aachen University, Germany and on the Beowulf Cluster of Ulakbim, Ankara.Yüksek LisansM.Sc

    Hybrid eager and lazy evaluation for efficient compilation of Haskell

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 208-220).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.The advantage of a non-strict, purely functional language such as Haskell lies in its clean equational semantics. However, lazy implementations of Haskell fall short: they cannot express tail recursion gracefully without annotation. We describe resource-bounded hybrid evaluation, a mixture of strict and lazy evaluation, and its realization in Eager Haskell. From the programmer's perspective, Eager Haskell is simply another implementation of Haskell with the same clean equational semantics. Iteration can be expressed using tail recursion, without the need to resort to program annotations. Under hybrid evaluation, computations are ordinarily executed in program order just as in a strict functional language. When particular stack, heap, or time bounds are exceeded, suspensions are generated for all outstanding computations. These suspensions are re-started in a demand-driven fashion from the root. The Eager Haskell compiler translates Ac, the compiler's intermediate representation, to efficient C code. We use an equational semantics for Ac to develop simple correctness proofs for program transformations, and connect actions in the run-time system to steps in the hybrid evaluation strategy.(cont.) The focus of compilation is efficiency in the common case of straight-line execution; the handling of non-strictness and suspension are left to the run-time system. Several additional contributions have resulted from the implementation of hybrid evaluation. Eager Haskell is the first eager compiler to use a call stack. Our generational garbage collector uses this stack as an additional predictor of object lifetime. Objects above a stack watermark are assumed to be likely to die; we avoid promoting them. Those below are likely to remain untouched and therefore are good candidates for promotion. To avoid eagerly evaluating error checks, they are compiled into special bottom thunks, which are treated specially by the run-time system. The compiler identifies error handling code using a mixture of strictness and type information. This information is also used to avoid inlining error handlers, and to enable aggressive program transformation in the presence of error handling.by Jan-Willem Maessen.Ph.D
    corecore