
ISTANBUL TECHNICAL UNIVERSITY F INSTITUTE OF SCIENCE AND TECHNOLOGY

CATEGORIZATION AND VISUALIZATION OF

PARALLEL PROGRAMMING SYSTEMS

M.Sc. Thesis by

Ayşe Beliz ŞENYÜZ

Department: Computer Engineering

Programme: Computer Networks

JANUARY 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62729532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISTANBUL TECHNICAL UNIVERSITY F INSTITUTE OF SCIENCE AND TECHNOLOGY

CATEGORIZATION AND VISUALIZATION OF

PARALLEL PROGRAMMING SYSTEMS

M.Sc. Thesis by

Ayşe Beliz ŞENYÜZ

(504021529)

Date of submission: 27 December 2004

Date of defence examination: 26 January 2005

Supervisor (Chairman): Prof. Dr. A. Emre HARMANCI

Members of the Examining Committee: Prof. Dr. Nadia ERDOĞAN

Assoc. Prof. Dr. Hasan DAĞ

JANUARY 2005

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

PARALEL PROGRAMLAMA SİSTEMLERİNİN

SINIFLANDIRILMASI VE GRAFİK GÖSTERİMİ

Yüksek Lisans Tezi

Ayşe Beliz ŞENYÜZ

(504021529)

Tezin Enstitüye Verildiği Tarih: 27 Aralık 2004

Tezin Savunulduğu Tarih: 26 Ocak 2005

Danışmanı: Prof. Dr. A. Emre HARMANCI

Diğer Jüri Üyeleri: Prof. Dr. Nadia ERDOĞAN

Doç. Dr. Hasan DAĞ

OCAK 2005

PREFACE

First of all, I would like to thank Prof. Dr. Emre Harmancı who accepted to
be my supervisor. Then, I would like to thank Prof. Dr. Claudia Leopold for
giving me the opportunity to work in her group of “Programming Languages
and Parallel Programming” at University of Kassel and never let me alone even
in the rest of my work in Turkey. Working at University of Kassel was a great
experience for me. I feel fortunate to have friends who were always helpful to me
in my first time in Germany and who made my time enjoyable, Michael Süss,
Björn Knafla. Thanks to Prof. Dr. Nadia Erdoğan who accepted to work with
me when I turned back to Turkey.

I am grateful to Dr. Turgay Altılar who encouraged me for the presentations
and helped me a lot for the interpretation of my graphics. I am also grateful to
Dr. Onur Tan who let me rid off spending a lot of time for formatting the thesis
and my colleague Haris Saybaşılı who is always a helpful friend.

Special thanks to my parents Osman Faruk Şenyüz and Şükran Şenyüz
who always supported me.

December 2004 Ayşe Beliz Şenyüz

TABLE OF CONTENTS

ABBREVIATIONS viii

LIST OF TABLES ix

LIST OF FIGURES ix

ÖZET x

ABSTRACT x

1. Introduction 1

1.1. Motivation 1

1.2. Contributions 3

1.3. Outline 3

1.4. Disclaimer 3

2. Parallel Programming and Existing Classifications 4

2.1. Parallel Programming 4

2.1.1. Motivation for Parallel Programming 4
2.1.2. Designing Parallel Programs 4

2.2. Existing Classifications 6

2.2.1. Classification by Abstraction Level and Communication Model 6
2.2.1.1. Data-Parallel Systems 6
2.2.1.2. Shared memory Systems 6
2.2.1.3. Message Passing Systems 7
2.2.1.4. Coordination Systems 7
2.2.1.5. Object-Oriented Systems 7
2.2.1.6. High-Level Programming Systems 7
2.2.1.7. Logic programming 8

2.2.2. Classification of Advanced Environments 8
2.2.2.1. Programming Environments 9

3. New Research on Parallel Systems 10

3.1. Research Directions in Parallel Programming 10

3.1.1. Code Correction and Debugging Tools for Systems Using
Shared Memory Communication 10

v

3.1.2. Algorithm Design for Systems Using Shared Memory
Communication 11

3.1.3. Mobile Agents 11
3.1.4. Design Patterns and Skeletons 11
3.1.5. Layered Systems 12

3.2. Overview of the Parallel Programming Systems 12

4. Classification of Parallel Systems 21

4.1. Classification according to the Implementation Type 21

4.1.1. Libraries 21
4.1.2. Languages 21
4.1.3. Compiler Directives 22
4.1.4. Parallelizing Compilers 23

4.2. Classification according to the Programming Languages 23

4.2.1. Parallel Programming with Imperative Languages 23
4.2.2. Functional Parallel Programming 24
4.2.3. Object-oriented Parallel Programming 25
4.2.4. Parallel Programming with Logic Languages 26

5. Wiki Engine 27

5.1. The structure of the tool 27

5.1.1. Syntax 27
5.1.2. Use of the Syntax 28

5.1.2.1. Sub-categorization 32

5.2. Systems 32

5.2.1. Imperative Parallel Programming Systems 32
5.2.2. Functional Parallel Programming Systems 32
5.2.3. Object-Oriented Parallel Programming Systems 33
5.2.4. Logic Parallel Programming Systems 33

6. Comparison of MPI and OpenMP 34

6.1. Algorithms 34

6.1.1. Matrix-Vector Multiply 34
6.1.2. Mergesort 35

6.2. Parallel Machines 35

6.2.1. SMP 35
6.2.2. ccNUMA 36
6.2.3. Beowulf Cluster 37

6.3. Performance Comparison 38

6.3.1. Matrix-Vector Multiply Algorithm 39
6.3.2. Mergesort Algorithm 40
6.3.3. OpenMP vs MPI 43

7. Conclusion 45

7.1. Summary 45

7.2. Outlook 45

REFERENCES 47

APPENDIX 52

A.Time Measurement for Matrix - Vector Multiply 53

A.1.OpenMP, SMP 53

A.2.OpenMP, ccNUMA 55

A.3.MPI, ccNUMA 58

A.4.MPI, Beowulf 59

B.Time Measurement for Mergesort 60

B.1.OpenMP, ccNUMA 60

B.1.1.Best Case 60
B.1.2.Random Case 62
B.1.3.Worst Case 64

B.2.MPI, ccNUMA 66

B.2.1.Best Case 66
B.2.2.Random Case 68
B.2.3.Worst Case 71

B.3.MPI, Beowulf, Small N 74

B.3.1.Best Case 74
B.3.2.Random Case 74
B.3.3.Worst Case 75

B.4.MPI, Beowulf, Large N 75

B.4.1.Best Case 75
B.4.2.Random Case 75
B.4.3.Worst Case 76

BIOGRAPHY 77

ABBREVIATIONS

API : Application Programming Interface
MIMD : Multiple Instruction Multiple Data
SIMD : Single Instruction Multiple Data
SISD : Single Instruction Single Data
MPMD : Multiple Program Multiple Data
SPMD : Single Program Multiple Data
SPSD : Single Program Single Data
MPL : MasPar Language
HPF : High Performance Fortran
NESL : Nested Language
MPL : MasPar Language
POOMA : Parallel Object-Oriented Methods and Applications
UPC : Unified Parallel C
pSather : Parallel Sather
WPP : Whole Program Paths
EREW PRAM : Explicit Read Explicit Write Parallel Random Access Machine
MPI : Message Passing Interface
TPO : Tübingen Parallel Objects
ICC : Intel C Compiler
PUFF : Parallelization Using Farmed Functions
PMLS : Parallel Standard ML with Skeletons
Scampi : Simple Caml Interface to MPI
CML : Concurrent ML
GpH : Glasgow Parallel Haskel
HDC : High Order Divide And Conquer Language
P3L : Pisa Parallel Programming Language
ALWAN : A Language With A Name
eSkel : Edinburgh Skeleton Library
CML : Concurrent ML
Id : Irvine Dataflow
Sisal : Streams and Iterations in a Single Assignment Language
pH : Parallel Haskell
PCN : Program Composition Notation
pH : Parallel Haskell
TwoL : Two Level
SCN : Structured Coordination Language
COPS : Correct Object-Oriented Pattern-Based Programming System
CO2P3S : Correct Object-Oriented Pattern-Based Programming System
SMP : Symmetric Multiprocessors
ccNUMA : cache coherent Non Uniform Memory Access
PE : Programming Environment
PSE : Problem Solving Environment

LIST OF TABLES

Page No:

Table 4.1 Imperative Parallel Programming Systems 24
Table 4.2 Object-Oriented Parallel Programming Systems 26
Table 4.3 Logic Parallel Programming Systems 26

ix

LIST OF FIGURES

Page No:

Figure 4.1 Tree of Functional Parallel Programming Systems 25

Figure 5.1 Wiki Main Page . 29
Figure 5.2 Editable wiki page . 30
Figure 5.3 New Link, New System . 30
Figure 5.4 Tree Syntax . 31
Figure 5.5 New Categorization Tree . 31
Figure 5.6 Tree of Imperative Parallel Programming Systems 32
Figure 5.7 Tree of Object-Oriented Parallel Programming Systems 33
Figure 5.8 Tree of Logic Parallel Programming Systems 33

Figure 6.1 Parallel Matrix-Vector Multiply Algorithm 34
Figure 6.2 Parallel Mergesort Algorithm . 35
Figure 6.3 SMP Architecture . 36
Figure 6.4 ccNUMA Architecture . 37
Figure 6.5 Beowulf Cluster . 38
Figure 6.6 Performance of MPI and OpenMP for Matrix-Vector Multiply . 39
Figure 6.7 Performance of MPI and OpenMP for Matrix-Vector Multiply,

Logarithmic Scale . 40
Figure 6.8 Performance of MPI and OpenMP for Mergesort on ccNUMA . . 41
Figure 6.9 Performance of MPI and OpenMP for Mergesort on ccNUMA,

Logarithmic Scale . 41
Figure 6.10Performance of MPI on Beowulf with data size 1.000.000 42
Figure 6.11Performance of MPI on Beowulf with data size 100.000.000 . . . 43

x

PARALEL PROGRAMLAMA SİSTEMLERİNİN
SINIFLANDIRILMASI VE GRAFİK GÖSTERİMİ

ÖZET

Yüksek kazanımlı programlama olarak da bilinen paralel programlama, bir
problemi daha hızlı çözmek için aynı anda birden çok işlemci kullanılmasına denir.
Paralel programlama 1980’lerin sonunda popülerlik kazanmış, sürekli artan hız
kazanma isteği ile popülaritesini arttırmıştır.
Günümüzde, ağır işlemler içeren birçok problem paralel olarak uygulanmaya
çalışılmaktadır, buna örnek olarak nehir sularının simüle edilmesi, fizik veya
kimya problemleri, astrolojik simülasyonlar verilebilir.
Bu tezin amacı, bilimsel hesaplama veya mühendislik amaçlı kullanılan yüksek
kazanımlı yazılımları tartışmaktır. “Paralel programlama sistemleri” ile
kastedilen kütüphaneler, diller, derleyiciler, derleyici yönlendiricileri veya bunun
dışında kalan, programcının paralel algoritmasını ifade edebileceği yapılardır.
Yüksek kazanımlı program tasarımı için programcının dikkat etmesi gereken iki
önemli nokta vardır: birincisi problemi iyi kavrayıp uygun bir paralel çözüm
önermek, ikincisi ise doğru sisteme karar verebilmek. Doğru karar verebilmek için
kullanıcının sistemler hakkında oldukça iyi bilgiye sahip olması gerekir. Bazen,
birden çok yazılım ve donanımı bir arada kullanmak da gerekebilir. Programcı,
problemi anladıktan sonra birçok sistem arasından birini seçmelidir, sistemlerin
bazıları birbirleriyle yakından alakalı iken, bazıları tamamen farklıdır.
Bu tezde ilk olarak var olan paralel programlama sistemleri tanımlanır ve
sınıflandırılır, bunun için güncel bildiriler esas alınmıştır. Özellikle algoritmik
taslaklar ve fonsiyonel paralel programlama üzerinde durulmuştur. Ikinci olarak,
güncel bilgileri depolamak ve bir kaynak yaratmak için wiki temelli bir web
kaynağı oluşturulmuştur. Wiki tamamen dinamik, içeriği tüm kullanıcılar
tarafından degiştirilebilen bir araçtır. Üçüncü olarak sistemlerin grafik
gösterimini sağlayıp daha anlaşılır bir sınıflandırma yapabilmek için yeni bir
sözdizimi tasarlanıp dinamik ağ çizebilecek webdot aracı ile bir araya getirilerek
sistemleri temsil edecek ağı çizecek araç geliştirilmiştir. Bu sözdiziminin
öğrenilmesi ve kullanılması son derece kolaydır ve wikide yorumların altına
konduğundan bir karışıklığa sebep olmazlar. Bu sözdizimi ve araç sayesinde
kullanıcılar kendi sınıflandırmalarını yapabilirler. Son olarak iki temel paralel
programlama tipi, paylaşılan bellek ve mesajlaşma, iki farklı tipte algoritma
kullanılarak karşılaştırılmıştır. Programlar OpenMP ve MPI ile gerçeklenmiştir,
farklı paralel makinelerde koşturulup sonuçları karşılaştırılmıştır. Paralel
makineler için Almanya’nın Aachen Üniversitesi’nin SMP ağı ve Ulakbim’in
dağıtık bellekli paralel makineleri kullanılmıştır.

CATEGORIZATION AND VISUALIZATION OF
PARALLEL PROGRAMMING SYSTEMS

ABSTRACT

Parallel computing, also called high-performance computing, refers to solving
problems faster by using multiple processors simultaneously. Parallel computing
became popular in the late 1980s and increased its popularity with the continual
desire for more computing power.
Nowadays, almost every computationally-intensive problem that one could
imagine, like the simulation of water levels in the rivers, chemical or physical
problems, or astronomical simulations is tried to be implemented in parallel.
This thesis is aimed at discussing high-performance software for scientific
or engineering applications. The term parallel programming systems here
means libraries, languages, compiler directives or other means through which
a programmer can express a parallel algorithm.
To design high performance programs, there are two keys for the programmer:
The first is to understand the problem and find a solution for parallelization, and
the second is to decide on the right system for the implementation, which requires
a good knowledge about existing parallel programming systems. Sometimes, in
a parallel application, several hardware/software tools are combined.
The programmer, after having understood the problem, has to choose between
many systems, some of which are closely related, whereas others have big
differences. To give an impression of the variety, a few systems are outlined here,
others are explained in the rest of the thesis.

This thesis makes four contributions. First it describes and classifies existing
parallel programming systems, thus bringing existing surveys up to date. Special
emphasis has been given to skeletons and parallel functional programming.
Second, it describes a wiki-based web portal for collecting information about
most recent systems, which has been developed as part of the thesis. Wiki is a
web engine that is fully dynamic and the content can be enriched by the users.
Third, it reports on an extension of the wiki technology that has been introduced
for the representation of the classifications. A special syntax and a visualization
tool has been developed. The syntax in which users can add remarks to web
pages, is easy to learn and use. The graph visualization tool uses the remarks
to generate visual categorizations and clearly show relations between various
systems. This syntax and tool allow users to have their own categorization
scheme. Fourth, it compares two major programming styles message passing
and shared memory with two different algorithms in order show performance

differences of these styles. Algorithms are implemented in OpenMP and MPI,
performance of both programs are measured on the SMP Cluster of Aachen
University, Germany and on the Beowulf Cluster of Ulakbim, Ankara.

1. Introduction

1.1. Motivation

Parallel computing, also called high-performance computing, refers to solving

problems faster by using multiple processors simultaneously. Parallel computing

became popular in the late 1980s and increased its popularity with the continual

desire for more computing power.

Nowadays, almost every computationally-intensive problem that one could

imagine, like the simulation of water levels in the rivers, chemical or physical

problems, or astronomical simulations is tried to be implemented in parallel.

Parallel programming means dividing work into smaller pieces, distributing the

pieces to different processors, and organizing communication. All of these

activities require careful programming to achieve efficiency: how to divide the

work, how to distribute, how to collect the results etc. Different paradigms

can be adopted in the various stages: First, one can divide the problem into

tasks and distribute it to the processors (task parallelism), or divide the data

and let each processor do the same work on different data (data parallelism).

Next, for the communication among processors, one can prefer a shared memory,

where all processors can read or write data (shared memory programming), or

pass messages between processors (message passing programming). The chosen

paradigm depends on the particular algorithm and available machine.

This thesis is aimed at discussing high-performance software for scientific

or engineering applications. The term parallel programming systems here

means libraries, languages, compiler directives or other means through which

a programmer can express a parallel algorithm.

To design high performance programs, there are two keys for the programmer:

The first is to understand the problem and find a solution for parallelization, and

the second is to decide on the right system for the implementation, which requires

a good knowledge about existing parallel programming systems. Sometimes, in

a parallel application, several hardware/software tools are combined.

The programmer, after having understood the problem, has to choose between

many systems, some of which are closely related, whereas others have big

differences. To give an impression of the variety, a few systems are outlined

here, others are explained in the rest of the thesis.

OpenMP is an “application programming interface (API)” for Fortran and C++,

1

developed in the early 90’s to be used for multi-threaded, shared memory

programming. It is not meant to be used in distributed memory parallel systems.

OpenMP is simple to use. The programmer inserts “OpenMP parallel directives”

into performance critical sections of a sequential program until having obtained

the desired speedup (OpenMP).

Message Passing Interface (MPI) describes a message-passing library, it is

available for both Fortran, C and C++ programming languages. MPI is

a standard for communication between processors working in parallel on a

distributed memory system (MPIForum).

High Performance Fortran (HPF) is based on the procedural language Fortran,

one of the oldest programming languages. There had been much research

for parallelizing Fortran, but because of the portability problem, most of the

parallel Fortran compilers couldn’t survive. These works led to the High

Performance Fortran Forum (HPFF), a coalition of industry, academic and

laboratory representatives (HPFForum). HPF is a “data parallel language”, this

means that a single operation can be applied to different elements of a large data

structure simultaneously, in HPF data structures are arrays.

Skeletons are reusable patterns, first introduced by Cole (1989) in his PhD thesis.

Here is the definition of a skeleton by its inventor:

A skeleton is a useful pattern of parallel computation and interaction

which can be packaged up as ”framework/second order/template”

constructs (i.e. parameterized by other pieces of code), perhaps

presented without reference to explicit parallelism, perhaps not.

Implementations and analyzes can be shared between instances.

When deciding for a system, a programmer has to take different pros and cons

into account, eg: (Leopold, 2001):

- Shared memory programming is easy to handle, programmer does not need

to deal with data distribution, does not need to handle communication

details.

- Data parallel programming is easy to handle, but data distribution plays

an enormous role and only regular problems can be expressed easily.

- Message passing programming is harder for the programmer, but more

efficient especially on a cluster, it may be necessary to use message passing.

- The use of skeletons requires the existence of appropriate skeletons in which

the algorithm can be expressed (Rabhi and Gorlatch, 2002).

1.2. Contributions

This thesis makes four contributions. First it describes and classifies existing

parallel programming systems, thus bringing existing surveys up to date. Special

emphasis has been given to skeletons and parallel functional programming.

Second, it describes a wiki-based web portal for collecting information about most

recent systems, which has been developed as part of the thesis. Wiki is a web

engine that is fully dynamic and the content can be enriched by the users. Third,

it reports on an extension of the wiki technology that has been introduced for the

representation of the classifications. A special syntax and a visualization tool has

been developed. The syntax in which users can add remarks to web pages, is easy

to learn and use. The graph visualization tool uses the remarks to generate visual

categorizations and clearly show relations between various systems. This syntax

and tool allow users to have their own categorization scheme. Fourth, it compares

two major programming styles message passing and shared memory with two

different algorithms in order show performance differences of these styles.

1.3. Outline

The thesis consists of six parts. Chapter 2 is an outline of parallel programming

and existing classifications. Of course, not all aspects of these topics can be

covered in full detail here, since this would fill several books, so only the ones with

a high relevance are examined. Pointers to additional literature have been added

for further reading. The focus of chapter 3 and chapter 4 are on new research

about parallel systems and on the wiki classification, that has been developed in

the thesis. In particular, chapter 4 describes new systems and explains reasons

for classification. Chapter 5 gives some information on the implementation of the

wiki engine, and describes the visualization tool. Chapter 6 concerns comparison

of two main parallel programming systems, MPI and OpenMP, and chapter 7

outlines possible directions and challenges for future work.

1.4. Disclaimer

Trademarks and brand names have been used without explicitly indicating them.

The absence of trademark symbols does not infer that a name or a product is not

protected. All trademarks are the property of their respective owners.

2. Parallel Programming and Existing Classifications

2.1. Parallel Programming

Parallel computing splits an application up into tasks that are executed at the

same time to achieve efficiency. Thus, a task is a program or a part of a program in

execution. Early parallel programming environments often required a particular

architecture, and were difficult to use. Nowadays, with the improvement of

technology and development of new systems, parallel programming environments

became less architecture-specific, more close to each other and easier to use.

2.1.1. Motivation for Parallel Programming

According to Leopold (2001), reasons for parallel programming are absolute

performance, modeling, von-Neumann bottleneck, availability and scalability.

Absolute performance: The most important reason for using parallel

programming is the computing power for computationally-intensive problems.

A given level of performance can be easier achieved by a parallel computer than

by a sequential computer. This makes parallel computers cheaper.

Modeling: Parallelism is the best way for modeling some real-world systems in

which different parts work in parallel.

von-Neumann bottleneck: This term denotes the fact that access time to memory

may be the bottleneck of the performance. Parallel computing increases memory

capacity and therefore may speed up applications.

Availability: Parallel working means “working as a team”, and if one of the

components breaks, another one can take over its functions.

Scalability: Parallel systems are scalable, that is more components can be added.

2.1.2. Designing Parallel Programs

Designing parallel programs is much more complex than designing sequential

programs. The programmer has to answer the following questions:

1. How to decompose the problem into subproblems?

2. How to distribute the data?

3. How to communicate between the processors?

4. How to synchronize processors?

4

Different parallel programming systems answer these questions differently, or put

emphasis onto different questions. We consider these differences as important

criteria for our classification. In the following, various approaches to answering

the questions are described in more detail.

The decomposition of the problem can be classified as recursive decomposition,

data decomposition, exploratory decomposition, and speculative decomposition

(Grama et al., 2003). Recursive decomposition is suited for problems that

can be solved with divide-and-conquer strategy. Subproblems are recursively

decomposed into smaller subproblems. Data decomposition is suited for working

on large data sets. Operations performed on decomposed data sets are usually

similar. Exploratory decomposition is is used when the problem is searching a

space of candidate solutions. Parallel tasks run until a desired solution is found.

Speculative decomposition is used when, during the lifetime of the program, the

next step depends on the the output of the previous one. The decomposition step

determines the “degree of concurrency”, that is the maximum number of tasks

that can run in parallel. Often, we use a mixture of the decomposition techniques

in different stages of the program.

Different approaches to decomposition can be classified as data parallelism and

task parallelism. Data parallelism is applying identical operations to different

elements of a large data structure. Task parallelism is applying different

operations to the same or different data. Task parallelism is mostly preferred

when the data set is large as compared to the amount of computations.

Like the decomposition step, the mapping step has much impact on efficiency. A

good mapping scheme should exploit the parallelism that has been identified in

the decomposition step. Moreover, it should avoid communication by mapping

independent tasks onto different processors and related tasks to the same

processor.

Communication between parallel processing elements is one of the major

overheads in parallel programming. There are two main techniques for process

communication: shared address space (shared memory) and message passing.

Shared memory communication is easy to handle. Shared memory operations

are simple read and write operations. The main problem of shared memory is

data race. A data race occurs when several processing elements try to access the

shared memory and at least one of them tries to write. Data races are a problem

since the same program can yield different outputs.

Message passing is done by sending and receiving messages, it is harder for the

programmer who has to be very careful about every detail. Usually, message

passing is preferred when there is no physical shared memory. Some parallel

programming systems like Linda implement a shared memory on top of a

physically distributed memory.

Communication can be synchronous or asynchronous. In synchronous

communication, a common timing signal is established that dictates when the

communication can occur. In asynchronous communication, messages may be

sent and received at a different time, without synchronization.

2.2. Existing Classifications

Two alternative classification schemes are outlined here: one from the book of

Leopold (2001)’s, and one from D’Ambra et al. (2002).

2.2.1. Classification by Abstraction Level and Communication Model

Leopold’s classification is according to the abstraction level first, and second

according to the communication type. The abstraction level determines how

much the programmer is involved with parallel programming details. And

then the communication model determines the dynamism of the systems.

The classification is not strict, the book gives rather a loose framework for

presentational purposes, discussing together related ideas. The following classes

of parallel programming systems are distinguished:

2.2.1.1. Data-Parallel Systems

As mentioned before, data parallelism is applying the same operation to the

elements of a large data set. Two types of data parallelism are distinguished:

SIMD parallelism and SPMD parallelism. Parallel operations can be elementary

or complex, the dataset can be a simple array, a set of data or a list of data.

SIMD parallelism uses simple operations at data-parallel steps, some systems are

C*, MasPar Language (MPL), Parallaxis.

Data parallelism on arrays uses complex operations at data-parallel steps, an

example system is High Performance Fortran (HPF).

2.2.1.2. Shared memory Systems

Shared memory programming uses task-parallelism. Multiple tasks run in parallel

and communicate by reading from and writing to a shared memory. Shared

memory programming is simple for the programmer because a specific memory

organization is not needed and he/she doesn’t need to be involved in the

distribution of the data or in the communication details. As SMPs have shared

memory, they are suited for shared memory programming.

Thread sub-model uses threads as parallel processing units. Threads share global

variables and don’t share the local ones, they can carry out different programs,

which means task parallelism. Typical systems are libraries like the Pthreads

Library (POSIXThreads) and Java Threads (JavaThreads).

Structured shared memory programming sub-model has parallel regions in which

several threads exist, started by a master thread. The most famous system is

OpenMP.

One-sided communication doesn’t handle the communication implicitly, but

the programmer has to manage shared memory allocation and communication

between processes explicitly. Systems are parts of Message Passing Interface-2

(MPI-2) and Bulk Synchronous Parallel Programming (BSP) (Hill et al., 1997).

2.2.1.3. Message Passing Systems

Message passing programming supports both SPMD and MPMD parallelism.

Processes communicate by sending and receiving messages. This model is

preferred when the machine has not a physical shared memory. In this case it

is more efficient, but error-prone and time-consuming. Message passing systems

are Message Passing Interface (MPI) and Parallel Virtual Machine (Lane, 1995).

2.2.1.4. Coordination Systems

Coordination models separate the computational part of a program from the

communication part. This separations helps to have more structured programs.

The programmer expresses the computational part of the program with a

conventional language and the coordination part with a coordination language.

Communication can be realized via a shared-data structure like in Linda, IBM

TSpaces (IBMTspaces) and Sun JavaSpaces, or via coordination channels like

in the message passing model. The oldest system is Communicating Sequential

Processes (CSP), another system is Occam.

2.2.1.5. Object-Oriented Systems

Object-oriented models integrate parallelism with objects. This model is suited

for task-parallelism and mostly for distributed systems. Examples are CORBA,

Java RMI and DCOM.

2.2.1.6. High-Level Programming Systems

These models use a high level of abstraction, the programmer need not deal with

low-level details.

Automatic parallelization is the best way to be far from all parallelization details.

The programmer gives a sequential program to a parallelizing compiler which

transforms it into a parallel one. Such compilers are Paradigm, Polaris, SUIF.

Skeleton model gives the programmer the opportunity to use skeletons,

well-known parallel programming patterns such as pipeline or task pool. Systems

having skeletons are Structured Coordination Language (SC), High-Order

Divide-and-Conquer Language (HDC) and Pisa Parallel Programming Language

(P3L).

Compositional models distinguish program components. A system is

compositional if every component of the program can be combined with other

program components. In this case, properties of program components are

preserved. This model is suited for task-parallelism. Systems are Program

Composition Notation (PCN), Opus and TwoL.

Functional programming model is based on functional programming languages,

the execution order of operations is not specified by the program. Function

parameters may be evaluated in parallel. Such languages are Glasgow Parallel

Haskell (GpH), Eden, Concurrent ML, Erlang.

2.2.1.7. Logic programming

Logic programming naturally leads to parallelism. Some languages are Gamma

and Distributed Oz.

2.2.2. Classification of Advanced Environments

D’Ambra et al. (2002) distinguish advanced environments into two main classes:

programming environments (PEs) and problem solving environments (PSEs).

The term advanced environment stands for a conventional arrangement of

both hardware and software resources to develop high-performance applications.

Definitions of PEs and PSEs are given by the authors:

A programming environment provides all the tools needed to design,

code and debug parallel and/or distributed applications, according to

a given programming model or language.

A problem solving environment provides a set of user-friendly

mechanisms and tools that allow to build-up an application, within

a specific application domain, by gluing together, with an intuitive

compositional model and using some kind of problem-oriented

language, different building blocks.

A PSE enables its users to develop applications without having specialized

knowledge of the hardware or software. Classification of PSEs is beyond the scope

of this thesis, more detail can be found in (Problem Solving Environments Home

Page).

2.2.2.1. Programming Environments

Traditional Programming Environments.

PEs have traditionally been developed as a sequential language with a

communication library on top. A very famous and widely used PE is C/MPI. The

parallelism is basically SPMD parallelism. Although efficients applications can be

developed with C/MPI, traditional PEs are not considered user-friendly because

they require very good knowledge of SPMD parallelism and the programmer

has to deal with every detail. Other such PEs are C++/MPI, Fortran/MPI,

C++/ACE.

Modern Programming Environments.

The common property of “modern” PEs is to free the programmer from

parallelism details, giving the opportunity to inherit useful features.

Skeleton-based PEs like Pisa Parallel Programming (P3L) allow simple and

concise code. The problem with these PEs is the limited number of skeletons.

Coordination languages are developed for problems having different software

components which have to interact to perform complex tasks. Coordination

languages sometimes need complex mechanism to integrate different sequential

or parallel processes.

Design pattern-based PEs use design patterns, which are solutions for

object-oriented programming to common problems in software design. Parallel

design patterns are developed as solution to some parallel programming

problems. Pros and cons are like skeleton-based PEs, one advantage is the

use of object-oriented languages. The first design pattern-based PE is Correct

Object-Oriented Pattern-based Parallel Programming (CO2P3S).

Component-based PEs are the most recent in high-performance computing.

Components are developed for the purpose of reuse. With component technology,

parallel code became usable outside the programming environment. Some

component-based systems are CAFFEINE for developing SPMD parallelism and

XCAT for grid applications.

3. New Research on Parallel Systems

Technology trends such as optical networking and web services suggest that

parallel programming will increase in importance in the future (Foster, 2001).

This thesis concentrates on the software side. In the first part of this section,

we survey new trends in parallel programming. Therefore we give an overview of

existing and recently suggested systems. For reasons of space and time, only part

of the systems are included, with emphasis on systems that are used in practice.

3.1. Research Directions in Parallel Programming

The main goal of the new research is to ease parallel programming. The research

concentrates on the management of shared memory, code mobility, reusable

patterns and layered systems in which computation parts of the program are

separated from the communication parts.

3.1.1. Code Correction and Debugging Tools for Systems Using

Shared Memory Communication

Two main categories for this research are race detection and execution profile.

As mentioned in chapter 2, data race is one main problem of shared memory

systems, and data race detection is highly essential for debugging and assuring

the correctness of these systems. An example detection tool is MultiRace, a tool

for dynamic data race detection in multi-threaded C++ programs (Pozniansky

and Schuster, 2003). A detection technique is Hybrid data race detection which

is based on two old techniques, lockset-based detection and happens-before-based

detection (O’Callahan and Choi, 2003). When a data race occurs on a

shared memory protected by a lock, this is the violation of mutual exclusion.

Lockset-based detection is a technique to detect these violations. If there is a

data race between two events and we cannot say that one happens before the

other one, this is a happens-before-based detection.

A program profile denotes the total count of basic block executions, cache misses

etc. Developing the execution profile of parallel programs allow the programmer

to study the shared variable data access patterns across threads and this is useful

for decision of the architecture (Goel et al., 2003). An example of such tool is

Whole Program Paths (WPP) which produces a single compact description of a

10

program’s entire control flow (Larus, 1999).

3.1.2. Algorithm Design for Systems Using Shared Memory

Communication

Parallel Random Access Machine (PRAM) is well known model for algorithm

design. PRAM consists of processors having a very small local memory and

accessing to a global shared memory. An example of new application is an NC

algorithm for finding maximal acyclic set in any graph which is implemented

on Exclusive Read Exclusive Write (EREW) PRAM (Windsor, 2004). Another

important algorithm design scheme is the design of non-blocking algorithms

(Doherty et al., 2004). Traditional approach is the use of locks to protect shared

data. Problems of this approach are deadlocks and performance degradation.

New approach is designing lock free algorithms. It is shown by Herlihy (1991)

that it is possible to use some synchronization primitives.

3.1.3. Mobile Agents

In traditional models, each process is bound to a fixed location throughout its

lifetime. Mobile agents are programs that can move through a network under

their own control, migrating from host to host and interacting with other agents

(Gray et al., 1997). Mobile agents are effective for distributed applications,

they reduce remote memory access because they can move but they are more

time-consuming than simple messages. Such example agents are MESSENGERS,

Self-Migrating Threads and WAVE. MESSENGERS carry their own behavior

through a network and perform computations at each node (MESSENGERS).

Self-Migrating Threads are mobile threads which have the ability to move through

a network designed in C++ and the ability to perform computations at each

destination (Suzuki and Fukuda, 1999). WAVE is a system based on multiple

“intelligent” agents which can process and communicate. Intelligent agents

are coded recursively in WAVE language, they act like virus and self-spread

in the network (WAVEGroup). For more information, readers can refer to

(MobileAgents) and (Distributed Objects and Copmonents: Mobile Agents).

3.1.4. Design Patterns and Skeletons

The basic idea of using parallel design patterns and skeletons is reuse. While

designing a complex program, it is more suitable for a programmer to reuse

a solution of a similar program already realized instead of designing from the

scratch. The definition of skeleton by its inventor was given in chapter 1, here is

another definition by Bischof et al. (2003):

Skeletons are reusable, parameterized components with well defined

semantics and pre-packaged efficient parallel implementations.

A design pattern is a solution to common problems in software design and

facilitates common structures existing in sequential object-oriented programming.

The programmer chooses the appropriate design pattern from the pattern library.

Parallel design patterns are parallel extensions of the design patterns. Skeletons

and design patterns are very similar but different in the end, a skeleton is

used for designing high-performance systems, a parallel design pattern requires

other handling mechanisms such as fault tolerance, time lines and quality of

service (Rabhi and Gorlatch, 2002). Most of the work on skeletal programming

is based on functional languages as skeletons can be modeled as higher order

functions (HOF)s and most of the work on parallel design patterns is based on

object-oriented languages as a design pattern is an object-oriented approach.

Systems using skeletons and parallel design patterns will be treated in the next

chapter.

3.1.5. Layered Systems

These systems are sometimes called coordination systems or two-level systems.

The separation of computation from the coordination makes two parts orthogonal

to each other, so that a particular coordination style can be applied to any

sequential language (Yang, 1997). These systems will be treated in the next

chapter.

3.2. Overview of the Parallel Programming Systems

Parallaxis is a data-parallel language based on Modula-2, developed for SIMD

computers. Parallaxis can be considered as low-level, the programmer has to

specify number of processors, arrangement and connections between processors.

It is application independent. For further information, see (Parallaxis).

High Performance Fortran. Fortran is one of the oldest programming languages

developed for scientific computing and numerical analysis. There had been

many researches for parallelizing Fortran but because of the portability problem,

most of the parallel Fortran compilers couldn’t survive. These works led to

High Performance Fortran Forum (HPFF). HPF defines a set of extensions to

Fortran90, a standard of Fortran released in 1990s. HPF applications are portable

across platforms.

OpenMP is an API supporting multi-platform shared memory parallel

programming in C, C++ and Fortran. An API is a collection of directive-based

language extensions, runtime library routines and environment variables.

OpenMP is based on multiple threads working on the memory. It enables and

simplifies code reuse, the parallelization is done by compiler directives. It has

powerful lock mechanism to control critical regions. Recursive programming and

loops with unknown number of iterations are the most important disadvantages

of OpenMP. For further information see (OpenMP).

Cilk is a multi-threaded parallel programming language based on C. The runtime

system is responsible of the communication and load balancing details which

means that Cilk is implicitly parallel. Cilk uses “work stealing” scheme, the idle

processors steal work (threads) from the busy one. Data race management is

managed by locks but locks are dangerous with several processes, an alternative

is guard statements (Cheng, 1997). A guard statement specifies which shared

data to guard. Cilk is easy to program, the difference with C is that Cilk has

more reserved words. Cilkchess is a very famous application of Cilk.

Unified Parallel C (UPC) is an extension of C programming language designed for

high-performance computing on large scale parallel machines. UPC uses SPMD

parallelism, the amount of parallelism is fixed at program’s startup time. UPC

views memory as a logically partitioned memory (Kuchera and Wallace., 2004).

These partitions also are partitioned in two: shared and local parts. The local

portion is accessed by the thread to which it belongs and the shared portion is

accessed by all threads. There are many compilers for UPC like Berkeley UPC

compiler, Compaq UPC compiler, GCC UPC compiler, and there is a benchmark

designed to reveal UPC compilers performance weaknesses (El-Gahazawi and

Chauvin, 2001).

Message Passing Interface (MPI) is a portable message-passing library available

to both Fortran and C. Processes working in parallel but on different communicate

by sending and receiving messages. MPI supports SPMD and MPMD parallelism

types.

Intel C Compiler (ICC) supports SIMD parallelism and multi-threaded code

development through auto-parallelism and OpenMP programming. The

programmer doesn’t have to manually insert OpenMP directives. It parallelizes

automatically.

Pisa Parallel Programming Language (P3L) is an explicit parallel programming

language developed at University of Pisa and the Hewlett-Packard Pisa Science

Center. The Language is based upon skeleton-templates and allows parallel

programs to be developed composing a small set of primitive parallel forms. The

programmer must pay attention to the form of parallelism to be exploited, in

return, P3L system handles lower-level parallelism details. P3L has two parts:

sequential code and parallel code which is a set of skeletons. The sequential code is

written in C programming language and the skeletons are written in a very similar

syntax to C programming language’s syntax. P3L uses three types of skeletons:

data parallel skeletons, task parallel skeletons and control skeletons.Data parallel

skeletons define global operations over large data structures, where individual

operations on single elements or substructures of the data structure are performed

in parallel (Kuchen, 2002). Task parallel skeletons decompose tasks into subtasks

which can be executed in parallel and pipelined in the end.

A Language With A Name (ALWAN) is a parallel language and programming

environment developed at University of Basel, based on Modula-2 and (C or

Fortran). The sequential (computation) and the parallel parts (coordination) of

the program are separated which makes it a coordination language. It is a layered

language: provides the programmer with high level constructs for the description

of parallel coordination aspects (Hamdan, 2000).

Skeleton Imperative Language (Skil) is an imperative, C-based language enhanced

with a series of functional features. It aims to provide a high programming level,

which allows the integration of algorithmic skeletons. Current application of Skil

compiler is the implementation of algorithmic skeletons for Parallel Adaptive

Multigrid Methods.

Program Composition Notation (PCN) is a general coordination language

influenced by the parallel declarative language Standard, developed at

Argonne National Laboratory and the California Institute of Technology. Its

major features are compositionality, determinism, implicit synchronization and

higher-order functions. PCN provides a simple language for specifying concurrent

algorithms, interfaces to Fortran and C, a portable toolkit that allows applications

to be developed on a workstation or small parallel computer and run unchanged

on supercomputers and integrated debugging and performance analysis tools.

Nested Language (NESL) is a data-parallel language based on ML. The basic

idea of NESL is nesting data parallelism. Data parallelism in NESL is executed

by operations over the data of same type. The main data parallel construct

is “apply-to-each” which is a parallel construct applied to parallel sequence

and which means parallelism in parallelism (Belloch, 1996). NESL is a strict

language. In a strict language all function arguments are needed and they can be

all executed in parallel. In a non-strict language, all of the function arguments

are not needed which gives the obligation to determine expressions to execute in

parallel (Hammond and Michaelson, 1999).

Streams and Iterations in a Single Assignment Language (SISAL) is a portable,

high-performance, data-parallel functional programming language. SISAL code

can be mixed with C or Fortran for hybrid applications. SISAL’s parallelism

is implicit, it uses control parallel loop constructs over arrays (Hammond and

Michaelson, 1999).

MultiLisp is an extension of the functional programming language Lisp.

MultiLisp includes constructs for causing side-effects. MultiLisp’s constructs

make the parallelism explicit. The parallel construct implicitly uses fork-join

parallelism followed by a procedure call.

Simple CAml to MPI (Scampi) is a small library allowing functional programs

written in Caml to make calls to MPI communication routines. It provides some

MPI bindings and based on the static SPMD execution model: all processes

are created at launch time and remain active until the end of the computation.

Parallelism in Scampi is explicit.

Concurrent ML (CML) is a concurrent extension of Standard ML of New Jersey

(SML/NJ). CML supports dynamic thread creation and synchronous message

passing on channels. CML provides first class synchronous operations which

are based on the notion of events as a first class data type and which comprises

functions that produce base event values and combinators to combine event values

into higher order operations (Hammond and Michaelson, 1999).

Concurrent Haskell is the concurrent extension of the lazy functional

programming language Haskell. Concurrent applications are expressed explicitly.

It adds two mechanisms to Haskell: processes and mechanism for process

initiation and atomically mutable state support for inter-process communication

and cooperation (Jones and A. Gordon, 1996). A debugger and a compiler

exist for Concurrent Haskell: Concurrent Haskell Debugger and Glasgow Haskell

Compiler.

A Symmetric Integration of Concurrent and Functional Programming (Facile)

is a high-level, high-order programming language for systems that require a

combination of complex data manipulation and concurrent computing. It is an

extension of Standard ML. It is considered as a “reactive language”, there are no

clear notions of inputs and outputs or even of termination and the whole purpose

of parallelism is to maintain a set of separate tasks interacting with an external

environment (Ortega and Pena, 1998).

Eden is a declarative parallel functional language extending Haskell. Eden

is explicit about process definition and implicit about process communication.

Communication is asynchronous and is realized by message passing via

communication channels. Eden is a layered language, it has two levels:

communication and computation. Eden especially targets both transformational

and reactive (concurrent) programs on distributed memory machines (Loidl et

al., 2000).

Caliban is an annotation-based functional parallel language. Annotation property

allows the programmer to partition the functional program and data amongst

the computational resources available. Caliban is considered as a coordination

language which is very closely related to the functional language it controls and

used to determine static mapping of parallel tasks to the processors (Hammond

and Michaelson, 1999). The basic object in Caliban is a stream of values, a

stream us communication link between computations (Taylor, 1993).

Glasgow Parallel Haskell (GpH) is a strict parallel functional language extending

Haskell. GpH adds a primitive for parallel composition “par”, that is used

together with sequential composition “seq” to express how a program should

be evaluated in parallel. The implementation of GpH is GUM. GpH uses

annotation-based approach in which process creation, distribution etc. are under

automatic dynamic control. GpH specifically targets transformational (parallel)

programs on a range of tightly-coupled parallel architectures from shared memory

to distributed memory machines (Loidl et al., 2000).

Higher Order Divide and Conquer Language (HDC) investigates the automatic

parallelization of divide-and-conquer recursions. It is an extension of the pure and

higher-order functional programming language Haskell. The only difference from

Haskell is that HDC supports skeletons. An example of application is N Queens

which is an important example of divide-and-conquer algorithm (Herrmann and

Lengauer, 2000).

Parallelizing Using Farmed Functions (PUFF) is a compiler generating sequential

Occam2 code from Standard ML and identifying useful parallelism in general

linear recursion.The PUFF compiler relies on profiling information and

performance modeling to determine which linear recursive functions should be

implemented as processor farms. It uses the processor farm skeleton but doesn’t

support nesting of processor farm skeletons allowed in the system (Hamdan,

2000).

SkelML is a skeleton-based compiler for ML developed at Heriot-Watt University

in 1994. SkelML compiler identifies useful parallelism in higher order function use

and can transform prototypes to enhance the exploitation of parallelism through

algorithmic skeletons. The compiler exploits the parallelism available in the

program through a set of predefined skeletons. The skeletons are map, filter,

fold, filtermap, mapfilter and foldermap. It uses automatic program synthesis to

identify specific parallel patterns.

GoldFISh is a parallel version of FISh, designed for producing portable,

implicitly parallel language. FISh supports both the functional and imperative

programming in the style of an Algol-like language. GoldFISh is a purely

functional language that will use shape analysis to determine costs, and hence

appropriate distributions.Shape analysis is based on “shape theory” which

considers that values associated with a data structure have a shape. Shape theory

gives a precise categorical account of how data is stored within data structures,

or shapes (Barry Jay’s Shape Theory Page). Fragments of GoldFISh programs

are treated as FISh programs and compiled into simple, efficient, imperative code

(e.g C or Fortran). GoldFISh acts like a coordination system, computation and

communication are separated. GoldFISh supports skeletons.

EKTRAN is a vehicle for exploring skeletons nesting, based on a simple

functional language influenced by FP, for coordinating skeletons through higher

order functions (HOF). EKTRAN supports arbitrary nesting of map and fold.

Programs written in EKTRAN are translated to Caml and the Camlot compiler

for Caml is used to generate C code.

Parallel ML with Skeletons (PMLS) generates native code with skeletons from full

pure-functional Standard ML program and supports static nested skeletons from

nested higher order functions. It supports the full SML Core language and nested

skeletons. Associated technology enables the automatic synthesis of higher order

functions in programs that lack them, through proof planning. Static analysis

and dynamic instrumentation, combined with performance models for skeletons,

enable the identification of useful parallelism (Scaife et al.).

Concurrent Clean. Clean is a lazy, pure, higher order functional

programming language with explicit graph rewriting semantics; one can explicitly

define the sharing of structures in the language. Concurrent Clean has

concurrency annotations to create functions which can be executed in parallel.

Communication takes place automatically.A distinction has been made between

parallel programs and concurrent programs in Concurrent Clean. Parallel

programs have the same semantics as their sequential counterparts, so there is

no explicit message passing and non-determinism. Concurrent programs have a

different semantics, because explicit message passing and non-determinism are

used. Both programming models are provided in Concurrent Clean (Serrarens,

1998).All objects are represented by graphs which makes Concurrent Clean

suitable for the specification of process topologies (Hammond and Michaelson,

1999).

Irvine Dataflow (Id) is a non-strict, single assignment language and incremental

compiler developed for MIT’s Tagged-Token Dataflow Architecture planned to

be used on Motorola’s Monsoon Dataflow Multiprocessor (small shared memory

multi-processors). In the dataflow model, remote requests are structured as

split-phase transactions so that multiple requests may be in progress at one time

(Hicks et al., 1993). Id is a layered language. Exploitation of inherent expressions,

loop and function parallelism similar to SISAL’s.

Parallel Haskell (pH) is a successor to the dataflow language Id and it adopts the

notation and type system of the functional language Haskell. pH is fully parallel,

and the approach it uses differs from other programming languages. For example,

the first and simplest programs that a pH programmer writes are parallel, and

an advanced pH programmer learns judiciously to use explicit sequencing later

(Nikhil and Arvind, 2001). It is possible to provide programmer annotations to

indicate sub-expressions which should be evaluated in parallel but the annotations

can only affect termination. pH includes all Haskell syntax, and the same type

inference system.

eSkel is a skeleton Library for C programs supporting SPMD parallelism. The

current implementation is very preliminary (Cole, 2004).

Skipper presents a skeleton-based programming technique for fast prototyping of

reactive vision applications. Skipper consists of a skeleton library, compile-time

system and a runtime system, its target is parallel C code (Sérot and Ginhac,

2002).

POOMA is high performance toolkit for scientific parallel computation developed

in 1994 at Los Alamos National Laboratory to assist nuclear fusion and

fission research. POOMA is based on C++ and supports data-parallelism and

automatically parallelizes scientific computation. POOMA toolkit and a message

passing library like MPI or Cheetah Message Passing Library automatically

perform all computation and communication.

JOMP is an OpenMP-like API for parallel programming in Java (Bull and

Kambites, 2000). It supports most of the OpenMP directives and uses fork-join

parallelism. OpenMP directives are embedded in comments in the Java program.

The program with the extension “.jomp” is compiled with JOMP compiler to the

java source code. As Java applications are portable, so are JOMP applications.

JOMP is a quite new system, it doesn’t have many tools, it has an environment

for the performance analysis and visualization of parallel applications written in

JOMP (Guitart et al., 2001).

Parallel Sather (pSather) is the parallel version of the pure object-oriented

language Sather. pSather presents a shared memory communication model and

it supports both task and data-parallelism. The main idea in pSather is giving

threads the ability to fork themselves and wait for a collection of threads to

complete execution. pSather is simple and efficient.

Tübingen Parallel Objects (TPO) is a message passing library written in C++

on top of MPI. Its key features are easy transmission of objects, type-safety,

MPI-conformity and integration of the C++ standard library (Grundmann et

al., 2000).

Charm++ is an object-oriented, machine-independent parallel programming

language based on C++. Charm++ programs run unchanged on MIMD machines

and processes communicate with messages. There is a clear separation between

parallel and sequential objects (Kale and Krishnan, 1993).

Jade is a Java-like language with message passing features. Communication

occurs through asynchronous method invocation (DeSouza and Kale, 2003). Jade

source is translated to Charm++ source which is than compiled and executed on

the target machine. Jade is a quite new language, it doesn’t support yet Java’s

standard libraries.

ARMI is a communication library that provides a framework for expressing

fine-grain parallelism and mapping it to a particular machine using shared

memory and message-passing library calls (Saunders and Rauchwerger, 2003).

It is an advanced implementation of Remote Method Invocation (RMI) which is

a communication model for object-oriented programs.

Lithium is a full Java library allowing parallel programs to be written and run

according to the skeleton programming model on a network of Java machines.

Lithium includes common skeletons such as pipeline, farm, map, reduce and

divide-and-conquer.

Correct Object-Oriented Pattern-Based Programming System (CO2P3S)

(pronounced as COPS) combines design patterns and frameworks in the

object-oriented parallel programming programming domain. It supports Parallel

Design Patterns (PDP)s. CO2P3S ensures correctness which ensures that once

created, a parallel program has correct structure with all necessary parallelism

details and openness which means that the programming system provides

opportunities for performance tuning and allows the user to take full advantage

of all language facilities and run-time libraries to improve the performance of an

application. CO2P3S generates multi-threaded Java framework code for shared

memory multiprocessor systems (MacDonald et al., 2002).

Structured Coordination Language (SCL) is a coordination language integrated

with skeletons and combined with a base language and manages all parallelism

aspects of the application. The base language cannot call SCL primitives

(Darlington et al., 1995). SCL has two layers: primitive skeletons and data

sharing skeletons. Primitive skeletons consist of array distribution, alignment

of distributed arrays, data parallel primitives, computational primitives, and

communication primitives. Data sharing skeletons manipulate shared elements.

Linda is a coordination language providing tuple space shared memory and is

combined with a based language. Like SCL, Linda manages communication, it

has four operations: put, remove, read and evaluate. Remove and read operations

exist in two modes, blocking and non-blocking.

Gödel is a declarative, general-purpose programming language in the family of

logic programming languages developed by Antony Bowers and John Lloyd at

the University of Bristol and Pat Hill at the University of Leeds. Gödel supports

infinite precision integers, infinite precision rationals, and also floating-point

numbers. It can solve constraints over finite domains of integers and also linear

rational constraints. It supports processing of finite sets.

PARLOG is a logic programming language for parallel applications. Logic

programming finds a solution to a given question by checking all of the given

conditions. In PARLOG, finding a solution to each condition becomes a separate

concurrent process. The shared variables of the conditions are the communication

channels between the processes. PARLOG relations are divided into two types:

single-solution relations and all-solutions relations (Clark and Gregory, 1986).

Single-solution relation calls can be evaluated in parallel with shared variables

acting as communication channels for the passing of partial bindings. Only

one solution to each call is computed. All-solutions relation calls are evaluated

without communication of partial bindings, but all the solutions may be found

by an or-parallel exploration of the different evaluation paths.

Oz is a multi-paradigm language designed to support different programming

paradigms: logic, functional, constraint, object-oriented, sequential, concurrent

with equal ease. Oz is a concurrent object-oriented language, can be programmed

in a very similar way to other such languages, like Java and Oz is a powerful

constraint language with logic variables, finite domains, finite sets, rational trees

and record constraints. It has a virtual machine which makes it portable. The

Mozart system is an implementation of Oz and it provides state-of-the-art support

in two areas: open distributed computing and constraint-based inference. Oz

execution model is based on both concurrent logic programming and traditional

search-based logic programming (Roy et al., 2003).

4. Classification of Parallel Systems

Classification is the act of distributing entities into classes or categories of the

same type. Almost anything, animals, things, concepts, events etc. may be

classified. Wikipedia introduces the term “taxonomy”: classification is the act

of placing an object or concept into a taxonomy (Wikipedia). Taxonomy may

refer to either a hierarchical classification of entities, or the principles underlying

the classification. We try to figure out a new classification of the old and new

parallel programming systems.

The first classification takes as basis programming styles which mean

programming languages systems are based on. Second classification is according

to the implementation type of the systems. The third classification scheme

combines both to show the wiki classification.

4.1. Classification according to the Implementation Type

As mentioned in chapter 1, parallel systems in thesis mean libraries, languages,

compiler directives or other means through which a programmer can express a

parallel algorithm. This classification takes as basis the implementation types.

4.1.1. Libraries

A library is a collection of subprograms used to develop software. Libraries cannot

be executed independently, they define functions, routines or methods needed

for the application. While using libraries, the programmer has to include the

library to the imperative or object-oriented programming language. A compiler

doesn’t know what functions do, it only knows that there are some included

functions, library calls cannot be optimized by compilers. Using libraries is easier

to implement but applications are slower.

Libraries for parallel programming include: OpenMP, MPI, Scampi, JOMP, TPO,

ARMI, Lithium, eSkel, Cheetah Messaging Library (only for POOMA) and MM

Shared Memory Library (only for POOMA).

4.1.2. Languages

A programming language is a notation for expressing instructions to a computer

and to develop applications. Codes written in a specific programming language

21

are translated to the executable codes by a compiler. Languages can be classified

according to their level, a high level language is more user-friendly than a low

level language.

A parallel programming language must provide support for the basic parallelism

aspects: parallel execution, communication and synchronization. Most of

languages used for parallel programming extend an existing sequential language.

- Parallel programming languages based on C: Cilk, UPC, Skil.

- Parallel programming languages based on C++: POOMA.

- Parallel programming languages based on Fortran: HPF.

- Parallel programming languages based on Modula-2: Parallaxis, ALWAN.

- Parallel programming languages based on Haskell: HDC, Concurrent

Haskell, Eden, GpH, pH.

- Parallel programming languages based on SML: NESL, PMLS, CML, Facile.

- Parallel programming languages based on other languages: pSather

(Sather), PCN (Standard), MultiLisp (Lisp), EKTRAN (FP), Concurrent

Clean (Clean), GoldFISh (FISh), Charm++ (C++), Jade (Java).

Moreover, there are independent parallel programming languages that don’t have

a particular language as their root, but usually several. Such parallel languages

include CO2P3S, P3L, SISAL, Caliban, Id, Gödel, PARLOG, Oz.

Finally, coordination languages like Linda, SCL can be coupled with C, Fortran

or some other imperative or functional languages.

4.1.3. Compiler Directives

A compiler directive is a non-executable statement suggesting the compiler what

to do, but which is not translated directly into executable code. Directives may

be embedded within a program written in a base language. Compiler directives

allow the programmer to use the same parallel code on both multi-processors and

single-processor. If a compiler sees a directive that it doesn’t understand, it can

just ignore it. Another advantage is the incremental parallelism (Chandra et al.,

2001).

Parallel systems based on compiler directives are OpenMP, HPF.

4.1.4. Parallelizing Compilers

A compiler is a program which translates the source code of a program into

the executable code. Different compilers exist for different languages, mostly

more programmers can find more than one compiler for the same language. A

compiler can be preferred according to the application. Parallelizing compilers

free programmer from low level parallelism details. They transform sequential

program to parallel one and they are based on the parallelization of loops. Of

course, parallelism must be understandable by the compiler.

Parallel compilers: ICC, PUFF, SkelML.

4.2. Classification according to the Programming Languages

This classification takes as basis, the programming language of the parallel

programming system. We can say that parallel programming systems evaluation

follows the one of the programming languages: from imperative or functional

languages to the object-oriented or component-oriented which enable reuse. Most

of the new systems allow reuse introducing design patterns or skeletons. We can

distinguish systems with these historical approaches.

4.2.1. Parallel Programming with Imperative Languages

Imperative programming is a programming paradigm that describes computation

in terms of a program state and statements that change the program state.

Example languages are Fortran, Pascal, C and Ada.

With imperative languages, the programmer typically has to deal with low-level

parallelism details and pay attention to the states: how to send messages, from

where to where to send messages etc.

This class can be considered as “traditional”. The most successful systems in

this class refer to a communication library but compiler directives or extended

languages exist as well. This class includes Parallaxis, HPF, OpenMP, Cilk, UPC,

MPI, ICC, P3L, ALWAN, Skil, PCN, eSkel.

It is more convenient for this category to have a distinction between shared

memory systems, data parallel systems and message passing systems. Table 4.1

gives an overview of imperative parallel programming systems.

Table 4.1. Imperative Parallel Programming Systems
system implementation parallelism communication

Parallaxis extends Modula-2 data parallel -

HPF compiler directives data parallel both

OpenMP compiler directives both shared memory

MPI library task parallel message passing

Cilk extends C message passing

UPC extends C shared memory

P3L extends C both message passing

ALWAN extends Modula-2 message passing

Skil extends C message passing

eSkel library message passing

4.2.2. Functional Parallel Programming

Functional programming is a programming paradigm that treats computation

as the evaluation of mathematical functions. Example languages are Erlang,

Haskell, Clean, Lisp and Caml. Contemporary functional languages have three

key properties that make them attractive for parallel programming (Loidl et al.,

2003):

1. Abstraction: Functional languages have two main abstraction mechanisms:

- Function composition allows the composition of complex functions into

simpler ones. This mechanism allows the decomposition of complex

problems into simpler ones.

- Higher order functions can take other functions as arguments and may

also return functions as result.

2. Elimination of unnecessary dependencies: Functions map inputs to outputs,

there are no other effect, thus functional languages doesn’t contain

side-effects which makes easier the detection and identification of potential

parallelism. Functions are independent, all sequential dependencies are

eliminated.

3. Architecture independence: Unlike imperative languages, functional

languages enable a higher degree of abstraction over architecture

characteristics through higher-order functions and polymorphism.

Parallel systems based on functional programming languages include NESL,

SISAL, MultiLisp, Scampi, CML, Concurrent Haskell, Facile, Eden, Caliban,

GpH, HDC, PUFF, SkelML, GoldFISh, EKTRAN, PMLS, Concurrent Clean,

Id, Parallel Haskell.

Most functional parallel programming systems emphasize ease of programming

instead of higher performance (Leopold, 2001). Thus, functional parallel

programming systems can be distinguished according to their level of abstraction.

These systems contain different constructs for parallelism like skeletons and

annotations. Figure 4.1 gives an overview of functional parallel programming

systems classified according to Loogen (1999).

ExplicitApproach

Facile

Eden
Caliban

HighLevelDataParal

NESL GoldFISh

SkeletalSystems

ContrApproach

EvaluStrat

GpH

PMLS SkelML

ImplicitApproach

DataParallelApproach

Id

SISAL
PH

HDC Skipper

ConcuHaskell

CML

Scampi

MultiLisp

Erlang

SemiImplicitApproach

ConcuClean

AutomParalOfFunctLangu

EKTRAN PUFF

Parallelization_of_functional_languages

Figure 4.1. The classification of functional parallel programming systems is

according to the abstraction level.

4.2.3. Object-oriented Parallel Programming

Object-oriented programming is a programming paradigm that has as basis

objects as smallest units. Objects can perform computations and communicate

with other objects. The support for encapsulation and software reuse of

object-oriented programming languages using design patterns and frameworks

allows programmers to write general application programs easily. A design

pattern is a solution to common problems in software design and it facilitates

common structures existing in sequential object-oriented programming. The idea

of using object-oriented programming languages in parallel programming comes

from the idea of reuse.

Parallel systems based on object-oriented programming languages include

POOMA, JOMP, pSather, TPO, Charm++, Jade, ARMI, Lithium, CO2P3S.

OpenMP and MPI exist for C++ as well, but the use is the same as imperative

languages.

Like imperative parallel programming systems, most important aspect of

object-oriented parallel programming systems is the communication.

Table 4.2 gives an overview of object-oriented parallel programming systems.

Table 4.2. Object-Oriented Parallel Programming Systems
system implementation parallelism communication

POOMA extends C++ data parallel both

Parallel Java extends Java both message passing

JOMP library fork-join shared memory

pSather extend Sather both shared memory

TPO C++ library task parallel message passing

Charm++ extends C++ message passing

Jade extends Java message passing

ARMI library both

Lithium library message passing

CO2P3S extends Java shared memory

4.2.4. Parallel Programming with Logic Languages

Logical programming uses facts and rules to find a result to a given problem

and offers some opportunities for implicit parallelism. A logic program can be

represented as a tree. In sequential programs, nodes of a tree are visited in the

predetermined order but in parallel systems, agents visit the tree nodes in parallel.

There are two-parallelism types in parallel logic programming: “and-parallelism”

and “or-parallelism”. In these two parallelism types, conjunctions are evaluated

simultaneously, and parent computations are blocked until their children have

completed.

Parallel systems based on logic programming languages include Gödel, PARLOG,

Oz.

Parallel programming with logic languages is a more theoretical subject for

computer scientists. It is not widely used nor developed by many scientists.

Table 4.3 gives an overview of logic parallel programming systems.

Table 4.3. Logic Parallel Programming Systems
system implementation communication

Gödel mobile agents message passing

PARLOG mobile agents message passing

Oz message passing

5. Wiki Engine

A wiki server is a free tool for collaborative idea exchange and writing-informal,

quick, and accessible. Wiki enables documents to be written collectively in a

simple markup language using a web browser.

A page is represented in three ways in a wiki (Wikipedia):

- HTML code. This is the web page rendered by the web browser. When

used alone, an HTML code is too complicated to allow fast-paced editing

and distracts from the actual content of the pages.

- Source code which is editable by the users. The wiki server uses this code

to produce the HTML code.

- Wiki text. Contents written in a simplified markup language.

Wiki implementation requires a web server and a database server. For the

implementation, “Apache” “MySQL” have been used respectively. The wiki

engine that was used for the tool is “MediaWiki”. For the graph visualization

a dynamic graph tool “Webdot” is used. Other tools can be used for different

applications but the syntax would certainly be a little bit different.

5.1. The structure of the tool

Pages are parsed with PHP and the input file for webdot are also created by PHP.

Wiki pages have names which represent them in the graph. A wiki page having

as name “MPI” and describing MPI is represented with a node named as “MPI”.

A wiki page having as name “Message passing systems” is represented with a

node named as “MessPassSyst”. Long names are shortened for a clear view of

the graph. When created, pages do not belong to any categorization graph. A

“page” is added to a graph by a user. Many graphs are allowed for different users

who are more interested in different aspects of parallel programming.

5.1.1. Syntax

The idea behind the graphical representation was to obtain a tree or mostly a

graph. For this reason, systems represented by a wiki page have to be included

in a graph giving the classification name which is the graph name and giving the

descendants. The syntax is:

27

< tree > tree name[#category name]|[descendant1, ..., descendant
n
] < /tree >

This syntax means that a page containing this syntax belongs to a graph having

name “tree name” and has as descendants descendant1, ... , descendant
n

which

exist most probably as “links” on this page. The category name and descendants

are optional. A system can belong a graph without having any descendant or

having many descendants. The “category name” is used for a sub-categorization

in the graph. The syntax is put under comments in wiki text by the user, it is

not seen on pages.

The graph is a undirected graph or sometimes a tree, it can be converted to a

directed graph with a very small syntax modification. Graphs are dynamic. The

user of the wiki engine has only to include a system in a graph using the given

syntax. When drawing the graphs, pages are parsed and every different graph

is extracted. After the extraction, every graph’s nodes and links are extracted.

The cycles are not visited more than once, loops are eliminated with SQL queries.

Parsing is done with PHP. Sources of functions for parsing and graph drawing

are on enclosed CD.

The tree syntax must be compatible with the wiki’s syntax. If there is a mistake,

this is not considered fatal, the tree is drawn again but there is a message for the

user telling the place of the syntax error.

5.1.2. Use of the Syntax

This part of the thesis describes how to use the given syntax with examples.

Figure 5.1 is the main page of the parallel programming wiki portal.

Figure 5.1. The contents can be changed by the users.

To add a new system to the wiki, we just “edit” the page and add a new link. In

this editable page, all modifications are done with wiki’s own syntax. This syntax

differs between wiki engines and their versions. The syntax can be learned from

the user guide of the according engine. After modifying the contents, the page

must be “saved” by clicking the save button. Figure 5.2 shows the editable page

and Figure 5.3 shows new link.

Figure 5.2. Users must use the wiki syntax of the current wiki version.

Figure 5.3. Added link appears on the page. An empty link is red, a full one is

blue.

Now that the new system is added, we need to create a new subsystem and add

this system to a tree. To put the tree syntax in comments is not an obligation

but it just allows a clearer view. Figure 5.4 shows the use of the tree syntax. The

tree name indicates the tree to which “new system” belongs. Having children is

not an obligation, the children part of the syntax could be blank.

Figure 5.4. The content can be larger.

By following the link on the main page, users can observe the dynamic tree. The

tree is dynamic which means that any user can edit the content of a node (a

system) by clicking on the node and change the categorization, add or remove

links. Figure 5.5 is a new categorization tree.

Figure 5.5. The new categorization tree with clickable nodes.

5.1.2.1. Sub-categorization

Subcategories are needed sometimes to indicate some points like library, language

. . . The syntax of a sub-categorized node of Figure 5.6 is:

< tree > ImperativeParallelP rogrammingSystems#compdir| < /tree >

5.2. Systems

If we try to do a whole classification like Skillicorn and Talia (1998) parallel

systems look really complex. Instead of a large classification, smaller

sub-classifications are preferred in this thesis.

As mentioned in chapter 4, the classification is based on the programming

languages that is the core of the parallel programming system.

5.2.1. Imperative Parallel Programming Systems

Figure 5.6 shows imperative parallel programming systems tree.

ICC

Auto_Par

Imperative_Parallel_Programming_Systems

DataParallelImperSystems ImperSystemsUsingSharedMemory

HPFParallaxis OpenMP

ImperSystemsUsingMessa

ESkelMPI

Cilk UPC

ALWAN

P3L

Skil

Comp_dir

Extend_C
Library

Figure 5.6. In this classification communication types are considered first, and

a sub-classification is done according the implementation type.

5.2.2. Functional Parallel Programming Systems

The graph of functional parallel programming systems is given in Figure 4.1.

5.2.3. Object-Oriented Parallel Programming Systems

Figure 5.7 shows object-oriented parallel programming systems graph.

Object_oriented_parallel_programming_systems

ObjectOrientedParallelProgrSystemsUsingMessages

Jade

Parallel_Java

Charmpp

ObjectOrientedParallelProgrSystemsUsingSharedMemory

COPSPSatherARMILithiumTPO JOMP POOMA

Library PDP

Figure 5.7. In this classification communication types are considered first, and

a sub-classification is done according the implementation type. The

only difference with imperative parallel programming systems is the

parallel design patterns.

5.2.4. Logic Parallel Programming Systems

Figure 5.8 shows logic parallel programming systems graph.

Logic_parallel_programming_systems

PARLOG

OzGoedel

Figure 5.8. Logic parallel programming systems are nor widely used, they are

more theoretical. A few systems can be cited as current.

6. Comparison of MPI and OpenMP

As mentioned in previous chapters, in parallel programming, the communication

is via shared memory or message passing. Some hybrid approaches like “channels”

exist as well but it is closer to shared memory as messages are put in a channel

and the channel is shared. Most of the parallel systems (some are currently

under development) target OpenMP, that is considered the core of shared

memory programming or MPI, that is considered the core of message passing

programming.

In this chapter, OpenMP and MPI performances are compared for two different

types of algorithms, mergesort and matrix-vector multiply.

6.1. Algorithms

6.1.1. Matrix-Vector Multiply

Matrix-Vector Multiply is a “data parallel” algorithm. The main idea is to do

the same operation on matrix arrays. Vector array is sent to each processor

and arrays are distributed to the processors, multiplication is parallel, after the

completion, each processor sends its result to the master processor. The source

of OpenMP and MPI program’s important functions can be found in enclosed

CD. Figure 6.1 shows the matrix-vector multiplication algorithm.

...

matrix vector

x

x

x

x

arrows show parallel operations

Figure 6.1. Matrix vector multiply. Multiplications are parallel.

34

6.1.2. Mergesort

Mergesort is a “divide-and-conquer” sorting algorithm. The main idea is to divide

an array to sub-arrays and send the sub-arrays to the processors. Every processor

does sorting first and after sorting, processors do merge in parallel. At each step,

the number of processors decreases to its half. The source of OpenMP and MPI

program’s important functions can be found in enclosed CD. Figure 6.2 shows

the mergesort algorithm with an example.

P0 P1 P2 P3

32,31,30,29,28,27,26,25 8,7,6,5,4,3,2,1

25,26,27,28,29,30,31,32 17,18,19,20,21,22,23,24 1,2,3,4,5,6,7,89,10,11,12,13,14,15,16

iteration 0

itetation 1

iteration 2

iteration 3

16,15,14,13,12,11,10,924,23,22,21,20,19,18,17

17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

in this example the array is given as a decreasing array which could be the worst case for sorting

the array is divided to P sub−arrays
every sub−array is treated in parallel

parallel sort

P/2 processors do merge in parallel

last two sub−arrays are merged by 2 processors

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

Figure 6.2. An example of mergesort algorithm with a decreasing array which is

the worst case. Here, there are 4 processors, P=4.

6.2. Parallel Machines

6.2.1. SMP

In SMP architecture, each processor has access to each memory module which

makes the memory “shared”. The term symmetric means that for each processor,

access time to each memory module is equal. For the programmer, SMP looks like

a sequential machine on which multiple processes run in a time-shared manner

(Leopold, 2001). SMP is hard to scale because of the latency problem, accesses to

memory modules increase with increasing number of processes. Figure 6.3 shows

an SMP architecture.

PP

CCC C

MM M M

P

C

P

C

interconnecting network

Figure 6.3. P means processor, C means cache and M means memory.

6.2.2. ccNUMA

Like SMP architecture, each processor has access to each memory module which

makes the memory shared. The difference is that each processor is associated

with a memory module directly, this module is called “local” and accesses to

this local memory are faster than accesses to other memory modules. This

difference destroys the symmetry and makes memory accesses “non uniform”.

ccNUMA architecture support complex protocols for cache-coherence which cause

an overhead with increasing number of nodes. Cache coherency problems occur

when cached data’s copy’s memory cell is written. Figure 6.4 shows ccNUMA

architecture.

PP

CCC C

P P

C C

M M M M

interconnecting network

Figure 6.4. P means processor, C means cache and M means memory. C holds

frequently accessed data.

6.2.3. Beowulf Cluster

A beowulf cluster consists of distributed memory parallel computers. Each

computer is independent and support for cache coherence is lacking. The system

has one access point and access to other computers occur from the access point.

The user has to connect to every computer separately. Mostly, in beowulf clusters

nodes run the Linux operating system. Beowulf clusters are easier to scale but

harder to program. Most important advantage is lower cost. Figure 6.5 shows a

beowulf cluster.

P

C

M

P

C

M

P

C

M

P

C

M

IOOSIOOS IOOS IOOS

interconnecting network

Figure 6.5. P means processor, C means cache and M means memory, OS means

Operating System and IO means Input/Output. There is no shared

memory module.

6.3. Performance Comparison

Programs are tested on Sun SMP-Cluster of University of Aachen and on

Ulakbim’s Beowulf Cluster.

SMP-Cluster currently consists of

- 16 nodes with 24 Ultra Sparc IV 1.2 GHz processors and 24 GB of shared

memory each (SMP).

- 4 nodes with 72 Ultra Sparc IV 1.05 GHz processors and 144 GB of shared

memory each (ccNUMA).

All 672 CPUs have a 900 MHz clock cycles and a total main memory capacity

of 960 GB. All SMP compute nodes are connected to each other by Gigabit

Ethernet.

Beowulf consists of a server node with 2 Intel Xeon 2.80 Ghz processors, 2 GB

memory and 600 GB local hard disc and 128 computing nodes with Intel PIV

2.66 GHz processors, 1 GB memory and 80 GB local hard disc. All computing

nodes are connected to each other by Gigabit Ethernet.

All nodes of both systems were not always usable by all the programmers. Mostly,

using 128 processors was not possible, results for one essay are not considered,

only at least three computations are done to be sure about measured times.

Algorithms are implemented with C and C++, OpenMP and MPI time functions

are used to measure time. The measured time is the sum of computation and

communication times. Largest data sizes that were allowed are used. For

mergesort algorithm, three cases are considered: best case in which the array

is already a sorted array, worst case in which the array is a decreasing array and

a random array. For sorting sub-data, standard quicksort function “qsort” of

C is used. Measured times for matrix-vector multiply are on Appendix A and

measured times for mergesort are on Appendix B.

6.3.1. Matrix-Vector Multiply Algorithm

On SMP, OpenMP has a better performance than ccNUMA. As it can be seen

in Figure 6.6, in matrix-vector multiplication OpenMP gave a much better result

than MPI which has lower performance with increasing number of processors.

Figure 6.7 gives the same graph in logarithmic scale for a better view.

Figure 6.6. Solid line shows OpenMP on ccNUMA, dotted line shows OpenMP

on SMP, dashed line shows MPI on ccNUMA, dashed and dotted

line shows MPI on Beowulf.

Figure 6.7. Logarithmic scale. Solid line shows OpenMP on ccNUMA, dotted

line shows OpenMP on SMP, dashed line shows MPI on ccNUMA,

dashed and dotted line shows MPI on Beowulf.

We can comment this result:

- SMP has a better performance than ccNUMA. But because it is harder

to scale, SMP Cluster has less processors and we cannot test with more

processors like in ccNUMA.

- In ccNUMA, after some processors (here 16) program time starts to increase

with increasing number of processors which means that after 16 processors,

communication cost increases and brings down the performance.

- MPI on ccNUMA and MPI on Beowulf have bad performance with

increasing parallelism. This means that when implementing this algorithm

with MPI, with this data size communication cost brings down the

performance. This result doesn’t mean that MPI cannot be used for this

algorithm. If the additional tests with larger data size had been done before,

we might have reached to the better performance. Working with larger

dataset was not possible on neither of two systems because matrix size is

N2.

6.3.2. Mergesort Algorithm

For the divide-and-conquer algorithm, OpenMP and MPI have very close results

on ccNUMA as can be seen in Figure 6.8 and Figure 6.9 which is the same graph

in logarithmic scale. On this system, results of best, worst and random cases

were very close, so there no distinction has been made between these cases on

this system.

1 2 4 8 16 32
20

30

40

50

60

70

80
Mergesort (ccNUMA), N=100.000.000

of processors

tim
e(

se
c)

OpenMP
MPI

Figure 6.8. Dashed line shows OpenMP on ccNUMA, dotted line shows MPI

and data size N=100.000.000 for both.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

30

40

50

60

70

80
Mergesort (ccNUMA), N=100.000.000

log2(# of processors)

tim
e(

se
c)

OpenMP
MPI

Figure 6.9. Logarithmic scale. Dashed line shows OpenMP on ccNUMA, dotted

line shows MPI and data size N=100.000.000 for both.

We can comment this result:

- Up to 4 processors, MPI and OpenMP have very close results.

- Increasing number of processors from 4 to 8, OpenMP has better speedup.

- Increasing number of processors from 8 to 16, OpenMP’s performance

doesn’t improve, MPI performance still improves.

- After 16 processors, communication cost brings down the performance for

both OpenMP and MPI.

Finally, we can say that for less than 8 processors, OpenMP can be preferred

with very small performance improvement. With more than 8 processors, MPI

has better performance, improvement until 16 processors and worsen with more

than 16 processors but still better than OpenMP.

MPI performance on Beowulf Cluster is a little bit different from the one on

ccNUMA. All cases have different results that must be commented. Figure 6.10

shows MPI results of best, worst and random cases with data size 1 million and

Figure 6.11 shows best and worst cases with data size 100 million. The random

case for the latest didn’t work because with random number generator the system

had time out, this shows that this was the forcing data size.

012 4 8 16 32 64
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
Beowulf − MPI Mergesort N=1.000.000

of processors

tim
e(

se
c)

best case
worst case
random

Figure 6.10. Dotted line shows best case, already sorted data, solid line shows

worst case, decreasing data, dashed line shows random data.

Mergesorting in random and worst cases has very close results. As expected

before, execution time decreases with increasing parallelism. The unexpected

result is the best case where the execution time increases from 1 processor to

2. When there is only 1 processor, the program is a sequential program, data is

sorted using C’s qsort and until more than 8 processors, it is faster than dividing,

sending and collecting data. With more than 8 processors, the result is like it

was expected before. More than 16 processors cause high communication cost

and there is no more performance improvement with more than 16 processors.

Lack of the same attitude on SMP cluster could be due to the larger data size.

0 1 2 4 8 16
30

35

40

45

50

55

60
Beowulf − MPI Mergesort N=100.000.000

of processors

tim
e(

se
c)

best case
worst case

Figure 6.11. Dotted line shows best case, already sorted data, solid line shows

worst case, decreasing data, dashed line shows random data.

Like the previous case, for the worst case bigger dataset has the same

characteristics but for the best case it has the same only at the beginning. In

the best case, parallelism doesn’t improve performance, nor brings down it. This

must be due to the overload of the whole system with such a big data size.

6.3.3. OpenMP vs MPI

Users must take in account the application and pros and cons of both OpenMP

and MPI and decide which system to use. But one thing to not forget is

that finding a shared memory machine is a very hard task. OpenMP is easier

to program because the programmer need not be divided and distributed to

processors. Parallelizing a sequential code is easier for OpenMP, it can be done

step-by-step which is called “incremental parallelism”. The programmer must

pay attention to synchronization for both, but synchronization errors occur more

in shared memory. In return, message passing is harder for the programmer and

has higher performance.

Before having to choose between OpenMP and MPI, programmers have to decide

about whether or not using parallelism. The results of matrix-vector multiply

algorithm show that even with such big data set parallelism doesn’t have any

advantage. Another architecture type could be developed for implementing

such data-parallel algorithms. The mergesort algorithm had a little higher

performance with MPI, systems having “messaging skeletons” or “messaging

patterns” could ease the programming.

7. Conclusion

7.1. Summary

The main target of this thesis was overview research on parallel programming

systems and make a clear categorization to guide users of parallel programming

systems. To accomplish this task, a graph visualization tool is integrated with a

wiki engine which is filled with information about systems being part of current

research area. In order to realize the graph visualization tool, a syntax easy to use

and learn is developed. For instance, wiki engine and graph visualization tool

work independent from each other because in case of an upgrade, dependence

could have caused problems.

The second target was to compare two parallel systems with two different types of

algorithms. OpenMP and MPI had been chosen and programs had been run on

parallel machines. There were two reasons for choosing OpenMP and MPI: first,

most of the systems target OpenMP and MPI’s performances and many systems

are developed to support OpenMP or MPI, sometimes even target directly to have

C/MPI or C/OpenMP code, second, OpenMP and MPI are the most common

parallel programming systems and parallel machines mostly have support for just

OpenMP and MPI for the users. Having access to parallel machines was the most

difficult part of this thesis. Even having access was not always enough, having

rights or priority was impossible.

7.2. Outlook

Improvements and further work could be done on several parts of the thesis. As

mentioned in previous chapters, new research is mostly for easy programming and

the classification of this thesis was in the point of view of a programmer. The

wiki engine and the visualization tool could guide anyone interested in parallel

programming. Many other classifications having different criteria (performance,

ease of programming, application area, . . .) could be done and could present

parallel programming users new approaches and give new ideas.

Another important point is comparison. Comparison of all systems could be

done. A good idea would be to compare HDC, OpenMP and MPI with a

divide-and-conquer algorithm or add different kind of skeletons to a skeletal

systems and compare them with still OpenMP and MPI. After this research,

45

testing several systems on several parallel machines could suggest architectural

improvements.

REFERENCES

Barry Jay’s Shape Theory Page. http://linus.socs.uts.edu.au/ cbj/.

Belloch, G. E., 1996. Programming Parallel Algorithms. Communications of
the ACM, 39.

Bischof, H., Gorlatch, S. and Kitzelmann, E., 2003. Cost Optimality and
Predictability of Parallel Programming with Skeletons. Euro-Par
2003, LNCS 2790, pages 682 – 693.

Bull, M. and Kambites, M., 2000. JOMP - an OpenMP-like Interface for
Java. ACM Java Grande Article.

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J. and
Menon, R., 2001. Parallel Programming in OpenMP. Morgan
Kaufmann.

Cheng, G.-I., 1997. Algorithms for Data-Race Detection in Multithreaded
Programs. PhD thesis, Massachusetts Institute of Technology,
Massachusetts, USA.

Clark, K. and Gregory, S., 1986. PARLOG: parallel programming in
logic. ACM Transactions on Programming Languages and Systems
(TOPLAS).

Cole, M., 1989. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press and Pitman.

Cole, M., 2004. Bringing Skeletons out of the Closet. Parallel Computing, 30,
389 – 406.

D’Ambra, P., Danuletto, M., di Serafino, D. and Lapegna, M., 2002.
Advanced environments for parallel and distributed applications: a
view of current status. Parallel Computing, 28, 1637–1662.

Darlington, J., Guo, Y., To, H. W. and Yang, J., 1995. Parallel Skeletons
For Structured Composition. ACM Principles and Practice of
Parallel Programming, PPoPP’95.

DeSouza, J. and Kale, L. V., 2003. Jade: A Parallel Message-Driven
Java. Proceedings of the 2003 Workshop on Java in Computational
Science, held in conjunction with the International Article on
Computational Science (ICCS 2003).

47

Distributed Objects and Copmonents: Mobile Agents.
http://www.cetus-links.org/oo-mobile-agents.html.

Doherty, S., Detlefs, D. L., Grove, L., Flood, C. H., Luchangco, V.,
Martin, P. A., Mark, Shavit, N. and Guy L. Steele, J., 2004.
DCAS is not a Silver Bullet for Nonblocking Algorithm Design.
Proceedings of the 16th annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA’04).

El-Gahazawi and Chauvin, S., 2001. UPC Benchmarking Issues. IEEE
Proceedings of the International Articles on Parallel Processing
(ICPP’01).

Foster, I., 2001. Parallel Computing in 2010: opportunities and challenges in a
networked world. ACM SIGPLAN Notices, 36, 1.

Goel, A., Roychoudhury, A. and Mitra, T., 2003. Compactly Representing
Parallel Program Executions. Proceedings of the 9th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’03).

Grama, A., Gupta, A., Karypis, G. and Kumar, V., 2003. Introduction
to Parallel Computing. Addison Wesley, second edition.

Gray, R., Kotz, D., Nog, S., Rus, D. and Cybenko, G., 1997. Mobile
Agents: The Next Generation in Distributed Computing. IEEE
2nd AIZU International Symposium on Parallel Algorithms /
Architecture Synthesis (pAs’97), pages 8–24.

Grundmann, T., Ritt, M. and Rosenstiel, W., 2000. TPO++: An
object-oriented message-passing library in C++. IEEE Proceedings
of the International Articles on Parallel Processing (ICPP’00).

Guitart, J., Torres, J., Ayguade, E. and Bull, J. M., 2001. Performance
Analysis Tools For Parallel Java Applications on Shared-memory
Systems. IEEE Proceedings of the 2001 International Article on
Parallel Processing (ICPP).

Hamdan, M. M., 2000. A Combinational Framework for Parallel Programming
using Algorithmic Skeletons. PhD thesis, Heriot-Watt University.

Hammond, K. and Michaelson, G., 1999. Research Directions in Parallel
functional Programming. Springer.

Herlihy, M., 1991. Wait-free Synchronization. ACM Transactions on
Programming Languages and Systems, 11, 124–149.

Herrmann, C. and Lengauer, C., 2000. HDC: A Higher Order Language for
Divide and Conquer. Parallel Processing Letters, 10, 239–250.

Hicks, J., Chiou, D., Ang, B. S. and Arvind, 1993. Performance Studies
of Id on the Monsoon Dataflow System. Journal of Parallel and
Distributed Computing, 18, 273–300.

Hill, J. M. D., McColl, B., Stefanescu, D. C., Goudreau, M. W., Lang,
K., Rao, S. B., Suel, T., Tsantilas, T. and Bisseling, R.,
1997. BSPlib: The BSP Programming Library. Teknik Rapor,
Oxford University Computing Laboratory.

HPFForum. http://dacnet.rice.edu/Depts/CRPC/HPFF/index.cfm.

IBMTspaces. http://www.almaden.ibm.com/cs/TSpaces/html/UserGuide.html.

JavaThreads. http://java.sun.com/docs/books/tutorial/essential/threads/.

Jones, S. L. P. and A. Gordon, S. F., 1996. Concurrent Haskell. 23rd ACM
Symposium on Principles of Programming Languages, 1, 295–308.

Kale, L. V. and Krishnan, S., 1993. Charm++: a portable concurrent object
oriented system based on C++. Proceedings of the 8th Annual
Article on Object Oriented Programming Systems, Languages and
Applications.

Kuchen, H., 2002. A Skeleton Library. Euro-Par 2002, LNCS 2400, 1, 620–629.

Kuchera, W. and Wallace., C., 2004. The UPC Memory Model: Problems
and Prospects. IEEE Proceedings of the 18th International Parallel
and Distributed Processing Syposium (IPDPS’04).

Lane, T. G., 1995. Recent Enhancements to PVM. The International Journal
of Supercomputer Applications and High Performance Computing,
9.

Larus, J., 1999. Whole program paths. Proceedings of the ACM SIGPLAN
Article on Programming Language Design and Implementation
(PLDI’03).

Leopold, C., 2001. Parallel and Distributed Computing. A Survey of Models,
Paradigms and Approaches. John Wiley and Sons.

Loidl, H. W., F. Rubio, N. S., Hammond, K., Horiguchi, S., Kluisik,
U., Loogen, R., Michaelson, G., Pena, R., Priebe, S.,
Rebon, A. J. and Trinder, P. W., 2003. Comparing Parallel
Functional Languages: Programming and Performance. Kluwer
Academic Publishers Higher-Order and Symbolic Computation, 16,
203–251.

Loidl, H. W., Klusik, U., Hammond, K., Loogen, R. and Trinder,
P., 2000. GpH and Eden: Comparing Two Parallel Functional
Languages on a Beowful Cluster. Scottish Functional Programming
Workshop (SFP’00), rends in Functional Programming, 2, 39–52.

Loogen, R., 1999. Programming Language Constructs in (Research Directions
in Parallel functional Programming). Springer.

MacDonald, S., Anvik, J., Bromling, S., Schaeffer, J., Szafron, D. and
Tan, K., 2002. From patterns to frameworks to parallel programs.
Parallel Computing, 28, 1663–1668.

MESSENGERS. http://www.ics.uci.edu/ bic/messengers.

MobileAgents. http://di002.edv.uniovi.es/ arturop/MobAgentsEng.html.

MPIForum. http://www.mpi-forum.org.

Nikhil, R. S. and Arvind, 2001. Implicit Parallel Programming in pH. Morgan
Kaufmann.

O’Callahan, R. and Choi, J.-D., 2003. Hybrid dynamic data race detection.
Proceedings of the 9th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’03).

OpenMP. http://www.openmp.org/drupal.

Ortega, Y. and Pena, R., 1998. Looking for Eden in the land of
parallel-functional languages. Workshop on Parallel Functional
Programming in association with IFL’98.

Parallaxis. http://www.ee.uwa.edu.au/ braunl/parallaxis/.

POSIXThreads. http://moss.csc.ncsu.edu/ mueller/pthreads/.

Pozniansky, E. and Schuster, A., 2003. Efficient On-the-Fly Data Race
Detection in Multithreaded C++ programs. Proceedings of the 9th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’03).

Problem Solving Environments Home Page.
http://www-cgi.cs.purdue.edu/cgi-bin/acc/pses.cgi.

Rabhi, F. A. and Gorlatch, S., 2002. Patterns and Skeletons for Parallel and
Distributed Computing. Springer.

Roy, P. V., Brand, P., Duchier, D., Haridi, S., Henz, M. and Schulte,
C., 2003. Logic programming in the context of multiparadigm
programming: the Oz experience. Theory and Practice of Logic
Programming, 3, 717–763.

Saunders, S. and Rauchwerger, L., 2003. ARMI: An Adaptive, Platform
Independent Communication Library. ACM Principles and Practice
of Parallel Programming (PPoPP’03).

Scaife, N., Michaelson, G. and Horiguchi, S. Parallel Standard ML with Skeletons.

Sérot, J. and Ginhac, D., 2002. Skeletons for parallel image processing:
an overview of the SKiPPER project. Parallel Computing, 28,
1785–1808.

Serrarens, P., 1998. More or Less Explicit Parallelism in Concurrent Clean.
Workshop on Parallel Functional Programming in association with
IFL’98.

Skillicorn, D. B. and Talia, D., 1998. Models and languages for parallel
computation. ACM Computing Surveys (CSUR), 30(2), 123–169.

Suzuki, N. and Fukuda, M., 1999. Self-Migrating Threads for Multi-Agent
Applications. IEEE Computer Society International Workshop on
Cluster Computing.

Taylor, F. S., 1993. Parallel Functional Programming by Partitioning. PhD
thesis, University of London, London, UK.

WAVEGroup. http://www-zorn.ira.uka.de/wave/wave.html.

Wikipedia. http://en.wikipedia.org/wiki/Classification.

Windsor, A., 2004. An NC algorithm for finding a maximal acyclic set in
a graph. Proceedings of the 16th annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’04), pages 145
– 150.

Yang, J., 1997. Coordination Based Structured Parallel Programming. PhD
thesis, University of London.

A P P E N D I X

A. Time Measurement for Matrix - Vector Multiply

A.1. OpenMP, SMP

Sun Fire E6900 (less processors, but SMP machine).

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix1

--

| Execution of Batch-Request started at Fri Dec 17 08:58:37 MET 2004

| on host sunc10.rz.RWTH-Aachen.DE

| SGE Request: 970667 Queue: sunc10.q

--

12.949615

12.530919

13.734507

--

| Execution of Batch-Request stopped at Fri Dec 17 09:00:31 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:54

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix2

--

| Execution of Batch-Request started at Fri Dec 17 08:58:37 MET 2004

| on host sunc00.rz.RWTH-Aachen.DE

| SGE Request: 970668 Queue: sunc00.t

--

6.510820

6.477644

5.747368

--

| Execution of Batch-Request stopped at Fri Dec 17 09:00:07 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:30

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix4

--

| Execution of Batch-Request started at Fri Dec 17 08:58:37 MET 2004

53

| on host sunc13.rz.RWTH-Aachen.DE

| SGE Request: 970669 Queue: sunc13.q

--

3.749756

3.995276

3.491776

--

| Execution of Batch-Request stopped at Fri Dec 17 09:00:22 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:45

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix8

--

| Execution of Batch-Request started at Fri Dec 17 08:58:37 MET 2004

| on host sunc00.rz.RWTH-Aachen.DE

| SGE Request: 970670 Queue: sunc00.t

--

1.687861

1.625732

1.676302

--

| Execution of Batch-Request stopped at Fri Dec 17 08:59:54 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:17

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix16

--

| Execution of Batch-Request started at Fri Dec 17 08:58:37 MET 2004

| on host sunc00.rz.RWTH-Aachen.DE

| SGE Request: 970671 Queue: sunc00.t

--

0.886834

0.896128

0.877115

--

| Execution of Batch-Request stopped at Fri Dec 17 08:59:51 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:15

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix32

--

| Execution of Batch-Request started at Fri Dec 17 09:15:30 MET 2004

| on host sunc00.rz.RWTH-Aachen.DE

| SGE Request: 970698 Queue: sunc00.t

--

0.497120

0.494220

0.491827

--

| Execution of Batch-Request stopped at Fri Dec 17 09:16:39 MET 2004

| peak memory value: N/A

| real time used: 00:01:09

--

A.2. OpenMP, ccNUMA

more outOmpMatrix1g

--

| Execution of Batch-Request started at Fri Dec 17 08:30:30 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970631 Queue: sunc16.q

--

14.554998

13.915468

14.061663

--

| Execution of Batch-Request stopped at Fri Dec 17 08:32:42 MET 2004

| peak memory value: N/A

| real time used: 00:02:13

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix2g

--

| Execution of Batch-Request started at Fri Dec 17 08:41:46 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970636 Queue: sunc16.q

--

10.334152

8.363506

10.364811

--

| Execution of Batch-Request stopped at Fri Dec 17 08:43:45 MET 2004

| peak memory value: 1.68G

| real time used: 00:02:00

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix4g

--

| Execution of Batch-Request started at Fri Dec 17 08:47:22 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970637 Queue: sunc16.q

--

5.118155

5.254976

5.532442

--

| Execution of Batch-Request stopped at Fri Dec 17 08:49:12 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:50

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix8g

--

| Execution of Batch-Request started at Fri Dec 17 08:47:22 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970638 Queue: sunc16.q

--

3.748879

2.785684

2.886551

--

| Execution of Batch-Request stopped at Fri Dec 17 08:49:07 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:45

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix16g

--

| Execution of Batch-Request started at Fri Dec 17 09:15:30 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970639 Queue: sunc16.q

--

2.498763

1.764210

2.291116

--

| Execution of Batch-Request stopped at Fri Dec 17 09:17:06 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:36

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix32g

--

| Execution of Batch-Request started at Fri Dec 17 09:15:46 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970640 Queue: sunc19.q

--

2.400865

2.436438

2.375442

--

| Execution of Batch-Request stopped at Fri Dec 17 09:17:27 MET 2004

| peak memory value: 1.68G

| real time used: 00:01:41

--

SUNOS:sunc20:/work/aa006su/OpenMP2/matrix[!]$ more outOmpMatrix64g

more outOmpMatrix64g

--

| Execution of Batch-Request started at Fri Dec 17 12:10:08 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970643 Queue: sunc19.q

--

2.926020

3.050064

2.963061

--

| Execution of Batch-Request stopped at Fri Dec 17 12:11:48 MET 2004

| peak memory value: 1.69G

| real time used: 00:01:40

--

SUNOS:sunc20:/work/aa006le/OpenMP2/matrix[!]$ more outOmpMatrix128g

--

| Execution of Batch-Request started at Fri Dec 17 21:49:59 MET 2004

| on host sunc17.rz.RWTH-Aachen.DE

| SGE Request: 970644 Queue: sunc17.q

--

5.246612

4.221971

4.267757

--

| Execution of Batch-Request stopped at Fri Dec 17 21:51:38 MET 2004

| peak memory value: N/A

| real time used: 00:01:39

--

A.3. MPI, ccNUMA

time mprun -np 1 prog

real 0m26.840s

user 0m0.020s

sys 0m0.036s

SUNOS:sunc20:/work/aa006su/MPI2/matrix[!]$ time mprun -np 2 prog

34.819734,

real 0m35.958s

user 0m0.018s

sys 0m0.038s

mprun -np 2 prog

35.070022,

more outMpiMatrix4g

--

| Execution of Batch-Request started at Fri Dec 17 12:21:07 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 970963 Queue: sunc18.p

--

44.224915,

44.211996,

44.474745,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:23:57 MET 2004

| peak memory value: 15.85M

| real time used: 00:02:50

--

SUNOS:sunc20:/work/aa006su/MPI2/matrix[!]$ more outMpiMatrix8g

--

| Execution of Batch-Request started at Fri Dec 17 12:26:42 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970964 Queue: sunc19.p

--

47.976364,

47.928871,

47.300173,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:30:07 MET 2004

| peak memory value: 15.85M

| real time used: 00:03:25

--

SUNOS:sunc20:/work/aa006su/MPI2/matrix[!]$ more outMpiMatrix16g

--

| Execution of Batch-Request started at Fri Dec 17 12:21:16 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970965 Queue: sunc16.p

--

47.960360,

49.399255,

50.303306,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:24:53 MET 2004

| peak memory value: 17.55M

| real time used: 00:03:38

A.4. MPI, Beowulf

np 1 np 2 np 4 np 8 np 16

5.895872,7.880361,14.623500,12.665565,19.528374

4.574467,7.650136,11.100957,13.241552,19.311171

5.625762,7.823462,10.938837,11.564033,17.162392

7.824083,9.071199,9.921196,11.427652,14.711691

5.229454,7.741427,10.111857,11.240894,14.113169

6.731793,9.306816,10.939820,11.374350,13.183217

B. Time Measurement for Mergesort

B.1. OpenMP, ccNUMA

B.1.1. Best Case

more outOmpMergeBest1g

--

| Execution of Batch-Request started at Fri Dec 17 08:30:30 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970630 Queue: sunc16.q

--

80.127588,

80.666249,

82.985441,

--

| Execution of Batch-Request stopped at Fri Dec 17 08:34:47 MET 2004

| peak memory value: 768.09M

| real time used: 00:04:17

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/best[!]$ more outOmpMergeBest2g

--

| Execution of Batch-Request started at Fri Dec 17 08:53:17 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970646 Queue: sunc16.q

--

50.082234,

48.944336,

47.537940,

--

| Execution of Batch-Request stopped at Fri Dec 17 08:55:58 MET 2004

| peak memory value: 1.12G

| real time used: 00:02:41

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/best[!]$ more outOmpMergeBest4g

--

| Execution of Batch-Request started at Fri Dec 17 08:53:17 MET 2004

60

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970647 Queue: sunc16.q

--

32.837522,

33.257889,

32.521403,

--

| Execution of Batch-Request stopped at Fri Dec 17 08:55:12 MET 2004

| peak memory value: 1.50G

| real time used: 00:01:55

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/best[!]$ more outOmpMergeBest8g

--

| Execution of Batch-Request started at Fri Dec 17 08:58:37 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970648 Queue: sunc16.q

--

23.751311,

23.671898,

23.658460,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:00:06 MET 2004

| peak memory value: N/A

| real time used: 00:01:29

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/best[!]$

time ./prog 1

82.582161,

real 1m24.894s

user 1m10.829s

sys 0m1.169s

SUNOS:sunc20:/work/aa006le/OpenMP2/merge/best[!]$ time ./prog 2

41.856210,

real 0m44.982s

user 1m14.043s

sys 0m2.576s

SUNOS:sunc20:/work/aa006le/OpenMP2/merge/best[!]$./prog 4

29.807576,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/best[!]$./prog 8

21.287086,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/best[!]$./prog 16

22.129667,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/best[!]$./prog 32

20.819331,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/best[!]$./prog 48

B.1.2. Random Case

--

| Execution of Batch-Request started at Fri Dec 17 08:53:16 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970659 Queue: sunc16.q

--

only one thread does sorting

61.997367,

only one thread does sorting

63.070206,

only one thread does sorting

60.379645,

--

| Execution of Batch-Request stopped at Fri Dec 17 08:56:51 MET 2004

| peak memory value: 768.10M

| real time used: 00:03:35

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/random[!]$ more outOmpMergeRand2g

--

| Execution of Batch-Request started at Fri Dec 17 09:04:14 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970674 Queue: sunc16.q

--

45.002183,

39.925784,

47.287158,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:07:06 MET 2004

| peak memory value: 1.12G

| real time used: 00:02:52

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/random[!]$ more outOmpMergeRand4g

--

| Execution of Batch-Request started at Fri Dec 17 09:04:15 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970675 Queue: sunc16.q

--

30.667217,

33.434800,

31.570635,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:06:26 MET 2004

| peak memory value: 1.50G

| real time used: 00:02:11

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/random[!]$ more outOmpMergeRand8g

--

| Execution of Batch-Request started at Fri Dec 17 09:09:53 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970676 Queue: sunc16.q

--

25.173901,

23.651243,

23.407918,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:11:38 MET 2004

| peak memory value: 1.87G

| real time used: 00:01:45

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/random[!]$ more outOmpMergeRand16g

--

| Execution of Batch-Request started at Fri Dec 17 09:21:11 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970677 Queue: sunc16.q

--

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/random[!]$

SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 1

56.407192,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 2

44.769378,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 1

59.801905,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 4

30.626349,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 8

36.365037,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 16

24.652945,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 32

35.307240,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/random[!]$./prog 48

B.1.3. Worst Case

more outOmpMergeWorst1g

--

| Execution of Batch-Request started at Fri Dec 17 08:53:17 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970663 Queue: sunc16.q

--

only one thread does sorting

81.862861,

only one thread does sorting

79.980057,

only one thread does sorting

79.749710,

--

| Execution of Batch-Request stopped at Fri Dec 17 08:57:30 MET 2004

| peak memory value: 768.10M

| real time used: 00:04:14

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/worst[!]$ more outOmpMergeWorst2g

--

| Execution of Batch-Request started at Fri Dec 17 09:04:15 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970681 Queue: sunc16.q

--

53.969241,

51.492970,

45.149602,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:07:06 MET 2004

| peak memory value: 1.12G

| real time used: 00:02:51

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/worst[!]$ more outOmpMergeWorst4g

--

| Execution of Batch-Request started at Fri Dec 17 09:04:15 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 970682 Queue: sunc16.q

--

32.685181,

30.685599,

32.434474,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:06:07 MET 2004

| peak memory value: 1.50G

| real time used: 00:01:52

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/worst[!]$ more outOmpMergeWorst8g

--

| Execution of Batch-Request started at Fri Dec 17 09:27:09 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970683 Queue: sunc19.q

--

27.907675,

25.288126,

23.920904,

--

| Execution of Batch-Request stopped at Fri Dec 17 09:28:46 MET 2004

| peak memory value: 1.87G

| real time used: 00:01:37

--

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/worst[!]$ more outOmpMergeWorst16g

--

| Execution of Batch-Request started at Fri Dec 17 09:21:17 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970684 Queue: sunc19.q

--

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

unknown signal type = 11 (stage 2)

SUNOS:sunc20:/work/aa006su/OpenMP2/merge/worst[!]$

SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 1

70.385525,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 2

56.251616,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 4

56.238972,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 8

26.062037,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 16

25.562178,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 32

35.100334,SUNOS:sunc20:/work/aa006le/OpenMP2/merge/worst[!]$./prog 48

30.206300,

B.2. MPI, ccNUMA

B.2.1. Best Case

Some measurements are interactive as for strange reasons these jobs were

killed in the batch system:

mprun -np 1 prog

66.125804,SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ mprun -np 4 prog

28.272233,SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ mprun -np 2 prog

42.625526,

mprun -np 8 prog

21.363042,

mprun -np 16 prog

18.151412,SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ mprun -np 32 prog

mprun: Not enough node cpus are available to satisfy resource request. (Try

reducing the -np value. If not using -x, try using -S or -W.)

more outMpiBest1ga

--

| Execution of Batch-Request started at Fri Dec 17 17:20:09 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 971797 Queue: sunc16.p

--

90.023958,

error: executing task of job 971797 failed:

[Job sge.971797 on sunc16.rz.RWTH-Aachen.DE: 1 of 1 processes did not start]

Job sge.971797 on sunc16.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

78.994747,

--

| Execution of Batch-Request stopped at Fri Dec 17 17:23:46 MET 2004

| peak memory value: 11.80M

| real time used: 00:03:38

--

more outMpiBest2g

--

| Execution of Batch-Request started at Fri Dec 17 11:02:27 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970848 Queue: sunc19.p

--

54.046144,

54.811959,

53.597686,

--

| Execution of Batch-Request stopped at Fri Dec 17 11:06:21 MET 2004

| peak memory value: 15.85M

| real time used: 00:03:54

--

more outMpiBest4ga

--

| Execution of Batch-Request started at Fri Dec 17 19:29:26 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 971825 Queue: sunc16.p

--

38.364021,

error: executing task of job 971825 failed:

error: executing task of job 971825 failed:

[Job sge.971825 on sunc18.rz.RWTH-Aachen.DE: 1 of 1 processes did not start]

Job sge.971825 on sunc19.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

37.044796,

--

| Execution of Batch-Request stopped at Fri Dec 17 19:31:57 MET 2004

| peak memory value: 14.68M

| real time used: 00:02:31

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ more outMpiBest8g

--

| Execution of Batch-Request started at Fri Dec 17 12:15:41 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970920 Queue: sunc19.p

--

27.499330,

28.540497,

31.730463,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:18:02 MET 2004

| peak memory value: 15.85M

| real time used: 00:02:24

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ more outMpiBest16g

--

| Execution of Batch-Request started at Fri Dec 17 12:04:16 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 970922 Queue: sunc18.p

--

24.501523,

22.788031,

23.394890,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:06:25 MET 2004

| peak memory value: 14.60M

| real time used: 00:02:09

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ more outMpiBest32g

--

| Execution of Batch-Request started at Fri Dec 17 11:30:59 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 970925 Queue: sunc18.p

--

24.317219,

33.954209,

31.622065,

--

| Execution of Batch-Request stopped at Fri Dec 17 11:33:58 MET 2004

| peak memory value: 15.84M

| real time used: 00:02:59

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$ more outMpiBest64g

outMpiBest64g: No such file or directory

SUNOS:sunc20:/work/aa006su/MPI2/merge/best[!]$

B.2.2. Random Case

mprun -np 1 prog

49.968823,SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ mprun -np 2 prog

34.243002,SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ mprun -np 4 prog

25.281914,SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ mprun -np 8 prog

19.395883,SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ mprun -np 16 prog

16.533749,

more outMpiRand1g

--

| Execution of Batch-Request started at Fri Dec 17 12:09:57 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 971001 Queue: sunc19.p

--

60.166358,

error: executing task of job 971001 failed:

[Job sge.971001 on sunc19.rz.RWTH-Aachen.DE: 1 of 1 processes did not start]

Job sge.971001 on sunc19.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

59.735608,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:13:32 MET 2004

| peak memory value: 11.80M

| real time used: 00:03:35

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ more outMpiRand2g

--

| Execution of Batch-Request started at Fri Dec 17 13:40:16 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 971229 Queue: sunc19.p

--

[Job sge.971229 on sunc19.rz.RWTH-Aachen.DE: 2 of 2 processes did not start]

Job sge.971229 on sunc19.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

[Job sge.971229 on sunc19.rz.RWTH-Aachen.DE: 2 of 2 processes did not start]

Job sge.971229 on sunc19.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

[Job sge.971229 on sunc19.rz.RWTH-Aachen.DE: 2 of 2 processes did not start]

Job sge.971229 on sunc19.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

--

| Execution of Batch-Request stopped at Fri Dec 17 13:42:06 MET 2004

| peak memory value: 10.10M

| real time used: 00:01:50

--

more outMpiRand2ga

--

| Execution of Batch-Request started at Fri Dec 17 17:31:23 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 971822 Queue: sunc19.p

--

55.652203,

45.895615,

43.548044,

--

| Execution of Batch-Request stopped at Fri Dec 17 17:34:58 MET 2004

| peak memory value: 15.85M

| real time used: 00:03:35

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ more outMpiRand4g

--

| Execution of Batch-Request started at Fri Dec 17 12:26:41 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 971002 Queue: sunc18.p

--

31.065660,

31.978393,

32.337318,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:29:12 MET 2004

| peak memory value: 15.85M

| real time used: 00:02:31

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ more outMpiRand8g

--

| Execution of Batch-Request started at Fri Dec 17 12:37:54 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 971003 Queue: sunc16.p

--

24.319575,

24.709012,

26.715976,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:40:11 MET 2004

| peak memory value: 17.55M

| real time used: 00:02:18

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ more outMpiRand16g

--

| Execution of Batch-Request started at Fri Dec 17 12:32:23 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 971004 Queue: sunc16.p

--

24.481873,

22.326215,

23.104005,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:34:49 MET 2004

| peak memory value: 17.55M

| real time used: 00:02:26

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ more outMpiRand32g

--

| Execution of Batch-Request started at Fri Dec 17 11:53:06 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 971005 Queue: sunc18.p

--

26.254641,

25.728889,

27.400871,

--

| Execution of Batch-Request stopped at Fri Dec 17 11:55:51 MET 2004

| peak memory value: 15.84M

| real time used: 00:02:45

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$ more outMpiRand64g

outMpiRand64g: No such file or directory

SUNOS:sunc20:/work/aa006su/MPI2/merge/random[!]$

B.2.3. Worst Case

mprun -np 1 prog

66.149647,SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ mprun -np 2 prog

41.119770,SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ mprun -np 4 prog

27.627378,SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ mprun -np 8 prog

20.312268,SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ mprun -np 16 prog

17.283030,

more outMpiW1ga

--

| Execution of Batch-Request started at Fri Dec 17 17:36:56 MET 2004

| on host sunc16.rz.RWTH-Aachen.DE

| SGE Request: 971824 Queue: sunc16.p

--

84.222697,

error: executing task of job 971824 failed:

[Job sge.971824 on sunc16.rz.RWTH-Aachen.DE: 1 of 1 processes did not start]

Job sge.971824 on sunc16.rz.RWTH-Aachen.DE: aborted due to an unexpected

error.

92.984256,

--

| Execution of Batch-Request stopped at Fri Dec 17 17:40:47 MET 2004

| peak memory value: 11.80M

| real time used: 00:03:51

--

more outMpiW2g

--

| Execution of Batch-Request started at Fri Dec 17 11:13:46 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970911 Queue: sunc19.p

--

55.694205,

50.352307,

51.173915,

--

| Execution of Batch-Request stopped at Fri Dec 17 11:17:15 MET 2004

| peak memory value: 15.85M

| real time used: 00:03:29

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ more outMpiW4g

--

| Execution of Batch-Request started at Fri Dec 17 12:09:54 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970950 Queue: sunc19.p

--

34.062280,

32.869238,

33.430165,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:12:23 MET 2004

| peak memory value: 15.85M

| real time used: 00:02:29

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ more outMpiW8g

--

| Execution of Batch-Request started at Fri Dec 17 12:21:08 MET 2004

| on host sunc19.rz.RWTH-Aachen.DE

| SGE Request: 970951 Queue: sunc19.p

--

28.080131,

27.183745,

32.116552,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:23:52 MET 2004

| peak memory value: 15.85M

| real time used: 00:02:44

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ more outMpiW16g

--

| Execution of Batch-Request started at Fri Dec 17 12:15:28 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 970952 Queue: sunc18.p

--

21.725114,

22.179005,

22.544710,

--

| Execution of Batch-Request stopped at Fri Dec 17 12:17:40 MET 2004

| peak memory value: 15.83M

| real time used: 00:02:12

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ more outMpiW32g

--

| Execution of Batch-Request started at Fri Dec 17 11:42:14 MET 2004

| on host sunc18.rz.RWTH-Aachen.DE

| SGE Request: 970953 Queue: sunc18.p

--

22.343896,

24.109160,

28.509685,

--

| Execution of Batch-Request stopped at Fri Dec 17 11:44:40 MET 2004

| peak memory value: 15.84M

| real time used: 00:02:27

--

SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$ more outMpiW64g

outMpiW64g: No such file or directory

SUNOS:sunc20:/work/aa006su/MPI2/merge/worst[!]$

B.3. MPI, Beowulf, Small N

N = 1.000.000

B.3.1. Best Case

np 1 np 2 np 4 np 8 np 16 np 32 np 64

1.57000,1.76000,1.97000,1.45000,1.30000,1.55000,1.480000,

1.25000,1.56000,2.42000,2.42000,1.76000,1.53000,1.490000,

1.67000,1.79000,1.78000,2.01000,1.33000,1.51000,1.500000,

1.77000,1.73000,1.77000,1.59000,1.52000,1.64000,2.130000,

2.34000,1.97000,2.04000,1.62000,1.51000,1.54000,1.480000,

1.56000,1.53000,1.55000,1.41000,1.49000,1.58000,1.590000,

1.81000,1.73000,2.04000,1.68000,1.68000,2.14000,1.870000,

1.37000,1.53000,1.49000,1.50000,1.58000,1.44000,2.110000,

1.81000,2.35000,1.91000,1.61000,1.66000,1.58000,1.440000,

2.02000,1.92000,1.89000,1.69000,1.68000,1.51000,1.520000,

1.58000,2.58000,2.39000,1.87000,1.56000,1.57000,1.460000,

1.94000,1.88000,2.07000,1.68000,1.51000,1.49000,1.430000,

1.42000,1.87000,2.02000,1.48000,1.55000,1.43000,1.400000,

1.80000,1.58000,2.90000,2.23000,1.86000,1.56000,1.490000,

B.3.2. Random Case

np 1 np 2 np 4 np 8 np 16 np 32 np 64

3.35000,2.57000,2.12000,1.93000,1.34000,1.55000,1.49000,

3.04000,2.76000,2.13000,2.69000,2.26000,2.07000,1.62000,

3.45000,2.64000,2.36000,1.87000,1.33000,1.64000,1.48000,

2.69000,2.12000,2.25000,1.48000,1.29000,1.43000,1.83000,

3.41000,2.76000,3.09000,2.25000,1.74000,1.63000,1.61000,

3.56000,2.78000,2.13000,1.88000,1.67000,1.60000,1.65000,

3.03000,2.62000,1.97000,1.81000,1.58000,1.85000,2.10000,

3.63000,2.10000,2.21000,1.95000,1.56000,1.79000,2.18000,

3.83000,3.53000,2.34000,1.85000,1.65000,1.37000,1.53000,

3.50000,2.44000,2.24000,1.91000,1.62000,1.58000,1.41000,

2.70000,2.48000,2.11000,2.48000,2.02000,2.01000,1.55000,

3.79000,2.92000,1.90000,1.89000,1.43000,1.56000,1.41000,

2.64000,2.19000,2.01000,1.61000,1.37000,1.55000,1.38000,

2.89000,2.59000,2.34000,2.53000,1.80000,1.69000,1.81000,

B.3.3. Worst Case

np 1 np 2 np 4 np 8 np 16 np 32 np 64

2.30000,2.98000,2.63000,2.37000,1.68000,1.73000,1.70000,

2.33000,2.51000,2.17000,1.75000,1.63000,1.48000,1.43000,

2.68000,2.48000,1.68000,1.69000,1.62000,2.23000,1.79000,

3.28000,2.45000,1.84000,1.91000,1.60000,1.58000,1.50000,

2.91000,2.32000,1.83000,1.60000,1.48000,1.50000,1.51000,

2.87000,2.49000,1.97000,1.61000,2.25000,2.03000,1.73000,

3.11000,2.10000,2.06000,1.94000,1.58000,1.56000,1.47000,

3.39000,2.73000,2.19000,1.78000,1.73000,1.48000,1.54000,

2.89000,2.49000,2.10000,1.88000,1.61000,1.44000,1.30000,

2.89000,2.68000,2.72000,2.30000,1.70000,1.55000,1.65000,

2.87000,1.92000,1.86000,1.55000,1.53000,1.55000,1.45000,

2.83000,1.82000,1.56000,1.60000,1.61000,1.55000,2.42000,

2.41000,2.95000,2.86000,2.15000,1.66000,1.57000,1.57000,

2.48000,2.17000,2.15000,1.85000,1.63000,1.60000,1.49000,

B.4. MPI, Beowulf, Large N

N = 100.000.000

B.4.1. Best Case

np 1 np 2 np 4 np 8 np 16 np 32

29.792241,42.320223,41.994550,38.204744,43.696682

37.113114,36.508190,41.682661,43.283328,43.431303

37.036981,35.538042,42.841430,44.575356,43.941911

34.984744,35.873920,42.923187,43.069935,38.245744

B.4.2. Random Case

75.852566,59.328657,46.049081,42.064306,45.399370,p10_4829:

p4_error: net_recv read: probable EOF on socket: 1

p3_9312: p4_error: net_recv read: probable EOF on socket: 1

p18_28809: p4_error: net_recv read: probable EOF on socket: 1

p1_14734: p4_error: net_recv read: probable EOF on socket: 1

p22_27451: p4_error: net_recv read: probable EOF on socket: 1

p2_32178: p4_error: net_recv read: probable EOF on socket: 1

p24_31433: p4_error: net_recv read: probable EOF on socket: 1

p11_14952: p4_error: net_recv read: probable EOF on socket: 1

p4_29206: p4_error: net_recv read: probable EOF on socket: 1

p9_10378: p4_error: net_recv read: probable EOF on socket: 1

p19_1707: p4_error: net_recv read: probable EOF on socket: 1

p6_13387: p4_error: net_recv read: probable EOF on socket: 1

p14_25040: p4_error: net_recv read: probable EOF on socket: 1

p13_17984: p4_error: net_recv read: probable EOF on socket: 1

p5_7323: p4_error: net_recv read: probable EOF on socket: 1

p12_3734: p4_error: net_recv read: probable EOF on socket: 1

B.4.3. Worst Case

np 1 np 2 np 4 np 8 np 16 np 32

56.425412,51.296409,47.800027,41.404835,40.701334

57.973493,49.273044,43.528942,46.059671,47.044458

58.663148,48.198275,45.218142,46.371781,44.989813

53.457417,51.021359,48.293039,46.620663,43.733794

BIOGRAPHY

Born on September 22, 1978 in İstanbul, Turkey, Ayşe Beliz Şenyüz started her
education in Şişli Terakki Primary School and continued in Notre Dame de Sion
French High School from where she was graduated in June 1997. Between 1997
and 2002 she studied computer engineering in Galatasaray University, İstanbul.
In September 2002 she was accepted to Computer Engineering M. Sc. Program
at İstanbul Technical University and at the same time she started working as a
research assistant at Galatasaray University. During that period, she worked on
computer networks and parallel programming under the supervision of Prof. Dr.
A. Emre Harmancı.

