Hybrid Eager and Lazy Evaluation for Efficient Compilation of
Haskell
by
Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2002

(© Massachusetts Institute of Technology 2002. All rights reserved.

AULNOT . o
Department of Electrical Engineering and Computer Science
17 May 2002
Certified DYo
Arvind

Charles and Jennifer Johnson Professor of Computer Science and Engineering
Thesis Supervisor

ACCEPIEA DY . .o e
Arthur C. Smith
Chairman, Department Committee on Graduate Students

https://core.ac.uk/display/4384816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hybrid Eager and Lazy Evaluation for Efficient Compilation of Haskell

by
Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
on 17 May 2002, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

The advantage of a non-strict, purely functional language such as Haskell lies in its clean equational
semantics. However, lazy implementations of Haskell fall short: they cannot express tail recursion
gracefully without annotation. We descritesource-bounded hybrid evaluatiamixture of strict

and lazy evaluation, and its realizationeager Haskell From the programmer’s perspective, Eager
Haskell is simply another implementation of Haskell with the same clean equational semantics.
Iteration can be expressed using tail recursion, without the need to resort to program annotations.
Under hybrid evaluation, computations are ordinarily executed in program order just as in a strict
functional language. When particular stack, heap, or time bounds are exceeded, suspensions are
generated for all outstanding computations. These suspensions are re-started in a demand-driven
fashion from the root.

The Eager Haskell compiler translateg, the compiler's intermediate representation, to ef-
ficient C code. We use an equational semantics\torto develop simple correctness proofs for
program transformations, and connect actions in the run-time system to steps in the hybrid evalua-
tion strategy. The focus of compilation is efficiency in the common case of straight-line execution;
the handling of non-strictness and suspension are left to the run-time system.

Several additional contributions have resulted from the implementation of hybrid evaluation.
Eager Haskell is the first eager compiler to use a call stack. Our generational garbage collector uses
this stack as an additional predictor of object lifetime. Objects above a stack watermark are assumed
to be likely to die; we avoid promoting them. Those below are likely to remain untouched and there-
fore are good candidates for promotion. To avoid eagerly evaluating error checks, they are compiled
into speciabottom thunkswhich are treated specially by the run-time system. The compiler iden-
tifies error handling code using a mixture of strictness and type information. This information is
also used to avoid inlining error handlers, and to enable aggressive program transformation in the
presence of error handling.

Thesis Supervisor: Arvind
Title: Charles and Jennifer Johnson Professor of Computer Science and Engineering

Acknowledgments

I would like to to those who have helped me along through the long haul. Most especial gratitude
goes to Andrea Humez, who has supported me as friend and confidante over eight and a half years.
On the technical | have been influenced by so many people an exhaustive list is out of the question. |
would like to single out mypH co-conspirators, especially Alejandro Caro, Mieszko Lis, and Jacob
Schwartz. | learned a tremendous amount in my collaborations with Lennart Augustsson, Rishiyur
S. Nikhil, Joe Stoy, and Xiaowei Shen. Finally, Arvind’s support and interest has magél taed

Eager Haskell projects possible and kept things on the straight and narrow.

Contents

1

Introduction 18
1.1 Functionallanguages e e e 18
1.1.1 Strictlanguages 19
1.1.2 Non-strictlanguages 20
1.1.3 Theimportanceofpurity o 21
1.2 Evaluation Strategies e 23
121 LazyEvaluation 23
1.2.2 EagerEvaluation e 24
1.2.3 Multithreaded strategies for parallelism 25
1.3 The advantages of eagernessoverlaziness 26
1.4 Contributions 28
1.5 Overviewofthisthesis 30
Representing Eager Programs: The\¢ Calculus 32
2.1 OVEIVIEBW . . . o e 32
2.2 Notation e 33
23 Functions e 34
2.4 Application e 34
25 Blocks e 35
2.6 Primitives 36
2.7 AlgebraicDataTypes e e e 36
2.8 CaseEXpressions 37
2.9 Othersyntax. i i e e e e 39

3 The Semantics of\¢ 40

3.1 Extensionality 40

3.2 Equivalence 41

3.3 Conversion 43
3.3.1 Functions 43
3.3.2 Primitives 44
3.3.3 Algebraictypes e 44
3.34 Binding 46
3.3.5 Structuralrules a7

3.4 Mgisbadlybehaved. 49

3.5 Canonicalformsofkc 49
351 Fullerasure 49
3.5.2 Fullynamedform. 50
3.5.3 Bindingcontexts 52
3.54 Namedform 52
3.5.,5 Argument-namedform 53
3.5.6 Flattenedform 53

3.6 Reductionofc e 53

4 Evaluation strategies forA¢ 56

41 OVEIVIEW . . . o i e e 56

4.2 Evaluationmechanisms 57
421 Termstructure e 57
4.2.2 Startingtheprogram 58
4.2.3 Evaluationcontext 58
4.2.4 Function calls: manipulatingthestack 59
425 Results 59
426 Deadlock 60
4.2.7 Storingand fetchingvalues., 60
4.2.8 Placing non-valuesontheheap. 60
4.2.9 Placing computationsontheheap 61
4.2.10 Garbagecollection e 62

4.3 Reductionstrategies e e 62
4.3.1 Alazystrategy 62
4.3.2 Astrictstrategy 63

4.4 EaAQgerness e e e e 64
441 Afullyeagerstrategy 65
442 Thehybridstrategy 66

4.5 How strategiestreattheheap 67

4.6 Other Eager Strategies e 68

4.7 Resource-bounded Computation 69

Run-time Structure 71

5.1 OVerVIEW 71

5.2 Drivingassumptions e e e e 72
5.2.1 Architecturesrewardlocality L oL 72
5.2.2 Branches should be predictable 72
5.2.3 Compiling to C will produce bettercode 73
5.2.4 Non-strictnessisrare 73
525 Valuesarecommon 74

5.3 Taggeddata e 74

5.4 Function structure 77

55 CUurmying 79
55,1 Theeval-applyapproach 80
5.5.2 Thepush-enterapproach 82
553 Analysis 83

5.6 SUSPENSIONS e e e e e e e 84

57 Thunks 87

5.8 Indirections e 88

5.9 Garbage Collection 89
5.9.1 Multiprocessor collection constrainsourdesign 89
5.9.2 Writebarrier 90
5.9.3 Nurserymanagement e 91
5.9.4 Fallbackpolicy e 92

5.9.5 Promotionpolicy 93

5.9.6 Tenured space management 94
5.9.7 Problems with the tenured collector 95
5.9.8 Towards better storage management 96
6 Lowering Transformations 97
6.1 Optimizations e e e 98
6.2 ConstantHoisting 99
6.3 Lambdalifting e 101
6.4 Splitting huge expressions e e e 103
6.5 Top-level common subexpression elimination 104
6.6 Constantapplicativeforms e 105
6.7 Pseudo-constructors 106
6.8 Backedgeinsertion 106
6.9 Making synchronizationexplicit, 108
6.9.1 Introducing synchronization 109
6.9.2 Eliminating excess synchronization 109
6.10 Eliminating additional synchronization 111
6.10.1 Hoisting to eliminate redundant synchronization 111
6.10.2 Using Transitivity 112
6.10.3 Partitioning versus explicit synchronization 113
6.10.4 Interprocedural synchronization elimination 114
6.11 Canonicalloweredc 117
Eager Code Generation 118
7.1 Save pointsS e 118
7.2 Framestructure e 121
7.3 Allocation 122
7.4 FUunClions e 123
7.5 CONSIIUCIOrS o e 125
7.6 Functionapplication 126
7.7 Primitive eXpressions e e e 128
7.8 CaseexpressiONSo 129

7.9 Suspensivebindings e e e e 131

8 Bottom Lifting: Handling Exceptional Behavior Eagerly 133
8.1 Semanticsofdivergence 135
8.1.1 The meaning of a divergent expression 136
8.2 Evaluation strategies fordivergence 000 137
8.3 Identifying bottom expressions 138
8.3.1 Strictnessinformation o 138
8.3.2 Typeinformation 138
8.3.3 Compilerassistance e 139
8.4 Enlargingtheliftedregion 139
8.5 Lifting divergentterms 140
8.6 Divergent computationatruntime 141
8.7 Relatedwork 141
9 Implementing Lazy Arrays 143
9.1 SignalPools 145
9.2 USINGSEQ v v o e e e e e 146
9.3 Fairnessusin@stEXp 147
10 Results 149
10.1 Thebenchmarks 150
10.1.1 Fib . . e 151
10.1.2 Clausify e 151
10.1.3 fibheaps 151
10.1.4 QUEENS o e e e e e 151
10.1.5 Paraffins 151
10.1.6 Primes 152
10.1.7 Multiplier 152
10.1.8 Wavefront 153
10.1.9 Matrix Multiply e 153
10.2.10Gamteb 153
10.1.1LSYMAIG « o o v e e e e 154

11

11

12

13

10.1.12ANNa . . . L e e 154

10.2 EagerHaskellversus GHC 154
10.3 Garbage collection 158
10.4 Function Application e 163
10.5 Fallback e 166
10.6 SUSPENSION e 167
10.7 Forcingvariables 169
10.8 Space-efficient recursion: the multiplier benchmark 172
Scheduling Eager Haskell on a Multiprocessor 178
11.1 Indolenttask creation 179
11.2 Scheduling Strategy e 180
11.3 Scheduling in the presence of useless computation. 181
11.4 Memory Structure: The Principle of Monotonicity 182
Compiling pH Programs Using the Eager Haskell Compiler 186
12.1 Whatisabarrier? 186
12.2 Barriersinth@H compiler 187
12.2.1 Alazierbarrier 187
12.2.2 Reducingstate saving 188
12.3 Barriersin EagerHaskell 189
12.3.1 Trackingthework e 189
12.3.2 Run-time systemchanges 190
12.3.3 Compilerchanges. i e 190
12.3.4 Asynchronizationlibrary, 191
Conclusion 193
13.1 SemantiCsS 193
13.2 EAQEINESS o o e e e 194
13.2.1 Faststackunwinding 194
13.2.2 Hybrid evaluation without fallback 195
13.3 Improving the quality of generatedcode 196
13.3.1 GarbageCollection 196

12

13.3.2 Reducing synchronization 197

13.3.3 Better representations for empty objects L. 199
13.3.4 ObjectTagging o o v i 200
13.3.5 Unboxing e e e 200
13.4 Other compilerimprovements 202
13.4.1 Specialization 202
13.4.2 Control-flowanalysiso 203
13.4.3 Loopoptimization 203
13.4.4 Improvinginlining 204
13.4.5 Range-based optimizations00 205
13.4.6 Constructed products 205
13.4.7 Betterdeforestation 205
13.4.8 Escapeanalysis e 206
135 ENVOi . . . o 206
A The Defer List Strategy for A¢ 221

13

List of Figures

1-1

2-1

3-1
3-2
3-3
3-4

3-6
3-7
3-8
3-9
3-10
3-11
3-12

Simple expression parser written using parsing combinators 22
SyntaxofAc 33
Syntactic equivalences fortermsip L oL 41
Conversionin\g e e e 42
Instantiation contexts iR e 46
Derivations folr,,, andr,,, 47
Strictcontexts il\c e 48
Restricted rulesforfullnaming, 50
Fullynamedformohc o 50
Orderof floatingmatters 51
Bindingcontextsimc e 52
Argument-named formofo Lo 53
Argument-named during reduction Lo L 54
General dynamic reductionrulesfor oo L. 55
Structure of terms during evaluation 57
Reductionrulesused by every strategy 58
Reduction rules for lazy strategy 63
Additional reduction rule for strictstrategy 64
Afullyeagerstrategy e 65
Hybrid eagerand lazy strategy 66
Reduction in the presence of exceptions 69
Boxed representation of numbers oL 75

14

5-3
5-4
5-5
5-6

7-1
7-2
7-3
7-4
7-5
7-6

8-2
8-3

9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6
10-7

Partial application ofasimpleclosure. 81
Applying a partial application 83
SUSPENSION STTUCTUre 84
Updating transitive dependency fields. 86
Elision and shortcutting of indirections. 88
Correctness of full laziness 101
ReverseinstantiationisCSE 104
Synchronization elimination for transitive dependencies 113
Worker/wrapper requires additional synchronization 115
Fully synchronized, lowerell> 116
Skeletoncodefdib 124
Codeforconstructors e 125
Three cases of function application 127
Code for primitive @Xpressions 128
Code forcaseexpressions e 130
Spawncode L e e 132
Semantics of divergence 135
Hybrid reduction with divergence 137
Hoisting divergence from a multi-disjunctcase. 140
Thewavefront benchmark 143
Implementing arrays usirgignalPoos oL 145
ImplementindSignalPoa$ 147
Runtimesofbenchmarks, 156
Slowdown of Eager Haskell comparedtoGHC. 157
Percentage of total run time spent in garbage collector. 159
Number of write barrier checks, normalized to mutatortime. 161
Actual number of write barriers triggered, normalized to mutatortime. 161
Barrier indirections per write barrier L L Lo 162
Function entries, normalized to mutatortime. 164

15

10-8 Entries tadGeneralApplyas a percentage of all applications 164

10-9 Fallbacks persecond 165
10-10The consequences of fallback 166
10-11Touch operations normalized to mutatortime 167
10-12Percentage of touches whichforce 168
10-13Function entries upon resumption 168
10-14Percentage of indirections which are followed 169
10-15Variables forced, normalizedtotime 170
10-16Variables forced, proportionallyo 170
10-170riginal multipliercode 172
10-18Inlined multipliercode 173
10-19Run times of different versions of multiplier 174
10-20Slowdown of Eager Haskell compared to GHC on multiplier. 174
10-21Speedup of re-annotated multipliero 0 L. 176
11-1 Monotonic update of objects 183
12-1 Types and functions for representing barriers 190
12-2 Barriertranslation 191
A-1 Eagerness using defer listsand work stealing 222

16

List of Tables

11

51
5.2
5.3

10.1
10.2
10.3
10.4

A taxonomy of languages, semantics, and strategies. 20
Different cases of curried function application and their presumed frequency 79
The eval-apply approach to partial application used in Eager Haskell 81
The push-enter approach to partial applicationusedinGHC. 82
Benchmarks presented inthischapter 150
Runtimesofbenchmarks 155
Write barrierbehavioro 160
Function entry behavior 163

17

Chapter 1

Introduction

The advantage of a non-strict, purely functional language such as Haskell lies in its clean equa-
tional semantics. This clean semantics permits the programmer to create high-level abstractions that
would ordinarily require special-purpose tools. It should be possible to code using these high-level
abstractions without any knowledge of the underlying execution model. However, lazy implemen-
tations of Haskell fall short: they cannot express tail recursion gracefully without annotation. These
annotations change the semantics of programs, often destroying their equational semantics.

This thesis will describeesource-bounded eager evaluatianhybrid of strict and lazy eval-
uation, and its realization ikager Haskell From the programmer’s perspective, Eager Haskell
is simply another implementation of Haskell [51, 46, 95, 96] with exactly the same semantics as
the usual lazy implementations of the language. Hybrid evaluation provides efficient tail recursion
without the need for program annotation. Internally, programs are ordinarily executed in a strict
fashion. When resource bounds are exceeded, computation falls back and is restarted lazily. The
fallback mechanism uses techniques from lazy language implementations to efficiently suspend and

resume ongoing computations.

1.1 Functional languages

The idea of dunctionallanguage traces its origins to thecalculus [22]. Early efforts at turning the
lambda calculus into a programming language establish the pattern for later work: A distinction is
made between purelanguage [108], in which variables can be freely instantiated with their value,
and animpurelanguage with side effects and a simpler implementation. In either case higher-order

functions can be written by treating function values in the same way as any other program data.

18

Later efforts formalize the treatment of arbitrary data structures by introducing algebraic data types
and strong static typing.

In this thesis, we refer to higher-order, polymorphically-typed programming languages [139] as
functional programming languages. These languages—such as SML [78, 79], Caml and OCaml [66,
65], Id [87, 88],pH [85, 86], Clean [104], and Haskell [95]—share many common traits. All of
them are rooted at some level in thecalculus; functions are lexically scoped, and can be created
anonymously, passed as arguments, returned as results, or stored in data structures. All use an
elaboration of polymorphic type inference [30] with algebraic data types. Storage is managed by
the compiler and run-time system, using some combination of garbage collection and compiler-
directed storage allocation.

There are three major differences which distinguish functional languages from one another: fine
type structure, language semantics (strict versus non-strict), and execution strategy. For the purposes
of this thesis, we will generally ignore typing considerations. Every functional language enriches
basic Hindley-Milner polymorphic type inference [30] in a different way, and these enrichments
leave a distinctive stamp on the structure and style of programs which are written; however, such
differences ordinarily disappear after type checking and explicitly-typed intermediate representa-
tions are used.

More important for the purposes of this thesis are the differences in language semantics (strict
versus non-strict) specified by a particular language, and in the execution strategy (eager versus
lazy) chosen by the language implementation. Language semantics define what results a program
must produce. Execution strategy influences every aspect of language implementation, dictating
the ways in which programs are run and optimized, and consequently the style in which programs
are written. Different execution strategies are suited to particular semantics. In an effort to make
distinctions between semantics and strategies clear, Table 1.1 presents a taxonomy of the languages

and concepts we discuss in this chapter.

1.1.1 Strict languages

Languages such as Standard ML and OCaml have strict semantics: subexpressions of a program
(bindings and function arguments) are evaluated in the order in which they occur in the program.
When a function in a strict language is called, every argumentvislge A particular integer, a

pointer to a list, the closure of a particular function.

There are certain programs that cannot be expressed efficiently in a purely functional language

19

Languageg ML, OCaml Id, pH Haskell, Clean
Moniker “Strict” “Multithreaded” “Pure”
Semantics strict — non-strict —
Side effects — impure — pure
call-by-value \ multithreaded lazy
Strategy — eager — hybrid

Table 1.1: A taxonomy of languages, semantics, and strategies.

with strict semantics [26], but can be expressed efficiently in a procedural language by using side
effects, or in a non-strict language by using laziness. As a result, in practice all strict functional
languages arenpure they include side effects and state. The difference between a strict functional
language and a procedural language is therefore a difference of degree: functional languages offer
a richer and stronger type system and carefully delimit the scope of side effects by segregating
mutable types from pure (immutable) types.

The need for side effects combined with the ordering constraints imposed by strict semantics
scuttles strongequational reasoning In practice, this means that manipulating a strict program
involves checking many side conditions. For example, we might like to reheitel[e;, ;] to e;;
however, in a strict language we must prove #gaterminates and is side-effect-free before such a
transformation is legal. Conventionally, this means that a good deal of code motion (especially loop

invariant hoisting and the like) is limited to primitive operations.

1.1.2 Non-strict languages

The Haskell programming languagenisn-strict We need not compute function arguments before
invoking a function; instead, we interleave the computation of arguments and results. This makes
it possible to write arbitrary recursive bindings: the value returned by a computation may be used

(possibly indirectly) in that computation. For example, the following binding creates a cyclic list:

oneTwos = 1:two: oneTwos
where two = head oneTwos- 1

In strict languages, only functions may be recursively defined, and cyclic structures sudTass
must be created using mutation. In a non-strict language we can write cyclic definitions directly.
It falls to the language implementation to perform the necessary side effects to create a cyclic data

structure. These side effects must be correctly interleaved with the computatiiem cégardless of

20

the strategy used to perform this interleaving, the control structure of the underlying implementation
must be sophisticated.

A pure language also permits infinite data structures to be expressed in a regular way. For
example, we can construct the infinite list of fibonacci numbers using one line of code:

let fibList = 1:1:zipWith(+) fibList (tail fibList)

in fibList!! 100
Note that a non-strict semantics must define carefully what is meant GBgsaver In this example
it should be sufficient to compute and return 18" element ofibList (which in turn requires the
previous99 elements to be evaluated). The expressibhist!! 100 is theroot of computation; in
non-strict programming languages it is customary to evaluate until the root is in Weak Head Normal
Form (a simple syntactic constraint) [92].

It is particularly natural to realize definitions suchfésl.ist using a lazy evaluation strategy,
where list elements are computed only when they are needed. Reduction strategy is often closely
bound to particular semantics in this way. An unfortunate consequence of this close association is
that details of reduction strategy often impinge upon semantics. If this happens, even small changes
to reduction strategy may have unintended consequences for the meaning of programs.

Historically, non-strict evaluation has been used in languages such as fiHatiodexploit the
parallelism implicit in a functional language. Id apH incorporate impure features such as barriers
and side effects. In an impure language there may be outstanding side effects or barriers after a
result is obtained. The semantics must therefore define a notiterrafnation which is defined
for the entire program rather than just the root. Consequently, even the side-effect-free subsets of
these languages have a weak equational semantics (comparable to those of strict languages). For
example, thdibList example returns a result but does not terminate. The semantics of non-strict
languages with barriers have been explored extensively in the context of lHafik®6, 3, 2, 17,

18]. These languages represent a middle ground between strict languages and purely functional

non-strict languages.

1.1.3 The importance of purity

By contrast, Haskell has a strong equational semantics, made possible by the fact that it is pure (for
convenience, we refer to non-strict, purely-functional languages simply as “pure” in the remainder
of this thesis). This encourages a style where high-level program manipulation is possible, permit-

ting a high degree of meta-linguistic abstraction [1] within Haskell itself. For example, in most

21

opGroup op term = exp

where exp = exp++ op++ term >— Op
[|! term

expr = opGroup(lit >+’) term

term = opGroup(lit **’) factor

factor = it > .+ expr+.lit >)°
[|I! var >>— Var
[|! const >>— Const

Figure 1-1: Simple expression parser written using parsing combinators. The result is both a gram-
mar and a valid Haskell program.

languages we would generate a parser using a standalone tool which takes a grammar and gener-
ates code which parses that grammar. In Haskell, a grammar can be written directly as a program
using any of a number of suites of parsing combinators. Figure 1-1 the grammar of a simple ex-
pression parser, written using the same parsing library used by the Eager Haskell compiler itself.
Because this is full-fledged Haskell code, we can write functions suocp@esupwhich generates

a grammar fragment; a standalone tool does not permit this kind of abstraction.

In an impure language we cannot express such computations with the same degree of abstrac-
tion. The expressive power of a pure language can be used in numerous ways. The Haskell
language itself uses monads to encapsulate state and control flow in a purely functional setting.
Monads obey a simple set of algebraic rules which can be used to reason about monadic pro-
grams [138, 125, 69, 98, 43, 91]. Hudak’s textbook [50] is devoted to describing how graphics,
animation, and sound can be encapsulated and manipulated naturally within Haskell.

The level of abstraction and expressiveness permitted by equational reasoning is Haskell's most
important advantage. It is always possible to re-code a Haskell program in, say, C and usually we
will realize a performance gain from doing so. However, the effort and complexity involved in such
a project may be prohibitive, and in the worst case will result in marginal performance improvement.
Itis generally easier and more productive to make algorithmic improvements to the original Haskell
program. This can reduce the asymptotic complexity of a program rather than simply speeding it up
by a constant factor.

Equational reasoning is used extensively by compilers. Many equational optimizations are quite

simple, but are considered critical to efficiency; Santos [110] examines these transformations and

22

their effects in his dissertation. Even complex and dramatic transformations such as deforesta-
tion [135, 137] can be captured using simple equational rules, as in the foldr/build optimization
of Gill [38, 39, 40]. Complex equational transformations are often guided by static analysis. The
oldest example of such a transformation is full laziness [53], which generalizes the loop invariant
hoisting of procedural languages. Arbitrarily complex constant subexpressions (usually including
function calls) are hoisted out of arbitrary recursive procedures; analysis identifies subexpressions
for which such hoisting will be beneficial.

The root of equational reasoning is an equational semantics. In HaskelklWwayssafe to
replace a variable with its definition, or to name a subexpression and “lift” it out of its original
context. Haskell can be specified using a simple order- and context-independent set of evaluation
rules (equational rules). Thecalculus is itself a particularly simple set of equational rules which is
then used as the basis for the semantics of all functional programming languages; ¢éleulus
presented in Chapters 2 and 3 elaborates or\tbalculus, capturing the constructs of desugared

Haskell.

1.2 Evaluation Strategies

A program will generally have multiple reducible expressions (redexes) according to our equational
semantics. Arevaluation strategis a method for identifying one or more of these redexes as candi-
dates for reduction. Aormalizing strategguarantees that evaluation will never “get stuck” (signal

an error or fail to terminate) if it is possible to produce an answer according to our equational rules.
Pure languages require a normalizing strategy. There are a broad range of normalizing evaluation
strategies for tha-calculus [22]. The call-by-name (leftmost) strategy is the simplest, and serves as
the inspiration for lazy evaluation. The Gross-Knuth strategy evaluates all the current redexes of a

term in parallel; it serves as the inspiration for parallel evaluation strategies based on fair scheduling.

1.2.1 Lazy Evaluation

In principle, any normalizing strategy can be used as the basis for implementing a pure language.
In practice, most normalizing strategies are inefficient; for example, the call-by-name strategy re-
computes the value of an expression each time it is used. Existing Haskell implementations use
call-by-need evaluation. An expression is computed only if its value is required; this computation

is performed at most once, and the result is remembered for subsequent uses. A distinguished root

23

computation is used (often implicitly) to determine whether a particular expression is required; the
goal of evaluation is to compute the value of this root (in Haskell, the root of computatioaiins

in general the root is comparable to the main function of a procedural language). Lazy evaluation
has been formalized with call-by-need semantics [11, 14].

Lazy compilers use very different implementation techniques from those used in procedural
languages. In a lazy compiler, particular attention is paid to the creation and invocatitam&s
A thunk contains the information required to represent a computation, which is saved until it can be
proven that the computation is necessary. When its value is required, a tHonteid The thunk
is then overwritten with its value, so that future attempts to force it simply retrieve the value rather
than repeating the computation.

Thunks may have an indefinite lifespan, and the associated computation may require an arbitrary
amount of data in order to complete. For this reason, thunks are typically created in the heap.
Forcing a thunk, however, triggers computation much like a function call in a procedural language;
this may in turn force other thunks and trigger further computation. A stack may therefore be used
for forcing thunks just as it is used for nested function calls in a procedural language. In a lazy
language, stack frames represent individual computations rather than procedure activations.

The lazy evaluation mechanism itself—creating thunks, testing them to see if they have been
evaluated, fetching suspended computations from them, updating them, and so forth—introduces
a tremendous amount of overhead which simply does not exist in a procedural language. If the
value of a computation is not needed, its thunk is unnecessary; if the value is needed, it is generally
cheaper to compute it immediately rather than creating a thunk. Compilers for lazy languages
perform extensive analysis in order to eliminate one or more steps in thunk creation and update, and
intermediate representations for lazy languages define a virtual machine whose operations represent
those steps. Examples include the G-machine [54], TIM [99], and the spineless, tagless G-machine
[93]. Compilation of lazy languages is treated extensively in several books [92, 99, 104], though all

these treatments are somewhat out of date.

1.2.2 Eager Evaluation

In an eager evaluation strategy, expressions are evaluated as they are encouetaredd order
in which they occur in the program text). Strict languages are implemented using call-by-value,
an eager evaluation strategy. Call-by-value is not a normalizing strategy. However, under call-by-

value there is a simple correspondence between a primitive operation (such as integer addition)

24

and its realization on the machine (load values into registers and add). We represent the state of a
computation as a stack of nested activation frames, each containing the local data for a procedure
call. As aresult, itis relatively easy to produce an efficientimplementation of a strict language using
eager evaluation. Compilers for strict languages draw directly on the technigques used to compile
procedural languages such as C, Java, and Scheme. Consequently, a program written in a strict
language will nearly always run faster and more efficiently than an identical one written in a non-
strict language. This efficiency advantage means that compilers for strict languages make universal
use of the call-by-value strategy; when we refer to “a strict compiler” we mean “a compiler for

a strict language using the eager call-by-value compilation strategy.” Appel has written excellent

overviews of the compilation of both procedural languages [8] and strict functional languages [7].

1.2.3 Multithreaded strategies for parallelism

Parallel execution strategies have evolved over time, but all are multithreaded eager strategies,
that is, they focus on the management of very small threads of computation. Id implementa-
tions [133, 49, 42, 84] originally made use of multithreading to tolerate remote memory latencies.
Memory accesses occur in two phases: each transaction is initiated, and other code is run until
a response is received. Fine-grained threads are a particularly good match for this computation
model: computations run freely in parallel when their inputs are available, and block when they are
not. A long-latency memory operation and a non-strict dependency look much the same from the
perspective of the compiled code.

Unfortunately, the Id evaluation model is not particularly suited to execution on ordinary unipro-
cessor or shared memory multiprocessor (SMP) machines. On a modern microprocessor, caching
masks the latency of memory operations, rewarding applications which exhibit temporal and spa-
tial locality. This is fundamentally at odds with the unstructured control flow of an application
using fine-grained threads. Rather than providing a means to tolerate latencies, the mechanisms of
multithreaded execution become a source of overhead and complexity on a machine with limited
parallelism.

ThepH compiler [16, 31] addresses these issues, with the goal of rupiiri86, 85] programs
efficiently on an SMP machine. Data is stored on a garbage-collected heap in shared memory;
memory access is by ordinary loads and stores. Fine-grained partitions (equivalent to the fine-
grained threads of Id implementations) are grouped together into suspensive threads. A suspensive

thread allows the compiler to generate an efficient schedule for a group of partitions based on the

25

assumption that non-strictness will be rare in practice. A work-stealing execution model based on
the one in Cilk [37] is used to ensure that parallel computations are as coarse-grained as possible.
The pH implementation still shares a number of important properties with its forebeap$i In
the presence tests required by non-strictness are accomplished using a level of indirection. Every
computation has a separately-allocated proxy; the proxy is initially empty, and is eventually up-
dated with a pointer to the actual value it should contain. Parallel execution occurs using a cactus
stack: every function call allocates a frame on the heap to contain its local variables (and various
suspension-related data structures). By heap-allocating frames, multiple sibling calls can easily co-
exist in parallel, and computations can suspend and resume without copying execution state between
stack and heap. There was some hope that sufficiently fast allocation and garbage collection could
be as fast as stack allocation [6, 9]. In practice, however, the advantages of stack-based execution
(fast allocation and deallocation of activation frames, good cache locality, ease of interoperability
with other languages) are compelling [77], and Eager Haskell uses a stack for function calls.
Meanwhile, if we are to believe Schausgral.[116] then the picture for multithreading is very
bleak indeed. The Id programs they survey are by and large easy to transform into strict code; those
that are not amenable to this transformation can be transformed so that all non-strictness is captured
in data structures. Conditionals and function calls can be strict. Indeed, Shaw [120] showed that
such programs can be efficiently compiled using simple structured parallelism with no need for
synchronizing memory (though a certain amount of parallelism is lost in his approach). The result

is essentially a strict functional language with automatic parallelization.

1.3 The advantages of eagerness over laziness

In this thesis we deliberately take a very different tack: rather than compiling programs written for
multithreaded execution, we attack the much harder problem of compiling a pure language using an
eager evaluation strategy. Eager Haskell programs possess the clean equational semantics of a pure,
non-strict language which are the root of Haskell's expressiveness; thegmanticallyindistin-
guishable from the same programs compiled with a lazy Haskell compiler. This is accomplished
by using ahybrid evaluation strategy which evaluates eagerly by default, but uses laziness to bound
resource usage. These resource bounds permit our implementation to handle codefiblig$t as

which constructs infinite data structures. In Chapter 4 we characterize the space of hybrid evaluation

strategies, including the resource-bounded strategy used in Eager Haskell.

26

Lazy evaluation performs very badly in the presencaasfumulating parameter€onsider the
following canonical example:
fact n = factLoop nl

where factLoopO a = a
factLoop k a factLoop(k — 1) (a* k)

In a strict functional language, code such as this is typical—we express the iterative computation
factas a tail-recursive function with the accumulating parameet@gil recursion does not consume
stack space, and no allocation is required. When we use a lazy language implementation, the picture
is dramatically different:a must not be computed unless it is used. For example, if we evaluate
fact 5, we will eventually create five nested thunks representing the computation . fatteaop
returns, the resulting chain of thunks will finally be forced and the multiply operations will actually
be performed.

An an optimizing Haskell compiler such as hbc [20] or the Glasgow Haskell Compiler [130] can
use strictness information to efficiently compibeectLoop it can be shown thad must eventually
be used and can therefore be passed by value. However, accumulating parameters need not be used
strictly, in which case no optimization is possible. Further, different Haskell systems will produce
very different results for code such as this depending on the precision of strictness analysis (an
unoptimizing system such as hugs [59] or nhc [106] will always build the chain of closures). In

order to obtain consistent behavitactLoopmust be annotated usirsgq

fact n = factLoop nl
where factLoopO a = a
factLoop k a = ak‘seq factLoop(k — 1) ak
where ak = axk

This says “make surak is evaluated before callinfactLoof. We can also use strict function
application$!, which is defined in terms afeq
fact n factLoop nl

where factLoopO a = a
factLoop k a = factLoop(k—1) $laxk

In either case, the annotation is consistent with program semantics; in general, however, adding
annotations changes the semantic behavior of our programs, and can be a source of unintended

deadlockt

1An interesting example: as this dissertation was undergoing final revision, it was discovered by othees) that
annotations actually destroy the equational semantics of monadic operations in the presence of divergence.

27

The need for annotation is Haskell's biggest performance pitfall. A glance at the Haskell and
Haskell-cafe mailing lists in March 2002 (a fairly typical month in the author’s experience) revealed
41 messages (out of a total of 398) discussing how to structure and annotate tail recursive code
so that it behaves reliably and efficiently. Only two or three of the remaining messages in that
time were performance-related. Even more messages are routed to compiler-specific mailing lists;
programmers assume the stack and heap overflows they see are the fault of a compiler bug and not
a simple consequence of constructing and forcing an overly-long chain of lazy computations.

In Eager Haskell we solve this problem. Hybrid evaluation means that accumulating parameters
will ordinarily be eagerly evaluated as we compute. If, however, we encounter an expensive compu-
tation, we will fall back to lazy evaluation in the hopes that the result will be discarded. Under this
regime, an iteration using accumulating parameters will never have more than a single associated

thunk at a time.

1.4 Contributions

This thesis describes resource-bounded hybrid evaluation, a novel execution strategy for non-strict,
purely functional programming languages, and its realization in the Eager Haskell compiler. Hy-
brid evaluation permits iterative algorithms to be expressed using tail recursion, without the need to
resort to program annotations. For a list comprehension version of Queens, our most tail-recursion-
intensive benchmark, Eager Haskell outperforms the Glasgow Haskell Compiler (GHE8Vhy
Adding annotations to this benchmark speeds up GHC by W¥dpin order to match the per-
formance of Eager Haskell, however, list comprehensions must be re-written as explicit recursion,
which effectively means re-coding the benchmark. Similarly, on the multiplier benchmark strict-
ness annotations speed GHC up20ys. The same annotations have no significant effect in Eager
Haskell. We believe that by eliminating the need for annotation hybrid evaluation represents the
better choice of execution strategy for Haskell.

Under hybrid evaluation, code is ordinarily executed in program order just as in a strict func-
tional language. When patrticular stack, heap, or time bounds are exceeded, an exception is signaled,
and computation falls back. During fallback function calls are transformed into thunks and program
execution gradually suspends. When fallback has completed, execution restarts with the root. New
computations proceed eagerly as before; existing thunks, however, are only forced on demand. Un-

like previous eager language implementations, Eager Haskell has exactly the same clean equational

28

semantics as lazy Haskell does. However, eager evaluation avoids one of the biggest pitfalls of lazy
evaluation: the inability to express iteration in a clean and natural way.

Resource-bounded execution bounds the amount of computation which cannot be reached from
the root. This effectively results in a fixed-size tile of computation being performed between each
fallback step. Each fallback step results in progress on the root computation. We therefore conjec-
ture that the worst-case runtime and space of an Eager Haskell program is a constant factor larger
than the equivalent bounds for lazy execution. However, the reduction in space consumption of tail
recursion are likely to reduce asymptotic space usage in many cases.

This thesis makes a humber of smaller contributions which are relevant to other language im-

plementations:

e In order to better understand the performance consequences of various reduction strategies
and program transformations, we have developed a semanticg:f¢a realization of our
compiler’s intermediate representation). Building on Ariola and Arvind [12] we associate par-
ticular implementation mechanisms with corresponding semantic actions. The use of a com-
mon equational framework to compare radically different language implementation strategies
is novel; previous efforts in this direction have focused on drawing semantic distinctions or

on modeling a particular implementation.

e Eager Haskell is (to our knowledge) the first eager, non-strict functional language implemen-
tation to make use of a call stack, which is far more efficient in the common case than placing

frames on the heap.

¢ By offloading the overhead of non-strictness to the run-time system, dramatic changes in the
execution strategy of Eager Haskell are possible by making changes to the run-time system

without modifying the compiler itself.

e Functions in a memory-safe language such as Haskell contain many error checks. For exam-
ple, theheadoperation on lists must check its argument and signal an error if it is the empty
list. We refer to an expression which always signals an errordageggentexpression. Often
(as inhead these expressions account for the majority of code in a particular function. This
code is rarely executed, and should not be inlined. In addition, divergent expressions have
a very strong equational semantics: no expression which depends upon a divergent expres-

sion can execute. A number of important program transformations are based upon this fact.

29

The compiler identifies divergent expressions statically using type and strictness information.
Divergence information is used to segregate error handling code from regular control flow
to avoid the cost of inlining error handlers, and to guide transformations around divergent

expressions.

e A divergent expression must not be evaluated eagerly; if the answer does not depend on the
divergent expression, doing so will terminate the program spuriously. Divergent expressions
are compiled into speciddottom thunksthese are always evaluated lazily, preserving nor-

malization in the face of error handling.

e The object representation in Eager Haskell combines the idea of object update from lazy lan-
guages with the presence-checked I-structure memory conventionally used by multithreaded

compilers.

e The Eager Haskell garbage collector uses the stack as an additional predictor of object life-
time: near the top of the stack, where old and new objects are intermixed, objects are assumed
to be likely to be updated or to die and will not be promoted. Old objects lower down in the

stack are likely to remain untouched and therefore are good candidates for promotion.

1.5 Overview of this thesis

We begin the thesis by presenting the Eager Haskell compiler’'s intermediate represeniation,
Chapter 2 describes the constructain Chapter 3 present an exhaustive semanticafginclud-
ing a number of extensional rules crucial to equational reasoning but not required for an operational
reading. Chapter 4 characterizes different execution strategies-forBetween lazy and eager
evaluation, there is an enormous space of possible eager execution strategies. A hybrid strategy
combines execution rules from both strict and lazy strategies, resulting in a stack-based eager eval-
uation strategy. Resource-bounded execution is one point within a broad range of hybrid strategies.
Having described the resource-bounded strategy, we shift our focus to implementation. Chap-
ter 5 describes the data structures and run-time mechanisms used by the Eager Haskell compiler.
Chapter 6 describes the various program transformations, most notably the insertion of explicit syn-
chronization operations, required to tuka into a form suitable for code generation. Chapter 7
describes the final code generation step which maps canogjdal C code.

Having described the basic hybrid implementation, the next two chapters fill in crucial detail.

30

Chapter 8 explains how type and strictness information are used to identify divergent expressions,
and how these expressions are handled by the compiler and the run-time system. Chapter 9 describes
the implementation of arrays in Eager Haskell. Preserving non-strict array semantics in the face of
resource-bounded execution is a daunting task: when array initialization suspends, it is not clear
which computations should resume and in what order.

Chapter 10 presents benchmark results for Eager Haskell. We compare Eager Haskell with the
Glasgow Haskell Compiler, the only optimizing Haskell compiler currently under active develop-
ment. The Eager Haskell implementation is able to beat GHC on several benchmarks, but is about
60% slower overall. Much of this figure is due to the relative maturity of the two compilers. We
then examine various aspects of the compiled code and run-time system in detail. Those applica-
tions which perform poorly often stress particular aspects of the runtime; this code is relatively slow
compared to compiled code. Finally, we conclude Chapter 10 with a case study of tail recursion.
Annotations in the multiplier benchmark speed it u@b¥; under GHC, but have no effectin Eager
Haskell.

We conclude the thesis with several chapters on future work. In Chapter 11 we describe how
the present Eager Haskell implementation can be made to run on a multiprocessor. We propose
to schedule computation based on randomized work stealing. The fallback mechanism is a natural
match for indolent task creation; work stacks contain thunks which are created during fallback. Our
design avoids locking whenever possible; we articulate a general monotonicity principle, and use it
to devise a protocol for lock-free update of shared data.

In Chapter 12, we describe how to add barriers to Eager Haskell, allggtingrograms to be
run using the new compiler and run-time system. The record-keeping required to track suspended
work closely parallels the mechanisms used to track work in our array implementation, and to track
outstanding thunks in the multiprocessor version of Eager Haskell.

Finally, in Chapter 13 we conclude by looking at the future of uniprocessor Eager Haskell. A
number of crucial compiler optimizations are either missing or severely crippled. There is ample
potential for future work on problems such as unboxing in an Eager setting. In light of the results
in Chapter 10 it should be possible to tune the run-time system to better handle the most common
uncommon cases. Overall, however, the system is solid and the promise of hybrid evaluation is

evident.

31

Chapter 2

Representing Eager Programs: The\q

Calculus

This thesis assumes that the source syntax of Haskell has been compiled into a simpler interme-
diate representatiorh\c. The techniques for performing this translation—type checking, pattern-
matching compilation, and desugaring of list comprehensions and monad syntax—are well-under-
stood and widely used. They are covered exhaustively in other sources [99, 92, 95, 90]. This chapter
gives a brief overview of the features &f, and introduces the terminology and notation used in

this thesis. A semantics fovo is given in the next chapter.

2.1 Overview

The syntax ofAx is summarized in Figure 2-1. It has a great deal in common with other calculi
used for reasoning about non-strict languages. The most important commonality is the Uesie of a

construct to capture sharing. It has a few distinguishing features:

e Data structures are created using constructors and examined using case expressions.

Case expressions are used to force or synchronize evaluation.

Arity of functions and of applications is explicitly represented.

Primitives applications are distinguished.

Recursive letrec) and non-recursivdédt) bindings are distinguished.

32

ecE = X Variable

E Ex k>0 Application

Pk Ex k>0 Primitive appl.

Cx Ey, k>0 Constructor appl.
X, — E k>0 Function

casex =E of D
letx=E;inEy X Q_f FV[El]

letrec Bin E

beB = x=E Binding

| B;B Group

| € Empty binding
deD := CiX —E Regular disjunct

| _—E Default

| D;D Disjunct group

| e Empty disjunct
veV == C¥X k>0 Simple constructor

| (M —E)Y; 0<j<k Closure

Figure 2-1: Syntax oA¢

The \¢ calculus formalized here is an outgrowth of previous work onthealculus [17, 18].
The use of theaseconstruct for strict binding (Section 2.8) was inspired by the Core syntax at the
heart of the Glasgow Haskell Compiler [103]. Unlike Cakg,is not explicitly typed. In this sense
Ac is more similar to its precursors. However,\¢ eliminates impure constructs, a central theme
of Ag, and substitutes strict binding usingse in this respect is is equivalent in power to ordinary
calculi. All of these calculi are close relatives of the call-by-ngezhiculus [14], the most widely-
studied lambda calculus with explicit sharing. However, unlike the call-by-need calculus but like

Core, \¢ is designed to cleanly represent actual Haskell programs during compilation.

2.2 Notation

In this and subsequent sections we will use a few convenient shorthands to simplify the notation.
Eager Haskell is lexically scoped, and the usual assumptions about renaming of variables are made
to prevent scope conflicts. The notatinstands for thé-ary vector of variableg;, x5 ...x. The

ith element of such a vector is written We omitk and writeX when arity is clear from context

(for example, the arity of primitive and constructor applications is fixed by the syntax). The vector

33

notation extends to all syntactic elements in the obvious way. We will sometimes want to replace

theith element of such a vector; in this case we write the vector out longhand like so:
X X X — X1 .. B Ux
or we can abbreviate the source vector, wkes arbitrary or is constrained elsewhere:
X — Xp...E' . X

In either case, we understand tiatandx, are placeholders, and< ¢ < k.

Variables scope straightforwardly. The argumentd a A\-expressiomX — e scope over the
bodye. The variablecin the binder of theaseexpressioitasex = e of D scopes over the disjuncts
D, and the variableg of the disjunct bindeCyx xx« — e scope over the right-hand sigée Finally,
the binding for a variabl& in a binding blocKetrec x = e; ; B in e, extends over the entitetrec
expression. Indeed, the order of bindings in a block does not matter (a notion which we formalize

in Figure 3-1), and we will by convention place interesting bindings leftmost in our presentation.

2.3 Functions

We write thek combinator in\¢ as follows:
Aab—a

In general, functions use a version of the familiar lambda notation:
XX, — E

This notation indicates a function efity k; thex; are theargument®f the function and the expres-
sionE is thebodyof the function. Semantically, nested functiox’s — Ay, — E are equivalent to

a single function with combined arity+ j, AX; yj — E. Operationally, however, we treat these two
expressions very differently, and our compiler will produce different code for them. It is for this

reason thah. represents function arity explicitly.

2.4 Application

Function application in\¢ is by juxtaposition as usual:
kab

34

Here we apply the functiokto two argumenta andb. Like functions, application have an associ-

ated arity:
E E,
Again, nested applicatior{$f X;) y;) are semantically equivalent to a single applicatib®; y;), but

imply very different operational readings. In particular, note thiataaty function may bepartially

appliedto fewer thark arguments (sa) yielding a function ok — i arguments.

2.5 Blocks

We can name thk combinator as follows:
k=Xab—a

In general, we can bind any expression:
x=E

We refer to this as hinding for x E is thedefinitionof x; x is bound to E
Bindings are grouped together inbtocks or let-expressions. These are written as follows in
Haskell:
let two=g X x
four = g two two
in g four four
The A¢ notation is similar. However, we usetrec to indicate the possibility that the bindings may
be mutually recursive:
letrect=gf f
f=gtt
intf
The expressionf is theresultof the block. Mutual recursion allows a definition to refer to any of

the variables bound in the same block:
letrecr =k Xxrinr

For pragmatic reasons, it is frequently useful to distinguish non-recursive bindings. Wt tse

indicate a single, non-recursive binding:

35

lett =g xx
inletf =gtt
ingff

As with function arity, the distinction betwedat andletrec has no semantic impact, but affects

details of code generation and manipulation.

2.6 Primitives

Primitive operations are not considered to be function symbols. Instedths distinguished syntax

for a primitive application
intplusa b

All primitive applications aresaturated—i.e. a primitive of arityk is always applied to exactly
arguments. We denoteary primitives with the notatiopy. Particular primitives are distinguished

using superscripts, as m
pL Ex
The Haskell language allows primitives to be partially applied, passed as arguments, and so forth.

Saturating primitive applications is simple: replace every occurrence of prinpi[iwa'th ak-ary

function.
Pk — (A, — Pl %)

This saturation operation is performed by the compiler as it transforms Haskell sourge:into
In practice, many of the primitive operations in Eager Haskell are familiar mathematical func-
tions. We will use infix notation freely to keep sample code clear. Thus we fibiten — 1) +

fib (n — 2) rather tharintplus (fib (intminus n1)) (fib (intminus n2)).

2.7 Algebraic Data Types

In Haskell, algebraic types neatly combine sum and product constructs into a single mechanism.
For example:
data Treea = Node(Treea) o (Treea)

| Leaf
tree = Node(Node Leaf2 Leaf) 5 (Node Leaf7 Leaf)

36

This declaration states that an object of typee« is either aLeaf (which we refer to as a constant
or a nullary constructor), or it is Modewith a left subtree, a datum (of type and a right subtree.
In \c we omitdata declarations, and distinguish constructors by using uppercase (a convention

which is observed in Haskell as well):
t=N(NL2L)5(NL2L)

Instead of explicit data type declarations, we define the functid@g which returns the type of
a constructor ane[r]| which yields the set of constructors of a particular type. We re&@y| as
k[7[Cy]] in the obvious way. Thus[N] = {N,L}.

We use the notatioy to indicate an arbitrary constant. These include the integers, floating-
point numbers, unary algebraic constructors, and the like. Similaglyy constructors are notated

asCy, with particular constants or constructors using superscripts,@{g in
Cl Ex
Like primitive applications, constructor applications are saturated.

We use Haskell's notation for lists and tuples. The empty list is writfemd cons is written as

infix colon (:). Square braces make longer lists more readable:

1:1:2:3:5:[] =1, 1, 2, 3, 5]

2.8 Case Expressions

Thecaseconstruct is the most complex partkf. Consider the followingaseexpression:

casecs = xsof

a:as— revApp asa:ys

- —YS
This caseexpressiorscrutinizeghe discriminant xs It first ensurexsis evaluated (it is a valué/
in Figure 2-1). Second, the resulting value is bound to the naamehird, one of the twalisjuncts
is selected based on the valuexaf Disjuncts are labeled with a single constructor; the final disjunct
may instead be labeled as tthefaultdisjunct using_ (as it is here). liksis a cons cell, it will match
the first disjunct : as it is thenprojected ais bound to the head ofsandasis bound to its tail.
Finally, thebodyof the disjunctyevApp as(a:ys), is executed.

A case expression thus serves four different purposes in the language:

37

Ensuring its discriminant has been evaluated.

Naming the discriminant, with the guarantee that this name is always bound to a value.

Selecting an execution path based on the value of the discriminant.

Fetching fields from objects with algebraic type.

Note that the typing rules of Haskell guarantee that all the constructors which appear in a par-
ticular caseexpression belong to the same type. Only one disjunct may be labeled with a given
constructor. For clarity, we prefer to avoid default disjuncts when a single constructor is missing
from a case expression—thus, we should replace the default disjunct in the above expression with
the empty list:

casecs = xsof
a:as— revApp asa:ys)
[]—ys
In practice, acaseexpression may not perforall of the above functions. Ordinarily we do not

name the discriminant, and thus omit this notation from the case expression:

casexs of
a:as— revApp asa:ys)
[]—ys
When a datatype has a single disjunct, as is the case with tuple types, there is no need to select a

disjunct for execution.

casepair of
(a,) —a
Naturally, not every constructor has fields, and thus fetching is not always necessary (it does not
occur in the[] disjunct inrevApp. Similarly, if a field of a constructor is not required (as in the
above definition), it is replaced with the wildcard patterand is not fetched.

We consider an expression to have terminated when it is a value. Sometimes the compiler must
ensure that a particular expression has been computed, but its actual value does not matter. Every
expression in\¢ is lifted—it admits the possibility of non-termination. We refer to non-terminating
expressions aBottoms notated . A caseexpression with only a default disjunct checks that its

discriminant has terminated:

38

casea of
_—a+1l
We call the resulting expressiontauch (by analogy with the touch operation in the SMT eager
abstract machine [16]). Unlike otheaseexpressions, the discriminant of a touch may have any

type. Theseqoperator in Haskell is represented by a touch operation:

seq a b= casea of
_—b
Touches are inserted by the compiler in order to control program evaluation.
Not every type in Haskell is lifted. Theewtypedeclaration creates an unlifted “wrapper type”;
this type has a single constructor which accepts a single (lifted) component as an argument. As a
result,caseexpressions and constructors for such types can be eliminated from the program. They

are erased after type checking, and are not represented in

2.9 Other syntax

The syntax for\¢ in Figure 2-1 includes a few constructs that have not been described thus far. First,
it defines the notion of galue Values are simple constructor expressions and unsaturated function
applications (closures). Second, our notation separates bindings and disjuncts with a semicolon.
As in Haskell, we omit these semicolons when indentation makes the grouping clear. Finally, it is
convenient to add an empty grouping constretfor example, this allows us to treat a singleton

binding as a binding group. This eliminates a special case from many rules.

39

Chapter 3

The Semantics ofA o

In the Chapter 2 we presented the syntaX@fthe calculus we use as an intermediate representation
for Eager Haskell programs. In this chapter we present a semanticg-forThe semantics of

Ac are equivalent in power to the-calculus, the call-by-need-calculus, or the core calculus of
GHC [103]. Our presentation is unique in several ways. Unlike core, we give small-step reduction
semantics for theaseconstruct. We also include a limited set of extensional conversions. Such
conversions are not included in the call-by-n@edalculus [14], and do not appear to have been

widely studied fodet-based calculi in general.

3.1 Extensionality

Our presentation of¢ begins by focusing ooonversiorrather thameduction We examine conver-

sion because theaseconstruct simultaneously expresses three semantic properties: Projection of
products, extraction of sums (coproducts), and unlifting of lifted data [80, Chap 2]. The equational
theory of \¢ therefore includes extensional expansion rules for these three uses of case.

The purpose of extensionality is to capture observational equivalence: we say twolMerms
and N are observationally equivalent when they behave the same way in all contexts. A calculus is
extensional when convertibility/ = N is congruent to observational equivalence for all terms [22].

We express extensional rules as expansions; the virtues (such as confluence) of expansion rather than

contraction for extensionality have been revisited in recent years [52].

!Note that in a calculus with constants, extensional equivalence usually requires a typed calculus. For gxample,
expansion must guarantee that the expression being expanded is of function type. The limited expansions permitted in
Ac¢ are type-independent; rules suchgawill be meaningless (but harmless) if performed at the wrong type.

40

Identities on bindings

€; B = B unit

By; By = Bi:; By commutative
Bo; (Bl; Bg) = (Bo; Bl); Bo associative
Identities on disjuncts

CiX—Ey;Cy—-E = CX—E redundant
_—Ey ; CL y—-E = _—K default
CiX—E;Cy—E = Cy—E;CX—E independent

Figure 3-1: Syntactic equivalences for terms\n. The usuaky renaming equivalences are as-
sumed. Reduction rules are obtained by reading conversions left to right.

The conversions given in this section do not makeas a whole extensional; there are equiv-
alent terms such a&x — f x andf which are not convertible. Instead, the new rules simplify the
correctness proofs for many widely-used program transformations. They also serve to reinforce the
parallels between the use céiseand constructors in and the use of constructs such as pairing

and projection in othek-calculi.

3.2 Equivalence

We consider terms to be equivalent (writtej when they differ in unimportant ways. In Chapter 2
we noted that the order of bindings letrec expressions does not matter; we formalize this with
the first three rules in Figure 3-1. Similarly, our disjunct syntax is very permissive. The order
of independent disjuncts is unimportant. Unusually, we permit multiple disjuncts with the same
constructor. In this case the first disjunct takes precedence. Similarly, a default disjunct supersedes
the disjuncts which follow it. These equivalences simplify our rules for merging and splitiise
expressions (particularly, andy,, see Section 3.3.3). A compiler, of course, simply erases useless
disjuncts.

We omit a-renaming rules from the figureThroughout this thesis we assume the usual
equivalences hold, and all conversions hold modulo the usual rules prohibiting name capture.
the Eager Haskell compiler, all program identifiers are distinct; renaming occurs wkerieam
is duplicated, for example when a function is instantiated or a new arm is addecht® aresh

names are used when new variables are introduced by naming or expansion.

41

(A% X, — €)Y = (M —ely/x]) Bvar
Pl Vi = pl Vi § axiom schema
A i ‘ _ casey = C| yof
casey = Cl.(y of Cl.(X—e;d = T e_[y/ g Xc (constructor)
casey = C, €of C{ X—e;d = casey=Cj €ofd Xp (mismatch)
casex=vof _—e = letx=vine X4 (discharge)
—e = C{X—>e;—>e 1, (New arm)
e = casex=eof _—X n (lift)
letrecx =e; bin Ig[X] = letrecx=-e; bin Ig[€e] te (instantiate)
x=e; Ig[X = X=-¢; Ig[¢ tp (inst. binding
X = Ig[X = x=Ig[le[X] ¢ (inst. rec.)
Ci X — Ig[x = C X—Ig[C X tq (inst. disj.)
casex = e of Ip[X] = casex=-eof Ip[e| L (inst. case)
casex = e of _ casex=eof (unlift
Ip[casey = x of _ — €] ~ Ip[lety=xin ¢ “
e = letx=-einXx v (name)
letx=1¢ in & = letrecx=¢e in g p (let conv.)
x ¢ FVie]
lg[letrec bin € = letrecbin Ig[€] om (hoist)
FV[Ig[]] N BV[b] =0
letrecbin (casex =gy of - —e) = casex=gof _— letrecbine o; (case hoist)
FV[es] N BV[b] = 0
S casex = g of _ — e] = casex =g of _ — Ye] o (strict hoist)
x ¢ FVIS]]
casex = ey of _ — _ casey=eg of _ — o1 (swap touch)
casey=¢ of _ — e casex=¢g of _ — e
x ¢ FVle] Ay ¢ FV[e]
X, — AY; — e = XX, ¥, —e 7 (Merge))
(ea...q) 1. . & = eq...g T (Merge app)
x=letrecbin e = b;x=e 71 (flatten)
letrec b; in letrec by in e = letrecb;; byine m (Merge let)
FV[b;] N BV[by] = 0
letrecein e = e €4 (drop)
letrecb;; by ine = letrechyine €. (erase)
BV[bi] N FV[letrec by in g = 0

Figure 3-2: Conversion ingc. All conversions hold modulo the usual rules prohibiting nhame cap-
ture.

42

3.3 Conversion

We initially view the A\ calculus as a purely mathematical system. In Figure 3-2 we list the conver-
sions among terms, notated When it comes time to actualgvaluatea Ao program, rather than
manipulate it equationally, we require only a limited subset of the conversions presented here. We
present these rules in Figure 3-12; Chapter 4 is devoted exclusively to various reduction strategies

for Ac. When speaking of evaluation, we view the conversions as left-to-right reduction rules.

3.3.1 Functions

The most fundamental rule in anycalculus is3-reduction. In\¢ we make use of a very minimalist
form, Gvar. Only arguments which are variables can be reduced, and reduction occurs by simply
substituting the parameter variable for the argument variable. Mbbased\-calculi (such as the
call-by-need calculus\g, and Core) make use of thige; rule instead. We can derivée; in A¢
as follows:
(MX—e)e = (Ax—e)(lety=einy) (v)
= lety=ein(Mx—e)y (om)
(
(

= Iety: € in e [y/x] Bvar)
= letx=6ging a)

As we shall see, th@,, rule arises naturally out of the desire to separate the static portions of
reduction { ando) from dynamicg reduction itself.

The Byar rule isunary—we disregard the arity of functions and applications. We include merge
rules(m;, 74), but it should be clear that for the purposegatduction they are unimportant. When
we read)\o operationally, we will restricts,,r to full arity, and r, will be used in taking apart
closures of partial applications. Lambda mergimg optimizes the process of reducing function
applications.

Note that there is ng rule for function application. In an untyped calculus with constants, there
are only two ways to determine that a term must represent a function: either it is actually a lambda
expression, or it is always applied to some arguments. [fvadstract a function, we obtain an

immediates redex:

M —e) = (AXx— (% —e)X) (n)
= MXX...xx—ex/x] (Bua)
= X, —e (@)

Similarly, n-abstracting an application also yields a (nearly) immediatedex:

43

(AX— &y X) e
(A — e X) (lety=eriny)

& € (
(
lety=erin(Ax—exy (om)
(Bvar
(
(

= lety=¢e ingy
& (lety=eriny)
= &€

These limited readings aftherefore have no practical application on their own. They can, however,

be useful when combined with instantiation:

letf =einfe = letf=ein (A x—Ffx)e; (om, v, Bvar)
= letf =ein(Mx—ex e (L)
= (Mx—exe (¢)
= (letf =Xx—exinf)eg (

= letf=XAx—exin(fe) (o
In general, we cam-expand a binding if every occurrence of the bound variable is a function

application.

3.3.2 Primitives

By their nature, primitives require special reduction rules. We leave the set of primitives open-
ended. The main thing to note about thexiom schema is that primitives take values as arguments,

and in a single step produce a value as a result.

3.3.3 Algebraic types

The caseconstruct and constructor application are the fundamental operations for manipulating
algebraic types. There is no specific constructor application rule. Calculi sukh distinguish
between unevaluated and evaluated constructor applications¢ lBny constructor application
can be treated as “evaluated” if its arguments have been named. At thatqasiegxpressions
which depend upon it may be discharded). When viewing\¢ operationally, we will distinguish
evaluated constructor applications by their position in the term.

As noted in Chapter 2, the algebraic types\in actually encompass three concepts at once:
Lifting (distinguishing evaluated and unevaluated terms), pairing and projection, and sum types.
This results in a large number of conversionscaseexpressions. We examine the conversions for

each category separately.

44

Lifting

A caseexpression can be discharged when its discriminant is a v@lye This is the only
rule which erases easeexpression; consequently, termination ofaseexpression is contingent
upon termination of the discriminant, as we would expect. Dischgggepresents elimination of
lifting—the lifted expression is determined to be non-bottom and thus can be erased.

Any expression may safely be touched in place. The lifting (yl¢ describes this possibility.
If the expression isL then the resulting expression will be as well. If the expression can be
converted into a value, then the introdua@asemay be discharged.

The bound variable of easeexpression can be considered toumdifted within the case body.
This is not strictly true: the case instantiation rulepermits the discriminant to be instantiated
before it has terminated. However, tteseexpression as a whole terminates only if the discriminant
does—in which case a copy of the discriminant will terminate as well. This means we can safely
discharge inner touches of the bound variable. We state this as a very restricted form of instantiation

(). We imaginesomevalue being instantiated, causing the discharge of the icems

Pairing

The tuple(x;, x2) corresponds to pairing. Projection is represented by the substitutions performed
in the constructor rule.. The corresponding disjunct instantiation rujerepresents surjective
pairing, the extensional rule for products (akinitéor function spaces). In theaseframework it

is natural to write this rule as an expansion;-€oes the work of. in advance, in the sense that a

disjunctC}. ¥ — ewill only be kept ifx has the fornC} &

Sum types

Similarly, we can represent sum types by using the tdrafisx, andRight x% to represent injection.

The rulesy. andx, perform selection. The rulg, is the extensional axiom for sum, permitting

us to expand aaseexpression to explicitly handle all the constructors of a particular type. In this
case extensionality effectivelgverseghe action of selection, rather than anticipating it. This re-
flects the categorical duality of sum and product—the extensional axioms are oriented in a direction
where they are naturally used for expansion, rather being oriented according to our coreesat of

reduction, and the direction of expansion for sum is opposite that of product.

45

el] == O | A% — Ie[]
‘ pkEl---IEH-'-Ek ‘ IEHE
| CkE1...lg[]...Bx | EEL...Ig[]...Ex
| letreclg]]in E | casex=Ig[]ofD
| letrecBin Ig[] | casex=Eoflp[]
IBH L= X= |EH ‘ |BH; B
Ip[] == CkX—lg[] | Ip[]; D
| ——le[] | D; lIp[]

Figure 3-3: Instantiation contexts i

3.3.4 Binding

Binding is crucial to evaluation it\c. Both £ya and x4 require arguments to be named. As
reduction proceeds nested block structures must be flattened in order to expose new opportunities
for reduction. Most important, variable instances must be instantiated with their definitions.

We noted in Section 2.5 that non-recursive binding blots &re distinguished from recursive
blocks (etrec) primarily for pragmatic reasons. The let conversion rile states thatet can be

converted freely intdetrec; the reverse conversion can be applied if the binding is non-recursive.

Instantiation

All the instantiation rules foA- make use of thnstantiation contextdescribed in Figure 3-3. An
instantiation context describes which occurrences of a variable can be replaced by that variable’s
definition. In\c any variable occurrence which is in scope is a candidate for instantiation. Oper-
ational strategies will substantially restrict the scope of instantiation by restricting the instantiation
context.

The three instantiation rules faaseexpressiong.q, ¢, ¢;) have already been discussed in
Section 3.3.3. There are also three instantiation rulekefoec bindings. This is because there are
three parts of detrec expression which might be candidates for instantiation. Occurrences in the
result expression may be instantiated(by). Occurrences in other bindings may be instantiated
by (vy). Finally, recursive occurrences may be instantiated uéipg in which a definition is
substituted within its own body.

Note no instantiation rule is given fdet expressions. Instantiation of the result is trivial to

derive as follows:

46

let x = letrec b in ein Ig[x] _ letx=letrecbinein
B £ " Ig[letrechin ¢ ¢

= |lg[letrecbin € €
let x = letrec bin ein Ig[X] = letrecb; x=-ein Ig[X| Tf
= letrecb; x=-ein Ig[€| le

letrec b in Ig[e] €e

letrecb;; x=letrechy ineinx = letrecb;inletrechyine
letrecb; ; x=letrechy ineinx = letrecb;; by; x=einx 7y
= letrecb;; by; x=¢eine

= letrech;; byine €e

Figure 3-4: Derivations fos,,, andr,,

letx=einlg[x] = letrecx=-einlg[Xx (p)
= letrecx=-ein Igle (te)
= letx=-ein Ig[€g (p)

Naming

Naming is accomplished using the naming ruldn Figure 3-2, we give a completely unrestricted
form of naming. Naming can be derived by running other conversions backwards:
e = letreceine (€q)
= letrecx=-eine (&)
(

= letrecx=-ein x (i)
= letx=einx (p)

There are a number of reasons to favor the explicit inclusiom iof \c. If we view the rules
as left-to-right reductions, then we must either includer permit reversed instantiatiqn.) and
erasure(e). Reverse instantiation permits us to invent terms from thin air—hardly a model of
evaluation. Instead, we allow naming of preexisting expressions.

Inclusion of a naming axiom also frees us to place particular operational interpretations on nam-
ing, instantiation, and erasure. We would like to view naming as a static process—subexpressions
need only be named once—while instantiation is dynamic. Erasure corresponds to Garbage Collec-

tion and memory management; reduction should make progress even in its absence.

3.3.5 Structural rules

Repeated instantiation and reduction often gives rise to deeply-nested bindings. These bindings can

in turn interfere with evaluation. For this reason, there are a numb&rwdftural ruleswhich ma-

47

letx=Eing] | pcEx...9]...E

g ::’= 0 | SIIE
| letrecbinS§] | casex=g]ofD

Figure 3-5: Strict contexts ing

nipulate binding constructs. The simplest structural rules are the rules for merging nested functions
and application$r;, 7,) which were discussed in Section 3.3.1.

It must be possible to erase bindings which are no longer being used. We state binding erasure
(ec) as a rule on binding blocks; this permits multiple mutually-recursive bindings to be discarded
in a single pass. If every binding in a block can be erased, then the block itself can be eliminated
as well(ey). Erasure allows the elimination of “semantic noise’—bindings left behind by repeated
naming and instantiation steps. As noted in Section 3.3.4, erasure can also be used to model the
actions of a garbage collector.

In order to performByar and x4 reductions, nested bindings must be hoisted out of applications
and constructor arguments. The general hoisting falg) states that detrec contained in an
instantiation context may be hoisted outside that context. Notesthas actually aderivedrule;
it can be described using a mix of instantiation and erasure as shown in Figure 3-4. We include
om in our conversion rules for two reasons. First, flattening is a necessary part of straightforward
left-to-right reduction. Second, we are uncomfortable with a semantics that gives a central semantic
role to erasure, and particularly any reduction strategy that requires erasure. Erasure played just
such a central role in some early call-by-need calculi [73].

Thecaseconstruct also introduces bindings. Becataserequires its discriminant to terminate,
these bindings cannot be hoisted freely. They can, however, be hoistedtiiotrcontextsos):
the arguments of primitives and the discriminantsa$eexpressions (see Figure 3-5). Note that
o also allowscaseto be hoisted from the result part of a block; this simply invertsaherule.

Finally, nested touch operations may be freely interchariged

In anylet-based calculudet-blocks themselves can become highly nested. Such nested blocks
can be flattened out; indeed, terms iletacalculus can be viewed as graphs, in which case the exact
binding structure does not matter at all [15, 13, 10]. We therefore provide (tles;,) to flatten
nested blocks. Again, the merge rulg can be derived as shown in Figure 3-4; again, the proof

relies on reverse erasure.

48

3.4)¢ is badly behaved

The conversions presented in figure 3-2 can be used to justify many common transformations of

Haskell programs. However, when viewed as reductions they are not confluent, nagdoessess

normal forms. Non-confluence is a common propertiebbased calculi with the ruleg and:,—

mutually recursive bindings can be instantiated such that they cannot then be brought back together.

It was problems with non-confluence that led to graph-based vieles efpressions; non-confluent

reductions change expression structure, but do not change the unfoldings an expression generates.
Absence of normal forms is a consequence of the generality of #&malrn; rules. It is possible

to name or lift any expression:

e = letx=einx (v)
= letx=Ilety=einyinx (v)

These rules can be restricted syntactically, restoring normal forms; we will examine such a restric-

tion in the next section. However, the more general versions are useful for proofs (see Chapter 6).

3.5 Canonical forms of\o

The front end of the Eager Haskell compiler translates programs directly into the-failculus,
but in practice it is simpler to manipulate program code if the syntax of the language is restricted in
various ways. In this section we examine various canonical program forms and how programs may

be transformed into those forms.

3.5.1 Full erasure

The erasure ruleg., ¢;4), when used in isolation, form a strongly-normalizing reduction system. It
is easy to see that erasure terminates: Every erasure step makes a term strictly smaller. To see that
erasure is confluent, note erasure cannot make a dead binding live again. Thus, any pair of erasure
reductions can be brought back together in a single step.

Note that the erasure rules fag are not safe for a language with side effects or termination
detection such a&g (and thuspH). The rulee, can freely erase non-terminating computations. In
Eager Haskell these non-terminating computations will be garbage collected dynamically if they are

left unerased by the compiler.

49

nE — (letx=ninx) E
EE...n...Ek — EE...(letx=ninXx)...Ex
pkEi...n...Ex — pkEi...(letx=ninx)...Ex
casex=nofD — casex= (lety=niny)ofD
lety=einn — lety=-einletx=nin x
letrecbin n — letrecbinlet x=nin x
CLX—n — CLX—letx=ninx
_—n — _—letx=ninx
neN == EE, | M,—E
| pcEr | casex=EofD
| CkE

Figure 3-6: Restricted rules for full naming

L == letx=EinL | X
| letrecBinL
E = x | XX
| M —L | Pk X
| casexof D | Ck X
B = x=E | B;B
D = CX —L | D;D
L

Figure 3-7: Fully named form of¢

3.5.2 Fully named form

Many compiler phases—particularly those which perform static analysis or code motion—can be
expressed more smoothly when every program expression is given a nhame. For this we can use
the naming axionv. Because naming is non-normalizing (Section 3.4) we restrict naming contexts
as shown in Figure 3-6. We also prohibit the naming of identifiers (where it would be redundant)
andlet andletrec expressions. Together these restrictions prevent thide from being applied to
any portion of its own right-hand side, thus guaranteeing that naming will terminate. This syntactic
restriction also means that naming redexes are disjoint, insuring confluence.

In conjunction with naming, it is useful to mouet and letrec expressions outwards using
the o,,, rules. This creates a clear separation between ordinary expre&sams binding blocks

L. We can also flatten blocks, 7,) to simplify block structure. However, whek: is used

50

f (letx=einx) — letx=-¢ein

(lety=eyiny) fx(lety=einy)
letx=¢ in
— lety=ein
fxy
f (letx=e;inx) — lety=ein
(lety=eyiny) f(letx=e inx)y
lety =g in
— letx=e¢ein
fxy

Figure 3-8: Order of floating affects order of nesting. Here two possible reduction sequences give
rise to different results.

as an intermediate representation it is useful to preserve the distinction bdbteard letrec.
Consequently, we only flatten blocks on the right-hand sides of bindings
We can derive a flattening rule ftat blocks as follows:
letx= (lety=eine)ine, = letrecy=ey;Xx=¢e ine (p, T¢)
= lety=ginletx=e ine, (p, 7m)

This derived flattening rule has the advantage it does not crdateea from the nestedet expres-
sions. The syntax after naming, lifting, and flattening can be found in Figure 3-7. We cdillthis
named)\¢.

Full code motion usingr,, is guaranteed to terminate. Evesy, reduction moves det or
letrec expression further out; eventually every such block is the resultcakadisjunct, function,
or another block, or is the value of a binding. However, the order in which bindings are floated
outwards affects the order in which they end up nested, as shown in Figure 3-8. Floating order
is semantically irrelevant, but will affect which expressions are evaluated in an eager strategy; we
discuss this further in Chapters 4 and 6. Once code motion is complete, flattening uéamgl the
derived rule given above) is very simple; each usesahoves exactly one block.

For simplicity, we have described the translation to fully named form a rule at a time: first name
(v), then perform code motiofv,,), then flatten(r;). If the rules are applied in exactly this order,
“identity bindings” can be created:

x=lety=einn — x=lety=¢eyinletz=ninz (v)

— y=g;X=letz=ninz (1)
— Yy=&;Z=N;X=12 (7f)

51

Be[] = X — Bg[] B
| PkEi...Be[]...Ec | Be[]E
| C«Ep...Bg[]...Ex | EEi...Bg[]...Ex
| letrecB[]inE | casex=Bg[]of D
| letrecBin Bg[] | casex = E of Bp[]
B[] == O
| x=Bgl[] | B[]; B
Bp[] = CkxX— Bg[] | Bp[]; D
| —— Be[] | D; Bpl]

Figure 3-9: Binding contexts iA¢

Here the bindingk = z could have been avoided by flattening first:
x=lety=einn — y=e;x=n (74)

To avoid introducing identity bindings, we must flatten usingbefore naming and before each

code motiory,,.

3.5.3 Binding contexts

All'the named forms ol have a common feature: They driading-centeredather tharexpression-
centered By naming subexpressions we can manipulate bindings E rather than expressions
themselves. This observation is useful in proving the correctness of some of the transformations
outlined in Chapter 6. When manipulating terms in named form, it is frequently useful to refer to a
binding contextather than aexpression contexBinding contexts for the\ calculus as a whole

are given in Figure 3-9.

3.5.4 Named form

Fully named form gives a name &veryprogram expression. This obscures the fact that certain
expressions occur itail positiort as the result of a function or block, or in a case disjunct. If we
restrict naming to instantiation contextgn| and flatten as before we obtain themedform of A¢.

Here arbitrary expressiors are allowed in the result positidndescribed in Figure 3-7. The net
result is that onlynestedsubexpressions are named and hoisted. Named form is useful for program

transformations which do not need to tabulate all the expressions in the program.

52

L == E | letx=EinL | letrecBin L
E = CX | casex=PofD
| XX | A, — L | P
P = X | Co | P P
B = x=E | B:;B
D = CGX—L | _—L | D;D

Figure 3-10: Argument-named form &

3.5.5 Argument-named form

An even weaker form of haming srgument-named forpnshown in Figure 3-10. Unlike named
form, argument-named form does not name primitive expressions or conSgaintstrict contexts

Sp]. Thus, primitive expressions may occur as arguments to other primitive expressions and in
casediscriminants. To convert to argument-named form we simply restrict naming to instantia-
tion contexts which are not of the for@jp|. Motion of the resulting blocks remains unaffected.

Argument-named form is used as the basis for code generation in the Eager Haskell compiler.

3.5.6 Flattened form

In Section 3.5.2 it was noted thkgt-motion is not confluent—Ilifting bindings in a different order
results in a different nesting of the binding structure. By merging nested blocksmisitanfluence

can be restored at the cost of losing information about the recursive structure of the bindings. This
leads to a fully-flattened form ofc. The fully flattened syntax seen during reduction is shown in

Figure 3-11

3.6 Reduction of\o

Not all of the conversions listed in Figure 3-2 are necessary for reductio: gfrograms. In

the next chapter we will restrict our attention to a greatly restricted subsgtpfve call this

subset thelynamic reduction rulesThese rules, shown in Figure 3-12, assume that programs have
been converted to argument-named form (as given in Section 3.5.5), and that they have been fully

flattened (Section 3.5.6). The reductions in Figure 3-12 differ from the conversions in Figure 3-2 in

53

L == E | letrecBin E

E := casePofD | F | P

F = FX, | M — L

P .— x | Vv | P Py
B == x=L | B;B

D = CX—L | _—L | D;D

Figure 3-11: Argument-nameX}- during reduction

a few important ways. The remainder of this section examines those differences.

Instantiation is limited to values and variables which reside on the heap; we do not instantiate
an expression until it has been completely evaluated. The syntax for terms undergoing evaluation,
shown in Figure 3-11, reflects this need and therefore differs slightly from the argument-named
syntax of Figure 3-10. Similarly, instantiation only occurs when a variable’s value is required for
further computation; we therefore restrigto strict contextsS[x|.

The Byar rule is restricted tdull arity applications. This reflects agval/applyapproach to
curried function application: functions expect a particular number of arguments, and the caller must
provide them (possibly with the assistance of the run-time system). We combine naming and lifting

in order to split applications at greater than full arity:

()‘yk — e) Xk X1« X = ((}\Vk — e) Xk)) (I I ¢ (Ta)
_ (Ii(:[;(();k (AVk - e) Xy)
+1---X
_ letx= (Y — €)X (o)
i X X1 X am

When a closure is instantiated into an application, the resulting application must be fldttghed
before it can be further reduced (either By, or by v). This corresponds to fetching the arguments
from the closure in preparation for performing a call or allocating a larger closure.

The rules forcasereduction are largely unchanged. The exception is a dynamic optimization of
the discharge rulg ;. When the bound variable is not used, the binding need not be created, as itis

immediately subject to erasure:

case_=vof _—e = let_=vine (xq)

X=V;y= 9 — X=V;y=9V| tp (instantiate value)

X=12;y=SX — X=2z;y=9Y7 t (instantiate variable)
(AR — €) Vi — x=e[y/X] Bvar

Xy — fXy 7, (Merge app)

(i = © % Ko — W O (spiitapp)

Sip, Vi) — Sp Vi § axiom schema
casey—C,8ofC'X—e;d — casey=C} &ofd Xp (Mismatch)

casey = Cl, y of

casey=C| yof CLXx —e;d — e (constructor)

_—el[y/X
casex=vof _—e — letx=vine (discharge)
case_=vof _—e — e Xd 9
x=letrecbin e — b;x=e 77 (flatten)
letrec b; h; tin main — letrech; tin main e. (garbage coll)

BV[b] N FV[letrec h; tin main = 0

Figure 3-12: General dynamic reduction rules Xor

This reflects the actual behavior of an implementation. A previously-created value is not copied
when scrutinized by @aseexpression. Acaseexpression whose discriminant is, say, a boolean
value may not create that value explicitly; it may instead be manifest in the control flow of the
program itself.

Because function bodies and case disjuncts may contain niested blocks, we must still
use the flattening rule;. Again, the syntax in Figure 3-11 indicates that the right-hand side of a
binding may be detrec during reduction. As we shall see in the next chapter, the flattening rule is
the linchpin of our evaluation strategies. The difference between strict, lazy, and eager evaluation is

determined to a great extent by héstrec blocks are treated by the implementation.

55

Chapter 4

Evaluation strategies for A\~

Between call-by-value and lazy strategies there is an enormous space of possible eager strategies.
The Eager Haskell implementation is simply one point in this space. In this chapter we characterize
the space of eager languages by describing a series of evaluation strategies foc#theulus. The
strategies we use are defined by imposing additional structuke éerms. This additional structure
evokes the structure of a real machine; the strategies we present here are designed to reflect actual

language implementations.

4.1 Overview

A term in the Ao calculus usually has many possible redexes. A reduction strategy narrows the
choice of redexes. The strategies we present in this chapter are under-specified: the strategy may
consider more than one redex to be a candidate for reduction. For example, none of the strategies
we present completely specifies the order of evaluation for primitive arguments. Ambiguities of this
form in a strategy represent places where the implementation has a choice; a particular language
implementation resolves these ambiguities in particular ways. We can study the differences between
particular implementations by examining how they resolve these ambiguities. In this thesis we
refine one strategy—the hybrid lazy/eager strategy—by eliminating ambiguities. The result will be
a semantics for Eager Haskell which reflects the choices made in the language implementation.

We begin our presentation by describing some of the evaluation mechanisms used in functional
languages, and presenting the corresponding notation we will use in our reduction strategies (Sec-
tion 4.2). We then present lazy (Section 4.3.1) and strict (Section 4.3.2) strategigs.fde

use these well-known strategies to define the notion afagerstrategy (Section 4.4), which per-

56

C == letrecH e Tin main Program
H == x=E | HH | € Heap

T == F | TT | € Threads
R === (KYR | (K) Stack

K == x=L;K G Frame

Figure 4-1: Structure of terms during evaluation

forms additional reductions beyond those required by the lazy strategy. A fully eager strategy (Sec-
tion 4.4.1) captures the entire space of non-strict strategies, but does not lend itself to an efficient
implementation.

As a result, we narrow our search to hybrid strategies that mix strict and lazy execution (Sec-
tion 4.4.2). Ordinarily, execution proceeds just as in a strict language. However, the implementation
contains a fallback mechanism to suspend computations in the presence of recursive dependencies.
By measuring the resource consumption of the program and initiating fallback when the stack or

heap become too full, we achieve normalization 4.7.

4.2 Evaluation mechanisms

In order to capture the evaluation mechanisms used by various strategies, we impose additional
structure on the syntax in Figure 3-11. This structure, shown in Figure 4-1, allows us to express our
strategies as simple virtual machines. At any time, we can replace the separators | with

semicolons; and rewrite the stackk) r tok;; r, resulting in an ordinary¢ term.

4.2.1 Term structure

The main progran€ is a binding blocKetrec h e t in mainwhich returns a distinguished value
main The special treatment ofiainis implicit in the Haskell language; the top level of a Haskell
program is a collection of modules, each of which is a collection of bindings. It is only within this
topmost binding block that we use special notation to organize the bindings. It's important to note
that the basic structure of> terms has not otherwise changed.

We divide the program bindings into two parts: the hébpnd the thread$. The separator
¢ between them was chosen simply to make it easy to distinguish the heap from the threads. The
heapH can be thought of as the memory of our abstract machine. It is an unordered collection of

bindings separated by commas.

57

he (X=v;kr |t

x=v,he(kr|t (store)

X=V,he(y=89x;kr |t — x=v,he{y=8v;kr |t 1y (fetch)
zhe(y=89x;Kr ||t — x=zhe{y=957;kr |t tp (indirect)

(X= (A% — &) Vs K1 — (x=e[y/X])Kr Buar (call)

(x= (A% — &) i) T — (x=e[y/X)r Bear (tail cal)
()r = r (return)
letrecb; h e tin main — letrech e tin main e. (garbage coll)

BV[b] N FV[letrech e tin main = ()

Figure 4-2: Structured reduction rules used by every strategy; remaining tyles, (0, x) are
purely local and identical to those in Figure 3-12.

The threads are an unordered collection of stacks separated by the parallel hadkdy one
of strategies, the fully eager strategy (Section 4.4.1), actually makes use of multiple threads, but the
notation will be used again in Chapter 11 to describe multiprocessor hybrid strategies.

A stackR consists of an ordered list of framég . The leftmost frame in a stack is th@pmost
frame A frame is an ordered collection of bindings delimited with angle bracket3 he leftmost
binding in the topmost frame is thgorking term In the fully eager strategy (Section 4.4.1), the
stack always has a single entry. Similarly, in the lazy strategy (Strategy 4.3.1) there is always exactly

one binding per frame.

4.2.2 Starting the program

Initially, the heapH contains all the top level bindings of the program (except the bindingné&n).

There is a single thread whose working term is the top-level bindingéon

letrech e (main=€) in main

4.2.3 Evaluation context

To understand how the term structure works, we must examine the mechanisms used in our reduction
strategies. All our strategies restrict reduction to the working terms in the program. Only the rules
in Figure 4-2 manipulate the structure of the stack and heap. Thus, the local evaluation rules which

carry over from Figure 3-12-=;, v, §, y—are wrapped in the following context:
letrech e (x=0; k)r || tin main

58

These rules correspond to local evaluation and local control flow; they will be implemented in a

very similar manner regardless of reduction strategy.

4.2.4 Function calls: manipulating the stack
TheGyar rules and the return rule manipulate the stack, and therefore operate on the stack as a whole:
letrech e O || tin main
An ordinary full-arity function call pushes a frame:
letrech o (x= (AXx — €) Vi; K)r || tin main
— letrech o (x==e[y/X]) (k)r || tin main (call)
The body of the function is instantiated and pushed onto the stack. When the topmost frame be-
comes empty, it is popped (erased) and conetlrns
letrech e () (k)r | tin main
= letrech e (k)r || tinmain (return)
The bindings in a framék) represent the flow of control in a function. When we call, the frame
is left on the stack, and evaluation resumes with the next binding when we return. Section 5.4
describes the realization of function calls in Eager Haskell.

When a function call is the last binding in a frame, we can perform tail-call optimization, trans-
ferring control directly from the current function to the new function without enlarging the stack.
This is the purpose of the tail call rule:

letrech e (x= (A\X; — €) Vi) r || tin main
— letrech e (x=-e[y/X])r || tin main (tail call)

As noted in Section 3.6j4, is restricted (dynamically) to full arity applications. Partial applica-

tion of a function will perform allocation (see Section 4.2.7); oversaturated application will invoke

the run-time system, which can split the function application in two (split app). Implementation

techniques for curried function application are described in Section 5.5.

425 Results

We do not permit the stack to become completely empty. Instead, the lazy and hybrid strategies pro-
vide a special rulequtermos} for handling this last stack frame. This rule represents the outermost
level of control in the program, which is usually mediated by the run-time system. We consider

execution to be complete whemainhas been bound to a value:

59

letrech e (main=v) || tin main

This is the simplest rule governing the outermost frame, and is shared by all the strategies in this

chapter. In Section 4.6 we discuss termination rules for multithreaded evaluation.

4.2.6 Deadlock

Under any strategy, if a program reaches a state where there are no redexes, buhahéees

not been bound to a value, then the programdessdlockedWe assume programs are well-typed,

and deadlock therefore cannot be causece lgyapplying a number to arguments. In the presen-
tation of each strategy we will describe how deadlock can occur and how it can be detected by an

implementation. Deadlock is equivalent to divergent (

4.2.7 Storing and fetching values

When the active term binds a value, it cannot be reduced any further. It is removed from the frame
and stored onto the heap:
letrech e (x=v; k)r || tin main

= letrecx=v,h e (kyr || tin main (store)
Recall that values include constants and constructor applications (both of which are represented in
Eager Haskell by tagged heap objects; see Section 5.3}laadres(function applications at less
than full arity; the Eager Haskell realization of closures is described in Section 5.5 and Section 6.3).
In each case the store rule corresponds to allocating spageifmf storingv into that space.

Instantiation corresponds to fetching values previously stored to the heap. An actual implemen-
tation fetches a value only when it is needed. We therefore restrict fetches to strict contexts in the
active term:

letrecx=v, h e (y=S[x]; k) r || tin main
— letrecx=v, h e (y=9v|; k) r || tin main (fetch)
In the Eager Haskell implementation, a fetch operation corresponds to fetching the tag of an object

on the heap, or fetching the contents of a boxed number; see Section 5.3.

4.2.8 Placing non-values on the heap

Every strategy presented in this chapter except for call-by-value permits non-values to reside on the

heap. This has substantial impact on the language implementation: values and non-values must be

60

represented in a way that allows them to be distinguished. As we will see in Section 4.5, this richer
heap structure adds power to the language. It is important to remember that that power has a cost:
extra tagging and boxing of values may be required when they are stored, and extra checking will be
required before a variable can be fetched. Different tagging methods are compared in Section 5.3.
Bindings on the heap of the forgn= z areindirections Indirections are created when a term

contains a variable in result position:

b=Cy7b, i=(M—x), he(y=ib)r
— b=Cy7b, i=(Ax—Xx), he(y=Db)r (tail call)
= b=Cy7b, i=(AX—X), y=b, her (store indirection)
— b=Cy7b, i=(A\x—x), he(y=Cy7b)r (fetch)
= b=Cy7b, i=(AX—X), y=Cy7b, h er (store)

In the first pair of reductions, we allocate an indirection frpto b; in the second we must instead

copy the entire structure &k Indirections represent a substantial space savings when many reduc-
tions of this sort occur. Moreover, it is possible for the garbage collector to remove indirections;
they therefore represent only a transient space overhead. However, the cost is increased implemen-
tation complexity: heap accesses must detect and handle indirections correctly (Section 5.8 explains

the handling of indirections in Eager Haskell).

4.2.9 Placing computations on the heap

The lazy and hybrid strategies also place computations in the heap. For example, the hybrid strate-
gies contain the following rule:
he(Xx=e;kr
= x=-¢ h e (kr (suspend)
In practice,e is represented by a data structure containing (at minimum) a code pointer and ref-
erences to the free variables @f A computation cannot be loaded; instead, its value must be

computed. This is done by pushing it onto the stack:

e he (y=8x;kr
(x=¢€) (y=S8x; kyr (force)

An actual implementation will restore the state saved during suspension, then execute the code to
computee. The binding is not actuallyemovedfrom the heap. Instead we indicates being
evaluated by overwriting the heap binding with a special “empty” value. Whene has been

computed, the heap binding is overwritten with the resulting value. Control then returns to the

61

forcing computation; in this respect, forcig= e is similar to calling the functioxx = f X. The
implementation details of creating and forcing suspensions and thunks are described in Sections 5.6
and 5.7.

4.2.10 Garbage collection

The garbage collection rule deserves a quick mention. We only garbage collect bindings which

are found in the heap. One strategy presented in this chapter, the fully eager strategy of Section 4.4.1,
keeps unevaluated bindings outside the heap; this specifically prevents them from being garbage
collected. Any dead binding in the heap may be subject to garbage collection. The actual garbage

collection techniques used in Eager Haskell are described in Section 5.9.

4.3 Reduction strategies

All the strategies we describe have a few common features. First, all reduction occurs in the working
term of some thread. Second, no reduction will be permitted insigdgressions or case disjuncts.

Our strategies will be distinguished by a few main features:
e How a nestedetrec block is flattened.
e When or if a computation can be suspended and copied to the heap.
e When or if a computation can be forced, moving it from the heap back to the stack.
e When or if a new thread must be created.
As we shall see, these elements capture the behavior of strict, lazy, and eager functional language

implementations.

4.3.1 Alazy strategy
Any lazy strategy must have two important properties:
¢ Only bindings whose value is required to obtain the value of the root should be reduced.

e It mustpreserve sharing-bindings outside\ expressions must be reduced at most once (note
that this reduction is nadptimat redexes inside\ are duplicated freely when instantiation

occurs).

62

h e (x=letrecbineg)r — b, he (Xx=¢)r 7 (allocate)

he(x=e€(y=9x)r (force)
e¢varneg¢V

x=e h e (y=9x)r

X=Vy,her (store indirection)

=y
L]
—~
x
I
=
-
Il

y=e h e (x=Yy) X=y, he(y=e¢) (outermost)

Figure 4-3: Reduction rules for lazy strategy (See also Figures 4-2 and 3-12)

Rules for a lazy strategy are given in Figure 4-3. Wheleteec block is encountered, the
bindings are allocateflr;) as suspended computations (thunks) on the heap (in our notation the
semicolons separating bindings must also be replaced by commas). When a variable is required, its
value isdemandedif the value is not yet available, it must be forced. Every frame contains a single
binding; as a result all function calls are tail calls, and only forcing a variable will cause the stack to
grow.

A special case occurs when the outermost binding is rewritten to an indirection. In this case,
the rewritten binding replaces the indirection on the stack (store and force). This guarantees that
reduction will continue until the outermost binding has actually been fully evaluated.

Deadlock occurs in the lazy strategy when a variable which resides on the stack is a candidate
for instantiation. For example:

y=4xx, he (x=y+1)r

— he{y=4xx) (x=y+1)r (force)
deadlock

We noted in Section 4.2.9 that a binding is overwritten with a special value when itis forced. In lazy
languages, this special value is traditionally known as a “black hole”. The implementation detects

deadlock by naoticing thatis a black hole as we attempt to evalugte

4.3.2 A strict strategy

The strict strategy has three important characteristics:
e Only values may be stored in the heap.
¢ Bindings are executed in the order in which they occur in the program text.

e All variable references in the active term must refer to values on the heap.

63

he (x=letrecbine;kir — he (b;x=¢€;Kkr 7¢ (enter block)

Figure 4-4: Additional reduction rule for strict strategy (See also Figures 4-2 and 3-12)

These restrictions on evaluation permit the strict strategy to be implemented very efficiently. A
variable reference is assumed to refer to a value—no checking is required to verify that this is the
case. Contrast this with the lazy strategy in the previous section: a variable may refer to a value, a
thunk, an indirection, or a black hole. None of the extra mechanisms for suspending and resuming
computations need to exist in a strict language.

As a result, the strict strategy forc given in Figure 4-4 is very simple—just one rule for
flatteningletrec blocks so that bindings are evaluated in program order. The drawback to this
strategy is that we must restrist itself: The only recursive references permittedeatrec blocks
are between functions. It is invalid to reference a binding which has not yet been evaluated.

Note that while the strict strategy executes a given program in order, the compiler still has a
great deal of liberty in ordering program bindings. The process of canonicalization itself, which
transformed an arbitrary- program into argument-named form, is not fully specified. By varying
the order in which function arguments are named and lifted, for example, different execution orders
will result. Furthermore, the compiler is always free to reorder bindings when the results of doing

so cannot be observed.

4.4 Eagerness

We call a strategyeagerif there are infinitely many programs for which the strategy performs
Bvar, 9, OF x4 reductions which would not have been performed by the lazy strategy. Some eager
strategies are trivial: the compiler for a lazy language may introduce eagerness statically when
analysis shows that it is safe to do so [36]. In this chapter, we focus on strategies which permit
unlimited eagerness—that is, the use of eager evaluation is not constrained to expressions with
particular static properties. The call-by-value strategy is clearly eagéetrex-bound variable

is evaluated even if it is never referenced. In the remainder of this chapter we examine several
eager strategies for non-strict languages. In Chapter 8, we will introduce simple static constraints
to handle dynamic error conditions. By default, however, expressions will continue to be eagerly

evaluated.

64

hex=letreching ||t — hex=¢ | bt 7t (Spawn)

X=V,het (store value)
X=y,het (store indirection)

hex=v]|t
hex=y|t

Figure 4-5: A fully eager strategy (See also Figures 4-2 and 3-12)

4.4.1 Afully eager strategy

In order to construct a maximally eager strategy, we should attempt to compute every single binding
in the program eagerly. We can do so by running these bindings in parallel. Every binding is
evaluated in a separate thread. Every call will therefore be a tail call, and there is consequently no
need for a stack or continuations. Tlhidly eagerstrategy is captured in Figure 4-5. The eagerness

of the model can be seen by comparing the spawn rule to the enter block rule in the strict strategy
(Figure 4-4). Both rules immediately begin evaluating the bindings of the block; the strict strategy
does so one at a time, whereas the lazy strategy evaluates every binding in parallel.

The fully eager strategy is extremely general—we can at any time choose to evaluate any thread
or threads. This freedom of choice means that we can, for example, simulate lazy evaluation simply
by keeping track of the “currently needed” thread and focusing all effort on evaluating that thread.
Indeed, we can simulate any non-strict strategy by choosing which bindings are actually evaluated.

The generality of the fully eager strategy is also its downfall. Note that any thread in the system
may becomélocked This happens when a variable requires instantiation, but the binding for that
variable is still being computed in another thread. No reductions on that thread can be performed.
An actual implementation could quickly become swamped by partially-completed computations
which are awaiting results. A reasonable implementation must distinguish between threads which
are blocked and threads which are not blocked.

The fully eager strategy has another failing: it breaks computations up into tiny, short-lived
threads. Thread state must be allocated and tracked dynamically. Switching to an arbitrary thread
requires arbitrary control flow. The combination of dynamic resource usage and unconstrained
control flow are a disaster for a modern architecture, where temporal and spatial locality are vital to
efficient execution. An efficient eager strategy must impose structure on the threads so that there is

a clear way to manage control flow and resource allocation.

65

he (x=letrechbine;kir — he (b;x=¢e;Kkr 7¢ (enter block)

he(Xx=e;kr = X=ehe(kr (suspend)
he(X=y;kr = X=y,he(kr (store indirection)
x=¢e he (y=98x;kr = he(x=e(y=9x;Kkr (force)

e¢varneg¢V

y=e h e (x=Yy) Xx=Yy,he(y=¢) (outermost)

Figure 4-6: Hybrid eager and lazy strategy (Compare Figures 4-3 and 4-4)

4.4.2 The hybrid strategy

Both strict and lazy languages solve this problem in a similar fashion: A stack of frames is used to
group together related bindings. A stack provides a systematic and well-understood way to manage
both control flow and local storage. It is therefore worthwhile to seek a stack-based eager strategy.
(The actual implementation of the stack is described in Section 5.2.3.)

One natural course is to combine elements of the strategies we understand well—the lazy strat-
egy and the strict strategy. This results in the hybrid strategy found in Figure 4-6. Most of the rules
are identical to rules for either the lazy or the strict calculus. Bindings are started in program order,
so the enter rule is identical to the rule in the strict strategy (Figure 4-4). Demand-driven evaluation
(evaluate) works just as in the lazy strategy (Figure 4-3). However, if no suspension exists on the
heap for variablg/ in x = Sy] theny is pending and resides somewhere in the stack. In this case
we must create a suspension foon the heap and continue executing the work on the stack (the
implementation of suspension is described in Section 5.6).

We might expect the suspension rule to require that the variablecur in a strict context
Sly]. Doing so would yield a “minimally lazy” hybrid strategy—suspension would occur only when
absolutely required by non-strictness. Unfortunately, this makes our strategy sensitive to the order
of bindings in the program text; we examine this inconsistency in the next section.

The suspend rule for Eager Haskell contains no such restriction. Indeed, the active term may
be suspended any time for any reason, even if it is possible to evaluate it immediately. This
extra flexibility captures a large and interesting range of implementation choices. For example, by
immediately suspending the bindingsipon entering a block, we obtain exactly the effect of the

allocate rule in the lazy strategy.

66

4.5 How strategies treat the heap

One crucial difference between the strategies discussed thus far is their treatment of the heap. Con-
sider an instantiation context= Sy]. Under the strict strategy, has been computed amaust
reside somewhere on the heap (see Section 4.3.2). Under the fully eager strategy, uncomputed
values lieoutsidethe heap in the thread pool (Figure 4-5). Under the hybrid and lazy strategies,
uncomputed values may reside on the stack (completely empty data structures; see Seation 5.3)
in the heap.

The ability to place uncomputed bindings on the heap adds power to the language; the hybrid
and lazy strategies will successfully execute some programs which do not terminate under the fully

eager strategy. Consider the following example:

letrec forever x = casex of _ — forever x
const xy = X
y = forever z
z = constS5y

inz

In the strict strategy, we cannot execute this program at all—it contains the mutually-recursive value
bindingsy andz. In the lazy strategy, we evaluatenhich callsconst Sinceconstignores its second
argument, it does not matter thatefers to a non-terminating computatioz-s reduced to 5 and
the binding fory can be garbage collected.

In the fully eager strategy, we attempt to evaluate the binding.farhis evaluation blocks or
suspends becaufareverrequires the value af The bindingzis computed and discargs At this
point, the binding fowy still exists as an independent thread. This thread can be run forever; more
important, its execution resources can never be reclaimed. In contrast, the hybrid strategy creates
a suspension foy on the heap. This suspension is ignored by the calbiwst and can simply be
garbage collected.

Under the hybrid strategy, there is a choice when evaluating this example. When the binding
for yis encountered, it may be suspended; in this case the bindizgvitireventually be evaluated
andy discarded exactly as with the lazy strategy. If, however, the binding i®run eagerly, then
execution will suspend because the valuezfisrrequired. Againz will be run, this time discarding
the newly-created suspension. In either case, the net effect is the same: Execyitosbaindoned,
and the storage required for the suspension can be reclaimea baseliscarded it.

However, consider what happens under the hybrid strategy if we reverse the ongdandf

67

zin the above example. Kis evaluated first, it yields 5. The strategy may then choose tg run
forever without suspending: simply reversing the order of two bindings has changed the termination
behavior of the program. The general suspension rule permits us to suspend and eventually garbage
collect the already-discarded computatioryoHowever, the strategy of Figure 4-6 does not give a

policy for applying this rule.

4.6 Other Eager Strategies

The eager strategies implemented in Id ahtido not display the sensitivity to evaluation order
which is possible in the hybrid strategy. This is because they define program termination in a
stronger way (see Section 4.2.5). We consider a hybrid program to have terminated when we obtain
a value formain Both Id andpH require thaeverycomputation terminate. This condition is easy

to express in the fully eager strategy: A program terminates when there are no longer any threads
to be run. In the example, the binding fpmusteventually be run, and as a result the program will
neverterminate.

Naturally, the evaluation strategies used in |d phidnake their own set of tradeoffs in the name
of efficiency. Briefly, every program binding has an associétedtion which is either empty or
full. Empty locations correspond to the bindings in the thread pool under the fully eager strategy. An
empty location has an associatdefer listwhich lists bindings which have suspended awaiting the
location’s value. When a location becomes full, these bindings are re-started. In this way, threads
which certainly cannot make progress are distinguished from those which may potentially contain
useful work. A formalization of the defer-list strategy can be found in Appendix A; it requires
additional notation to describe the structure of defer lists.

The hybrid approach is demand-driven, whereas the defer list approach is producer-driven. Both
techniques have advantages and drawbacks. The defer list approach keeps computations alive (on
defer lists) even if their results are never required. The problem of scheduling in the presence
of defer lists is in general a murky one; when a defer list is re-started, it is unclear when it is
appropriate to run the newly re-started computations. However, there will never be any attempt to
run a suspended computation.

The hybrid strategy, on the other hand, can immediately discard the resources associated with
useless computations. There is no question when to schedule formerly suspended computations—

they should be run when their values are demanded. However, it is possible to re-start a suspension

68

he(x=8y]; ko;y=e; ki)r = x=98y],h e (k; y=e; ki)r (suspend)

ne (x=Sy)i ko diy=eikyn = o S0 (euspend)

he (x=FfX;kr = x=fX he(kr (thunk)
he Xx=fXr = x=fX her (tail thunk)
y=e h e (x=9y]; kr = y=ex=9y,he (kir (no-force)

e¢varneg¢V

he (x=FfX;kr = he (x=fX;kr (call exception
Ir| > stacknax

y=e h e (x=9y]; kr =y=ehe (x=9y;kr (force ex.)
Ir| > stacknax N e¢ var Ae¢ V

he (X=v;kr = x=V,he (kr (heap ex.)
e(|hl, |r]) > resourceax

he (x=¢) = h e (x=¢) (outer end)
resourceax < f(|h|, resourcgax)

letrecb, h e r in main — letrech e rin main e (gC)

BV[b] " FV[letrec h e rin main = ()
resourceax — g(|bl, |h|, resourceax)

Figure 4-7: Reduction in the presence of exceptions. Underlines indicate fallback is in progress.
Compare to Figure 4-6.

(on demand) only to immediately discover that a value upon which it depends remains unavailable.

4.7 Resource-bounded Computation

Any eager strategy presenting the same language semantics as lazy evaluation must stop the exe-
cution of runaway computations suchfaseverfrom Section 4.5. Efficiency demands that these
computations be cut short before they use an inordinate amount of time and space. This leads us
naturally to the idea ofesource-bounded computatiolimit the amount of time and space which
can be used by a computation, and use suspension to fall back and shut down computations when
those resource bounds are exceeded.

We view the fallback process as a form of exception mechanism. This idea is formalized in
Figure 4-7. When multiple rules apply to a given term, the rules in Figure 4-7 take precedence

over those in Figure 4-2. Ordinarily, computation proceeds eagerly; computations suspend only

69

when a required variable resides on the heap (due to non-strictness). This is expressed as two rules
(suspend)—one when the relevant variable is bound in the same stack frame, the second when the
variable is bound deeper in the stack.

When resource bounds are reached, an exception is signaledalinaatk begins, indicated
by underlining the stack. During fallback, we disallow stack growth. This means that subsequent
function calls must suspend (the thunk rules) and that computations which would usually require
evaluation of a heap value must themselves suspend rather than forcing the computation on the heap
(the no-force rule).

In order to bound the time and space used by a computation, we must check resource bounds
in three places (the actual implementation of this policy is described in Section 5.9.4). First, the
amount of stack which is used must be bounded; thus, we check stack usage at every function
call and every evaluate. If usage exceeds the bound on stack gstay,y then an exception is
signaled. Second, the total space usage must be bounded. This is checked at every allocation point;
the monotonic functior adjusts for the fact that heap and stack usage may be accounted for in
different ways.

Finally, we must bound the total time used by any computation. These rules do not measure
time directly. Instead, we note that the heap grows steadily as evaluation progresses. Thus, space
usage and time usage are closely correlated. The only exception to this is when garbage collection
occurs: here the heap may shrink once again. Thus, we compute a new resourceeBourod, o«
each time we garbage collect. The bound is a funcgjari the current bound, the current space
usage, and the amount of garbage collected.

Exceptional execution guarantees that the stack must shrink. When it is empty exceptional
execution ends, and the program resumes ordinary eager execution once more. At this point the
resource bounds are reset based on the resources currently in use by the suspended program. Note
that suspended computations are re-started in a demand-driven fashion: the exception ends with a
single computation on the stack, and the forcing mechanisms is used to evaluate suspensions as they

are required.

70

Chapter 5

Run-time Structure

Data representation is vital to efficient compilation of a non-strict language. This chapter examines
some of the tradeoffs inherent in various data representation choices. The tagged data representation
used by the Eager Haskell compiler is described, and its advantages and potential drawbacks are
noted. The chosen structure leads to a natural division of responsibility between compiled code and
the Eager Haskell language runtime. This division is outlined, and the structure of the run-time

system is described.

5.1 Overview

Our choice of data representation is affected by several factors. Recall from Section 4.2.9 that
non-strict languages must distinguigiluesfrom computationsPolymorphically-typed languages
must represent data in a uniform manner when it is used in a polymorphic context [64] unless they
can eliminate polymorphism statically [129, 82]. In a higher-order language we must also represent
function closures and curried partial applications in some fashion. In addition, any language which
supportsprecisegarbage collection must provide a way for the garbage collector to identify heap
references, and must establish some invariants on heap usage. Finally, if we wish to run our pro-
grams in parallel we must establish the conventions by which multiple threads may access the heap.
All these choices constrain our data representation and thus influence the structure of the code we
generate.

In this chapter we review data representation strategies used elsewhere and present the strategy
used by the Eager Haskell compiler. We use a tagged, boxed representation for all program data.

Tags are represented as simple integer values rather than pointers to descriptors in order to simplify

71

the primary control flow of the program.

5.2 Driving assumptions

An modern architecture is optimized to make particular coding idioms run extremely fast. A lan-

guage implementation should, whenever possible, generate code with these idioms in mind. Simi-
larly, compilers are often designed to ensure that particular source-language idioms produce efficient
code. We begin by outlining the assumptions we make about modern architectures and about the
behavior of Eager Haskell programs; the remainder of the chapter describes in detail how these

assumptions will guide our implementation.

5.2.1 Architectures reward locality

Modern architectures provide a multilevel memory hierarchy which rewards applications which
exhibit temporal and spatial locality. We assume the existence of multiple levels of caches, including
separate instruction and data caches for the most recently-accessed portions of memory. At higher
levels of the memory hierarchy, a program with a large address space will incur overhead for misses
in the translation lookaside buffer (TLB) when translating virtual addresses to physical addresses.
When address spaces become very large, portions of memory will be paged to disk. For such large

address spaces, a program with poor locality will quickly slow to a crawl.

5.2.2 Branches should be predictable

In order to optimize control flow for the common case, we take advantage of the features of modern
processors, particularly branch prediction. We assume that indirect branches to unknown code are
unpredictable, and thus expensive. For this reason we avoid using function pointers as part of
ordinary control flow.

Similarly, we use branch prediction hints (provided by recent versions of gcc) to indicate that
particular execution paths are common or rare. This also causes the C compiler to segregate rarely-
executed basic blocks from the main control flow of a function. This improves the instruction cache

performance of our programs.

72

5.2.3 Compiling to C will produce better code

The Eager Haskell compiler generates gcc code. The techniques and tradeoffs involved in compil-
ing high-level languages to C have been examined in great detail elsewhere [31, 93, 42, 48, 24, 65].
The most compelling argument for compiling via gcc is the maturity and portability of the com-
piler. In order to generate high-quality machine code, a compiler must incorporate an instruction
scheduler, a register allocator, and a good-quality code generator and peephole optimizer. It requires
an enormous amount of effort to match gcc even on a single architecture. For example, the most
mature optimizing compiler for Haskell, GHC, includes a native code generator for Intel machines.
However, GHC generates faster code (at the cost of extra compile time) by compiling via gcc.

We choose gcc rather than another C compiler for two reasons. First, gcc is available on every
popular machine architecture. Second, gcc provides support for a number of language extensions
which make the task of mapping Haskell to C much easier. Many compilers make use of gcc'’s
ability to map global variables to machine registers [31, 93, 48]. Recent versions of gcc can compile
arbitrary tail recursion; previous compilers often resorted to complex trickery to avoid running out
of stack [93, 31]. Finally, the provision of branch prediction annotations makes it much easier for
the Eager Haskell compiler to express and exploit the assumptions made in the previous section.

Compiling to C rather than generating machine code does place a burden on the run-time system.
An allocation-intensive language such as Eager Haskell requires a precise garbage collector, and
must therefore maintainghadow stackontaining the live pointers in a computation. This shadow
stack is treated as a root by the garbage collector. This increases overhead in two ways. First, an
additional machine register is required to maintain the shadow stack pointer. Second, the compiler
must explicitly generate code to save and restore shadow stack entries. The C register allocator is
also making decisions about which variables will reside in registers and which must be kept on the

stack. Inevitably these decisions do not coincide and extra memory operations result.

5.2.4 Non-strictness is rare

The most important assumption made by the Eager Haskell compiler is that non-strictness is rarely
used even in non-strict programs. Most of the time programs can be run eagerly, in exactly the order
given, and without requiring suspension. This assumption is certainly true of Id programs [116],
and motivated Shaw’s stripped down parallel implementation of a subset of Id [120]. Occasionally

non-strict semantics will actually require suspension; occasionally resource bounds will be reached

73

and execution will suspend. However, we focus our energies on making ordinary, non-suspensive

execution as fast as possible while still permitting non-strictness and suspension to occur.

5.2.5 Values are common

A corollary to the presumed rarity of suspension is a second assumption: most of the time an Eager
Haskell program manipulates values. It must be easy and fast to distinguish a value from a non-
value, and tests which make this distinction should be biased to favor values. When a suspended
computation or an indirection is encountered, the implementation should take pains to make sure
future computations can use the desired value directly.

In order to optimize control flow for the common case, we use branch prediction hints to indicate
that suspension is rare. We avoid the use of indirect branches when checking whether a particular
object has been evaluated. This stands in stark contrast to both GHC and hbc; in both cases objects
are tagged with a function pointer which, when called, evaluates the object. As a result, every single
casestatement (at least in GHC) involves an indirect branch—even if the data involved has already
been evaluated.

The GRIN project makes the same set of architectural assumptions, but takes a very different
approach to compiling lazy languages [55]. Constructors and thunks are treated uniformly as integer
tags. Whole-program control flow analysis reveals which tags reach partedainstructions
(equivalent tacaseexpressions in Eager Haskell), and these are checked for explicitly. Boquist then
uses the same whole-program analysis to perform interprocedural register allocation [29]. However,
the techniques used in GRIN require whole-program compilation and a native code generator; we

ruled out both approaches in designing the Eager Haskell compiler.

5.3 Tagged data

In order to support non-strict execution, all data in Eager Haskefiggedand boxed Boxing

means that all data—even primitive values such as characters and floating-point numbers—is allo-
cated on the heap. This has a measurable runtime cost—the cost of allocating additional storage
for primitive data, initializing it, and garbage collecting it, and the cost of fetching primitive data
from memory when it is required. Tagging means that all heap data is prefixed by a tag, which in
Eager Haskell is a pavkTag (ident, sizg. The size is used by the garbage collector. Tdent

distinguishes the following things:

74

NUM /1

43

I nteger

Figure 5-1: Boxed representation of numbers in Eager Haskell. Not®thdiles have a word of

NUM/3
0

- 3:14159

Double-precision float

Multiple
precision
bignum

padding after the tag so that the data will be doubleword-aligned.

NUM/ k+1

+-k

k limbs

TN

e The various disjuncts of an algebraic data type (which contain pointers).

e Function closures and partial applications (Section 5.4).

e Values containing non-pointer dataf, Double Intege, shown in Figure 5-1.

¢ Indirections (Section 5.8).
e Barrier indirections used for enforcing heap invariants (Section 5.9.2).

e Completely empty data structures, which are currently under computation; they will eventu-
ally be filled in with a value or a suspension. This is the representation used for computations

which reside in the stack in our strategies (Section 4.2.9).

e Thunks: suspended function calls due to an exception (Section 5.7).

e Suspensiongaseexpressions whose data was unavailable (Section 5.6).

We order the identifiers so that values are positive and non-values (including indirections) are nega-
tive. The compiled code deals only with values; all non-values are handled by the run-time system.
Tagged, boxed memory is not the only possible data representation in a non-strict language.
Some hardware, such as the Monsoon dataflow machine (the primary target of the Id compiler),
provides support for type-tagged memory. This can be exploited to distinguish pointers from non-
pointers, or to distinguish empty objects and values. A closely related technique is to tag the data
itself. This technique has long been a staple of Lisp systems, and is used by emacs [68], Caml
Light [65, 118], and gofer and hugs [58]. Typically, particular settings of the low-order bits of a
machine word incorporate limited type information, at the minimum indicating whether the word

should be interpreted as an integer or a pointer. The current implementatibruges an interesting

75

variation of this technique, in which pointers are encoded as valid double-precision IEEE NaNs (not
a numbers) [31]. This provides a contiguous integer range and allows the use of unboxed floating-
point numbers; it also yields a large enough address range to allow pointers to be accompanied
by type information. However, theH object representation requires a 64-bit machine architecture

in order realize full performance, and the memory consumption of pointer-intensive programs is
doubled.

Using tagged values rather than tagged memory has certain attractions. Both tagging techniques
impose overhead to tag and untag data; however, shifting and masking value tags can be done in a
machine register; tagged memory requires additional memory operations. If we use tagged values,
small integers and nullary constructors—both very common—need not be stored in separate, tagged
memory locations. The Eager Haskell garbage collector mitigates this cost by redirecting references
to nullary constructor and small integers so that they point to a fixed table.

The biggest drawback to using tagged values is that they usually require tagged memory as well.
There simply aren’t enough free bits in a pointer word to distinguish all possible object sizes and
constructor tags that might exist within a single algebraic datatype. As a result, most pointers refer
to tagged memory (Lisp systems typically reserve a special pointer tag for cons cells so that this
common case does not require tagging). At the same time, tagging techniques impose additional
constraints on the ranges of values. This can prove especially difficult when interacting with libraries
that assume (for example) that 32-bit integers are available.

In a system using integer tags, object sizes and layouts are limited by the way information is
encoded in the tag. Instead of tagging objects with a simple integer, we can tag them with a pointer
to adescriptor A descriptor can be shared by many objects, and is usually generated statically.
As a result, the descriptor can be much larger than one or two machine words. Using a descriptor
permits pointer and non-pointer data to be commingled in essentially arbitrary fashion.

Some descriptors—most notably those used in GHC and in hbc—can be thoughdativas
tags One entry of the descriptor table is a function; in GHC and hbc this is the function which
forces a thunk. Thus, forcing a thunk is a matter of entering the code stored in the descriptor. This
technique can be extended to other portions of the system. For example, including a pointer to
a garbage collection routine in every descriptor makes it easy to use unusual garbage collection
techniques for particular heap objects [93, 140].

In a strongly typed language, it is possible to dispense with tagging entirely [5, 4]; if the garbage

collector knows the type of every root, then it is simple to determine the types of all reachable

76

objects. However, callers must pass type information whenever a polymorphic function is invoked
in order to determine the types of objects referenced from the stack. Moreover, in a language with
algebraic data types tags are still required to distinguish the different constructors in a type. As a
result, type-based garbage collection is seldom worthwhile.

On a system with a large address space, it is often possible to use a BiBoP (big bag of pages)
allocator to segregate objects with different tags [144]. Memory is divided into fixed-size chunks
(often one or more virtual memory pages in size); each chunk contains objects of a single size or with
a single tag. The data structure used to manage chunks contains appropriate tagging information.
We reject this approach in Eager Haskell for several reasons. First, an object can have many tags
over its lifespan due to suspension; this would require a cheap method for migrating objects between
pages. Second, Eager Haskell is extremely allocation-intensive; as a result, allocation must be
cheap. The BiBoP technique requires separate allocation state for every possible tag used by the
program.

The BiBoP techniqués a good method for structuring a high-level allocator such as the shared
multigenerational heap used in Eager Haskell. Here object tags are preserved, and the allocator
segregatesomeobjects simply for convenience. For example, by segregating objects of similar
size a mark-sweep allocator can use a single bitmap for marking and allocation [28]. Similarly,
pointer-free objects can be segregated from objects which must be traced by the collector, reducing

page faults during collection [60].

5.4 Function structure

Having decided to compile Eager Haskell programs to C, another fundamental decision must be
made: How to map Haskell functions to C functions. This is a tricky decision for any language with
a substantially different control structure from C itself.

By choosing to compile Eager Haskell to C, we are obliged to have idiomatic Haskell programs
compile to idiomatic C whenever possible. For example, we treat nested primitive expressions
as single units for the purpose of code generation (see Section 3.5.5), allowing the C compiler to
generate the best possible code for them. We therefore map each Eager Haskell function to a single
C function. Weavoid turning individual Haskell bindings into functions because we subvert the C
compiler’s ability to do register allocation, branch prediction and the like.

We also assume that larger functions are (within reason) better. Haskell functions tend to be very

77

small; C functions are generally much larger. As we note in Section 6.4, truly enormous functions
strain the resources of the C compiler, and the Eager Haskell compiler takes steps to break such
functions into smaller pieces at logical boundaries in the control flow.

There are a number of calling conventions that may be adopted. The shadow stack can be
maintained either as a separate data structure, or each function can have alocal array of shadow stack
entries which are then linked together, embedding the shadow stack in the C stack. Eager Haskell
function arguments can be passed either as C arguments or they can be pushed on the shadow
stack. Simple tests confirm that maintaining a separate shadow stack is substantially more efficient.
Surprisingly, even in the absence of a garbage collector using the shadow stack for parameter passing
was approximately as efficient as using the C calling conventions. Garbage collection requires
spilling arguments to the shadow stack and further shifts the balance.

When code suspends, we must somehow package up the point in the function body where exe-
cution should resume. We take our cue from Cilk [37], and give every function a set of numbered
entry points The entry point is passed as an argument to the function. Entry point zero is the dis-
tinguished entry point indicating the beginning of the function. If the entry point is nonzero, we
perform an indexed jump to the resumption point in the function. Simple functions will have only
one or two entry points, and their control flow is simplified to reflect that fact.

The Cilk implementation contains an additional refinement of the entrypoint technique: two
copies of every parallel function are generated. 3log clonepasses arguments on a shadow stack
(the steal stackand uses entrypoints. Thast cloneuses the ordinary C calling conventions and
is specialized with respect to the initial entry point. Ordinary function calls use the fast clone; the
slow clone is used only after work stealing or suspension. A quick off-the-cuff experiment with this
technique in Eager Haskell revealed that the resulting code ran substantially slower. Again, alloca-
tion and nested function call require arguments to be spilled to the shadow stack where they can be
found by the garbage collector. By placing resumption points at existing control flow boundaries
the cost of checking the entry point can be minimized, and increased instruction cache miss rates in
the 2-clone code appear to dominate.

There are numerous other techniques for mapping source functions to C procedures. Scheme
48 [61] generates its interpreter by partially evaluating a simple scheme-like language called pre-
scheme. Multiple scheme procedures are coalesced into a single C procedure; much of the inter-
preter collapses into a single function. Grouping functions in this way allows tail-recursive functions

to be transformed naturally into loops, and permits calling conventions to be tailored to the context

78

Function
Partial Known Statically
Application | application non-closure | unknown
Partial Rare Uncommon | Uncommon
Full Arity Common Most common| Common
Oversaturated Least common Uncommon | Uncommon

Table 5.1: Different cases of curried function application and their presumed frequency. Here Least
common< Rare< Uncommon< Common< Most common.

in which functions are actually used. However, Eager Haskell code is currently rather bulky, and
this technique would subvert function splitting and result in unmanageably large C functions.

GHC chooses to place each thunk in a separate C function [93]. This fits in naturally with the
lazy execution model: athunk is entered and executed independently of the containing function. The
resulting functions are knitted together by post-processing the assembly output of the C compiler.

ThepH [31] and Mercury [48] compilers had a notion of entrypoints similar to the Eager Haskell
compiler; however, they rely on a non-portable feature of gcc (taking the address of labels). This
results in slightly faster code, but modern versions of the trick are not sufficiently robust for produc-

tion use.

5.5 Currying

Currying is popular in Haskell, and curried functions must be represented in an efficient manner.
However, C isnot curried. Many ML implementations make tradeoffs in the efficiency of curried
function application in favor of speeding up tupled application [7]; in Haskell such a tradeoff would
generally be unacceptable. We make two key assumptions about the function calls in Eager Haskell
programs: Most function calls invoke a known function, and most function calls occur at (exactly)
full arity. Thus currying and higher-order function calls, while frequently used, still only account for
a small proportion of calls overall. We also assume that a function is ordinarily only curried once;
the resulting partial application is likely to be applied to all of its missing arguments. Semantically
(see Figure 3-12), the merge app rule will usually be followed by an immegdigteand we will
rarely need the split app rule.

The simplest implementation of currying statically transforms a function welhguments into
n functions each taking a single argument and returning a function. We would write this &s

follows:

79

AXg X1 Xo X3 — € = AXg — AX] — AXg — AX3 — €

This can be mapped very naturally to C, as every function call occurs at full arity. However, it
does the worst possible job of the common case: a full-arity application efergument function
generates — 1 closures. The Id compiler [133] uses a similar technique, but adds a second “full ar-
ity” entrypoint to every function. This makes full-arity applications of uncurried functions efficient;
full-arity applications of existing partial applications are still inefficient.

Techniques exist to statically eliminate currying [47]. In practice, these techniques require
whole-program analysis. The analyses also tend to err on the side of the “most-curried” version
of each function. Additional closures result, and full-arity application suffers.

Instead of statically compiling away currying, extant Haskell compilers generate code designed
to deal with curried function application while making full-arity application as fast as possible.
There are two basic approaches to compiling curryingetred-applyapproach and theush-enter
approach. In examining these two techniques, we identify the function being applied as a partial
application, a statically known function which has not been partially applied, or a statically unknown
function. We identify a call site (dynamically) as a full-arity application, a partial application, or
an over-saturated (more than full arity) application (note that we cannot know statically whether
an application of an unknown function will be at partial arity, full arity, or oversaturated, so this
distinction will need to be made at run time in these cases). Together, these give rise to nine different
cases of function application, summarized in Table 5.1. Both techniques will group some of the nine
cases together, and will move functionality required for the less common cases into the run-time

system.

5.5.1 The eval-apply approach

In Eager Haskell we use the eval-apply approach to compile partial application. The compiler
generates code for a function assuming it is being invoked at full arity. It is the caller’s responsibility
to create and unpack partial applications. This means that full arity application of a known function
can use a simple, fast calling convention (such as the regular C convention). Because there are
generally many more call sites than functions in a program, all calls to statically unknown functions
are handled in the run-time system. The eval-apply technique is summarized in Table 5.2. In
particular, no special treatment is given to oversaturated function applications. An oversaturated

application is treated as a full arity application yielding a partial application or an unknown function.

80

Function
Partial Known Statically
Application application non-closure unknown
Partial merge (,), store static store store stack
Full Arity copy closure), Bvar direct call (Byar) Bvar
Oversaturated merge (), split (), Gvar, apply | split statically ¢) | split (), Gvar, apply

Table 5.2: The eval-apply approach to partial application used in Eager Haskell. Rule names refer
to rules in Figures 3-12 and 4-2.

Partial applications build elosure In Eager Haskell a closure looks just like an ordinary data
structure—see Figure 5-2. The tag indicates the object size (as usual) and the remaining arity of the
closure. The first field is the function pointer. The remaining fields (if any) are the arguments to
which the function has been applied. This means that closurdtabraf we apply a function of
n arguments ta@ arguments, then apply the resulting closurg arguments, we will construct two
closures—one of sizeéand the second of size+ j. Closures are also required for functions with
free variables; this is discussed in more detail in Section 6.3.

All three cases of known function application can be handled at compile time. Oversaturated
applications of known functions are split into a full-arity application and an unknown application.
Full arity applications result in a simple function call. Partial applications allocate and fill in the
closure directly.

Any function call involving a closure is handled by a run-time system function c&kseral
Apply. We represent unknown functions as closuresGsoeralApplyhandles both the “Partial
Ap” and “Unknown” cases in Table 5.2. FinallgeneralApplyensures that the closure has been
computed. If this check were not done@eneralApplyit would need to be done at the site of every

unknown function application.

> Arity/1 code Arity / 4 code
Arg 3 —— for —— for
Arg 2 function Arg 3 function
Arg 1l Arg 2
Stack Arg L
State on entering the Apply function Resulting partial application

Figure 5-2: Partial application of a simple closure.

81

Function
Partial Known Statically
Application application non-closure unknown
Partial | Copy, call, revert | Direct call, revert | Call, revert
Full Arity Copy, call Direct call Call
Oversaturated Copy, call, unwind| Direct call, unwind| Call, unwind

Table 5.3: The push-enter approach to partial application used in GHC.

Compiled code invoke&eneral Applyby pushing function arguments onto the shadow stack as
usual. The closure is then pushed on top of them. The entrypoint pasSeshéval Applyindicates
the number of arguments which have been pusli&eheralApplyis therefore the only function
which is called with a nonzero entry point from user code. This allows a single function to handle

every possible case of function application.

5.5.2 The push-enter approach

The push-enter approach is used in GHC and hbc, and is described in detail in books on functional
programming implementation [92, 99]. It differs from the eval-apply approach in two important
respects. First, oversaturated applications are handled by a special return convention which avoids
creating an intermediate closure for partial applications in tail position. Second, as a result of this
return convention a function can be invoked at any arity; the burden of arity checking is shifted from
the caller to the callee. This requires the use of a contiguous stack for argument passing (in practice
the shadow stack is used). The push-enter convention used in GHC is summarized in Table 5.3.

The basic push-enter approach is very simple: the arguments (regardless of number) are pushed
on the stack from right to left, and the function is called. Upon entry the function performs an
argument satisfactiocheck; if not enough arguments were supplied, then the run-time system is
invoked to create and return a partial application. Otherwise execution continues normally. Note
that if a function is called with too many arguments, the arguments required for execution will reside
at the top of the stack; no special code is required for this case.

By shifting the task of arity checking from caller to callee, we can make a special optimization
for tail calls. In the eval-apply approach, if a partial applicatiory @ in tail position in a function
f then the compiler will generate and return a closure for the function. Howisearaller might
immediately apply the resulting closure to additional arguments. In the eval-apply approach, the ex-

cess arguments are pushed before caflindow when the tail call t@ occurs, the extra arguments

82

Arg 5
Arg 4
—— 5/4 code 2
Arg 5 Arg 3 function Arg 2
Arg 4 Arg 2 Arg 1
Stack Arg 1 Stack
State on entering the Apply function Stack on function entry

Figure 5-3: Applying a partial application to its remaining two arguments. Arguments must be
shuffled to the top of the stack to make room for the arguments in the closure.

already reside on the stack, agmdan run directly.

As with the eval-apply approach, the calling convention can be simplified when a function
with known arity is called. Partial applications of known functions can branch directly to the run-
time system. Full-arity and oversaturated applications of known functions can skip the argument
satisfaction check. As a result, every function has two entry points: one for known applications, and
a second for unknown applications which performs the argument satisfaction check and branches to
the first.

A partial application is represented much as in the eval-apply approach, as an ordinary object
which contains a pointer to the function and a copy of the arguments which must be pushed. The
apparent entrypoint of a partial application is a run-time routine which checks for arguments on
the stack; if any have been provided, the partially applied arguments are pushed and the partially
applied function is entered. If enough arguments were provided, the function will run; otherwise a

flattened closure will result.

5.5.3 Analysis

If the shadow stack is to be used for argument passing, it would seem that the push-enter approach
has a compelling advantage over the eval-apply approach: it handles partial application and full-arity
application just as gracefully, and avoids closure creation for oversaturated applications. However,
the push-enter approach requires additional state: we must keep track of the base of the pushed
arguments. This frame pointer must be saved and restored across non-tail calls.

The eval-apply approach also has a compelling advantage: flexibility. For example, function

83

result SUSP 7k entrypt/ 7 / DESC/3
frame —
entrypt/ 7
k-1 empty .
susp function
()/2 trans {34}
—/ l t
I SUSP / k
v o —
frame SUSP / k
X
k-1 empty
y

Figure 5-4: The computation of andy suspended becaussdtself (in gray) suspended. These
suspensions share a single synchronization point, and therefore share a single frame. The compiler-
generated frame descriptor (top right) indicates that frame entries 3 and 4 should be resumed to-
gether. The suspended-upon field and the transitive suspension field both point to

arguments can be passed in either left-to-right or right-to-left order. Pushing arguments from right
to left makes applying a closure simpler: the partially-applied arguments can simply be pushed onto
the stack as in the push-enter approach.

Pushing arguments from left to right requires sliding the stack to make room for closed-over
arguments (Figure 5-3). However, lambda lifting (Section 6.3) works by abstracting functions with
respect to their free variables. These are therefore the first arguments in any function application.
In a tail-recursive loop, the free variables will be preserved. Using left-to-right argument order,
arguments and local variables can be pushed and popped without affecting the free variables. For
example, the first three arguments to the function in Figure 5-3 might be its free variables; com-
putation can leave these elements of the stack in place across tail calls. In practice we expect
tail-recursive loops to be much more common than partial applications, and we therefore choose to

push arguments from left to right.

5.6 Suspensions

The semantics of suspensions were discussed in Section 4.2.9. A function may have several associ-
ated suspensions. We make no attempt to share state between suspensions, or between suspensions
and the currently-running function activation. We suspend simply by copying chunks of the stack. If

a function has independent suspension points, we may end up mitbpies of its frame. Nonethe-

84

lessn is statically bounded albeit potentially large.

Sharing suspension state places several severe constraints on the compiler and run-time system.
First, extant suspension state (if any) must be tracked. Second, the structure of a function’s frame
must be carefully chosen to permit sharing. In practice this means that variables must be assigned
fixed, non-overlapping frame slots. This scuttles attempts to represent the frame compactly, and
requires a liveness map for each suspension point to prevent the garbage collector from retaining
dead frame entries. Because most function calls will never suspend, we reject suspension techniques
which bottleneck access to the frame.

A suspension may, when executed, produce values for several bindings. Corisidet @ith

two recursively-produced valugsandy which are fed back:

letrec t = (XY
\ = const7t
X = V+2
y = V%X
int

This leads to a problem with sharing. We must allocate a locatiox &md a location foy in order

to construct. If an exception is signaled while we are runniognst v will not be a value. We
synchronize once om before computing« andy. Both x andy must become valid suspensions.
Moreover, ifx is forced this fact must be reflectedyrandvice versaor we will duplicate compu-
tations. Thus, a suspension is a two-level structure, as shown in Figure 5-4. The complete contents
of the suspended frame are shared. Suspended locationsalily contain a pointer to this shared
frame, and have their tags changed to “suspended”.

In addition to the copied stack frame, the shared part of a suspension includes two additional
pieces of data. The first of these is a compiler-generated suspension descriptor. When user code
suspends, it ensures its frame is up to date on the shadow stack and calls the run-time system. The
suspension descriptor is passed as an argument. This descriptor gives the function and entrypoint
where resumption must occur and indicates where suspended variables zactdgseside in the
frame. This descriptor is used to construct the suspension and to run it when it is resumed.

A suspension will not be resumed until the variable which has been suspended upon is fully
evaluated. This avoids performing a force action immediately followed by a suspend (Figure 4-6),
whose net effect would be to copy data from a suspension to the stack and then back to the heap
again. The run-time system stores a pointer to the suspended-upon data; if this is itself a suspension,

that suspension is evaluated.

85

_w»isusP SUSP

SUSP]

__+—" SUSP]

SUSP]

T ——™=1SUSP

\

SUSP SUSP]

SUSP]

Stack \SUSP -

SUSP]

//
T

Figure 5-5: Updating transitive dependency fields.

Fallback creates long chains of dependent closures; indeed, there may be more closures than
can be made to fit on the stack, since fallback occurs when the stack grows full. To limit stack
growth we add dransitive dependendgeld. This initially points to the suspended-upon variable.

It can later be adjusted by the run-time system to point to the variable responsible for a particular
suspension. This variable is checked and forced first before the suspended-upon variable. Using
this technique allows us to place a constant bound on the stack consumption of the run-time system.

Because fallback prevents stack overflow, arbitrary programs will make progress in bounded
stack space. In principle, there is thus no need for constant-space tail recursion in Eager Haskell.
In practice, of course, there are compelling reasons to preserve tail recursion wherever possible; the
exception mechanism is comparatively expensive, and frequent stack growth results in poor cache
performance.

Maintaining the transitive dependence field at first blush seems simple: simply traverse the chain
of suspensions, and update the transitive dependence fields of objects on the chain to point to the
first non-suspension. This can be done simply by keeping track of the beginning and end of the
suspension chain. This is the technique used for shortcutting indirections, as shown in Figure 5-6.
Commonly, however, the transitive dependence is a value, or can immediately be forced resulting in
a value. Once the transitive dependence field points to a value, it is effectively useless, and we must
re-traverse the chain of dependencies from the beginning.

The Eager Haskell compiler instead uses an algorithm which reqefiretack slots, for some

fixed £ > 1. Figure 5-5 shows the technique fer= 3. As the chain of suspensions is traversed,

86

entries are pushed on the stack. WHénentries have been pushed, the transitive fields ofithe
oldest entries are made to point to thentries above them, in reverse order. The inte2ior- 2
entries are popped, leaving the initial and final entry on the stack. The traversal continues from
these two entries.

To understand the source of efficiency in this technique, consider a chain of length &kactly
We must force the suspensions in the chain starting from the end and working back to the beginning.
After collapsing the chain, only entridsand2k are on the stack. We force suspens2érand pop
it. We now need to force ent3k — 1, but only entryl resides on the stack. Enttyis transitively
dependent on ent®k, which has been evaluated, so its direct dependency is followed instead and
2 is pushed. The transitive dependency of egtiy2k — 1. Once entr\2k — 1 has been forced, the
direct dependency of entB; entry 3, will be followed. This will cause entrgk — 2 to be forced,
and so on. Thus, after collapsing the transitive dependency chain we can find the next suspension

to be forced by chasing two pointers at a time.

5.7 Thunks

A thunk represents the suspended application of a function to some arguments. Thunks are in-
troduced when a function call is encountered during fallback (Figure 4-7). An argument can be
made for two different approaches to thunk representation—it is similar to both a closure and to a
suspension.

A thunk is effectively a suspension of ti@generalApplyfunction described in Section 5.5. In
order to force a thunk, we must evaluate a closure and apply it to some arguments. However, the
structure of a thunk is particularly simple. A function returns a single value, so there is no need to
worry about producing multiple values when it is forced. The size of the frame uniquely determines
the number of arguments involved in the application. The closure (which may be the suspended-
upon variable) is always the first slot of the thunk.

Like a closure, a thunk represents a function applied to some arguments. There are two crucial
differences between them. First and most important, a closure is a fully-computed value. A thunk
is not—it requires forcing. It must therefore be clearly distinguished from a closure. Second, we
represent closures in flattened form, as a code pointer and a group of arguments. Many thunks are
created specifically because the apply function cannot obtain the value of its closure, so creating a

flattened thunk is impossible in general.

87

INDIR / 1 Tag/ Size

———T—— INDIR/1 Data
T INDIR/1 /\/
INDIR /1 Tag/ Size
| Data
INDIR / 1
/

INDIR /1

NG

Figure 5-6: Elision and shortcutting of indirections.

We adopt a simple closure-like structure for thunks. However, we use a special “thunk” descrip-
tor which is distinct from the descriptor for a suspension. The fields of a thunk are the function
closure followed by its arguments. As with a closure, the arguments are stored in reverse order
so that they can be copied directly to the stack. A thunk is forced simply by copying its contents

verbatim to the stack and invokir@eneral Apply

5.8 Indirections

In common with lazy function language implementations, Eager Haskell requires theindees-
tions[92, 99]. Problems with sharing occur whenever a computation returns an already-computed

value (see also Section 4.2.8):
head x8(x: _) = X

This example seems simple enough: when we eagerly evaluate, we can simply fetch the value of
x from xsand return it. However, consider what happenssifs a suspension, and an exception
occurs while it is being forced. In that case we must construct and return a suspensieadors

When the suspension is successfully forced, it musti#atedto refer tox; if this update does

not occur, the suspension will need to be forced again every time it is useds diready a value,

we might perform this update simply by copyimgnto the suspension fdread xs However, in

generalk may itself be a suspension. If we duplicate a suspension each copy will need to be forced

88

separately. We therefore replaread xswith an indirection pointing tox.

Compiled code treats indirections as uncomputed locations: attempting to evaluate an indirec-
tion causes a call to the run-time system. The run-time system handles indirections in much the
same way as other implementations do [93, 31]elitesthem. Chains of indirections are followed
until a non-indirection is reached. All the indirections in a chain are made to point to the non-
indirection, as shown in Figure 5-6. If it is a value, it is returned to the compiled code; otherwise it
is treated just as any other empty object would be. The garbage collector also elides indirections as
they are traced; this allows indirections to be eliminated immediately. Indirections therefore cannot
increase the total space usage of a program, though they will increase the rate of allocation.

The presence of indirections in the run-time machinery for Eager Haskell can have surprising

effects on code generation. These effects are discussed in Section 6.10.2.

5.9 Garbage Collection

The need to box the results of every computations means that Eager Haskell programs are very
allocation-intensive. Much of this data is short-lived. As a consequence, garbage collector perfor-
mance has a first-order effect on the performance of Eager Haskell programs. However, the garbage
collector is a separable piece of the Eager Haskell implementation, and its inner workings need not
be understood in detail in order to follow the presentation in the rest of this thesis.

The Eager Haskell compiler uses a hybrid generational garbage collector. To keep object allo-
cation fast, the nursery is a series of fixed-sihanksof memory. Allocating an object is a simple
matter of incrementing the heap pointer. As each nursery chunk is exhausted, the heap pointer is
reset to point to the next chunk. When the nursery is full, a nursery collection is initiated. Live nurs-
ery objects are copied, either into the new nursery or into tenured space. Tenured space is collected

using a non-moving mark-sweep algorithm.

5.9.1 Multiprocessor collection constrains our design

The Eager Haskell garbage collector is designed to run efficiently on a uniprocessor, while still per-
mitting multiprocessor coherence. Our experience wpithindicates that the scalability of multipro-
cessor garbage collection affects the scalability of the language implementation as a whole [31]. It
is surprisingly difficult to retrofit a uniprocessor language implementation to permit multiprocessor

garbage collection unless multiprocessor operation is part of the original design.

89

The need for efficient allocation and the need for efficient multiprocessor collection impose
conflicting constraints on memory use: allocation must be fast, demanding a simple bump-a-pointer
allocator and copying collection, and yet memory coherence must be as simple as possible, meaning
that objects should not move around memory or otherwise change in ways that would require inter-
processor synchronization.

Generational collection imposes a natural division upon the memory hierarchy: the nursery is
purely local, providing fast allocation and access; tenured space uses a slower allocator, but its
contents will not move and can be shared freely. This division has several important consequences

for the present uniprocessor allocator.

5.9.2 Write barrier

Any generational garbage collector must track references from tenured objects to nursery objects.
There are a number of algorithms for doing so, each of which enforces slightly different invariants
on memory [60]. In Eager Haskell we guarantee that objects are teparethsse-that is, if an

object is promoted during nursery collection, then the objects it points to will be promoted as well.

On occasion, objects which are promoted by the collectoupdatedto contain pointers to
nursery objects. For example, a long-lived suspension might be promoted and later forced; the
suspension must then be updated with the forced result. In Eager Haskell we accomplish this by
tracking updates to shared objects usingrite barrier. In compiled code, any update which might
possibly refer to a tenured object must check if a write barrier is necessary and if so call the run-time
system. The impact of write barriers on compiled code is discussed further in Section 7.3.

In Eager Haskell the nursery is purely local. As a result, we must clearly distinguish pointers
within shared memory (which may be dereferenced by any processor) from pointers which point
from shared memory into the nursery (which may only be dereferenced by the owning proces-
sor). Checking every single pointer dereference would clearly add unacceptable overhead to our
programs. Instead, Eager Haskell uses a special kind of indirectionbathier indirection—to
represent references from shared memory into the nursery. In addition to a pointer to the nursery
object, a barrier indirection includes the identifier of the processor which created the indirection and
a link field. The indirection may be followed only by the creating processor. The link field is used
by the garbage collector to find all the barrier indirections created by a particular processor. When a
nursery collection occurs, the objects referenced by barrier indirections are moved to tenured space,

and the barrier indirections are changed into ordinary indirections.

90

5.9.3 Nursery management

By guaranteeing that nursery data will be purely local, we can allocate and collect each nursery
independently and in parallel with the nurseries of other processors. There are a few aspects of
nursery management which are worth highlighting.

As noted in Section 5.3, the Eager Haskell run-time system incorporates static tables of nullary
constructors and small integers. When the collector finds such an object in the nursery, the reference
is redirected to the static table. It is important to note that dynamic program operations $ath as
arithmetic will not generate references to the static constructor table; there would be considerable
overhead in checking each result to see if it lies within the table bounds. By relying on the garbage
collector, only the small fraction of objects which survive garbage collection need be checked.

During a nursery collection, every single nursery indirection is removed. In order to remove
an indirection, all locations which refer to that indirection must be changed to refer directly to its
destination. This is easy during garbage collection, but frequently impossible in compiled code;
by the time a pointer is discovered to refer to an indirection, the object from which that pointer
was fetched may no longer be in scope. Thus, the indirection elimination performed by the garbage
collector is strictly more powerful than that performed by the suspension mechanism in the run-time
system (Section 5.8).

While the nursery is composed of fixed-size chunks of memory (currently 32 kilobytes, or 4K
words), the number of chunks in the nursery is not fixed. The nursery size is set based on a target

object retention raté:
WOrdSsetainf?

chunk =
e = vordShunk

The goal is to allocaté? words for each word which is copied by the garbage collector. In this
way we hope to bound collection time with respect to allocation time while keeping the memory
footprint small.

The estimate in the above equation makes a few sloppy assumptions. Retention rate is assumed
to scale linearly with nursery size. Actual retention rates behave exponentially when retention is
large. At the desired retentio?(= 53) the behavior is close enough to linear for our purposes.

Number of words copied isn't necessarily an accurate estimate of collection time. There is a
hard upper limit on nursery size of slightly more than 4MB; very large nurseries cause paging and
TLB thrashing during collection. Similarly, a nursery which fits into the processor cache can be

collected quite a bit faster than one which is just slightly larger; discontinuities in collection times

91

can therefore be observed when nursery size hovers around cache size. We have access to actual
collection time, and could use that number instead of retention in setting nursery size. However,
doing so would not address these discontinuities.

Current retention may not be a good predictor of future retention. When a computation changes
phases, this assumption is usually violated. In particular, the fallback mechanism often induces large
changes in allocation behavior even in otherwise uniform computations. Unfortunately, the run-time
system has no simple way to predict the effect of phase changes. In practice, the assumption does
not appear to lead to performance problems wRes set to acceptable values. It is possible to use
other techniques to estimate future retention; for example, we can estimate the slope of the retention
curve and use that to size the nursery. However, there is no general technique to predict sudden

changes in allocation behavior.

5.9.4 Fallback policy

Control passes to the garbage collector code each time a chunk is exhausted; by measuring heap
consumption in chunk-sized units, we shift heap resource checks to the garbage collector. The
routine which parcels out nursery chunks is therefore also responsible for checking resource bounds
and initiating fallback when necessary. This avoids the cost of checking resource bounds at every
single allocation point.

Fallback can also be initiated when the C stack becomes too full; this condition is checked in
the compiled code at every function entry point by comparing the C stack pointer to an overflow
threshold. During fallback, this threshold is set so that the stack check always fails; the run-time
system code for stack overflow creates a thunk for the called function.

In Figure 4-7, the stack bourgtacknax is assumed to be fixed. However, the total resource
boundresourceax is reset after fallback and after every garbage collection. The run-time system
must therefore perform three computations specified in Figuree4Hil, |r|) computes the current
resource usage of the progragt/b|, |h|, resource,ax) resetsesource,ax after garbage collection.
Finally, f(|h|, resourceax) resetgesourcenax after fallback.

Both e and g are computed by the nursery chunk exhaustion code. At present, the stack of
an Eager Haskell program is limited to approximately one chunk in size. Fallback due to stack
overflow is nonetheless virtually unheard of; resource bounds are usually reached first. As a result,
the amount of live stack is not significant and is ignored in computiagd g. Current resource

usagee is computed based oestimatedheap usage. Nursery usage is estimated by multiplying

92

the retention rate of the previous nursery collection by the current live nursery. Tenure usage is
estimated in a similar manner—past retention multiplied by current usage. These quantities are
computed precisely when garbage collection occurs.

At the moment the actual resource cutsource,ax is only reset when fallback occurs. It is
set based on the previous two valuesasfourcg,, The value offesource,ax shrinks slowly over
time until a lower bound is reached; fallback becomes slightly more frequent as time passes.

There is a good deal more room for experimentation with fallback parameters. For example, a
program with a large amount of persistent data which isn't changing over time will nonetheless have
a higher measured heap usage; this means that such a program will fall back more often. Similarly, a
larger nursery will (for any particular fixed retention rate) be more likely to cause fallback. It may be
more productive to use two independent measures of resource consumption: total words allocated

(which measures the passage of time), and total live data (which prevents excessive retention).

5.9.5 Promotion policy

In a generational garbage collector, promotion policy—which objects in the nursery are moved to
the shared heap—is a strong determinant of performance. Objects which remain in the nursery for
too long are repeatedly copied, increasing collection overhead. Objects which are promoted and die
soon after will continue occupying memory until the next global garbage collection, increasing the
memory footprint of the program and reducing TLB and virtual memory performance.

Every object which is reachable from tenured space is unconditionally tenured. In a functional
language such as Eager Haskell updates to tenured objects are rare, and it is likely reachable objects
will eventually be promoted regardless of the tenuring policy we choose. Tenuring them sooner
eliminates copying overhead.

Of those objects which remain, only objects which have survived at least one garbage collec-
tion (and those objects reachable from them) are considered as candidates for promotion. This is
easy to track; we simply keep track of the portion of the nursery which is occupied after each nurs-
ery collection. This is the same information we use to compute wesds However, rather than
promoting all surviving data, we further constrain the collector: we divide the GC stack into two
segments, the old segment and the new segment. The old segment contains a mixture of references
to tenured data, references to static data, and references to data which has survived at least one
nursery collection. Only the new segment may contain references to data allocated since the last

nursery collection. Only objects reachable from the old segment are considered as candidates for

93

promotion. We assume that data in the new segment is actively being used in computation, and is
more likely to die than data in the old segment.

Within the old segment we apply a similar heuristic to empty objects which are referenced
directly by the stack. We assume these objects will be filled as soon as control returns to the stack
frame which contains them. We keep a separate watermark for empty objects, only promoting those

which are in the oldest part of the old segment of the stack.

5.9.6 Tenured space management

The tenured object space in the Eager Haskell implementation is designed to be as simple as possi-
ble. In its simplest incarnation, objects are allocated using thelQoc function and freed using

free. Two bitmaps are used to track tenured data. One bitmap is used for marking during tenured
collection. The second tracks the locations of objects so that dead objects can be identified and freed
during the sweep phase.

There are two cases where objects are allocated directly in tenured space, rather than being
promoted there from the nursery. Some arrays are too large to reasonably be copied. Such objects
are expensive enough to create and initialize that we assume they will be long-lived in any case.
Large arrays are therefore allocated directly in tenured space. In addition, the run-time system relies
on external C libraries to support certain operations (most notably multiple-precision arithmetic).
These external libraries do not obey the Eager Haskell calling conventions, and therefore cannot
make use of the nursery heap pointer. The tenured allocator is used in these functions as a fail-safe
allocation mechanism.

We saw in Section 5.9.2 that a write barrier must be used to track references from tenured space
into the nursery. In addition, references from top-level data structures into the heap must also be
tracked. These references are created when top-level computations (Constant applicative forms;
see Section 6.6) are evaluated. This can be seen as a special case of the write barrier. The write
barrier code detects when the object written does not reside in the heap; these objects are placed on
a speciafoot list which is traced when the mark phase is in progress.

Tenured garbage collection happens entirely asynchronously. When tenured space becomes
sufficiently full, a flag is set indicating that a mark phase is under way. A mark bitmap is allocated
and cleared. Marking is then interleaved with nursery collection: rather than ignoring references to
tenured space, the collector marks them.

The mark phase continues until every processor has performed a full nursery collection. While

94

the mark phase is in progress, all newly-promoted data is assumed to be live (objects are allocated
black [60, 143]). As a result, all live data will be marked. The sweep phase is (for the moment) very

naive: the entire heap is swept in a single pass. Incremental sweeping is preferred in order to reduce
caching costs and allow newly-deallocated objects to be reused quickly; we anticipate that such a

change would be comparatively simple.

5.9.7 Problems with the tenured collector

The tenured collector pays for simplicity by being suboptimal in a number of respects. The amount
of memory used by the tenured allocator is not bounded; we can still promote objects from the
nursery after a mark phase is initiated. When nursery retention is high tenured space can often grow
dramatically due to promotion during marking. In practice, however, nursery retention is only a
problem when tenured space and nursery space are similar sizes—meaning the nursery is very large
(due to high retention) but tenured space is very small (and usually set to grow substantially). We
therefore accept soft bounds on memory consumption as a minor artifact of our collection strategy.

A mark phase is typically initiated in the middle of a nursery collection. However, marking
is not considered complete untiffall nursery collection is complete. Thus, on a uniprocessor the
mark phase typically spare/o nursery collection phases. We delay the start of marking until the
start of the next nursery collection. On a multiprocessor (where other processors will be initiating
nursery collections in parallel) this is likely to mean that the mark phase begins while the initiating
processor is completing its nursery collection.

The use of monolithic mark bitmaps can lead to excessive memory consumption. The amount of
memory required is equal ty32 of the total address range of allocated objects. If tenured objects
are allocated in a contiguous region, this amounts to a smal| storage overhead. However,
there are often large holes where no tenured objects can be allocated—for example, the allocation
of chunks for the nursery invariably creates holes in tenured space. Consequently, the actual space
overhead of monolithic bitmaps is much larger. This space overhead is also reflected in sweeping
time, as the sweep phase traverses the entire mark and allocation bitmaps.

Finally, the tenure allocator may not be easy to parallelize. Masiloc implementations rely
on asingle global lock, serializing object allocation even in multi-threaded programs. No attention is
paid to issues such as false sharing of cache lines; such matters are only problematic on multiproces-
sor machines, and solving them usually requires slowing down uniprocessor allocation. Fortunately,

special multiprocessaralloc implementations such as Hoard [25] address these problems well,

95

and can be used as plug-in replacements for the sysé@ioc implementation.

However, there are other concerns in usitzg loc for tenured data. Much of the meta-data
kept in the mark bitmaps and in object tags is redundant with information kepahyoc in its
own data structures. The tenure allocator effectively pays twice to track this data. In addition, tenure
allocation is very bursty—objects are allocated during nursery collection anddreethsséy the
sweep phase. An ordinamalloc implementation assumes a much steadier pattern of allocation
and deallocation [144]. Finally, the tenure bitmaps must be kept up to date using expensive atomic
memory operations. By integrating bitmap maintenance with the synchronization already performed

by the allocator, we can hope to reduce overall synchronization.

5.9.8 Towards better storage management

Fortunately, itis possible to make incremental modifications to the tenured allocator to address many
of these shortcomings. Some tweaks are simple: for example, the sweep phase has been modified
to ignore nursery chunks, mitigating one source of holes in the allocation bitmap.

A custom-written BiBoP allocator is now used for commonly-allocated small objects. Each
chunk contains same-sized objects (though not necessarily the same tag). Objects are allocated by
looking for clear bits in the allocation bitmap. Allocation can occur in parallel, requiring only a
single atomic operation (test and set) to manipulate the bitmap. During the sweep phase the mark
bitmap is copied to the allocation bitmap, implicitly freeing unmarked objects. This is substantially
faster and more efficient than callingtlloc and free for each object, though the underlying
allocator is still used for large or uncommon object sizes. An additional refinement which has been
implemented is to use separate chunks for pointer-free objects. Such chunks need not be scanned
during marking, reducing the load on the cache and TLB.

Using a BiBoP allocator will permit further streamlining of the tenure allocator in the future.

It is possible to maintain mark bitmaps on a per-chunk basis, perhaps by organizing the bitmaps
into multi-level structures akin to processor page tables. This technique is used with great success
in the Boehm-Demers-Weiser collector [28], where the conservative collection scheme can create
numerous holes in the heap. Objects outside BiBoP chunks can be tracked using a naive technique
such as storing them in a doubly-linked list. For large objects (more than 128 words) this technique
has a lower space overhead than optimal use of a mark bitmap. This must be weighed against
the complexity of distinguishing BiBoP objects from large objects during the mark phase; at the

moment all tenured objects are treated identically.

96

Chapter 6

Lowering Transformations

The Eager Haskell compiler essentially uses a single intermediate representitienfer the en-
tire compilation process. Optimization passes rewkieinto A\¢; static analyses are defined on
Ac. This allows compilation phases to be re-ordered with comparative freedom. Nonetheless, the
Ac generated by desugaring is not suitable for code generation. We must eventually constrain the
form of this code in order to make sure it is suitable for code generation.

Thus, the transformations ok really divide into two classesOptimizationstransformAgc
into equivalent\¢; these passes are outlined in Section 6.1 and are (with the exception of Bottom
Lifting, described in Chapter 8) well-understoddweringphases transformy¢ into a lower-level
form suitable for code generation. The first step in lowering is to convert the program to argument-
named form, a process which was described in detail in Section 3.5.5. This is followed by the

following transformations:

e Expand string constantsinto the corresponding Haskell lists, or alternatively into applica-

tions of a string expansion function to some more compact internal representation.
e Hoist constants(except for small constants) to top level (Section 6.2).
e Lambda lift (Section 6.3)
e Split huge expressiongSection 6.4).
e Top-level common subexpression eliminatiofCSE) (Section 6.5)
e Convert constant applicative forms(CAFs) to thunks (Section 6.6)
e Insert pseudo-constructors(Section 6.7)

97

¢ Insert back edgegSection 6.8)
e Make synchronization explicit (Section 6.9)

In this chapter we examine the lowering phases in detail. Many of them are quite simple; we fo-
cus the majority of our attention on the final phase, which is the insertion of explicit synchronization
into a Ao program. First, however, we sketch the optimization phases performed on Eager Haskell

programs once they have been type checked.

6.1 Optimizations

The Eager Haskell compiler does all of its optimizations\gnbefore any of the lowering transfor-
mations. With the exception of bottom lifting, which we cover in Chapter 8, these transformations

are well-understood; briefly:

e Simplification consists mainly of ordinary reductions according to the rules oAghealcu-
lus given in Figure 3-23, 4, x, etc. Most other optimization phases depend heavily upon the

program transformations performed by the simplifier.

¢ Inlining is really an application of the rules from \<; however, this can result in uncon-
trolled code growth. Therefore, unlike most other simplification rules inlining cannot be done
unconditionally, but must be controlled by static heuristics. The Eager Haskell compiler,
in common with other optimizing Haskell compilers [100], is very aggressive about inlin-
ing. Inlining enables many subsequent program transformations, including deforestation and

strictness-based optimizations.
e Local CSE. In Section 6.5 we give a general correctness argument for CSE.

e Strictness-based case reorganizationStrictness analysis provides information on which
arguments are unconditionally required by a particular function [92, 101]. This information
allows us to perform code motion araseexpressions when it would otherwise be unsafe
according to the rules oko. This is because strictness analysis gives information about

infinite unfoldings of computations.

e Class specializatior[57] specializes functions which make use of Haskell's type classes [45,

19, 90] to particular instances of those classes. This turns most instances of parametric poly-

98

morphism into monomorphism, and transforms calls of unknown functions (class methods)

into calls of known functions (particular instances of those methods).

e Deforestation of list computations removes intermediate data structures, usually enabling
additional optimizations. The deforestation performed by the Eager Haskell compiler is de-
scribed in the author’'s Master’s thesis [70] and is related to the shortcut to deforestation [38].
Unlike its precursors, the deforestation pass in Eager Haskell re-structures code to use itera-
tive evaluation as much as possible, and to maximize the parallelism of the generated code. A
more general approach to deforestatiopfand Eager Haskell programs has been explored
by Jacob Schwartz [117]; it allows arbitrary code to be deforested, but does not allow the
compiler to choose traversal direction or use associativity to eliminate inter-iteration depen-

dencies and thus increase parallelism.

e Full lazinessgeneralizes the hoisting of loop invariants. It must be done carefully in order to
prevent large increases in space usage [110]. Section 6.2 gives a general correctness argument
for full laziness. In an eager language, there is a risk that full laziness will create unnecessary

computation, by hoisting an expression from a context where it would never have been run.

e Arity raising . We cann-abstract a function if all its call sites are known; such a transforma-
tion can be derived directly from the rules &f. The arity analysis required is described by

Jacob Schwartz in his thesis [117].

e Bottom lifting hoists error handling code out of function bodies, using type and strictness
information to identify expressions which are guaranteed to diverge. We devote Chapter 8
to this topic, as it is necessary in Eager Haskell to prevent the eager evaluation of divergent

functions such aserror.

Many of the concerns addressed in this chapter in the context of lowering transformations ap-
ply equally to program optimization. For example, a@sehoisting transformation risks losing

eagerness as described in Section 6.9.1.

6.2 Constant Hoisting

In Section 5.3, we noted thatl values in Eager Haskell will be boxed—that is, they must be repre-
sented by a tagged data structure in memory. In order to mitigate the expense of boxing, argument-

named form permits static constants to be included in primitive expresBigsse Figure 3-10).

99

Constants which are immediately used in a primitive computation need not be boxed. Thus, our
code generator can handle an expression suahtas or x > 5.0 without boxing.
However, many constants must still occur in boxed form—they may be stored into data struc-

tures or passed as arguments to functions:

letx =35
in fib x

It is very easy to construct aaggregate constarity applying a constructor to arguments which are

themselves constant:

let nil =[]
h="h’
=i’
iStr=1i:nil
hi = h:iStr
in hi

We would like to avoid generating code to construct constants on the heap. Instead, the code gener-
ator should emit a correctly-formatted heap object at compile time. We therefore need some way to
distinguish static constants (especially aggregate constants) from dynamically-generated data.

We would also like static constants to beared If a constant occurs within a function, the
statically-compiled heap object must be used by every call to that function. If a constant occurs in
multiple functions, we would like to combine all instances of that constant.

We can accomplish both these objectives—distinguishing static and dynamic constants and shar-
ing constants—by hoisting constants to top level. Any constructor at top level is a constant, and can
be compiled as such; constructors which occur elsewhere are dynamic. If the same constant occurs
in multiple places, all occurrences will be hoisted to the top level; it is then a simple matter to com-
bine them using top-level CSE (Section 6.5). Constant hoisting is actually a specific case of full
laziness—a static constant is a group of bindings which taken together have no free variables. Full
laziness in general, and constant hoisting in particular, can be justified very easily using the rules of
Ac; see Figure 6-1.

Constant hoisting is logically separated from full laziness for several reasons. First, static con-
stants play an important role in many simplifications, suchasedischarge and constant folding
(staticé reduction). It is therefore useful to leave constants where they will be used until late in

compilation. Second, allowing constants in primitive expressions means that we do not wish to

100

= (letrecb; x=ein x); Bo[x =7

— z= (letrecb; x=-ein x); Bo[x = (letrecb; x = ein x)] Lh
— Bp[x= (letrecb; x =ein x)] €e
= Bjjz= (letrecb; x = ein x)] a
— Byfb; x=e€; z:x] ¢
—— Bolb; x=e; z=X L
— Bo[b, X = e] €e

= (letrecb; x=ein x); Bg[x = Z

—— z=(letrecb; x=-ein x); Bi[x =7 L
— z= (letrecb; x=ein x); Bi]e] €e
— b; x=e; z=X; Byl ¢
—— b; x=-e; z=x; Bo[¢] L
— b; x=e; B[¢] €e

Figure 6-1: Correctness of full lazinessia. HereBg[| = B1[|[X/Z]

unconditionally hoist constants; again, we should leave them in place until it is clear which primi-
tive expressions will exist in the final program. Finally, it is frequently undesirable to perform full
laziness on expressions with aggregate type [110]. However, constant expressions should be hoisted
regardless of their type; we therefore must distinguish constant expressions when hoisting.

There is one final trick involved in the compilation of static constants. Small integer constants
and nullary constructors are very common in Haskell programs. Moreover, such constants are
frequently created dynamically as the result of primitive operations and function return. As noted
in Section 5.3, the run-time system includes static tables of small constants. The code generator
generates a reference to the appropriate static table when it encounters a boxed small constant. This

avoids having the garbage collector do the redirection later on.

6.3 Lambda lifting

Any language which permits first-class, nested, lexically scoped functions must choose a repre-
sentation for closures. A closure packages up the free variables and entry point of a nested func-
tion so that it can later be invoked. Numerous possible closure representations exist; sophisticated
schemes for choosing among them have been explored in the LISP, ML, and Scheme communi-
ties [124, 62, 119, 7]. In principle, any of the closure representation techniques used in strict lan-

guages can be applied to Haskell programs. However, in practice extant Haskell implementations

use one or two closure representations uniformly. There are a number of factors to account for this:

101

e Non-strictness itself is the major source of overhead in non-strict languages; implementation

effort is better spent eliminating this overhead than optimizing closure representations.
e Uniform closure representations are simple to implement.

e Currying is popular in Haskell, and curried functions must be represented in an efficient

manner (see Section 5.5).

e Closure conversion algorithms in strict languages focus on identifying short-lived closures;
these can use a stack-based closure representation. The non-strict semantics of Haskell mean
that function closures are likely to escape the context in which they were created, so very few

opportunities for stack-based representation exist.

Eager Haskell represents closures by lambda lifting [53, 92, 99]. Lambda lifting a function
replaces its free variables by function arguments. A closure is created simply by partially applying
the lambda-lifted function to the actual free variables. However, the lambda lifting algorithm avoids
creating closures by passing the free variables at function call sites wherever possible. Thus, no
closure is created for a full-arity application of a known function. However, lambda lifted functions
may in general require a large number of additional arguments.

Note also that Eager Haskell usefia representation for partial applications. It is possible to
partially apply a function repeatedly. If that function has been lambda-lifted, then we must repeat-
edly fill in all the free variables in each closure. More sophisticated closure conversion algorithms
share a single vector of free variables in this case. Indeed, it is possible to share free variable vec-
tors when closing over multiple functions. However, care must be taken to ensure that this does not
capture unnecessary free variables and cause space leaks [119].

Closure conversion need not be expressed as a program transformation. In the Glasgow Haskell
Compiler, closures are explicitly distinguished, but no representation is chosen for them. Instead
their free variables and arguments are tracked. A thunk is simply a closure which does not have
any arguments; the two share exactly the same representation. The closure representation, fixed
by the code generator, segregates boxed and unboxed data. Partial applications are represented in
a different fashion from other closures; they contain a pointer to the function closure which was
partially applied, along with an ordered vector of function arguments. A partial application cannot
segregate boxed and unboxed data; they are freely intermixed and additional data is required for the

garbage collector to distinguish which objects are pointers.

102

Performing lambda lifting as a separate compiler pass as in Eager Haskell has several advan-
tages. First, it simplifies the code generator, which can assume that all free variables refer to top-
level constructs. Second, it allows us to clearly separate the issue of closure representation from that
of code generation. Ignoring typing, most closure representations could be expressed in terms of ex-
isting language constructs such as tuples. However, it is challenging to perform closure conversion

in a type-preserving manner, particularly in the presence of unboxed types [129, 82].

6.4 Splitting huge expressions

The Eager Haskell compiler aggressively inlines functions which only have a single call site. This
frequently enables further optimization based on the calling context—constant folding of arguments,
fetch elimination (;), case dischargec§, common subexpression elimination, and so forth. How-
ever, it can also lead to extremely large functions in the compiler output (in some small benchmarks
the entire program becomes a single top-lewelin function with a few internal loops). We are
generating C code which is then compiled with an optimizing C compiler; the compilation time of
gcc (when optimizing) is quadratic in the size of the largest function. As a result, it was sometimes
taking hours to compile the C code produced by the compiler.

Conceptually, the solution to this problem is quite simple: split any large function into smaller
functions. Functions cannot be split arbitrarily, as doing so might disrupt the flow of control in the
compiled program. We only split entire definitions or case disjuncts, where changes in control flow
already occur. Code which is split must be a certain minimum size: it is not beneficial to create a
function if the resulting function call will be more expensive than the code which was split.

The actual splitting process relies on an unusual feature of our intermediate representation: it
is possible to represent)aexpression with no arguments at all. The lambda lifter treats such an
expression as it would any other function, adding arguments to represent free variables and lifting
the resulting function to top level.

Thus, we perform splitting by introducing zero-argument functions immediately before lambda

lifting, replacing an expensive but splittable expres®avith
letx= X — ein x

A binding such ax = A — e causes the lambda lifter to replaeeeryoccurrence ok with a

call x X. If there were more than one occurrencexahis would result in duplication of work.

103

x=e; Ig[€] = x=e;lg[x L
letrecx=e; bin Igle] = letrecx=-e; bin Ig[X| Le
letx=ein Ig[e] = letx=-ein Ig[X le
casex = ein Ip€ = casex=ein Ig[X le

Figure 6-2: Reverse instantiation is common subexpression eliminatign.in

Introducing an extra binding as shown ensures that the lambda-lifter introduces exactly one call to

the split function.

6.5 Top-level common subexpression elimination

In procedural languages common subexpression elimination is usually restricted to primitive oper-
ations; in Haskell any expression may be subject to CSE. This is justified by reversing the rules for
instantiation in\o—these reversed rules can be seen in Figure 6-2. Top-level CSE is concerned
primarily with the first of these rules, which allows us to eliminate identical bindings:

x =C57 x =Cy57

y =Cy57 y =X

Note that CSE alone is not enough; ideally CSE ought to eliminate the identity bipding
as well. At the top level of a module, this task is complicated by the Haskell module systenx; both
andy might be exported to the outside world, in which case it may not be possible to eliminate all
occurrences of either one. This is one of the reasons top-level CSE is separated from ordinary CSE;
the other reason is that aggressive inlining can sometimes result in many copies of a single function.
Top-level CSE after lambda lifting eliminates all but one of the extra functions. Finally, top-level
CSE ensures that there is at most one copy of each static constant in a module.

One drawback of top-level CSE is that ifger-module No attempt is made to combine identical
top-level objects in separate modules. Thus, a function which is inlined in many different modules
might leave a copy of its code in each of those modules. Mechanisms such as type class specializa-
tion [57] and rewrite rules [94] are a better solution than inlining if a function can be simplified on
its own, without integrating it into its calling context.

When two bindingx andy can be combined, top-level CSE attempts to preserve whichever one
is exported. For example, ¥is exported, we simply replace all occurrencey ofith x. If two
exported constants are combined, replace one of them with an identity bindingthis represents

a static indirection in the generated code, which is usually more space-efficient than including two

104

static copies of the same data.
Functions complicate matters somewhat; the compiler attempts to preserve the arity of all ex-

ported functions. For example, imagir@ndy are defined as follows:

X =Xab— (axb)+a

y =Xlcd— (cxd)+cC
In this casex andy can be combined. However, if we simply repladey y = x, y will have arity 0
and all calls toy will pass throughGeneralApply(see Section 5.5). For efficient compilatipmust
have the formhc d — ..., preserving its arity. Thus, we replagas follows:

X =Mlab— (axb)+a
y =Xxd—xcd

It is fairly unusual to explicitly export the same function under two different names; we would
therefore expect this corner case fairly infrequently. In practice, a definition can be exported to
other modules when one of its uses is a candidate for inlining. This causes wrappers and static

indirections to be generated more often than might be expected.

6.6 Constant applicative forms

We have detailed two compilation phases—constant hoisting and lambda lifting—which lift con-
stant expressions to the topmost level of the program. The eventual goal is to have the compiler
treat all top-level bindings as static constants for which no code needs to be generated. Bindings
elsewhere in the program will be evaluated dynamically and will require code.

However, Haskell allows the programmer to write top-level bindings whichateonstant.
Haskell implementors refer to these expressionsastant applicative formsr CAFs [92]. A
CAF may represent an enormous amount of computation, so it is not acceptable to run it more than
once. We must therefore ensure that the value of a CAF is preserved when it is run. This presents
problems at a number of levels. First, we need to distinguish CAFs so that the code generator treats
them as dynamic computations rather than static top-level objects. Second, we need to include some
mechanism in the run-time system to record the value of a CAF when it has been run. Finally, we
must complicate the run-time system with a mechanism—the root list, described in Section 5.9.6—
for tracking CAFs which point into the heap.

In Eager Haskell we evaluate CAFs lazily. In t@&F conversiorphase, we transform each

CAF into a top-level thunk as follows:

105

t = thunk tCAF
tCAF=)\—e¢e

t=e
The code for the CAR is encapsulated in a functidnCAF with no arguments. This function can
only have top-level free variables, and thus need not be lambda lifted. A zero-argument function
cannot be directly referenced in user code; there is no indication that it needs to be applied, nor
any direct way to store its result. However, we can create a thunk for it; this thunk contains the
function and no arguments. The code generator generates cad€Adt just as it would for any
other function. The thunk forcing mechanism can handle zero-argument functions without difficulty.
Whent is forced, it will be overwritten with the final value 6fCAF, and ift contains heap pointers

it will be placed on a root list to be traced by the garbage collector.

6.7 Pseudo-constructors

In Section 6.5 we noted that top-level bindings of the fotrm= y should be compiled as static
indirections; in Section 6.6 we posited the existence thfeak primitive to mark top-level thunks.
However, at run time these constructs are simply represented by a special tag and some fields con-
taining pointer data—that is, we construct them in exactly the same way we would construct an
ordinary data object, the only difference being their special tag value. We exploit this fact to further
simplify the code generator. We introduysgeudo-constructors INDIBnAdTHUNK to represent the

special tags, and transform the code into constructor expressions:

X=Yy — X=INDIRY
y=thunkfab — y=THUNKfab

Additional pseudo-constructors are introduced for language constructs with similar behavior. For
example, bottom thunks (Chapter 8) use a special pseudo-constB@IGFOM and thethunk

primitive is used internally to implement arrays (Chapter 9). Indeed, static partial applications can
be represented using pseudo-constructors (though at the moment, for historical reasons, the Eager

Haskell compiler handles them explicitly).

6.8 Back edge insertion

Once an execution mechanism has been chosen, the trickiest aspect of compiling a non-strict lan-

guage is generating code for mutually dependent bindings:

106

letrec a = zipWith(+) p p
p=1:a

inp
Under the lazy strategy (Figure 4-3), we create a thunk for every bindinteineg block, then rely
on the mutual dependencies between these thunks to fix an evaluation order for our code. To create
the mutually dependent thunks, the compiler generates code which operates in two phases [92].
First, storage is allocated for all the thunks in the block—in this casaust be large enough to
hold a cons cell an@ must be large enough to hold the applicat@pWith (+) p p. Having
allocated the storage, the thunks are then filled in. Here the final two argumentgilbpoint to
the storage allocated fqx. It is unsafe for other computations to yser a until both have been
completely filled in. Once this has happenp@an be returned and execution continues as normal.

In an eager language it is less clear how to proceed. Eagerly evalaatuogires a valid heap
object forp. Simply transposing the bindings cannot help—the cons celp foan then be built,
but will require a valid heap object fa. We solve the problem by allowingmptyheap objects to
be created. Empty objects are full-fledged, valid heap data and can safely be used in computation.
When an empty object is encountered, computation must suspend until it is filled in. The existence
of these empty objects was noted in Section 5.3; they represent points in our semantics where the
corresponding binding resides on the heap (Section 4.5). In the cteegfbound variables, this
is because the relevant bindings occur later in program order and have not yet been reached.

In principle, the Eager Haskell code again proceeds in two steps: first, empty objects are allo-
cated for each binding in tHetrec. Then the bindings are executed (eagerly) in order. Each binding
stores its result into the corresponding empty object, and changes its tag to indicate that it has been
filled.

In practice, we need not allocate an empty objecefgaryletrec binding. Instead, we allocate
them only for bindings which are actually referenced before they are defined. Thus, in the above
example an empty object would be allocatedgdout not fora.

letrec {- Back edggp] -}
a = zipWith(+) p p
p=1:a
inp
If we construct a graph of dependencies between bindings, these will be the back edges of that
graph. The back edge insertion phase adds annotations to the program which explicitly mark which

variables lie along back edges and where empty objects must be allocated for them.

107

Note that the bindings in &trec block need not occur in any particular order. We would
consider different bindings to be back edges depending on the order chosen. The back edge insertion
phase also chooses an order for bindings. A constructor or partial application can be allocated and
filled in without suspending; by contrast, a more complex expression may require the value of a
still-empty binding. For this reason, the Eager Haskell compiler orders constructors before bindings.
After orderingp (a value binding) befora (a function call) and inserting back edges our example

will look like this:

letrec {- Back edgda] -}
p=1:a
a = zipWith(+) p p
inp

6.9 Making synchronization explicit

The strategies given in Chapter 4 restrict instantiation to strict con§xtsAny synchronization

which might be required to obtain the value of a variable is also restricted to a strict context (wit-
ness the force and suspend rules in Figures 4-3 and 4-6); a binding need not be examined (and
synchronized upon) unless its value is needed for further computation.

We imagine that instantiation corresponds simply to loading a value from memory. Synchro-
nization, however, is a good deal more expensive; in Eager Haskell it involves loading and checking
the tag on a data structure. Tying together instantiation and synchronization leads to excessive syn-
chronization. Consider this variation upon the humble fibonacci function, as compiled by the Eager

Haskell compiler:

myfib x =
casex < 2 of

False —
lety = x—1in
let z =y—1in
let a = myfib yin
letb = myfib zin
at+b+z

True — X

Here,x occurs in two different strict contexts—in the tast 2 and in the binding foy. However,
the binding fory cannot be computed untihsex < 2 has discharged—thus, waowthatx will be

computed in both cases, and can avoid synchronization.

108

6.9.1 Introducing synchronization

In the Eager Haskell compiler we make synchronization explicit. This decouples instantiation and

synchronization: instantiation must occur in any strict context; synchronization occurs only where it

is explicitly indicated by aaseexpression. Introducing synchronization is similar in many respects

to converting to fully named form (Sections 3.5.4-3.5.3). Théift) rule explicitly synchronizes

an arbitrary expression. We can apply the rule to every variable which occurs as part of a primitive
expression. This explicitly separates synchronization and instantiation. For our example, this yields

the following code:

myfib x =
case(casex of _ — x < 2) of
False —
lety = (casexof - —x—1)in
let z = (caseyof _—y—1)in
let a = myfib yin
letb = myfib zin
casez of _ —
casea of _ —
caseb of _ —
at+b+z
True — X

Once synchronization has been inserted, a hoisting step is required to return the program to argument-
named form, using the strict hoisting rute. Compare this to naming (Section 3.5.4), where after
naming using’ new bindings are lifted using,,,. In our example, only the outermasiseexpres-
sionrequireshoisting:

myfib x =

casex of _ —
casex < 2 of

6.9.2 Eliminating excess synchronization

Making synchronization operations explicit does not actually reduce the amount of synchronization
in the program. This task falls to the(unlift) rule, which eliminates nested synchronization. This
allows us (for example) to eliminate the synchronizationdar the binding ofy in fib. Similarly,

the x4 rule can be used (in conjunction with instantiation and uninstantiation) to eliminate synchro-

nization on value bindings. Wharasex of _ — eis eliminated the identity bindinlgt _ = xin e

109

often results. This is easily avoided by tracking which variables will be subjectdeelimination;
we avoid inserting synchronization on these variables in the first place. Hotstsegxpressions
as they are introduced further reduces the need for excess synchronization.

However, synchronization elimination purely according to the rulesohas two major prob-

lems. Consider the first part afyfibafter synchronization elimination:

myfib x =
casex of _ —
casex < 2 of
False —
lety = x—1in
let z = (caseyof _ —y—1)in
let a = myfib yin

Note that the binding foy will always yield a value when it is executed. We call bindings such as
anda which contain no explicit synchronization operatior-suspensive

Note that whilea = myfib yis a non-suspensive binding, suspension may occur non-locally
inside the recursive calhyfib y Thus, a non-suspensive binding does not necessarily yield a
value. However, any non-suspensive binding which does not involve function call (constructors,
non-synchronizingaseexpressions, and primitive functiongjll yield a value. We call such a
bindingunlifted No synchronization is required for occurrences of unlifted variables sughrase
they have been bound.

We thereforeughtto be able to avoid synchronization pwhen computing. We work around

this by noting that an unlifted binding can be replacedhye

myfib x =
casex of _ —
casex < 2 of
False —
casey = x—1lof _—
casez =y—1of _—
let a = myfib yin

This is justified by hoisting existingaseexpressions, instantiating, and erasing. Indeed, the com-
piler could simply represent unlifted bindings in this way rather than ukhg We choose to
represent the bindings usitgt as a notational convenience for the code generator. Therefore we

obtain the following code fomyfibafter synchronization elimination:

110

myfib x =

casex of _ —
casex < 2 of
False —
lety = x—1in
let z =y—1in
let a = myfib yin
letb = myfib zin
casea of _ —
caseb of _ —
at+b+z
True — X

6.10 Eliminating additional synchronization

There are a number of ways to improve upon the simple synchronization introduction described in
the previous section. Because each synchronization operation carries a run-time cost, it is worth
eliminating as many synchronization operations as possible. In this section we discuss several

techniques for removing unnecessary synchronization.

6.10.1 Hoisting to eliminate redundant synchronization

We might consider hoisting synchronization whichét required to restore the program to argument-

named form. For example, the following contrived example synchronizes twige on

let z = (caseyof _ —y—1)in
casey of _
casezof _
y+z

—
—

If we hoistcasey past the binding foz we obtain:

casey of _ —

let z = (caseyof - —y—1)in
casez of _ —

y+z

which simplifies to:
casezof _ —

let z = y—1in
y+z2z

111

The binding forzis now unlifted, eliminating synchronization arand simplifying the compilation
of the binding forz itself.
Hoisting caseexpressions in this fashion is not always beneficial. Consider hoistigga in

myfik
myfib x =

let a = myfib yin

casea of _ —

let b = myfib zin

caseb of _ —

at+b+z

True — X

We have made the bindirg= myfib zstrict in a; this eliminates most of the eagernessniyfih If
we are attempting to rumyfib xin parallel, that attempt has just failed.dhappened to consume
a large data structure, then we have increased the space requirements of the program. The Eager
Haskell compiler is conservative about hoisting synchronization pkstexpression: hoisting is
only performed if the expression bound is unlifted, or the definition involved is strict in the hoisted

variable. Thus, the compiler hoists the contrived example, but does nothees in myfih

6.10.2 Using Transitivity

There are often transitive relationships between program bindings. Consider the code on the left-
hand side of Figure 6-3. It should be sufficient to synchronizg.oknowing thaty is computed
shouldimply thatx is computed. This is shown by the unfold/fold argument given in the figure. We
account for transitive dependencies when introducing synchronizationdnto

Unfortunately, a fully computed value may turn out to be an indirection. This complicates the
use of transitive dependencies to eliminate synchronization; generated code would need to check for
indirections even if synchronization is eliminated. In the common case (full location, no indirection)
this is just as expensive as full synchronization. The Eager Haskell compiler and run time system
take several steps to ensure that indirection checks need only occur at synchronization points.

First, the code generator ensures that the “most computed” value of a variable is kept. Once
again consider the code in Figure 6-3.xlfs an indirection pointing to the value Basex in the
binding fory will call the run-time system, eliminate the indirection, and re-birtd point directly

to 5. Finallyy is bound to 10. When we synchronize grx is bound to a value as well.

112

lety = casex of _ — xx*2in lety = casexof _ — xx*2in

casex of _ — casex of _ —

. le
casey of _ — case cas of _ — xx2of _ —
X+y*y X+y*y

lety = casexof _ — xx2in
casex of _ —

—> Ly, €
casexx 2of _ —

X+yxy

lety = casexof _ — xx2in
= casecaseof _ —x*x20of _— os (reversed)
X+Yyx*y

lety = casex of _ — x*2in
= caseyof _— te (reversed)
X+Yyx*y

Figure 6-3: Synchronization elimination for transitive dependencies

Second, the run-time system elimina&dkindirections in a suspended frame before resuming
it. Consider what happens Xis initially empty. Thencasex in the binding fory will suspend,
andcasey will suspend in turn. Now there are two different suspensions with a separate copy of
X. Imaginex later evaluates to an indirection pointing to the value 5. When the result is demanded,
the binding fory will be demandedeparately It does not matter thatwill synchronize orx and
eliminate the indirection; this will not change the second copy of the frame used to cocagete

wherex will still point to an indirection.

6.10.3 Partitioning versus explicit synchronization

Past work on synchronization elimination in eager languages has focugmdtaioning. Code is
divided intopartitions each of which synchronizes on a series of inputs, then runs to completion,
possibly spawning new partitions as it does so. This approach was implemented in the Id compiler
by Ken Traub, who describes the technique in his dissertation [133]. Later work introduced inter-
procedural analyses to improve partitioning [112, 114, 33, 34, 132]. Similar work was done in the
context of the strict language SISAL [111, 128].

Compilation based on partitioning has one important problem: there is no clear and natural

connection between the unpartitioned and partitioned program. On a modern architecture, very dy-

113

namic control flow is expensive, and usually partitions end up being run in a particular order in
practice. Virtual machines exist which simplify the task of creating and ordering partitions, includ-
ing TAM [115, 42, 41] and PRISC [84]. However, functions and case disjuncts still incorporate

a notion of “inlets”, one per input (or group of inputs), which perform necessary synchronization
when a value arrives from another thread. The work on the SMT [16] abstract machine and the
code generator fopH [31] were the first attempt to consider thread ordering primarily as a com-
pilation problem, rather than a mechanism to be provided by the abstract machine. Partitions are
grouped intmon-suspensive threadshis provides a natural flow of control; it also allows control
dependencies between partitions in a thread to be used to eliminate synchronization. Arguments are
passed by reference rather than by sending them individually to entry points.

Taking its cue from SMT, Eager Haskell focuses primarily on making sequential, non-suspensive
control flow efficient. Synchronization elimination is an important part of doing so; however,
we must not go to great lengths to eliminate synchronization if doing so will complicate control
flow. Thus, while synchronization elimination in Eager Haskell is similar to demand set partition-
ing [133], we do not attempt to impose a new intermediate representation with special provisions

for threaded control flow.

6.10.4 Interprocedural synchronization elimination

At the moment, the synchronization introduction phase of the Eager Haskell compiler only accounts
for transitive dependencies within one procedure. However, functional programs are frequently
composed of many very small functions. We might hope to remove a good deal more synchroniza-
tion simply by propagating interprocedural dependency information.

There are several techniques that can be applied to compute such dependency information. In-
terprocedural partitioning analyses [112, 33, 34, 132] attempt to compute a partial order among
inputs and outputs of a function in order to impose ordering constraints among partitions. However,
those algorithms which were successfully implemented had very high complexity in practice [113].
In addition, one of the chief benefits of interprocedural partitioning analysis was the ability to group
multiple function inlets into a single entry point. Becay¢ and Eager Haskell use a single entry

point for functions, the benefit to using such an analysis is likely to be much smaller.

114

lety=f xin . casey =f xof _ — (in GHC)
gy gy
lety =f xin
— caseyof _ — (in Eager Haskell)
gy

Figure 6-4. Worker/wrapper requires additional synchronization under Eager Haskell.g litere
strictiny.

Using Strictness Information

The interprocedural analysis problem becomes much simpler if, instead of partially ordering inputs
and outputs, we restrict our attention to a much simpler property: whether a particular input is
alwaysrequired during computation. This is strictness analysis [92]. The literature on strictness
analysis is vast; however comparatively few algorithms are in daily use, and these are generally the
simplest ones. Simple analysis produces useful improvements in practice; more complex analyses
simply do not yield enough additional precision to justify their cost.

For example, the Glasgow Haskell Compiler computes strictness directly as a boolean property
of function arguments [101]. Strictness information is used to divide functions iwarkerand a
wrapper. The wrapper ensures all strict arguments have been computed, then invokes the worker.
The worker is compiled assuming the strict arguments are available. The hope is that many strict
arguments can safely be computed before a function call; by inlining the wrapper the compiler
attempts to eliminate much of the synchronization at each call site based purely on the calling
context. In particular we can eliminate synchronization on the strict variables of loops and recursive
calls entirely.

The Eager Haskell compiler performs strictness analysis (repeatedly), representing strictness
using boolean expressions. This is used for strictness-based code motion and for a weak worker-
wrapper transformation directed primarily at unboxing tuples (not at reducing synchronization). The
present synchronization introduction algorithm uses strictness information to determine whether
hoisting synchronization past a function call will result in a loss of eagerness. However, strictness
is not used directly to eliminate synchronization. The problem (once again) is indirections. If
y = f xandf is strict in its single argument, then synchronizingyomill ensure thak has also been
computed. Howevex may still refer to an indirection which was eliminated within the calt ta

An indirection check is just as expensive as synchronization; little has been saved.

115

L == E | U
| letx=EinL | letrecBinlL
| letx=UinlL
E := casePofD | XX
| casexof D | X X
| casex=xofD
u = V | P
P == x | Co
| P« Ps
B == x=E | B;B
| x=U | Back edgéx}
D == CiX —L | D;D
L

Figure 6-5: Fully synchronized, lowered:. Compare with Figure 3-10.

If instead we synchronize oxin the calling context, we transform every binding of the form
y = f xto a binding of the formy = casex of _ — f x. There is no longer any concern
about indirections, as the synchronization is handled within the local frame. This is the effect
of the worker/wrapper transformation in GHC. However, this can actiradigasethe amount of
synchronization in an Eager Haskell program. The problem occurs when a strict argument is itself
the result of a function call. Consider the example in Figure 6-4. In GHC, the bigdinfy x will be
unwrapped, yielding aaseexpression as shown. However, thseexpression carries no runtime
cost—the calf xis guaranteedo return a value. Indeed, the transformation has eliminated the need
to construct and force a thunk fgr By contrast, Eager Haskalannotguarantee thdt x returns a
value; if resources are exhausted during the call, it will suspend. Thus, a separate synchronization
step is required. Performing the worker/wrapper transformatiog trerefore replaces single
synchronization irg with a synchronization operation at every call sitegofThis will in general

increase the size and complexity of generated code.

Computedness

In Eager Haskellcomputednessan be used to eliminate synchronization. Computedness indicates

which arguments of a function acertainto be values when the function is called. In principle,

116

this is easy to compute: consider every call site of a function. If an argument has been computed
at every call site, that argument is certain to be computed, and it need not be synchronized. At this
level the property can be computed using bit vectors to represent sets of strict arguments.

The real challenge, of course, is in identifying call sites. In a higher-order language, they can
be approximated using control-flow analysis [122, 83, 55]. Because Eager Haskell compiles files a
module at a time, full control flow analysis is impossible. However, the vast majority of functions
are only called at full arity. We can do a good job of computedness analyses on these functions. Fur-
thermore, we can use a technique similar to the worker/wrapper transformation or to loop preheader
insertion [7] by splitting recursive functions intoheaderwhich performs necessary synchroniza-
tion and abodywhich is always invoked locally at full arity. In this way we hope to capture many of
the benefits of strictness analysis without increasing the amount of code for synchronization, while

at the same time maximizing the effectiveness of a very simple computedness analysis.

6.11 Canonical lowered\o

Figure 6-5 shows the final syntax twered A\ after performing the lowering transformations
described in this chapter. The most obvious difference is that lowereekplicitly distinguished
unlifted constructs from lifted constructs. We use underlines to distinguish unlifted variables
from their lifted counterpartg. Unlifted expression$) are distinguished syntactically from lifted
expressiong, and unlifted bindingg = U from lifted bindingsx = E. When an unlifted variable
is a back edge in &etrec, it is referred to in lifted form ax before the binding and in unlifted
form asx afterwards. We distinguish three forms adseexpression:.case P of D, whereP is
a simple primitive expression which need never be boxadex of D, which dispatches on an
unlifted variable and requires no synchronization; aadex = x of D, which synchronizes or
and suspends if necessary.

Beyond the distinction between lifted and unlifted constructs, there are a few other distinctions
between lowered and argument-named:. Known full-arity applications, X;. are distinguished
from unknown applications X;.; recall from Section 5.5 that known applications can call the target
function directly, whereas unknown applications must invoke3beaeralApplyfunction in the run-
time system. Pseudo-constructors mark thunks, static partial applications, and variables which occur
in an expression context. The bindingslétrec expressions are considered to occur in program

order; back edges are marked explicitly.

117

Chapter 7

Eager Code Generation

In Chapter 6 we examined lowering transformations intended to simplify the task of code generation.
In this chapter we detail the actual code generation process. The code generator begins with the low-
level Ao shown in Figure 6-5. The final output of the code generator is a C program; there is no
special low-level intermediate representation.

The mechanics of suspension and garbage collection are the main source of complexity in the
code generator. Minimizing the number of save points (Section 7.1) reduces the need to keep the
frame up to date, and decreases the complexity and size of the entrypoint mechanism sketched
in Section 5.4. The structure of the frame (Section 7.2) determines how variables are saved and
restored and how the garbage collector identifies live variables. Minimizing the number of points at
which allocation can occur reduces the amount of code required to keep the frame up to date, but can
complicate garbage collection (Section 7.3). Once frame structure and save point placement have
been determined, the remainder of code generation is reasonably straightforward; the remainder of

the chapter details the mapping frotp code to C.

7.1 Save points

In Eager Haskell there are four situations in which local data must be saved and restored from the
shadow stack: When computation suspends (Section 5.6), when allocation fails and the garbage
collector is invoked (Section 5.2.3), when a suspensive binding is started, and when one function
calls another one. This last case exists because any function call may invoke the garbage collector
(every function may allocate: if nothing else, the exception mechanism may need to allocate a thunk

for the call).

118

We refer to places where the compiler saves and restores live datvagpoints The Eager
Haskell compiler attempts to combine save points as much as possible. Considerabde for

thezip function from the Haskell prelude:

Zip XS ys
casexs of
(]
(X : xt)
caseys of
(] []
(y:yt)
let tl = Zip xt ytin
let hd (X, y) in
hd: tl

I A

Here bothcasexsandcaseysmay suspend. Note, however, that#éseyssuspends it is perfectly

safe to repeat the entire computatiorzifupon resumption. Doing so simply results in a redundant
test ofxs. The compiler therefore re-uses the same save point fordasixsandcaseys. Similarly,

the recursive caltip xt ytalways requires the live variables to be saved and restored. If the allocation
of hdinvokes the garbage collector, there is no need to save any state at all. After garbage collection,
execution can be resumed immediately after the recursivebeddirethe live variables are restored.

The attempt to allocatied will be repeated.

The rules for determining save points are very simple. At compile time, we keep track of the
preceding save point, if any. gaseexpression will share this save point (if none exists, a new one
is introduced). A call to the allocator can share a preceding save point, but subsequent code may
not and the save point must be killed. A function call always requires its own save point, as the
live variables are unconditionally saved across the call. A suspensive binding kills the save point;
however, the live variables of subsequent computations are saved and restored by the thread spawn,
So it acts as a new save point.

By assigning the same save point to nestadeexpressions, the number of function entry
points is reduced, in turn reducing the amount of testing and branching required for the entry point
mechanism. In the case pip there is a single entry point—the beginning of the function—and as
a result there is no need for any kind of entry point check at all. This is typical of Haskell code:
functions written using pattern matching result in a series of nestedexpressions, and there is
never any need to check the entry point.

There is one restriction on sharing of save pointcageexpressions: Aasecannot discrimi-

119

nate upon a field fetched inc@seexpression sharing the same save point. This typically occurs as

a result of nested pattern matching, yielding code like this from Queens:

hmvl =
casevl of
(n, I2) —
casei2 of
H — True
v2:v3 —
casev2of = —

Here, a new save point is required frasei2 becausa? is fetched fromvl, and another new save
point is required focasev2 because2is fetched in turn from2. This restriction is another effect
of the use of indirections. Imagine that is a tuple whose second figielis an indirection, and that
the two outercaseexpressions share a single save point. WEesei2 encounters the indirection,
the run-time system will be invoked and control will resume wittsevl. However,v1 will still
contain an indirection, anchsei2 will once again fail.

An alternative to splittingcaseexpressions in this way would be to have the run-time system
remove indirections reachable transitively from the frame. However, barrier indirections cannot be
eliminated until the referenced data has been promoted by the collector. Eager tenuring of nursery
data tends to move empty objects out of the nursery, increasing write barriers and dramatically
reducing performance. We therefore accept additional save points as a necessary cost of an efficient
garbage collection strategy.

The only cost of grouping save points is the expense of a small amount of extra computation in
the rare event that@aseexpression suspends or that the garbage collector is invoked. In addition to
reducing the number of entry points, grouping save points has a number of other beneficial effects.
The C code produced by the compiler is shorter, resulting in smaller binaries and faster compile
times. Combining entry points also appears to improvequmity of the machine code generated
by the C compiler. Most combined save points occur at natural control flow boundaries, such as
function call sites and the beginnings of threads; fewer basic blocks means greater scope for code

transformation.

120

7.2 Frame structure

It is tempting to view the frame simply as an activation frame, where local variables are kept during
computation. However, in Eager Haskell the shadow stack is used primarily to commuivieate
pointer databetween compiled code and the run-time system. The compiler must therefore ensure
that the frame iprecise—that is, that the run-time system can identify which frame data is still in
use. If frame information is imprecise, there will be space leaks: the garbage collector will retain
large data structures which are no longer in use (as they will be referred to either from the stack or
from a suspension). It is important for the compiler to guarantee precision: in a functional language
there is no way for the programmer to eliminate space leaks which are artifacts of compiler impre-
cision [119, 107, 106, 140, 123]. By contrast, procedural languages generally accept imprecision;
the programmer can fix space leaks by “nulling out” variables that cause excess retention.

The most flexible technique is to emit liveness maps, which indicate which frame entries actually
contain live pointer data. This allows the frame to be structured in the most efficient possible
manner—indeed, pointer and non-pointer data can be commingled on the shadow stack, simplifying
unboxing (Section 13.3.5). However, the run-time system must find the appropriate liveness map
in some fashion. Efficient techniques associate liveness information with return addresses [60,
143]. This is difficult when compiling via C: There is no simple way to create static tables relating
return addresses to liveness informatloAs a result, a compiler producing C must push additional
liveness information onto the stack at every function call.

Instead, in Eager Haskell we ensure that the frame contains only live data. This means that the
frame will always be as small as possible. Saving and restoring the frame when suspension occurs
is a simple matter of copying a segment of the shadow stack; however, the compiler must copy data
from one part of the frame to another when the frame shrinks. Thus, the stack will be smaller than
if an explicit descriptor were passed, but more instructions are required to save and restore stack
state. The frame need only be kept up to date at save points; minimizing the number of save points
mitigates the cost of stack shuffling. However, frame updates are unavoidable at call sites, so it
is unclear whether the Eager Haskell implementation benefits from keeping the frame small. We

expect that liveness maps will be required as the compiler evolves.

indeed, creating a single static table from information contained in multiple object files produced by multiple com-
piler runs requires non-portable linker support [67].

121

7.3 Allocation

As noted in Section 7.1, heap allocation can share its save point with prior code, but subsequent
code will require a new save point. This can be a particular problem when a series of allocations
occur in quick succession. Worse still, each such allocation will perform a separate check of the
heap pointer and will require separate code to invoke the garbage collector. Fortunately, the Eager
Haskell allocator makes it simple batchallocations: a single allocation action yields a large chunk

of memory which can be initialized to contain multiple heap objects.

The existence of back edges and recursive bindings complicates allocation. When a variable is
recursively bound, an empty object must first be allocated to hold the variable’s value (Section 6.8).
Later, the empty object must lgpdatedto reflect the actual value of the binding.

The present Eager Haskell compiler simplifies the problem by assuming that every binding
updates a previously-allocated empty location. For constructors and primitives it is easy to arrange
for the empty location to be large enough to accommodate the resulting value. Even when a binding
contains a conditional, space can be allocated for the largest of the possible results—unused space
will be reclaimed by the garbage collector.

It is not possible in general to statically determine how much space the result of a polymorphic
function call will require. The Eager Haskell compiler allocates a fixed-smzginuation objecfor
simply continuation) for every function call. The continuation is passed to the function; if the result
of the function is small enough, the continuation is updated directly, otherwise the continuation is
updated with an indirection pointing to newly-allocated storage which holds the result.

Experiences with the code generated by the Eager Haskell compiler have pointed out a number
of poor features in this technique for dealing with updates. The need to pass a continuation object
to every function call naturally increases function call overhead. Also, the Eager Haskell compiler
assumes every single binding is an updating store, which means every binding requires a write
barrier for generational garbage collection.

In addition, the compiler presently batches allocations at control flow boundaries (multi-branch
or suspensiveaseexpressions). This means that the space for long chains of bindings—even if
they are non-recursive—is allocated in one go and then gradually filled in. This in turn makes it
more likely some objects will be promoted between allocation and update, requiring a write barrier.
It also increases the time spent in garbage collection by adding live (but empty) objects which must

be moved. The compiler has traded the cost of checking the heap pointer repeatedly (due to less

122

aggressive batching) for the cost of performing additional write barriers (by keeping empty objects
alive across garbage collection). The overhead of a write barrier is approximately the same as the
overhead of allocation in the common case; nothing has been gained.

An alternate implementation of updates would compile code such that only bindings on back
edges were candidates for update. A back edge annotation causes an empty object to be allocated
which is large enough to hold an indirection. This is used as a proxy for the final value of the binding.
When the binding has been computed, the proxy can be updated with an indirection pointing to the
new binding. This approach has a number of benefits. Continuation objects can be eliminated,
leading to a more efficient (and more natural) function call mechanism. Allocation can be batched
so that groups of unlifted bindings are allocated at once; all bindings will perform initializing stores.
Finally, only empty proxies are subject to update, and they are updated only with indirections, so
the write barrier can use a simple mechanism for recording outstanding writes.

The problem of updates exists in Haskell as well as in Eager Haskell, and the mechanisms used
in lazy compilers closely parallel the ones described in this section. Most early Haskell implemen-
tations took some pains to ensure that objects were updated in place whenever possible [92, 99, 93].
However, implementations must support indirections irrespective of the existence of updates. Be-
cause there are efficient mechanisms for eliminating indirections, providing a special mechanism
for update-in-place may well be a false economy. Recent versions of GHC have eliminated update-

in-place entirely in favor of indirection [75].

7.4 Functions

Generating code for a lambda-lifted function is a straightforward process. Figure 7-1 shows the
code for the outermost portion of tHid function. The first line defines the static closure for the
function,Main$fib. The static closure is used when fitefunction is passed as an argument to a
higher-order function or stored into a data structure. The tag of the closure indicatgis thkes a

single argument, and that the closure does not contain any partially applied arguments. The body of
the function itself is nameMainfibP. The entry pointEntryPt, is passed using the C calling
conventions. Every Eager Haskell function which uses a non-zero entry point starts by checking
EntryPt. Note theuntaken annotation, indicating tha&ntryPt is expected to be zero. Tlii
function uses two entry points, zero (combined with the wrapper code for the function itself, and

thus shown in the figure) and three. If additional entry points are used, the bodyidf toamtains

123

static const PHOb Main$fib[2] = { MkTag(l, 1), &MainfibP };
static PHFunc(MainfibP) {
if (untaken(EntryPt != 0)) {
goto Restore3;
}
{
PHPtr $3, x$1 ; /* C locals for continuation and argument */
/* The beginning of the function is a valid suspension point. */
static const PHOb SuspDescO0[4] = { MkTag(UTagTag, 3),
MkTag(1, 5),
&MainfibP,
0x2}; /* $3 is computed. */
RestoreO:
x$1 = SP[0]; /* Restore argument from stack */
$3 = SP[1]; /* Restore continuation from stack */
if (0 {
TailEntry:
EntryPt = O;
}
CheckStack(Main$fib) ;
/* Lambda body */
}
}

Figure 7-1: Code for the outermost part of the one-argument funftiém moduleMain. This is a
slightly cleaned-up and commented version of actual compiler output.

aswitch statement dispatching @mtryPt.

The Eager Haskell compiler keeps data in C variables, saving and restoring it from the shadow
stack only when necessary. On entryibp the argument and the continuation must be restored from
the stack. This happens immediately afterkRbetore0 label. The beginning of the function is also
the save point for the conditional in tiié function. A descriptoBuspDesc must be generated for
every save point; itis this descriptor which is passed to the run-time system when suspension occurs.

Functions which call themselves tail recursively are particularly common in Eager Haskell.
Self tail calls use a different calling convention: instead of pushing the arguments onto the stack
and calling, the C locals and the stack are both updated directly. This allows the code for restoring
arguments from the stack to be bypassed, and the tail call branches dir@etiyfEntry. EntryPt

controls the behavior of code in unlifted bindings, and must therefore be reset to 0 to reflect the fact

124

static const PHOb Main$con_1529[3] = { (PHOb)MkTag(2,2),
(PHOb) fieldTagCAF (MkTag(1,0)),
(PHOb) fieldTagCAF (MkTag(1,0))};

if (Reserve(4)) {

Suspend O ;

gc(4, SuspDescO);

goto RestoreO;
}
con_1522$8 = HPat(4);
InitTag(con_1522$8, MkTag(Empty, 2));
/x o, i, x/
con_1522$8[1] (PHOb) IntBox (1) ;
con_1522%$8[2] (PHOb) e_1296%6;
StoreCon(con_1522$8, MkTag(1,2));

Figure 7-2: Code for the static constdft] and the dynamically-constructed tuglé e 1296),
taken from theQueensenchmark.

that execution is continuing from the beginning of the function.

Note that the Eager Haskell compiler generates all the code associated with a particular construct
in one go, even if some of that code is commonly executed from elsewhere. TehLEntry,
variable restore code, and the like are all generated in place and wrapped({...}. If (as
in fib) the function does not call itself tail recursively, theailEntry will be dead code and can
be eliminated by the C compiler.

The final piece of code before the body of fiiefunction itself is the stack check. This imple-
ments the exception mechanism used to throttle execution of Eager Haskell programs. The stack
pointer is compared to a threshold stored in memory. If the stack is too large, the run-time system
creates a thunk for the call fib; the static closurain$fib includes all the necessary information
for thunk creation. When an exception occurs the stack size is set to zero, causing all stack checks

to fail as described in Section 4.7.

7.5 Constructors

Figure 7-2 shows examples of the code generated by the compiler for static and dynamic constructor
expressions. A function closure is essentially a static constant, and unsurprisingly the code for static

list constan{[]] in Figure 7-2 looks very similar to the static closure filrin Figure 7-1.

125

Dynamic constructor expressions produce two code fragments. Code for allocation is batched
as described in Section 7.3 (in the example shown it happens that only a single object is allocated);
later code actually fills in the object fields. Allocation occurs in three steps. A cakderve
sets aside the appropriate storage. If garbage collection is required, execution suspends and the
garbage collector is invoked; after garbage collection execution is re-started from the preceding save
point. Otherwise, the allocated objects are emptikgitTag indicates that this is an initializing
store; because the tagHspty, there is no need to initialize the remaining fields in the newly-
allocated object. Later, the fields of the object are filled in and the tag is immediately updated
with StoreCon. This indicates that the object contains live data, and performs the necessary write
barrier. As a result, the fields of the object must be completely initialized bstareeCon occurs.

On a multiprocessor, th@toreCon operation must also enforce memory coherence guarantees as
described in Chapter 11.

Recall from Section 6.2 that Eager Haskell stores sinaltonstants and nullary constructors
in two static tables. Figure 7-2 includes references to both of those tahlesiTagCAF generates
a reference to the nullary constructor table, andBox generates a reference to the tabldruf
constants.

Constructor expressions in tail position must update the continuation rather than updating a
newly-allocated value. If the constructor is small enough to fit in a continuation, the generated
code is identical; the only difference is that the continuation does not need to be allocated. If the
constructor is large, a new object is allocated and emptied. The continuation is updated with an

indirection pointing to the still-empty object. The new object is later filled in as usual.

7.6 Function application

Recall from Section 5.5 that the Eager Haskell implementation shifts the complexity of curried
function application into the run-time system. Compiling a function application is therefore rea-
sonably straightforward. We make a distinction between known, full-arity applications and other
applications, and between ordinary calls and tail calls. Because self tail calls are handled specially,
this leads to five cases, three of which are shown in Figure 7-3.

An ordinary full-arity function application must save live variables to the stack, push the func-
tion arguments and continuation, and then call the function. On return the live variables are restored

from the stack once again. The callftb shown in Figure 7-3 happens to have four live variables;

126

PushVar(5); /* Make space for argument, live vars */
SP[2] = app_1235%$6; /* Store live variables */

SP[3] = prim_1240%$7;

SP[4] = app_1236$8;

SP[5] = x$1;

SP[0] = prim_1239$5; /* Store argument */

SP[1] = app_1235%6; /* Store continuation */

/* Non-tail call */

app_1235$6 = CallOb(Main$fib$P(0));

prim_124087 = SP[1]; /* Restore live variables */
app_1236$8 = SP[2];

x$1 = SP[3];

$3 = SP[4];

PopVar(2) ; /* Pop extra frame entries */

SP[0] = ¢2_992$2; /* Store closure */

SP[1] = TagBox(MkTag(1,0)); /* Store arguments */

SP[2] = c3_994%1;

return GeneralApply(2); /* Apply closure to two arguments */
SP[0] = prim_1540%6; /* Update both arguments on stack */
SP[1] = es_1253%4;

1_1250%$2 = es_1253%4; /* Update local variables for arguments */
t1_1252$1 = prim_1540$6;

goto TailEntry; /* Loop */

Figure 7-3: Three cases of function application. First, an ordinary call téilitfanction seen in
Figure 7-1. Second, a tail call to an unknown functashwith two arguments3 []. Finally, a
self-tail call from the internals of thiengthfunction.

a single argument is passed to fitefunction. Functions are always called with the argurment
indicating that execution starts at the beginning of the function (recall that all other entrypoints exist
for suspension; these are handled exclusively by the run-time system). Function results are returned
using the C calling conventions; tida110b wrapper macro exists to support experimentation with
those conventions.

An unknown function application works nearly identically to an ordinary full-arity application.
The only difference is that the closure is pushed on the top of the stackeardlalApply is called
with the number of arguments being applied.

Tail calls work very similarly to ordinary calls. However, there is no need to save and restore
live variables across the call; instead, the existing frame is popped and the tail-recursive arguments

replace it. The result of the tail call tsturned directly to the caller. This makes it easy for the C

127

PHPtr prim_1540$6;
if (Reserve(2)) {
Suspend () ;
gc(2, SuspDescO);
goto RestoreO;
}
ReservePrefetch(2);
prim_1540$6 = HPat(2);
InitTag(prim_1540$6, MkTag(Empty, 1));
/* (Untouched binding) */
StoreInt (prim_1540%$6, (LoadInt(tl_1252$1)+ 1));

if (((LoadInt(n_1319$5)+ LoadInt(v_1321$9))==
(LoadInt(m_1556$3)+ LoadInt(v_1555$2))))
{

} else {

Figure 7-4: Code for primitive expressions. The first fragment is the code for the binding
prim_1540 = tl 1252+ 1 from thelengthfunction (the code also allocates space for the box).
The second is the code foase(n-1319+ v_1321) = (m_1556+ v_1555) of ... from Queens.

compiler to identify the tail recursive call and transform it into a jump. We show a tail recursive call
to GeneralApply in Figure 7-3.

As noted in Section 7.4, we handle self tail recursion specially. Figure 7-3 shows a tail-recursive
call from inside thdengthfunction. The tail-recursive arguments are stored both into the stack and
into the appropriate local variables. The code then branches ttatt¥Entry; there is no need
to restore the arguments from the stack. The hope is that arguments which are already loaded into
registers can remain there across the tail call, rather than being written to memory and immediately

read back in.

7.7 Primitive expressions

The nested primitive expressionsaf translate to simple C expressions. Explicit synchronization
(Section 6.9) insures that variable references within primitive expressions refer to fully computed
values. Thus the variable references in Figure 7-4 simply fietcbalues from their boxes using the

LoadInt operation. When a primitive expression is bound, we must box the result. The first code

128

fragment in Figure 7-4 allocates a bpxim_1540 to hold anint. TheStoreInt operation then
writes anint value into the now-allocated box. Similar boxing and unboxing operations exist for all
primitive types.

When a primitive expression is the discriminant of a boolease the Eager Haskell compiler
generates a direct conditional rather than boxing and unboxing the boolean value. This is shown in
the second code fragment in Figure 7-4. This example also shows nested primitive expressions in
action: two additions and an equality test are performed with no intervening boxing.

The Eager Haskell compiler does provide a second mechanism for performing primitive appli-
cations which is more similar to the function application mechanism. A primitive afguments
is mapped to a C function taking a continuation argumentrabdxed arguments and returning a
boxed result. This provides an interface for various runtime routines which are written in C and
manipulate full-fledged Eager Haskell objects rather than primitive values. For example, the vec-
tor routines used in implementing arrays use this convention; see Chapter 9. The naming phase of
the compiler (Section 3.5.5) treats these primitives like ordinary function applications and names
their arguments and results. They are otherwise treated like ordinary primitives—arguments are

explicitly synchronized, and free variables need not be saved and restored across calls.

7.8 Case expressions

The simplest possible translation ocfseexpressions in Eager Haskell transforms them into C
switch statements, with one branch maisedisjunct and a separate disjunct to handle synchroniza-
tion. This is exactly how multi-disjunct synchroniziogseexpressions are compiled, as seen in the
first code snippet in Figure 7-5. Wheraseexpression mentions fields of the matched object, they
are fetched on entry. THengthfunction only uses the tail (and not the head) of its list argument;
the code shown corresponds to the case disjunces 1253 — TheHandleSuspend macro
handles suspension. The first two arguments are the entry point and descriptor of the appropriate
save point. The third argument is the variatl@25Q which is being synchronized upon. The final
block of code is executed after the run-time system has suspended computation. It retrieves the
continuation (saved with the rest of the live variables before the run-time system is called), pops the
live variables, and returns.

The compiler produces specialized code for particular sortsaséexpression. The special

cases handle instances whereageexpression has one disjunct, or has two disjuncts and is non-

129

TagSwitch(1_1250$2) {
/% [1 2 [1 =/
TagCase(1,0):
break;
/x o [1 %/
TagCase(2,2):
es_1253%$4 = asPtr(1_1250$2([2]1);

break;

default:
HandleSuspend(O,

SuspDescO,

1_1250$2,

{
$3 = SP[2];
PopVar(3) ;
PHSuspRet ($3) ;
ReturnTag($3) ;

s

if (TagIs(fap_1127$2, 1, 2)) {
PHPtr cf_800$10;
PHPtr r_801%$9;
cf_800$10 = asPtr(fap_1127$2[1]);
r_801$9 = asPtr(fap_1127%$2[2]);

} else {

}

HandleTouch(O,

SuspDescO,

t1_1252%1,

{
$3 = SP[2];
PopVar(3);
PHSuspRet ($3) ;
ReturnTag($3);

1

Figure 7-5: Code for threeaseexpressions. Firstasel 1250from thelengthfunction. Second, a
tag check for the already-computigb_1127from the Counter program. Finally, the synchroniza-
tion on thelnt valuetl_1252from thelengthfunction.

130

synchronizing. We have already seen in Figure 7-4 that primitive boalaseexpressions are
compiled directly intoif statements. Two-disjunct, non-synchronizoageexpressions need only
check a single tag. They are therefore compiled iftstatements, as seen in the second example
in Figure 7-5. Single-disjunct non-synchroniziogseexpressions are trivial: No tag checking is
required, and fields are simply fetched from the referenced object.

Single-disjunct synchronizingaseexpressions result from the insertion of explicit synchroniza-
tion (Section 6.9); they are handled by tiendleTouch macro as shown in the final fragment in
Figure 7-5.HandleTouch checks whether the provided object has been computed and suspends if

it has not. The check is annotated to indicate that no suspension is usually required.

7.9 Suspensive bindings

Suspensive bindings introduce thread spawns into Eager Haskell programs. If computation of a
binding suspends, subsequent code (the post-region) must nonetheless be executed. When the bind-
ing is resumed, the post-region mumt be re-executed. This works by assigning an entry point
number to the post-region which is strictly larger than any possible entry point in the spawned
code itself, but strictly smaller than any prior entry point. For example, in Figure 7-6 the spawn is
assigned entry point 1 and the spawned code includes entry point 2. When the spawned code sus-
pends, it jumps to a specigpawn entryhere labele$pawn1:. When control leaves the spawned
code—either normally or because of suspension-EthieyPt is compared to the entry point of the
spawn. If it is largerEntryPt > 1), execution began within the spawned thread; the post-region
was run when the thread originally suspended. The entire frame is popped and control returns to
the run-time system. If it is smaller, then execution began prior to the spawn, and control continues
into the post-region.

The Eager Haskell compiler assumes that spawned code can suspend at any moment. Local
variables must in a consistent state before the post-region is executed. As a result, the live variables
of the post-region are saved to the stack before the spawn. After the spawned code has run, the
saved variables are restored and the post-region is executed. Variables which are modified within the
spawned code (usually the variable being bound such828in the figure, and any live variables
which are synchronized upon) aret ordinarily restored after the spawned code is run; their newly-
computed values are used instead. However, if the spawned code suspends these variables may be

in an inconsistent state; as a result the spawn entry includes code to restore them.

131

/* Thread spawn */

PushVar(2); /* Allocate space for live variables */
SP[0] = v_898%5; /* Save variables for post-region *x/
SP[1] = app_1537%$6;
SP[2] = 1_1052$7;
{
default:
HandleSuspend(2,
SuspDesc?2,
actualProgramArgs_1557%4,
{
PopVar (1) ;
goto Spawnl; /* Continue with post-region */
s
}
if (0 {
Spawnl:
v_898%5 = SP[0]; /* Reload variable computed in thread */
}

if (untaken((EntryPt > 1))) {
/* Unspawn; we resumed within the spawned thread. */
PopVar (6) ; /* Pop live variables, return to run-time */
ReturnCon ((PHPtr)NULL) ;

}

app_1537$6 = SP[1]; /* Reload variables live in post-region */
1_1052%7 = SP[2];

e2_846%$2 = SP[3];

el1_8443%3 = SP[4];

$9 = SP[5];

/* Post-region */

Figure 7-6: Code for a thread spawn resulting from the binding398
caseactualProgamArg®f. .. in Queens.

132

Chapter 8

Bottom Lifting: Handling Exceptional

Behavior Eagerly

The eager strategies we presented in Chapter 4 have one important shortcoming: They do not yield
the expected semantics for the Hasleztbr function. This is becauserror, when called, prints an
error message on the screen and immediately terminates the program. For example, consider the

following term:

let unused = error "You, jused, the junused, variable"
in const7 unused

The lazy strategy will evaluateonst7 unusedo obtain 7. An eager strategy might choose to eval-
uateunuseckagerly, causing the program to terminate prematurely. Even worse, the hybrid strategy
could result in either behavior, depending on whether fallback occurs. If we eagerly evaluate a call
to error, we may terminate the program when the lazy strategy would have produced a result. In
order to compile Haskell eagerly, we must identify error handlers and treat them specially.

In a safe language such as Haskell error checks are common; aggressive program transformation
is necessary to produce efficient code in the face of such checking. At the same time, error handlers
have stronger semantics than ordinary expressions. By identifying error checks at compile time, we
can transform error checking code in ways that would not be permitted for other program constructs.

We discuss error handlers in the broader contexdieérgence Divergent expressions will
never yield a value, either because they signal an error or because they fail to terminate. We present
a semantics for divergence using the same general techniques as the non-deterministic exceptions

found in Glasgow Haskell [102, 81, 76]. These past efforts presented a large-step semantics for

133

divergence. Unfortunately, a large-step semantics makes no distinction between reduction rules and
strategy. Because the details of reduction strategy are of paramount importance in designing the
Eager Haskell implementation, we present a small-step semantics for divergence in Section 8.1. In
Section 8.2 we describe how the various strategies can be extended to incorporate divergence. In the
hybrid strategy used in Eager Haskell all reductions involving divergence can be performed inside
the run-time system.
In order to compile divergent code, the Eager Haskell compiler uses a technique hvetiat
lifting. Bottom lifting identifies error handlers and hoists them out of program code. Hoisting error
checking in this way is beneficial even if error handling code is otherwise treated just like other
program code. This is because many functions in Haskell consist of just a few lines of code. For
example, the prelude provides simple accessor functions suweaen lists:
head(x : xs) = X
head(] = error "head: null list"
In practice, it is more expensive to cakadthan it is to perform the computation directly. As a
result, Haskell compilers perform extensive function inlining. What happens when we inline, say,
(head arg$ in print (fib (read (head arg$))?
main =
do args «— getArgs
print (fib (read (caseargs of
(X:Xs) — X
[] — error "head: null list")))
We have duplicated the error message. This turns out to be larger than the rest of the code we
inlined!
There is a simple solution to this problem: don’t inline the error handling code. We split the

definition ofheadas follows:

head(x: xs) = X
head(] = headError
headError = error "head: null list"

We can inlineheadwhile leavingheadErroralone. We call this splitting bottom lifting because it
extracts code which diverges—which is semantically equivaledt-teand lifts it into a separate

procedure or thunk. A single error handler is shared by every occurreteadin our programs.

134

E = | 1(E)
N == | 1(E)
Vo= | 1(V)
le[] == ... [10l
I o= | 1S
St(e)] — (e Ls
casex=¢, of _—1(e) — 1(e) de
1(1(e)) = (e Le
1(letrec bsin e) = letrecbsin 1(e) 1y
1(e) — e 14

Figure 8-1: Syntax, contexts, conversions, and reductions for divergence.

We can spot divergent functions using a combination of strictness analysis and type information;
the techniques used are described in Section 8.3. However, bottom lifting comes into its own when

error handling code is part of a larger function. Consider this definitidaibf

tail (x: xs) = XS
tail [] =
let file = "PreludeList.hs"
in let line = 37
in let column =0

in matchError file line column

Here the entire nesteldt expression is devoted to error handling. We can use our semantics to
enlarge the bottom region so that it encompasses the bindinfjefdine, andcolumn The trans-

formations enabled by distinguishing divergent expressions are discussed in Section 8.4.

8.1 Semantics of divergence

We distinguish a divergent expressierby marking it with an uparrow] (e). In Figure 8-1 we
present the semantics of divergent terms. These semantics are actually fairly straightforward. When
atermf(e) occurs in a strict contexde], no progress can be made umtitonverges. Thus, when
diverges we can replace the whole contgi{(e)] by 1(e) (Ls). We can push divergence markings
throughlet andletrecas in ;. Finally, 1 . is equivalent tal ; when read as a left-to-right reduction;

no semantic harm can result fraddingredundant exception markings, however, and we therefore

state it as a separate equivalence.

135

The definitions of strict contexts and instantiation contexts must be extended in order for in-
stantiation andtasehoisting to work as expected in the presence of divergence. We simply need
to extendlg[] andS]] to permit instantiation and hoisting past divergence. Note in particular that
casex = e of _ —1(e) =1(casex = g of _ — e) [n,05,m reversed]; this rule is used in
Section 8.4 to enlarge a region of divergent code.

Our semantics for divergence is non-deterministic. The tulean choose any one of several
divergent primitive arguments. More subtly, rules suchraseorder expressions and also permit
more than one divergent outcome. Performing reductions according to the rules in Figrafirgs.
the program [81]—possibly decreasing the number of exceptional outcomes which may result. If
we allowed L ; to be interpreted as an equivalence, we would discover that all divergent expressions

are equivalent:

T(e) = T(eo)+ 1(er) 1, (reversed)
= T(e) L

This is a perfectly reasonable semantic view, but than7(e) serves no useful purposie) =_L.
In practice, we expect thaail [] will not print “Division by zero”, and we therefore expect some
distinction to exist between different divergent terms. This does mean that refining reductions are

non-confluent:(ey)+ 7(e;) can reduce to the incommensurable valiies) and?(e;).

8.1.1 The meaning of a divergent expression

We have not addressed one crucial question: What ti¢esactually mean, and how does that
meaning compare to the meaningedfself? We can take two positions on this issue. The simplest
view is that(e) is simply anannotation which indicates thag will diverge when evaluated. Under
this view, it is perfectly legal to erase the annotatian); its only purpose is to guide our reduction
strategy. This is the view currently taken by the Eager Haskell implementation.

Alternately, we can view (e) as propagating a speciexception value Such a value can be
caught by the top-levdlD computation. This approach is described in [102], where the exception-
handling primitive is namegetException From a semantic standpoint, this is quite simple; we
simply need to replace ; with the equivalencegetException 7 (e) = return $! Bad $! e and
getException v return (OK v). At the language levejetException a — 10 ExValande:: ExVal
ThelO type ofgetExceptioneflects its non-determinism; indeed, the semantics of [102] collect all
exceptional outcomes as a set, gygdExceptiorselects non-deterministically from this set. This

avoids the need for refining reductions in the purely-functional part of the language. In order to

136

he (x=1(e); k) r

x=T(e), h e (k)r (suspend on bottom)

x=¢e h e (y=9x;Kkr = he (x=¢€) (y=9x; kr (force)
e¢varne¢ V Aedl(E)

x=7(e),h e (y=9x]; kkr — x=7(e), h e (y=x;kr (propagate bottom)

x=1(e), h o (y=Xx) — X=¢€ h e (y=x (diverge)

Figure 8-2: The hybrid reduction strategy in the presence of distinguished divergent terms.

obtain an acceptable equational semantics in the face of divergence, we must either equate divergent
terms, or work with a collecting semantics of this sort.

Note that there is a disconnect here: For everyday equational reasoning, it is simplest if all diver-
gent expressions are considered identical. The programmer making this assumption will, however,
assume that any divergent behavior which is exhibited is related to the original program code. This
is the reason we state in Section 8.1 thatithplementation(and thus the underlying semantics)
must distinguish different divergent terms.

Note that regardless of whethgfe) represents divergence or an exception value, it is always
safe to mark a non-terminating expression as divergent. In either case, we collapse away portions
of the term which depend strictly upon the divergent expression. In the former case, we eventually
erase the annotation; if we evalugeave get stuck. In the latter case, the divergence can be caught
usinggetExceptionin which casee will be evaluated strictly and non-termination will once again
result. The semantics given in Figure 8-1 are a direct reflection of the equivalences which hold in
the presence of non-termination. These equivalences are outlined in various sources, including two

works by Barendregt [22, 23].

8.2 Evaluation strategies for divergence

Adding divergent terms tac only has a small effect on many of our reduction strategies. The strict
and lazy strategies only require the erasure tuje neither strategy requires special mechanisms
for dealing with divergent terms. (Note, however, thdl(i) is viewed as an exception mechanism
as described in Section 8.1.1 then there islnorule, and_L; reductions must be used to unwind
execution to the nearegetExceptior) The hybrid strategy must be modified as shown in Figure 8-

2. Divergent bindings are never evaluated directly; they always suspend immediately (suspend on

137

bottom). Ordinarily, a divergent binding cannot be forced (force). Instead, a computation which de-
pends upon a divergent binding will diverge and this divergence must be propagated. We can justify
the reduction rule (propagate bottom) given in the strategy using a combination of instantiation,
and_;. A divergent annotation is erased usihg only if we must do so to make progress. In this

case, there will be only a single binding remaining on the stack (diverge).

8.3 ldentifying bottom expressions

The most basic step in bottom lifting is identifying subexpressions of the program which diverge.

Fortunately, there are several techniques which assist us in doing so.

8.3.1 Strictness information

Strictness analysis is the fundamental means of identifying error handling regions. A funigion
strict in its argument if 1=_1. Note, however, that functions which retutnhave the special
property thatf x =1 for any x Thus, divergence is the degenerate case of strictness analysis,
where information about function arguments and free variables turns out to be irrelevant! Numerous
techniques have been proposed for performing strictness analysis [92, Ch. 22], with widely varying
tradeoffs between analysis speed, precision, and detail. For the purposes of bottom extraction,
however, any reasonable strictness analysis is sufficient. In the Eager Haskell compiler, where
boolean functions represent strictness, a divergent expression will have the constant feadston
as its strictness information. We need not evaluate the abstract function—we just simplify it (a
necessary step in computing its fixed point).

Note that once we have performed bottom lifting, we need not perform strictness analysis on the
bottom expressions again. Instead, we can use the results of bottom extraction to refine strictness
analysis. In practice, this reduces analysis time slightly, but does not improve precision (since

bottom extraction uses the same information base as strictness analysis does).

8.3.2 Type information

Consider for a moment the type of Haske#isor function:
error ::V a: String— a
According to the type, the result of a call éoror must be ofany and everyHaskell type. There is

only one value that belongs to every type, and that value. i$his is the free theorem farror's

138

type. There is a general class of free theorems [136] with exactly the same property:
XZZVaITlﬂTzﬂ...TnHQ,CX%ﬂ — X€e 6&...en=L

In essence, if a function’s result can have any type at all, the function will diverge when called.

Because Haskell already performs type inference, it is quite simple to check this condition. This
test is effective: error handling code entails a call to the Haskedk function or its kin, so we will
always encounter a function with an appropriate type.

In practice, we use type information to refine strictness analysis. The two techniques are com-
plementary: types tells us certain expressions are bottom in the absence of strictness analysis, and
strictness analysis propagates that information through the rest of the program. Thus, our strictness
analysis phase performs two checks before it actually analyzes an expression: First, it skips analysis
if it encounters an already-lifted bottom. Second, it skips analysis if type information indicates the

expression is bottom.

8.3.3 Compiler assistance
The following definition oftail works identically to the one given earlier:
tail (x: xs) = XS

The compiler must insert an explicit error check when it is compiling the pattern match. The com-
piler can automatically tag the error-handling code as a bottom expression, or the error handler can

be emitted in lifted form from the start. In either case, bottom lifting costs next to nothing.

8.4 Enlarging the lifted region

We would like to make the region we extract as large as possible. The Eager Haskell compiler
does not explicitly remember a type or a strictness for every single subexpression in a program;
propagating this much information and keeping it up to date is onerous. The analyses described so
far are only useful for variable bindings, function applications, and variable references. In the code
for tail given in the beginning of the chapter, only the calhtatchErroris identified as a bottom
expression; this expression must be enlarged to includetindings which enclose it.

The semantics in Figure 8-1 provide the tools we need to enlarge regions of divergent code.

The ruleL; (applied in reverse) allows us to hoist divergence petsindletrec. For example, the

139

T(casex=eof [| — &; z: 25— €)
= [(casex= (casey=eof _—y)of[| - e&; z:25— €) il

= casey=-eof _—J(casex=yof [|] - e; z:25— €) Os

casey = e of
= []—=T(casex=yof [| - &; z:25— €) Nas Xp
v:vs—T(casex=yof [| - &; z:zs— &)

casey = e of

= [|—=1(casex=yof [| » e [y/x]; z:zs— e [y/X]) Le
v:vs—{(casex=yof[|] — e [y/X]; z:zs— e [y/X])
casey = e of

= [l =Me [y/x]) Ld, Xps Xd
vivs—T(er [y/x] [v/ 2] [vs/zs)
casex = e of

= [-(e) a
ZZZS—>T(91)

Figure 8-3: Hoisting divergence from a multi-disjunct case.

expressions iail have the formet i = e in 1(e) and are thus rewritten &% let i = ey in e).
The ruleo, (again applied in reverse) allows us to hoist divergence out of a sicagiEexpression;
this can be extended to more comptaseexpressions as shown in Figure 8-3. The enlargement
step takes 25 lines of code in the Eager Haskell compiler.

During enlargement the compiler also marks functions which return bottom expressions, making
note of their arity. Such functions are error handlers which have already been factored out of the

code by the programmer, or by previous compiler passes; we do not attempt to lift them again.

8.5 Lifting divergent terms

Lifting a divergent term is simply another form of lambda lifting (see Section 6.3). When the bottom
lifting phase encounters an expression of the fo(®), e is abstracted with respect to its free vari-
ables and hoisted to top level. The only special feature of bottom lifting is that it is perfdrefie

most optimizations, and can be repeated as often as necessary during compilation. In particular, bot-
tom lifting occurs before inlining decisions are made; by lifting out divergent expressions, functions
are made smaller and more easily inlineable. Early lifting does mean that divergent expressions will

not be optimized based upon the context in which they occur. However, since divergent expressions

140

represent exceptional control flow, we actually disable most optimization in such code anyhow.

Only contractingoptimizations are performed in divergent regions.

8.6 Divergent computation at run time

After bottom lifting, all divergent expressions in the body of the program will have the fdmn
or 7(fx Xx). This makes it particularly easy to represent such a computation. The marking on an
expression of the form(x) can simply be dropped; the annotation is useful only to indicate to the
optimizer thatx diverges. The transformations described in Section 8.4 can be crafted to ensure that
the binding forx itself has the fornd (fx X).

Expressions of the form(fx X;) are simply a special form of thunk—tHmttom thunk They
are represented and run in precisely the same way as ordinary thunks (Section 5.7). Like ordinary
thunks, bottom thunks can be transformed into pseudo-constructors before code generation (Sec-
tion 6.7).

The run-time system must perform the reductions in Figure 8-2. Forcing a divergent binding
x =1 (f X;) always fails, resulting in suspension (suspend on bottom). If an attempt is made to
force a suspensioyn = Sx] which is dependent (directly or transitively) upon a divergent variable
x =T (f Xg), the suspension is overwritten with an indirection to the divergent expregsiorx
(propagate bottom). Similarly, when a thupk= x y; applies a divergent function=1(f X;), the
thunk is also overwritten with an indirection= x. Finally, if the result of forcing the outermost
expression is divergent, we rewrite the tag of the bottom thunk so that it becomes an ordinary thunk

(diverge). This thunk can then be forced as usual, causing the program to actually diverge.

8.7 Related work

The hybrid execution strategy in Eager Haskell requires the compiler to distinguish divergent ex-
pressions in some fashion. At its heart, however, bottom lifting embodies a basic principle of
compiler construction: focus effort on the code which will be most frequently executed. The entire
field of profile-based optimization is predicated on the notion that aggressive optimization should
be restricted to procedures that are heavily executed. The technique we describe here uses obvious
static information to weed out code which is unlikely to run.

We know of no work either on selective inlining of just the hot portions of a procedure body

141

or hoisting infrequently-executed code fragments. There are, however, a number of closely related
branches of research that deserve attention. Program slicing has been used to improve the readability
or debuggability of programs, and to identify related computations in order to parallelize them [141,
131]. A program slice is an executable fragment which contains only the computations necessary
for producing a particular value. We imagine our bottom-lifted program as an executable fragment
which produces meaningful results in the absence of errors in the input.

Procedure extraction hoists related computations into a separate procedure [44]. As with pro-
gram slicing, extraction efforts are directed at improving the readability or debuggability of pro-
grams, and there is substantial crossover between the fields.

The transformations we perform on divergent expressions generalize and simplify optimizations
which already existed in our compiler. Shivers describes a similar set of transformations to hoist
dynamic type checks in scheme programs [122]. Similar concerns motivate special treatment of
exception handling code in procedural languages. For example, thefilalzmapiler for Java uses

an intermediate representation where basic blocks continue past exceptional control flow [32].

142

Chapter 9

Implementing Lazy Arrays

In Haskell, theArray data type must be used in fairly restricted ways.A&ray is constructed using

the functionarray (or one of its variants), which is an ordinary Haskell function whose arguments

are the array bounds and emitializer—a list of tuples(index value) specifying the contents of the

array. These tuples are usually constructed using a list comprehension. Arrays are accessed using
the indexing operator!®. Examples of both construction and indexing can be found in the code for
thewavefront benchmark in Figure 9-1.

There are a few crucial constraints on array comprehensions such as the one shown in the figure.
First, arrays are creatéd bulk—the array is allocated and its contents are filled in using a single
operation. Second, arrays are bounds-checked. This is not in itself surprising; bounds-checked
arrays are an integral part of a modern strongly-typed programming language.

However, bounds checking interacts in a very unusual way with bulk construction. What if one
of the initializer elements has an out-of-bounds index? Haskell requires that the remutiyolbe
undefined in this case. In this way, if an array has an out-of-bounds initializer, the error can be

caught and signaled when the array is used. However, this means that an array is undefined until

wave . Int — Array (Int, Int) Float
wave n = a
where a =

array ((1, 1), (n, n))
(L), 10) | j [L..n]l4
(((1,1),20) | i< [2..n]}4
(G J), (@i -1, J)+a'(l j-)+a-1j-1)/30

| i [2..0],) [2..0]))

Figure 9-1: Theravefront benchmark

143

every single index has been computed and bounds-checked.

This behavior is pronounced if we consider cases where the array is constructed non-strictly. In
wavefront array elements depend on the values above them and to their left. This recursive de-
pendence is valid in Haskell because only values, and not indices, depend on other array elements.
Johnsson [56] gives examples of graph operations which are more efficient if arrays are constructed
lazily. This allows both valueand indices to depend on the values of other array elements. Ac-
cessing an as-yet-undefined array element causes more of the initializer elements to be evaluated,;
an out-of-bounds initializer causes accesses to as-yet-undefined elements to fail, rather than forcing
the entire array to be undefined.

Ironically, “lazy” arrays in the style of Johnsson are actuélittersuited to eager evaluation.

We can evaluate both indices and values eagerly, filling in array elements as we go. If the initializer
is written in an order which respects dependencies between array elements, there is no need for
array construction to ever suspend. In theefront example, all elements depend on previously-
defined elements (if we read the initializer from left to right), and thus the result can be built eagerly
without suspending. With Haskell-style arrays computation of element values must suspend until
the array has been fully initialized.

Under Johnsson’s semantics, array indices are still computed one at a time in the order in
which they are specified—though that computation is now interleaved with other execution. In
Eager Haskell we take Johnsson’s lazy array semantics one step further, by providing lazy, order-
independent arrays. An array element obeys I-structure semantics: it may be either empty or full,
and if it is empty any accessing computation will suspend until it becomes full. Indices for initial-
izers may be computed in any order; array elements are filled in as their indices are computed. If at
any time an index overlap occurs the current array operation fails.

In practice, initializers are evaluated eagerly; if a particular index computation suspends, it is
deferred and re-tried later. Ordinarily, we expect the programmer will write initializers which are
properly ordered, and suspension should not be necessary. However, consider what happens if
fallback occurs while an array is being constructed, causing array elements to remain undefined.
When we access such an element, it will not contain a suspension pointing to its contents. The
suspended initialization cannot be associated with a particular element of the array, and risks being
thrown away. There needs to be a mechanism for associating initialization computations with the
array as a whole. As we shall see in the remainder of this chapter, given the need for such a

mechanism it is not difficult to provide the very flexible ordering of initialization we desire.

144

data (Ix a) =~ Array a b = MkArray a a(Vector b SignalPool

array (I, u) ivs = MkArray | u (iVectorToVector ypool
where size = rangeSiz€l, u)
\% = makelVector size
pool = signalPoo$

map (\(i, X) — iVStore v(index(l, u) i) X) ivs

MkArray | u v pooli = vFetch v poolindex(l, u) i)

vFetch v pool i
| slotFull v i = getl\Vector v i
| poolEmpty pool = error "array,_element undefined."
| otherwise = thunk vFetch \(forcePool poo) i

Figure 9-2: Implementing arrays usisggnalPoo$

The standard HaskeRrray constructors can be defined using a monadic mechanism such as
state transformers [63]. The State Transformer approach constructs a mutable array and fills its
elements in using update operations. When all elements of the array have been initialized, the
mutable array is “frozen”, converting it into the immutable array which is visible to the rest of the
program. We cannot easily use such mechanisms for lazy array construction; the final array is not
available until every update is complete. We therefore need an entirely new mechanimsm—signal

pools.

9.1 Signal Pools

In order to track suspended initializer computations, we define an abstractisignlhépoo] which
can efficiently represent suspended initializers. A simplified implementation of arrays using this
abstraction can be found in Figure 9-2. We make use of I-structure vectorsV$tweprimitive
stores a value into the array, returning the void valuence the array slot has been imperatively
modified. The signal pool is constructed from the results of allit&toreoperations using the
signalPoolfunction. Every array includes a signal pool.

Elements are fetched by tw&etchfunction. We check if an element is properly defined using
the slotFull function. If it is, we need not bother with the pool at all. If both the pool and the slot
are empty, there are no outstanding writes and the array element is simply undefined. An error is

signaled. Finally, if there are entries in the pool then the pool must be forced in the hopes that the

145

slot will be filled. We then attempt to fetch the array element once again.

Note that the list passed gignalPoolis not an efficient representation. It contaibsth evalu-
ated and unevaluated computations. Imagine all but two elementsreélment array have been
computed. If we access one of the undefined elements, we would need to traverse the initializer list,
skipping over as many as— 2 elements, before finally discovering a candidate to force. Mean-
while, the initializer list must be constructed and stored, more than doubling the space required by
an array! Clearly, most of these entries are alregdynd can be ignored.

We therefore require that signal pools take up minimal space. We add an entry to the pool only
when an initializer computation suspends. Thus, we construct the pool by running the initializer
computations. We check whether a given computation has completed; if it has not, we create a data
structure which can be used to later force the computation. We collect these data structures together

into the pool.

9.2 Usingseq

Haskell already includes a function that does exactly what we want'ségeombinator evaluates

its first argument, then returns the value of its second argument. The Eager Haskell compiler turns
calls toseqinto touch operations. If the touch operation succeeds, execution continues normally; if
the touch operation fails, then a suspension is created. Thus, it seems as if we can create a signal

pool simply by joining together computations wibq

type SignalPool = ()
signalPool = foldr seq()

This yields a very efficient implementation of signal pools. BlgnalPoolfunction can be inlined,

and themapandfoldr functions deforested [38, 70], so that the signal pool is computed directly
rather than generating an intermediate list. Unfortunately, inlining#ggombinator makes com-
putation overly strict. The compiler will happily transform the program so that subsequent calls to
iVStorewill not happen if a store operation suspends. This will cause deadlock if array accesses

occur out of ordet:

a=array (0, 2) [(al0, 2), (al2, 1), (2, 0)]

!Note that Johnsson’s original conception of lazy arrays would prohibit this example as well—stores occur in initial-
izer list order. The looser semantics we describe here are based on a desire to parallelize array generation, and on the fact
that map/reduce deforestation can be allowed to change the order of list elements to transform recursion into iteration.

146

type SignalPool = ()

signalPool = foldr lastExp()
poolEmpty = iISWHNF
forcePool = try

Figure 9-3: Implementin@ignalPoo$

becomes:

let x = vFetch a0 in

caseiVStore a X2 of _ —
lety = vFetch a2 in
caseiVStore a yl1 of _ —

caseiVStore a2 0 of _ — ()

The final store will never occur—the computationxolvill suspend, causing the entire signal tree
to deadlock.
The cause of this problem is simple: the Eager Haskell compiler has aggressively optimized our
program assuming it is side-effect-free. The internalarody have side effects. The solution to
the problem is surprisingly simple—prevent the compiler from inlingegiby putting it inside a

wrapper functiorpoolSeq Then we obtain:

let x = vFetch a0 in
let u = iVStore a X2 in
lety = vFetch a2 in
letv=iVStore aylin
let w = iVStore a2 0in
u ‘poolSeqv ‘poolSeqw ‘poolSeq ()
Here every computation will initially suspend except the computationMorThe computation

w ‘poolSeq () will run to completion, yielding) and thus a minimal signal pool.

9.3 Fairness usindastExp

Unfortunately, this is still not quite enough. The problem is that the remaining pool elements must
be forced in order. If we attempt to fetch either undefined elemewi]l be forced, forcingx in
turn. Becausw is still suspendeds will again attempt to force the pool, resulting in deadlock. We

would prefer that the pool attempt to make progresalbbmf its elements. In order to do so, we

147

must control suspension much more carefully. We use the funtzgiixp This function can be

defined as follows:

lastExp © a—a—a
lastExp a b| iSWHNF a = b
| iSWHNF b = a
| otherwise = thunk lastExp(try a) (try b)

If either argument is defined, then we discard it and return the other one. This ensutastiwgi
still yields a minimal signal tree. If neither argument is defined, we attempt to compute both argu-

ments and suspend. The final implementation is shown in Figure 9-3.

148

Chapter 10

Results

In this chapter, we present measurements of various aspects of the Eager Haskell compiler. We
use a selection of benchmarks culled from thedheib Haskell program suite, plus a series of

test programs used during the development ofpHeand Eager Haskell compilers. We begin by
detailing the benchmarks and their coding style (Section 10.1). We then present high-level run times
for Eager Haskell and for Glasgow Haskell (Section 10.2). Most programs run more slowly under
Eager Haskell than when compiled with the more mature GHC; however, the slowdown is usually
not more than a factor of two. The exceptions either trigger compiler bugs or violate one or more of
the assumptions made in the Eager Haskell implementation.

Succeeding sections look at particular aspects of compiled code. We begin with garbage col-
lection (Section 10.3). We then look at function application (Section 10.4) and fallback behavior
(Section 10.5). Finally, we look at the cost of suspension (Section 10.6) and variable forcing (Sec-
tion 10.7).

The real promise of eager execution is that it eliminates the need to annotate programs (espe-
cially tail recursion) to control strictness. The multiplier benchmark is one example of a program
which must be annotated in this way. We conclude the chapter with a case study of the multiplier
benchmark, examining its behavior with and without annotation and optimization (Section 10.8).

Three kinds of numbers are presented in this chapter. Times are always in seconds. Ratios
are generally presented as percentages, and marked as such. Event counts are listed in tables as
the raw numbers collected from program runs. In graphs times and ratios are presented in the
obvious manner. Most event counts are normalized with respect to mutator time; this allows us to

perform side-by-side comparisons of programs with radically different run times and vastly different

149

Name Abbrev | Source Description Lines | Code
Fib fib pH recursive nfib, all ints between 1 and 37 35 10
clausify claus spectral | convert to clausal form, 7 times 188 87
fibheaps fheap | spectral* | array fibheap versus sort, size 10000 286 89
Queens queen | pH n-queens, all ints between 1 and 12 55 26
queens gu-no | imaginary | n-queens, problem size 10 14 9
Paraffins para pH enumerate paraffins up to size 23 210| 102
paraffins p-no imaginary | various paraffins stats, up to size 17 89 65
Primes prime | new sieve: every 100 primes through 50000 49 36
multiplier mult spectral | pipelined multiplier, 2000 cycles 503 | 289
Wave wave pH float wavefront array relaxatio200 x 200 46 20
MatrixMult MM pH int matrix multiply, 100 x 100 52 22
Gamteb-acarg gam pH Monte Carlo; uses trees, size 4000 702 | 518
gamteb g-no real uses arrays, multiple source files, size 2048702 | 526
symalg sym real compute sqrt(3) to 15000 places. 1146| 885
anna anna real strictness analyzer, using “big.cor”. 9521 | 6383

Table 10.1: Benchmarks presented in this chapter. For comparison purposes, the Eager Haskell
compiler itself has 32328 lines and 21522 lines of code.

proportions of time spent in garbage collection.

10.1 The benchmarks

The benchmarks used in studying the Eager Haskell compiler are summarized in Table 10.1. The
pH benchmarks were used (sometimes in a slightly older form) to study the performancepbif the
compiler; results fopH on a Sun multiprocessor can be found in Alejandro Caro’s Ph.D. thesis [31].
All these benchmarks use a single source file.

The remaining benchmarks are part of the nofib suite of Haskell programs [89]. These are
roughly divided into three classes. Timaginarybenchmarks are small, contrived programs writ-
ten specifically as benchmarks. Thpectralbenchmarks are slightly larger (but still small) pro-
grams written for purposes other than benchmarking. Ea¢benchmarks are large multi-file
applications.

Several programs exist in both benchmark suites. gHhgersions have generally been tweaked
to deforest gracefully, or to eliminate trivial uses of infinite lists. Phtbenchmarks also use larger
problem sizes.

The benchmarks were chosen to provide a broad range of problems and coding style. Most no-
tably, thepH benchmarks do not contain any infinite lazy computations and tend to be array-heavy.

By contrast, many of the nofib-only benchmarks create large or infinite tree-like data structures.

150

10.1.1 Fib

The fib benchmark runs n-fibonacci (fibonacci with the recursivefibalk — 1) + 1 + fib (x — 2))
for all Ints between 1 and 37. The program is little more than arithmetic and function calls, and
uses no non-strictness whatsoever. We include fib as a measure of two aspects of the compiler: call

overhead and slowdown due to the lack of unboxing.

10.1.2 Clausify

The clausify benchmark parses the logical expreséora=a) = (a=a=a) = (a=a=a)
and converts it to clausal forra seven times. This is an exercise in symbolic manipulation of

tree-like data structures.

10.1.3 fibheaps

The fibheaps benchmark generates a list of 10000 raridtsnand sorts them two ways: using the
sort function from the prelude, and by constructing a fibonacci heap and then enumerating it. The
deleteMinroutine uses a small-scale array accumulation; the efficiency of this operation and of the

built-in sort determine the overall speed of the benchmark.

10.1.4 Queens

The queens benchmark enumerates the solutions to the n-queens problem using a naive generate-
and-test algorithm. The computation mainly takes the form of list comprehensions. Queens is used
as a test of deforestation [38, 70]; most of the intermediate lists can be eliminated. This also permits
shortcutting of control flow.

We evaluate two nearly-identical versions of queens. fHe&ueens is listed first in all figures.
It has been tuned to use a deforestable intermediate list in the innermost loop. It enumerates all
solutions with board sizes between 1 and 12. The nofib queens, listed second, enumerates only the

10x10 solutions. The innermost loop is written using recursion.

10.1.5 Paraffins

The paraffins benchmark [85] enumerates all the paraffins (molecules with the chemical formula

CnHsypi9). This is a highly recursive problem: very large lists of partial solutions are constructed,

151

and once constructed each partial solution remains live for the remainder of the run. As a result,
paraffins is extremely GC-intensive, even when a generational collector is used.

Again, two nearly-identical versions of paraffins were evaluated. pFhearaffins, listed first,
simply lists the number of paraffins of sizefor eachn < 23. The nofib paraffins, listed second,
prints a number of statistics relating to counts of partial solutions in addition to solution counts. It
only enumerates paraffins for whieh< 17. Because of the combinatorial explosion in the number
of solutions (and the amount of live data in the program) ptHeversion takes quite a bit longer to

run. Larger problem sizes.(> 23) do not fit comfortably into physical memory.

10.1.6 Primes

A number of versions of the sieve of Eratosthenes have been written in Haskell, ranging in com-
plexity from two lines to a couple of pages of code. Non-strict sieves produce their output list
incrementally, and frequently the result is an infinite list of primes which is cut to size as needed.
Because the sieve makes use of a long, persistent list, it has proven troublesome in the past for
generational garbage collection [109].

The sieve used here prints the first of every 100 primes less than 50000. It has a couple of unique
features. The list of candidate primes is bounded above by 50000. The actual sieving operation itself
subtracts the infinite ordered list of multiples of the current prime from the list of candidate primes.
Subtraction of ordered lists requires 7 lines of code; with this primitive, the sieve itself can be written
in four lines. Because this version of the primes benchmark generates an infinite list for every prime
number, it places a good deal of stress on the thunking and cutoff mechanisms in the Eager Haskell

run-time system.

10.1.7 Multiplier

The multiplier benchmark performs a gate-level logic simulation of a clocked multiplier. This
benchmark is a classic example of the lazy style, using infinite streams to represent wire values
as they change over time. Only the outermost portion of the program limits list lengths in any way.
We therefore expect it to pose a major challenge to the Eager Haskell execution mechanism. There
are two dangers: on the one hand, if the compiler is aggressive in detecting infinite list creation,

much of the run time will be spent forcing thunks. A lazy Haskell implementation is focused on

A Java version of paraffins is used by Sun to benchmark GC performance.

152

making this efficient, whereas this has been a secondary concern in Eager Haskell. On the flip side,
if such lists are not detected then they must be caught by the cutoff mechanism. This usually means
that large structures are generated; if several are alive at once it is likely they will stress the garbage
collector as well as the runtime.

The multiplier benchmark includes annotations intended to control function strictness. These
annotations ensure that wire values are computed in time order. We have argued in Section 1.3 that
eager execution should not require annotation for efficient execution. In Section 10.8 we examine
this claim in more detail by comparing annotated and unannotated versions of the benchmark on

larger problems.

10.1.8 Wavefront

The core of the wavefront benchmark is pictured in Figure 9-1. Wavefront represents the inner loops
of an array relaxation algorithm. 200 x 200 array ofFloats is initialized non-strictly starting from
the edges. This tests our ability to handle array non-strictness gracefully using the techniques from

Chapter 9.

10.1.9 Matrix Multiply

The matrix multiply benchmark square3@ x 100 matrix of Ints. The naive textbook algorithm is
used: each element is computed using a single inner product operation. The inner product is written

using a deforestable list comprehension:
fij=sumal(i, k) «bl(k, j) | k< [1..n]]

Array elements in matrix multiply can all be computed independently. Thus, in contrast to wavefront
the order in which the result array is computed (which may change due to fallback) should not

matter.

10.1.10 Gamteb

Gamteb is a Monte Carlo photon transport simulation originally from Los Alamos. Heavy use is
made of very large tuples and of arraysdubles. Two very different versions of gamteb were
evaluated.

ThepH version of the benchmark (listed first), which uses a problem sizé@sf, was obtained

by automatically translating the Id benchmark into Haskell. The resulting code was consolidated

153

into a single module; this has a similar effect to performing whole-program optimization. This ver-
sion of gamteb uses an array implementation based on complete binary tries. Under Eager Haskell,
a version compiled using ordinary Haskell arrays either allocates too much memory at once (if
function splitting is insufficiently aggressive) or crashes the C compiler (due to a lyeg jithe C
compiler claims to need a terabyte of heap in order to compile).

The nofib version of gamteb (listed second) uses a smaller problem size of 2048. This version of
the benchmark appears to have been translated to Haskell by the original authors, and retains a neat
division into thirteen source modules. This prevents both Eager Haskell and GHC from performing
some of the most aggressive inlining optimizations which are possible with single-file compilation.
One happy consequence of this fact, however, is that the Eager Haskell implementation can use

arrays without overburdening the C compiler.

10.1.11 Symalg

The symalg benchmark computes the flrg00 digits of the square root of 3. The symalg program
itself is designed to perform general arbitrary-precision calculations; it is the second-largest of the
benchmarks (11 source files, containing slightly more code than gamteb). In symalg arbitrary-
precision numbers are represented lazily using infinite binary trees of arbitrary-prdaisgers.

This benchmark stresses the thunking and fallback mechanisms in Eager Haskell.

10.1.12 Anna

The final and largest benchmark, anna, reads in program code for a simplified Haskell-like language
(using parsing combinators), type checks it, and performs a high-precision strictness analysis. We
evaluate the largest of the test fileg,g.cor. Haskell is a nearly ideal language for the sort of

heavy symbolic manipulation which occurs in all three stages of anna. Parsing and static analysis
both involve a large number of higher-order function calls; this stresses the eval/apply mechanism

used in Eager Haskell.

10.2 Eager Haskell versus GHC

Raw timings for benchmark runs are presented in Table 10.2, and graphically in Figure 10-1. All
measurements were performed on 2-processor 466MHz Celeron PC with 384MB of RAM. The

measurement listed is the median of 10 run times. Neither GHC nor Eager Haskell yet work on

154

mutTime gcTime time | ghcTime| slowdown%
Fib 26.4555 2.7715 29.2145| 15.1400 193.23%
clausify 0.6235 0.1060 0.7295| 0.5500 140.00%
fibheaps 0.9585 0.3840 1.3435| 0.7150 193.71%
Queens 19.6475 0.9435 20.5875| 28.4900 72.41%
queens 0.2970 0.0560 0.3530| 0.3200 112.50%
Paraffins 12.6560 28.5800 41.2465| 22.6500 182.38%
paraffins 0.9120 1.3295 2.2435| 2.0200 114.60%
Primes 35.9675 6.2990Q 42.2695| 20.5850 205.56%
multiplier 43935 29690 7.3650| 1.9250 383.12%
Wave 1.1310 1.4900 2.6190| 0.1800| 1486.11%
MatrixMult 1.4220 0.0530 1.4750| 1.1500 131.30%
Gamteb-acaro 1.6740 0.642Q0 2.3155| 2.2600 104.20%
gamteb 0.7465 0.1860 0.9315| 1.1800 79.66%
symalg 0.5410 0.0190 0.5610| 1.3200 43.18%
anna 4.0460 0.4630 4.5090| 1.4650 308.19%

Table 10.2: Run times (in seconds) of benchmarks under Eager Haskell and GHC. Both user and
system times are included. Eager Haskell run time is broken down in to mutator time and garbage
collection time.

SMP machines; the main effect of the extra processor should be a decrease in system load from
background processes. The machine was running Red Hat Linux 6.1, Linux kernel version 2.2.12-
20. Both kernel and libc were recompiled to optimize for execution on i686. A single user was
logged in to a text console to perform the timings; the X server and network interfaces were shut
down for the duration.

The Eager Haskell compiler was run with optimization switched €B).(The resulting C
code was compiled with gcc version 3.0.1. A long list of flags was provided to gec:-0s
-march=i686 -fstrict-aliasing -fno-keep-static-consts -fschedule-insns2 -fforce-
addr -freg-struct-return -fomit-frame-pointer. Compilation with-fomit-frame-pointer
allows the frame pointer register to be used as a shadow stack pointer0dfilag indicates that
code should be optimized for space; this proved faster than options which optimize for speed. The
-fno-keep-static-consts allows the compiler to get rid of unused info tables (such as the ones
generated by the Eager Haskell compiler for unused suspension points). The remaining flags tweak
minor aspects of program optimization.

The Eager Haskell run-time system was compiled to turn off all instrumentation except for
internal timers. These internal timers make direct use of the real-time clock in the Celéter);

timer calls therefore flush the processor pipeline but do not incur system call overhead. It is these

155

45 \ \ \

E—
_ ghcTime =

40 - .

30 — —

25 —

20 I

10 —

fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna

Figure 10-1: Run times of benchmarks under Eager Haskell and GHC.

times which are listed in Table 10.2. The run times reported by the shell are nearly identical (a tiny
bit larger); the difference can be seen in Figure 10-2.

GHC was run at its maximum optimization leveb2 -fvia-C -optc-0s -optc-march=i686.

The same release of gcc, with the same major compilation flags, was used by both Eager Haskell
and GHC. Table 10.2 reports run time as recorded by the shell; this is the sum of both user and
system time.

Eager Haskell programs required ab60% more time than their lazy counterparts (this is the
geometric mean of the slowdown across all benchmarks). This slowdown is shown graphically
in Figure 10-2. These results are encouraging, as the Eager Haskell compiler has a number of
notable shortcomings with respect to its more mature peer. For example, GHC compiles fib into
straightforward recursion, passing and returning unboxed numbers. In Eager Haskell, by contrast,
fib boxes all numbers, and contains a spawn (to preserve eagerness), resulting in multiple entry
points. In spite of this, the Eager Haskell version of fib is only twice as slow as GHC.

For several programs, Eager Haskell actually produces faster code than GHC. Consider queens:
in the pH version, where the innermost intermediate list is deforested, the Eager Haskell compiler

runs faster. Itis onlyt0% slower on the nofib version, whose inner loop is written recursively. This

156

500 ‘ ‘

‘100 —
I—
450 — mslowdown . —
400 —
350 —
300 —
250 —
200 —
150

100

50

fib claus fheap queen qu-no para p-no prime mult wave MM gam @g-no sym anna

Figure 10-2: Slowdown of Eager Haskell compared to GHC, expressed as a percentage of GHC
run time. Lower is better; less tham0% indicates a speedup. The wavefront benchmark was
approximatelyl4.9 times slower than GHC; see Table 10.2. The two bars indicate OS and internal
timer measurements for Eager Haskell; they are similar in all cases.

explicit recursion permits GHC to take advantage of unboxing.

A particular surprise is symalg, which constructs an infinite tree. This turns out to be structured
ideally for the cutoff mechanism. A large tree is constructed eagerly; after cutoff, the result is
plucked from it with little additional evaluation. As a result, nearly all of execution is spent in user
code; the run-time system and GC are only rarely invoked. The result is fast execution.

The smaller array-intensive benchmarks generally work fairly well in Eager Haskell: gamteb is
approximately the same speed in Eager Haskell and GHC, matrix multiply is only slightly slowed
by the absence of unboxing, and the smaller run of paraffins (which uses much less storage) is only
about15% slower.

By contrast, Eager Haskell does very poorly on run-time system and GC-intensive code. Its
most notable failure is wavefront, which is nearly 15 times slower! Indeed, if we ignore this bench-
mark our mean slowdown drops 83%. The performance of wavefront is due to an unfortunate
interaction of poor optimization and bad fallback behavior. In Figure 9-1 we can see that wavefront

contains a non-strict dependency between each array element and its neighbors above and to the

157

left. The compiler breaks this dependency in the wrong place, preventing the array initialization
from being deforested. As a result, a list of suspended elements is created, and the suspensions are
then copied from the list into the array. Only then can they be forced, yielding the final result.

To make matters worse, array initialization falls back. This points to a major shortcoming
of signal pools: they are too fair. Wavefront does best when its loops are executed in program
order, from top to bottom and left to right. When an exception occurs in a signal pool, however,
computation ordering is effectively inverted. The array is gradually filled with suspensions as signal
pool computations attempt to run. After fallback, the last element of the array is demanded. This
causes demand to ripple backwards towards the elements which have been computed. We speculate
this problem will persist even if wavefront is properly deforested. Better scheduling of the signal
pool and faster suspension and resumption are required to mitigate this overhead. The current signal
pool implementation is done entirely using Haskell code similar to that shown in Figure 9-3; with
GC and run-time assistance performance can be improved dramatically.

The poor performance of the multiplier and anna benchmarks is easier to explain. The multiplier
benchmark contains large numbers of infinite lists generated by simple recursive functions. The
compiler inserts thunks into such loops to avoid creating large amounts of trivially useless data.
However, multiplier does use a good deal of data from every list. Thunks must be created and
then forced again. The anna benchmark creates many closures and stresses the apply routine in the

run-time system.

10.3 Garbage collection

Garbage collection times for Eager Haskell programs are listed along with the run times in Ta-
ble 10.2. These times only count time spent copying, marking, and performing write barriers; they
do not include the amount of time spent by the mutator allocating storage or checking for write
barriers. The graph in Figure 10-3 shows GC time as a percentage of total run time. In general,
Eager Haskell programs which outperform their lazy counterparts tend to spend very little time in
the garbage collector. However, the reverse is not necessarily the case. We expect high GC overhead
in wavefront and multiplier, reflecting additional allocation performed in the process of fallback and
thunk forcing. We must look elsewhere for the sources of overhead in the remaining programs.

As expected, Paraffins is extremely GC-intensive; however, it is nhot dramatically slower than

the other programs tested. However, for the larger problem size, GC time alone is larger than run

158

70

I I I
gcsecPerSec .

fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna

Figure 10-3: Percentage of total run time spent in garbage collector.

time under GHC. If paraffins performance is to match or exceed the same program compiled with
GHC, GC performance must improve and mutator code must allocate less aggressively.

As noted in Section 7.3, the Eager Haskell compiler is probably too aggressive in batching
allocation points. This results in a large number of write barriers, and may cause empty objects to be
copied and promoted. In Table 10.3 and in Figures 10-4 and 10-5 we show the number of locations
which arecheckedo see whether a tenured write has occurred, and the number of locations where
such a write has actually happened and barrier indirections must be introduced.

No write barriers are necessary when non-pointer objects such as integers and nullary construc-
tors are written. For this reason, the number of allocations and the number of write barriers executed
are generally within a factor of two of each other (Table 10.3).

We distinguish between full-fledged write barriers and so-catidolectionbarriers. Indirection
barriers occur when the object being promoted is already an indirection; in this case turning it
into a barrier indirection is a simple matter of filling in extra fields and changing its tag. Though
many indirection barrier checks occur in compiled code, actual indirection barriers are quite rare
(Figures 10-4 and 10-5). The fields of non-indirections must be scanned and replaced with barrier

indirections where necessary. This is shown in Figure 10-6. Very small numbers indicate that most

159

"uonoe UoINeI0|[e yoea o} sialreq allum Auew Sajedlpul Jaquinu |rews

Vv lalueq alum e palinbal s108lqo payesojie ma) AjaAiesedwod Jey) Sa1edipul uwnjod SIy) Ul Jaquinu abie| v "SUOITeAISSal pue SY03yd Jalleq a)lIm
uaaMIa(oitel ay) pue ‘suonoe (uoneooje deay payoleq) sAlasal Jo Jaquinu ay) ‘(Juswieal) axij-1alueg-a1um [erads aiinbai asay)) paIndaxse s4yD Jo
JaquINu ay) a1ed1pul SUWINJOD 33JU) [eul) 3yl “SY938yd Jalieq Jo abejuadiad e se sialued [enioe syl sassaidxa Suwnjod aaly) 1xau ay L s103lqo painua) 0}
S31LIM PBAJOAUI AJ[enioe S0ayd Jalleq 8say) Jo AuBLl Moy a1edipul SUWN|0D 931Y) 1Xau 8yl "Uwn|od ,Jed, 8yl Ul pa|elo] aJe 8sayl 'suoljoalipul 01 pue
$103[00 [ew.ou 0] S3)LIM 10} PawIoad SYI3YD JalLIeg-31LM PaINdaXa Ajjedlweuip ayedipul SUWN|0d OM] 1SII) YL IoIAeYa(JaLueq Sl (£ 0T ajgel

0¢T0 %¥0°0 %¥T0 960V 0TV 989¢ EIVELVE £SG/6C6 0T.LEVSC euue
%€0°0 %T0°0 %v0°0 1 T T 0848v LLYST €1CEE BrewAs
ovv'0 %000 %920 18] 47 8 86¢EY TrSy00T €£906¢2Y 6.VS.S gayweb
0GL°T %ES'T %0€°¢ [XANAS 76T0C 6¢6TT 00€9€8T LLEBIET €C6.LTS Drede-galues
097’1 %870 %€E0°.8 ¢0e0e 68.6 €T50¢ 829¥.,0C¢) S0TS0C T.SEC HNAXLTeIN
00€'9 %10 %TLET 22929 19 98819 08.E66 BSECYS (444514 SNEM
0190 %.¥°0 %¥9°0 06¢ve 9949 ¥cl8¢ 86914999 ETEBLTT G8EELVY Jaidynw
0T¥'0 %89'v¢ %1¥0 G/186 6€ 9EV86 L66EVEEC BST 6E8EV6EL Ssaullid
08T°0 %.LE0 %8T°0 80TT aT €60T 0€09¢29 LT0V €T0¢¢9 suyyered
00C°0 %ET0 %020 v68T 144 0c68T crG.E96 88T GT/.8T96 suijeled
0,50 %ST0 %650 [444 € 61¢ T968€ GE0C 9269¢€ suaanb
0000 %0 %000 T 0 T 99/€€E0T €0¥92lT €9€/0T6 susand
08€°0 %00°0 %9.°0 9raL 9 TvSL 680/861 [[T¥066 8.9966 sdeayqy
0T0°0 %000 %100 o1 6T 14" C¢TTST8T H0009. LOTSSOT Aysnepo
0000 %0 %650 T 0 T LBEVEECOT BCCVEECOT 69T qi4
104]100.J0plegdiad[enidgplipuliadlenided,yallipfiadienloe [dsliedgienioe sliueglipujjenioe Isuiegallipjzenioe | isallueq lalueglipul isuiegoallum

160

4e+06 T T T
noWriteBarrier ——
nolndirBarrier

actualWriteBarrier HE—

3.5e+06 actualindirBarrier I

3e+06]

2.5e+06 =

2e+06

1.5e+06

1e+06

500000

1 | | |

fib claus fheap queen qu-no para p-no prime mult wave MM gam @g-no sym anna

Figure 10-4: Number of write barrier checks, normalized to mutator time.

60000 T T T T

actual\WriteBarrier HE
actualIndirBarrier mm—

50000 —

30000 —

20000 —

10000 —

fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna

Figure 10-5: Actual number of write barriers triggered, normalized to mutator time.

161

10 \ \ \ \
1—

I—
9 barriers/Actual I —

O s | ‘

fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna

Figure 10-6: Barrier indirections created per write barrier, for non-indirection write barriers and for
all write barriers.

write barriers refer to objects that need not be promoted—either because they have already been
promoted themselves or as in Fib because they already reside in the static constant table.

Note that the nofilqueensbenchmark appears to promote a great many objects with a small
number of write barriers. This is because suspension creation in the run-time system performs an
implicit write barrier—the checking required has already occurred for other reasons. This case only
occurs when empty data is promoted and then overwritten with a suspension. This is a relatively
rare occurrence, and is obvious in this benchmark only because the number of write barriers is itself
very small.

Actual write barriers are quite rare even at their most common (aty6wtf all checks in wave-
front, and less tha@% in all other cases). Note that the array-intensive codes perform many more
write barriers. This is to be expected; objects in the large object area are assumed to be tenured,
and will drag their contents into tenured space as well. Wavefront is tremendously write-barrier
intensive, however. This additional traffic is again a result of the signal pool represeni@sifixp
discards and re-creates a thunk each time it is forced unsuccessfully, and each of these new thunks

in turn must be promoted.

162

regularCall otherTail selfTail selfOverrunFrame
Fib 204668345 76 371 0 0
clausify 2540317 37760 367990 0 3483
fibheaps 1152932 544852 509845 16 24148
Queens 22381141 3173569 54430754 0 61316
queens 383703 69643 1092586 0 606
Paraffins 9598419 82742 9534415 4947 4556
paraffins 622159 12707 612795 424 266
Primes 13282703 108 6981517 4950 2359878
multiplier 4701923 2506001 723436 0 616953
Wave 373304 619 40108 0 39831
MatrixMult 10828 3 1030321 0 2237
Gamteb-acaro 1309731 208834 1597562 3 53726
gamteb 650120 228239 464566 2 6747
symalg 37918 15466 48511 28 64
anna 8242900 7051493 1793626 3 28922

Table 10.4: Function entry behavior. Raw numbers are given for the four types of function call that
may occur in user code. The final column is function calls performed by the run-time system when
resuming suspended computations.

10.4 Function Application

There are two basic ways an Eager Haskell function is entered: either it is called, or a suspension
is resumed by the run-time system. We break down ordinary function calls into three categories
(Section 7.6): self tail calls, other tail calls, and regular (non-tail) calls. Similarly, we break down
resumptions into three categories: resumptions that re-start function execution from entry point
0, resumptions that re-start execution elsewhere in the function, but only have a single associated
location, and resumptions that have multiple associated locations (these must be associated with a
nonzero entry point).

Table 10.4 and the corresponding graph in Figure 10-7 show the breakdown of function entries.
TheselfOverstatistic represents self-tail calls for long-lived loops. TiweFramestatistic indicates
function entries due to resumption of suspensions. Unsurprisingly, fib is the most call-intensive of
the benchmarks. Both the queens benchmarks and the well-behaved array benchmarks (gamteb,
matrixmult, even paraffins) make heavy use of self tail recursion.

The GeneralApplyfunction handles unknown function application as outlined in Table 5.2.
This function is called both by user code and by the thunk-forcing mechanism in the run-time

system. Figure 10-8 distinguishes these two uses of application. The graph is normalized to the to-

163

8et+06

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

le+06

I
runFrame

regularCal| =
otherTail m—

selfTall |
 m—

0
fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna
Figure 10-7: Function entries, normalized to mutator time.
60 T | |
thunkRun -
userApplies I
50 — —
40 — -
30 — T
20 —
10 —
0 | | | | |
fib claus fheap queen qu-no para p-no prime mult wave MM gam ¢@-no sym anna

Figure 10-8: Entries t&eneralApplyas a percentage of all applications

164

2500

[[I
NumCutoffs H—

2000 — —

1500 — —

1000 —

fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna

Figure 10-9: Fallbacks per second

tal number of function calls; thus the scale represents the proportion of all calls which pass through
GeneralApply Note the prevalence of thunks introduced by the compiler in primes and multiplier,
and thunks introduced by fallback in signal pools in wavefront. Multiplier, anna, and fibheaps all
include a large number of calls to unknown functions.

Nearly all general applications call a fully-computed closure at exactly full arity. The remaining
cases account for only hundredths of a percent of calls to GeneralApply. Two benchmarks, anna
and the nofib version of queens, occasionally pass an unevaluated clo&ewdmlApply These
closures are forced successfully in every case. Over-saturated applications occur only in the anna
benchmark. Interestingly, none of the benchmarks partially applies an unknown function. Closures
are created only for known functions; this task occurs directly in user code.

Applying a partial application requires stack shuffling. Only one of the benchmarks—anna—
makes extensive use of function closures. The cost of stack-shuffling is a likely reason for the poor

performance of this benchmark in Eager Haskell.

165

180 ‘ ‘ ‘

160 — —

140 — I

120 — —

100 — —

60 — —

fib claus fheap queen qu-no para p-no prime mult wave MM g@gam g@g-no sym anna

Figure 10-10: The consequences of fallback: thunks reverted and suspensions created, normalized
to the number of fallbacks.

10.5 Fallback

When an exception occurs, the execution state is unwound. This has two consequences: function
calls are reverted to thunks, and the computations which depend on them are suspended. Figure 10-
9 shows the frequency of exceptions in the various benchmarks. In Figure 10-10 we examine the
consequences of fallback, by normalizing the number of thunks and suspensions created to the
number of fallbacks. This is only accurate for thunk reversion; there are plenty of possible causes for
suspension, and they are not distinguished in the graph. Similarly, primes, multiplier and wavefront
create large numbers of thunks as a direct result of execution rather than as a result of exceptions.
The thunk forcing mechanism cannot distinguish these cases.

It is interesting to note that the thunk-intensive benchmarks also revert a larger number of func-
tion calls when exceptions occur. We can think of the height of the bars in Figure 10-10 as a rough
measure of the call depth of each program. Benchmarks which create and traverse long lists fre-
guently contain deep recursion, and consequently more thunk reversion occurs. This has another
interesting effect: the extra time required to revert and re-start these thunks means that the rate of

exceptions in these benchmarks is lower than normal.

166

2e+07 ‘ ‘ ‘
I—
touchTouch =
1.8e+07 — —
1.6e+07
1.4e+07

1.2e+07

le+07

8et+06

6e+06

4e+06

2et+06

fib claus fheap queen qu-no para p-no prime mult wave MM gam @g-no sym anna

Figure 10-11: Touch operations (checks) normalized to mutator time. Broken down into freestand-
ing touch operations and those combined wittaaeexpression.

10.6 Suspension

When user code encounters a location which does not contain a value, that location must be passed to
the run-time system. For sum types, this check—the touch—is combined witlaskexpression,

but numeric and tuple types require a separate check. Figure 10-11 shows the rate at which checks
are performed. Most of these checks succeed; only a small proportion fail and require forcing, as
shown in Figure 10-12. Unsurprisingly, the benchmarks with the highest reversion rates also have
the highest suspension rates (as high 8% in multiplier). Most forcing operations yield a value,
permitting execution to continue. The remainder (the lower part of the bars in Figure 10-12) require

a new suspension to be created.

Once created, a suspension need not be forced. However, most suspensions are eventually
forced, a fact that is evident in Figure 10-13. A notable exception (apart from symalg, which does
very few touch operations) is anna. This indicates that a large number of unnecessary computations
are being run eagerly. It is possible that more aggressive program transformations could eliminate

this extra eagerness and thus avoid the unnecessary computation.

167

12

I I I I
suspContPerTouch =
suspPerTouch =

10 —

fib claus fheap queen qu-no para p-no prime mult wave MM gam g@g-no sym anna

Figure 10-12: Percentage of touch operations which must invoke the run-time system to force a
missing value. Lower bar indicates the proportion of such attempts which fail to obtain a value.

120 T T T T T T T T T T T T

[[
enterMulti I
enterNonZeroOne IR
enterZero N

100 —

80 —

20—

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

Figure 10-13: Function entries upon resumption, as a percentage of suspensions created.

168

250 I I I I

100 —
followPerTotal =

200

150

100

50

fib claus fheap queen qu-no para p-no prime mult wave MM g@gam @g-no sym anna

Figure 10-14: Percentage of indirections which are followed. Numbers greater@bznindicate
that indirections are followed more than once on average.

Figure 10-13 also indicates how resumed computations make use of suspension points. Re-
sumption of suspensions is a rare enough occurrence compared to function call that it is lost in
the noise in Figure 10-7. Multiple-result suspensions are even rarer and therefore represent only
a tiny proportion of all function entries. The very complex machinery required for multiple-result

suspensions could undoubtedly be simplified in the common case.

10.7 Forcing variables

What happens during forcing depends on what sort of object is encountered. This is broken down
in two ways in Figure 10-15 and Figure 10-16.

Indirections are removed upon entry; in many cases this is sufficient, and the result is returned.
Figure 10-14 shows the proportion of indirections which are dereferenced. Three benchmarks fol-
low indirections more often than they create them: Primes, the nofib version of Paraffins, and Matrix
Multiply. In all three cases, an enormous number of indirections are created as a result of tenuring.

These indirections cannot be removed until the data they point to has been promoted. Already-

169

900000 I I I
forcelndirSucc
forceEﬁceEgon _—
L thunkRun _
800000 forceThunkFail =
—/
runFrame I
700000 — forceEmpty N —
forceBottom =
600000 —
500000 —
400000 —
300000 —
200000 —
100000 [~ H E
0 | | |_I=I | |

fib claus fheap queen qu-no para p-no prime mult wave MM gam @g-no sSym anna

Figure 10-15: Breakdown of variables forced, normalized to mutator time.)

140 | | I |

forcelndirSucc

forceException IS
thunkRun —

120 forceThunkFail . _|

—

runFrame
0 -

forceEmpty .
fib claus fheap queen qu-no para p-no prime mult wave MM gam @g-no sym anna

forceBottom .

100

80

60

20

Figure 10-16: Breakdown of variables forced, as percentages of all force operations.

170

tenured data continues to refer to the indirections until the next full collection. In Matrix Multiply,
most array accesses must follow an indirection as a result. In general, it appears that most indirec-
tions encountered in user code (and thus by force) reside in tenured space. This is not too surprising;
when an indirection is created directly in user code, the pointed-to value is used as much as possible.
Only when a write barrier introduces indirections unexpectedly does user code need to follow them.
At the same time, the garbage collector eliminates nursery indirections; tenured indirections tend to
persist much longer.

When an exception has been signaled, the forcing code removes indirections but does not run
suspensions or thunks. As function calls fall back, we would expect their callers to synchronize on
the results; such attempts will fail due to the pending exception. However, this seems to be relatively
uncommon in most of the benchmarks, as indicated by the “forceException” bar in Figures 10-15
and 10-16. Most benchmarks force a comparatively small number of thunks during fallback; only
in fibheaps, gamtelpH version) and symalg are the number of force operations during fallback
comparable to the number during regular execution.

Only one of our benchmarks, anna, attempts to force a bottom thunk. Such attempts always fail.
Forcing of a bottom thunk is another good sign that the compiled code is excessively eager. Invalid
data is used in some computation, and the results are then discarded. It is possible that code motion
could eliminate the excess eagerness, improving performance and eliminating computations which
yield bottom.

It is similarly uncommon for benchmarks to attempt to force a completely empty object. This
occurs primarily as a result of algorithmic non-strictness: a computation refers to its result. This
occurs in all three of paraffins, multiplier, and wavefront. Other benchmarks (such as primes)
appear at the source level to use non-strictness in this fashion; however, program transformations
can eliminate the dependencies.

Most commonly, we are attempting to force either a thunk or a suspension. Only anna ever
attempts to force a thunk with an empty closure; these thunks can result only when an empty closure
is passed to GeneralApply from user code. Even in anna such thunks are rare. Other thunks are
simply forced; the results are then forced in turn if necessary.

The remaining bulk of forced objects are suspensions. Surprisingly, it appears that most suspen-
sions which are forced do not get run. Repeated fallbacks create long chains of suspensions. As the
chains are forced, shortcutting removes some elements from the stack; they must be re-examined

later. Only the suspensions at the end of the chain are forced. If enough resources are required to

171

inv = lift11 forceBit f
wheref :: Bit — Bit
fo=1
f1=0

forceBit:: Bit — Bool

forceBit x= (x = 0)

headstrict: (a — Bool) — [a] — [a]

headstrict forcd | = []

headstrict force xs= if force (head x$ then xselsexs

lift11 force f [] =[]
lift11 force f (x: xs) = headstrict forcgf x: lift11 force f x9g

Figure 10-17: Example of the original code for the multiplier benchmark. This code implements an
inverter.

force them, another exception will occur and the chain will be unwound once more. We conjecture
that the length of the suspension chain remains fairly steady for any given benchmark. The relative
size of the “forceSuspNoRun” bar versus the “runFrame” bar gives an idea of the usual length of
this chain for particular benchmarks. For example, clausify gives rise to long dependency chains.

By contrast, the chains of dependent suspensions in gamteb tend to be very short.

10.8 Space-efficient recursion: the multiplier benchmark

We noted in Section 1.3 that the use of eagerness eliminates the need to annotate programs to
obtain space-efficient tail recursion. The multiplier benchmark contains such annotations. Infinite
streams of bit values represent the inputs and outputs of logic gates in the simulated circuit. Without
strictness annotations, wire values can accumulate long chains of thunks over time. The code which
implements logic gates is parameterized with respect to a strictness function, as shown in the inverter
code in Figure 10-17.

The headstrictfunction used byift11 (and its brethren for wider logic gates) is parameterized
with respect to an arbitrary strictness functimnce. Examination of the benchmark code reveals
thatforceis alwaysforceBit It is straightforward to edit the program to eliminate the exdess
argument from most function calls. At the same tifioeceBitwas simplified to use the Haskskkq

function—the use of equality in the original benchmark works around the fact that early versions of

172

inv = liftl1 f
wheref :: Bit — Bit
fo=1
fi1=0
forceBit:: Bit — Bool
forceBit x= x ‘se(False
headstrict: [Bit] — [Bit]
headstrict[] = []
headstrict xs= if forceBit (head x$ then xselsexs
lift1dl f [] =[]
liftl1l f (x:xs) = headstrict(f x: liftl1 f xs)

Figure 10-18: The equivalent code after strictness annotations have been propagated. In order to
eliminate the annotations entirely, we simply need to chdnegelStrictinto the identity function.

Haskell did not includeseq The result is shown in Figure 10-18.

Using the re-written benchmark, it is very easy to eliminate strictness annotations from program
code: simply replacéeadStrictwith the identity function. This results in three versions of the
multiplier benchmark: theriginal version shown in Figure 10-17, tidined version of Figure 10-

18, and the version with no strictness annotations, which we will calhtimestrictversion.

Under GHC we expect the inlined version of the benchmark to run the fastest. The uninlined
version will be slowed down by the overhead of passingdines parameter from function to func-
tion. The non-strict version will suffer from the excessive cost of creating and forcing thunks for
each wire value, and from garbage collecting those thunks. We expect the differences to be most
pronounced for unoptimized code: since the wire values are simple integers, there is some hopes
that strictness analysis and inlining will come to our aid.

Under Eager Haskell we expect the inlined and non-strict versions of the benchmark to run
at comparable speeds. The inlined benchmark will perform additional computedness tests on its
argument which are avoided by the non-strict benchmark. However, these tests should nearly always
succeed, and we therefore expect the additional overhead to be slight. Optimization should work
best on the non-strict code, where callbgadStrictan be inlined and eliminated. We do not expect
to benefit nearly as much with optimization turned off hesdStrictwill still impose function call
overhead.

The actual measured times for the three benchmark versions are shown in Figure 10-19. Note

that eliminating strictness annotations is no magic bullet: the Eager Haskell code remains much

173

18 T
runTime HEE—
ghcTime

16]

14

12

10

origUnopt strictUnopt nonstrUnopt origOpt strictOpt nonstrOpt
Figure 10-19: Run times of different versions of multiplier benchmark.

I I
slowd e m—
500 owdown |

400

300

200

100

origunopt strictUnopt nonstrUnopt origOpt strictOpt nonstrOpt
Figure 10-20: Slowdown of Eager Haskell compared to GHC, expressed as a percentage of GHC
run time. The two bars indicate OS and internal timer measurements for Eager Haskell; they are
similar in all cases.

174

slower than its lazy counterpart. However, as shown in Figure 10-20 eliminating annotations does
improve our relative performance markedly.

In Figure 10-21 we compare the relative speed of the three different benchmarks when compiled
with optimization on. Under GHC, eliminating strictness annotations slows the program down by
approximatel\20%. Interestingly, the inlined version of the benchmark runs at about the same speed
as the original benchmark code; apparently inlining the higher-order furicticeBithas very little
effect. It is likely that the compiler is inliningjft11, forceBit, andheadstrictand eliminating any
trace of the higher-order argument.

Strictness annotations have no measurable effect on the run time of the optimized Eager Haskell
code. The third set of bars in Figure 10-21 shows that the two inlined versions run at almost exactly
the same speed. Note, however, that in the original benchmark Eager Haskell appears to be much
less aggressive in inliningft11. This increases mutator time by ab@d%; however, higher-order
functions persist in the original code, causing more allocation of continuations and a large increase
in garbage collection overhead.

The unoptimized benchmarks tell a murkier story. The run-time ranking of the GHC programs
is inverted: the non-strict code now runs the fastest! This is most likely due to the fact that the
non-strict benchmark does not cédirceBit It is surprising, however, to see that this affects run
time by upwards of 4%.

Even more puzzling is the fact that the inlined code is dramatisitywerthan the (equivalent)
original benchmark code. This is true for both compilers. This turns out to be due to slight tweaks
made to thdift21 function in the benchmark to adjust the way annotations were used. This increases
the call overhead dfft21 when optimization is switched off.

We noted that eager evaluation does have a liability of its own—it is expensive to create and then
force infinite lazy lists. The multiplier benchmark is centered upon such lists. The compiler attempts
to identify cyclic computations and introduces thunks along the back edges of uncontrolled loops.
This happens in three places in the multiplier benchmark. However, in practice large portions of
every list in the program are forced during execution. For all three versions of the benchmark, opti-
mized run times were similar (within a few percent) regardless of whether or not thunk introduction
was performed. This suggests that the cost of creating and forcing thunks is roughly comparable to
that of computing excess list elements within resource bounds—if most of those elements are later
consumed.

With annotations eraselift11 is equivalent tonap and the othelift functions are equivalent to

175

120

115

110

105

100

95

90

85

80

75

70
orig/str orig/noStr noStr/str

120

hc

115

110

105

100

95

90

85

80

75

70

orig/str orig/noStr noStr/str
Figure 10-21: Percentage speedup of multiplier when annotations are modified. Numbers less than
100% indicate slowdown. The baseline 1% so differences are clear. Top shows optimized
figures, bottom unoptimized ones. The final bar is mutator time under Eager Haskell.

176

versions okzipWith These are prelude functions, and all of them can be deforested by the compiler.
Indeed, it is possible the original version of multiplier used these functions, ardtthenctions

were introduced only when space leaks made them necessary. We did not investigate the benefits
provided by rewriting the program in this way.

Our observations of multiplier are encouraging: the basic eager approach of resource-bounded
computation appears to avoid the space leaks which require lazy programmers to explicitly annotate
their code. At the same time, the overhead of excess space and time for infinite lazy computations
can be controlled. It is clear, however, that the overhead of such programs must be reduced if

performance is to match that of a lazy compiler.

177

Chapter 11

Scheduling Eager Haskell on a

Multiprocessor

Eager Haskell was designed with parallelism in mind. It is difficult to expose parallelism using
either strict or lazy evaluation, as they both impose strong requirements on program ordering. For
example, imagine a tail-recursive loop. Strict evaluation must perform exactly one loop iteration at
a time; a parallelizing compiler would need to prove that there are no data dependencies between
loop iterations in order to parallelize the loop.

There has been only limited success in using program analysis to extract parallelism from lazy
programs. In order to preserve lazy semantics, none of the work performed in parallel can be spec-
ulative. Consequently, any parallelizing transformation must first prove that the results it computes
are guaranteed to be used. Such analyses tend to give very local results—we discover a value is
certain to be used because its consumer is near its producer in the program. In such situations there
is rarely any benefit to multiprocessor parallelism, since the result is demanded too soon after its
computation is spawned [134]—the parallelism is useful, but too fine-grained.

In an eager language the situation is reversed—computations are assumed to occur speculatively
in parallel unless analysis proves that they can productively be serialized. By creating tasks as
lazily as possible and using a work-stealing scheduler, we exploit the coarsest-grain parallelism and
mitigate the overhead of task creation. Using these techniques we hope to make thread scheduling
less frequent in an eager language than thunk creation would be under lazy evaluation. We use
fallback to mitigate the effects of useless speculation.

In order to parallelize Eager Haskell, the run-time system described in Chapter 5 must be modi-

178

fied to identify work which can be performed in parallel, and to schedule that work across multiple
processors. Fortunately, much of the necessary mechanism is already in place. During fallback,
computation is suspended in a systematic way, yielding thunks. When computation is resumed,
work is only forced as needed. We can obtain parallelism by forcing these thunks in parallel rather
than waiting for them to be demanded.

In this chapter we elaborate this mechanism for running Eager Haskell programs in parallel
on a shared-memory multiprocessor (SMP), and identify possible hurdles which may prevent us
from extracting the parallelism we desire. We also describe a general technique, the principle of
monotonicity, for handling a shared heap without locking. Our parallelization strategy relies on this

technique to efficiently manage shared data.

11.1 Indolent task creation

When fallback occurs, two types of data structure are created to represent the state of outstanding

computation:
e Athunk is created for every procedure call.

e A suspension is created when a running procedure requires data which has not yet been com-

puted.

Every suspension which is created as a result of fallback will be dependent either upon another
suspension or upon a thunk; thus each such suspension will be transitively dependent on a thunk.
Any attempt to force such a suspension must therefore force a created thunk. Thus, when they are
created, suspensions cannot possibly embody useful parallelism.

We therefore focus on the thunks. It is simple for the run-time system to collect thunks as they
are created. This is a form afidolenttask creation [127]: no explicit representation exists for
parallel work until and unless fallback occurs.

Note that a suspension mayentuallyembody useful parallelism. This is true if the suspension
will eventually be forced, but the thunk it depends upon is first forced by some other computa-
tion. If insufficient parallelism can be extracted by forcing thunks, then forcing suspensions whose

dependencies are available is the only alternative way to expose additional parallelism.

179

11.2 Scheduling Strategy

Recall from Section 5.4 that thunk creation occurs starting at the leaves of the call tree and working
toward the root. A coarse-grained thunk is one which is itself the root of a large call tree. There
is noa priori way to identify the size of this tree. However, it is clear that the deepest subtrees
must occur nearest the root. Thus, we should schedule the outermost thunks first in order to extract
coarse-grained parallelism.

This is exactly the goal of the parallel work-stealing strategy used in Cilk [27]. In Cilk, every
processor maintains a dequeue containing outstanding parallel work. A processor pushes and pops
computations from the top of its dequeue, treating it just like a call stack. However, if any processor
exhausts its available work (its dequeue becomes emptglediswork from a victim processor
selected uniformly at random. Work is stolen from the bottom of the victim’s dequeue.

After fallback in Eager Haskell theopmostpiece of work (whether suspension or thunk) is
forced in order to guarantee that progress is made on the lazy work. In effect, the processor steals
work from itself. We run Eager Haskell programs on a multiprocessor by giving each processor its
own exception flag, shadow stack, atmdink stack During fallback, thunks are pushed onto the
thunk stack as they are created. The computations nearest the root of the call tree are uppermost in
the thunk stack. Execution restarts from the root of the local call tree as before. Thieves steal work
by popping thunks off the thunk stack.

On a uniprocessor, the Eager Haskell run-time system is responsible for tracking resource
bounds and deciding when an exception should be signaled. This could lead to poor resource us-
age on a multiprocessor, as a single thread can run for long periods before exhausting its resource
bounds, while the remaining processors sit idle. Thus, an idle processor may raise an exception on
any other processor and thereby force the creation of additional work.

The protocol for work stealing in Eager Haskell is therefore structured as follows:

Thief completes its local work.

Thief selects a victim uniformly at random.

e Victim’s work stack is popped, unless it is empty.

The work thus obtained is forced. If it has already been evaluated, this has no effect and more

work will be sought.

If the victim’s stack was empty, set the victim’s exception flag and seek more work.

180

11.3 Scheduling in the presence of useless computation

Meanwhile, a little more work is required when an exception occurs. Naturally, newly-created
thunks must be pushed onto the thunk stack. It is, however, unclear what should be done with
thunks that ar@lreadyon the thunk stack. There are two cases of particular interest. First, there
may be a thunk on the thunk stack which represents data which will be required, but will not be
needed for a long time. Such a thunk is ripe for parallel execution, and should be retained in favor
of more short-lived thunks. Second, there may be a thunk on the thunk stack which represents the
useless tail of an infinitely-growing computation. Such a thunk is actively dangerous: it does not
represent useful work, and will result in wasted memory and processor time if it is forced.
Unfortunately, there is no simple way to distinguish these cases. In the following exathple,

the thunks created whdmngtreesuspends represent infinite computations:

bigtree :: Integer— Tree Integer
bigtree n = Node n(bigtree(nx 2)) (bigtree(n* 2+ 1))

We have already observed that infinite data structures will cause sequential execution to consume
excessive resources. This problem can be exacerbated in a parallel setting—if a processor obtains
the thunk of an infinite computation, it can continue consuming memory without bound.

The most promising solution to this problem is to permit the garbage collector to manage par-
allelism. The thunk stack should be consideredeak reference-objects which are reachable
only from the thunk stack should be garbage collected and removed. This gives a minimal liveness
guarantee for stealable thunks.

However, there remains a nettlesome problembigtreeis stolen, the thief will run nothing
but calls tobigtree There needs to be some mechanism to throttle such computations before they
swamp the system. This means that fallback cannot be a purely local operation; occasionally non-
root computations should seek work elsewhere in favor of resuming their current computation. This
is at odds with any sort of locality, so it should not happen too frequently. Unfortunately, the garbage
collector is much less helpful in this instance. Stealable thunks reside in shared memory, and so the
root of computation on every processor is always reachable from tenured space.

Solving this problem will require coordination between global garbage collection, fallback, and
thunk stealing. One simple algorithm would signal an exception on every processor when tenured
space becomes full. When a processor completes fallback, it garbage collects. With an empty stack,

the new nursery will be empty; only the global roots need be traced. When collection is complete,

181

dead thunks are discarded and work stealing begins anew. However, this effectively imposes a global
barrier each time tenured space fills, sacrificing much of the parallelism possible with independent

garbage collection.

11.4 Memory Structure: The Principle of Monotonicity

In addition to the coarse-grained problem of identifying and scheduling parallel work, the Eager
Haskell implementation must address the fine-grained problem of coordinating parallel access to
shared data. The data structures of Eager Haskell have been designed to permit lock-free parallel
manipulation of objects in shared memory. In this section we articulate a general principle, the
Principle of Monotonicitywhich can be used to structure programs with lock-free synchronization,
and then show how the principle is applied to Eager Haskell.

The fundamental idea behind the Principle of Monotonicity is simple: as long as a shared object
may only be updated by a single processor, and is becoming “more defined” according to some
ordering, it can be read and updated using simple loads and stores; there is no need to resort to
atomic memory operations such as compare and swap. Such operations are required only for non-
monotonic updates.

The Eager Haskell realization of this principle is shown in Figure 11-1. The natural ordering for
Eager Haskell is the one imposed by evaluation: objects start out empty; they are computed exactly
once, at which point the empty object is overwritten with the computed value. Because there is
only a single writer, this store can take place without the use of atomic memory operations such
as compare and swap. If the computation suspends, the empty object is instead overwritten with a
thunk or a suspension. When a thunk is forced or a suspension is resumed, it ratanimlly
emptied. This guarantees that exactly one thread runs the suspended computation.

The presence of indirections complicates this simple structure somewhat. Barrier indirections
exist to safely encapsulate nursery references. The garbage collector of the owning processor is
responsible for promoting the pointed-to data; the barrier indirection is then transformed into an
ordinary indirection as indicated in the figure.

Recall that we can shortcut indirections, as shown in Figure 5-6. Unlike the other transitions
shown in Figure 11-1, barrier shortcutting changes the state of an aéfectnce and not of the
object itself. This means that any reference anywhere in the heap which points to an indirection can

instead be made to point to the destination of that indirection.

182

transitions transitions

@ “ @ BARRIER G @

i Atomic \ Exclusive T

Figure 11-1: Monotonic update of Eager Haskell objects. Dashed arrows indicate permissible tran-
sitions for an objecteferencerather than for the actual object itself.

Note that an ordering has also been imposed on object references: those most distant from a non-
indirection are considered to be “greatest”, with the each indirection in a chain being progressively
“less”. In order to guarantee that shortcutting strictly decreases the length of an indirection chain,
each shortcutting step must be made atomically. Consider a chain of indireztiorts — ¢ — d.

Two threads might be competing to shortauthread 1 wishes to shortcat— c, thread 2 wishes
to shortcuta — d. If thread 2 succeeds, then thread 1 will actuallyuneloingsome shortcutting.
This can be dangerous if a reference has been made to point directly at an object suatpas the
cell shown, and is then moved back to point to an indirection.

The rules for reading and writing according to the principle of monotonicity are fairly simple.
Every object has atate and a series gbermitted transitiongrom that state. An object in a par-
ticular state may contain an arbitrary (but well-defined) number of data fields. However, each pair
of adjacent states must be distinguishable by a single datum, which we refer to as thésttmp (it
object tag in Eager Haskell) which can be read and written atomically. If any non-monotonic tran-
sitions are permitted, then it must be possible to do an atomic compare-and-swap operation on the
tag as well.

The principle of monotonicity rests on our ability to identify certain states as havimgvaer

183

(these are the heavy states, Empty and Batrrier, in Figure 11-1. The owning thread is permitted to

makemonotonic updatew the state (heavy lines). The protocol for monotonic update is simple:
1. Non-tag data is written normally.
2. This data is committed to shared memory [121].
3. A write/write fence is performed on the written data and tag.
4. The tag data is written in a single operation.
5. The tag is committed to shared memory.

The fields updated during a monotonic transition must be disjoint from those fields which are valid
in the current state. It must be possible for another thread to read a consistent snapshot of the object
even when it is in the process of being updated.

Non-monotonic transitions can be performed by any thread. As a result, they require the use of
an atomic memory operation (such as compare and swap or load lock / store conditional) in order
to perform the state transition. In addition, non-monotonic transitinag notupdate any fields.

This means that the valid fields after a non-monotonic transition must be a subset of the fields valid
before the transition. Only the tag changes value.

Note that if a monotonic transition is possible from a particular state, the same transition must be
possible from any states reachable through a non-monotonic transition. Thus, in an exclusive state
a non-monotonic transition must move to an exclusive state with the same owner. Only a mono-
tonic transition can make an object’s state non-exclusive. From a non-exclusive state, of course, no
monotonic updates are possible; therefore all transitions are atomic and hon-monotonic.

There are two ways to read the fields of a state, depending on the nature of that state. If an object
is in an exclusive state, and hon-monotonic transitions do not invalidate any of the fields being read,
the owner can read object fields freely. If the object is not owned by the reading thread, or non-

monotonic transitions may invalidate fields being read, the following protocol must be obeyed:
1. The tag is read to determine the object state.
2. Aread/read barrier is performed on the tag and the fields to be read.
3. The field data is reconciled with main memory [121].
4. All required fields are read.

184

5. Aread/read barrier is performed on the fields read and on the tag.
6. The tag is reconciled with main memory.

7. The tag is read. If the state is unchanged, the data read is valid, otherwise the read must be

re-tried starting from the beginning.

If the initial state has no outgoing transitions then we can read the fields freely, and the second tag
check is not required. Similarly, if the accessed fields are valid in any reachable state, the check can
be skipped. In effect, we can think of a read as an atomic operation on the whole data structure, but
one which might possibly fail.

We must ordinarily be careful in allocating and deallocating shared objects. When a thread
performs an allocation, the resulting object is in an exclusive state and owned by the allocating
thread. Ordinarily the object does not contain useful data upon allocation; we can imagine an
infinite number of “just allocated” states in which the object fields contain garbage.

The act of storing a reference into a shared data structure (a so-baidtasting stor¢105,

72]) counts as a monotonic transition. This means that the object’s tag must be initialized, and that a
commit and a write/write barrier are required between this initialization and the broadcasting store.

De-allocating a shared object requires knowing that it will not be accessed from any thread
again. The principle of monotonicity provides no direct evidence of this fact; it must be encoded
in the protocol or established in some other fashion. In Eager Haskell the garbage collector must
establish the necessary invariants.

Other techniques for non-blocking management of shared data can be expressed using the prin-
ciple of monotonicity. For example, we can exprésgock (the non-blocking locking primitive)
andunlock very easily using a boolean tagrylock attempts to atomically set the tag, returning
Trueif the attempt succeeds afdlseif the tag is already set. tfylock returnsTruethe protected
data can be accessed freely; access is relinquished uslogk which simply writesFalse into
the tag. As this example should make clear, the principle of monotonicity is not a magic bullet to
avoid mutual exclusion. Instead, it is a design principle to permit shared data to be manipulated in

a disciplined way without blocking.

185

Chapter 12

Compiling pH Programs Using the

Eager Haskell Compiler

The Eager Haskell compiler exploits the absence of side effects and barriers in order to enable
aggressive program optimizations such as full laziness. Nonetheless, both Eager Hasgell and
share a common compiler infrastructure. By selectively disabling various program transformations
and re-enabling barrier syntax, the Eager Haskell compiler can be turned back into a compiler for
pH. However, barriers require compiler and run-time system support which is not provided by the
system described in this thesis. In this chapter we present an efficient design for implementing

barriers within the Eager Haskell compiler and run-time system.

12.1 Whatis a barrier?

A barrier is used to detect termination of a region of code, which we will calpteeregionof the
barrier. When the pre-region has terminated, execution opts¢-regionmay begin. InpH the
pre-region and post-region of a barrier are collections of bindings in a lange block. Barrier
regions can be nested arbitrarily.

A region of code has terminated whath computations which occur dynamically in that region
have successfully yielded values—even if those values are never subsequently used. For example,
the pre-region may contain a large recursive function call. Every value in every invocation of that
large recursive call must be fully evaluated before the pre-region is considered to have terminated.

The \g calculus [17] gives a detailed semantics for barriers.

186

12.2 Barriers in the pH compiler

The pH compiler targets an abstract machine called SMT [16]. Part of the SMT machine state is
the current barrier. This tracks the termination state of ongoing computations. The core of every
barrier is a simple counter. This counter is atomically incremented before every thread spawn, and
atomically decremented once again when a thread terminates. When the barrier count reaches zero,
all computations in the pre-region have completed and the baliseharges The post-region is
guarded bytouchingthe barrier. No post-region thread will be run until the barrier has discharged.

Note that when multiple threads are being run, these threads may be in the pre-regions of differ-
ent barriers. As a result, every thread has an associated barrier. This means that every suspension in
the system must record the current barrier. When a suspension is run, it must be run in the context
of the barrier which was in effect when it was created.

Nesting of barriers means that a binding may occur in the pre-region of many barriers at once.
In practice, we track only the innermost barrier region. Every barrier has an assqastet—the
barrier region in effect on entry to its pre-region. Creating the new barrier increments the parent
barrier, and discharging the barrier decrements the parent barrier. In this way, computations need

only update the state of a single barrier as they execute.

12.2.1 A lazier barrier

The SMT implementation of barriers has a major drawback: it imposes the run-time cost of modify-
ing the barrier count on every single thread creation and termination. Moreover, barriers are shared
among threads which are potentially executing on multiple processors. Thus, barrier counters are
shared data, must reside in memory, and must be manipulated using expensive atomic memory
operations.

The overhead of atomic memory operations can be mitigated by tracking barrier counts locally,
but this merely decreases overheads rather than eliminating them. Instead, we shift the overhead
of barriers onto the suspension path. Recall that Eager Haskell does not explicitly spawn threads.
Instead, threads run until they are forced to suspend; when a thread suspends, or when it completes
execution, its successor thread is immediately run. Each time a thread suspends, the successor thread
becomes a new thread of execution. Thus, for a barrier regionwtitstanding suspensions there
will be n suspended threads, plus a possible single running thread.

Thus, we can avoid tracking barriers when execution continues normally. We start with a barrier

187

count of one (the initial thread of execution). If no computation suspends, we eventually reach
the end of the barrier region and decrement the barrier count. It is now zero, and execution can
proceed normally. If suspension occurs and there is a successor thread then we increment the barrier
count. When a suspended thread is re-scheduled and executes to completion, the barrier count is
decremented once again.

Because successor threads are encoded in the execution order of the compiled program, there is
no easy way to check whether a given thread has a successor. However, the compilation scheme for
pH guarantees the existence of a successor thread if a thread has never suspended before. Thus, we
increment the barrier count every time a suspension is created. When control returns to the run-time

system after running a previously-created suspension, we decrement the barrier count once again.

12.2.2 Reducing state saving

In pH every computation takes place in the contexsafebarrier. Conceptually, a global barrier
surrounds the entire program execution and indicates when the program has terminated. If the
system runs out of runnable work before this barrier has discharged, then deadlock has occurred.

Most programs execute almost entirely in the context of this global barrier. Nonetheless, every
suspension ipH includes a field to record the current barrier. This adds a word of overhead to
every suspension in the system. We would like to represent suspensions in a uniform way, yet still
be able to save or restore barrier state when required.

A simple trick can be used to accomplish this: make the code to restore the barrier look like
a suspension. If we suspend in the pre-region of a barrier (except the global barrier), we create
a regular suspension as usual. We then create a “barrier restoration” suspension. This special
suspension contains a reference to the current barrier and to the original suspension. The run-time
system resumes this suspension in exactly the same way as an ordinary suspension. Instead of
regularpH code, the suspension runs a stub which restores the barrier state and then jumps to the
original suspension. The use of barrier restoration suspensions adds a good deal of overhead—
an entire suspension—when suspension occurs in the pre-region of a barrier. However, the vast
majority of suspensions are smaller. We add overhead for barriers only when they are actually used.

Note that the global barrier need not be treated in the same way as local barriers. If the state
of the global barrier is shared among many processors, then updates become a major source of
contention. Instead, suspensions can be tracked locally on each processor. There is no need to

check the global state of the barrier until all other execution has ceased.

188

12.3 Barriers in Eager Haskell

Unlike pH, Eager Haskell does not have a notion of a “global barrier” at all. Indeed, if the value

of a suspended computation is not needed, the suspension is simply ignored and will be cleaned up
by the garbage collector. If we wish to allow Eager Haskell to generate barrier code, we must make
sure that the run-time system does not lose any of the work in a barrier region. In this section we
explore how to add barriers to Eager Haskell while still maintaining demand-driven suspension.

We take the low-overhead barrier described in the previous section as a starting point. Because
suspensions will only be run if they are demanded, we explicitly track all pre-region suspensions
and demand them. This has much higher overhead than simply counting suspensions. An additional
complication is that the Eager Haskell code generator has no provisions for representing barrier
constructs. Instead, we add explicit functions for creating and synchronizing on barriers. A sep-
arate phase of compilation replaces barriers with a mixture of touch operations and calls to these
special constructs. Placing these functions in a user-level library will allow future experiments with
different sorts of program synchronization (such as an efficient construct for hyperstrict evaluation).

We do not propose adding termination detection at the outermost level of Eager Haskell pro-
grams. The barrier implementation we describe in this section sacrifices many of the economies of
the Eager Haskell execution strategy. In particular, there is no way to discard disused computations
and still maintain the termination guarantees whi¢hprovides. At the top level these guarantees
simply allow us to detect deadlock; the Eager Haskell run-time system uses an entirely different set
of techniques (with different semantics) for deadlock detection. Most notably, Eager Haskell allows
deadlock in computations whose results are never used. No deadlock of any kind is pernpitled in

programs.

12.3.1 Tracking the work

Tracking all the work associated with the pre-region of a barrier is not difficult. Every barrier
includes an associated work pool. When suspension occurs in a barrier context, the suspended work
is added to the work pool of the current barrier. Before we can exit the current barrier region, we
must remove work from the work pool and force it (again in the context of the barrier) until the
work pool is empty.

The chief complication is deciding what should be done when a pre-region computation forces

a preexisting suspension. The run-time system must save the active barrier and force the suspension

189

data Barrier

newBarrier :: () — Barrier

withBarrier :: Barrier - (a—b)—a—b
touchBarrier :: Barrier — ()

Figure 12-1: Types and functions for representing barriers

in a context with no active barrier. If the suspension being forced itself occurred in a barrier context,

then it will be a barrier restoration suspension and the appropriate barrier state will be restored.

12.3.2 Run-time system changes

We can represent the work pool of a barrier using a signal pool, as described in Section 9.1. A
signal pool gives a simple, language-level way to say “synchronize on all outstanding pre-region
computations”—simply touch the signal pool. In our array implementation, the signal pool was
constructed explicitly by user code. Sirameyfunction may be called from within the pre-region of

a barrier, we do not want to do this in Eager Haskell. Instead, the run-time system adds suspensions
to the pool as they are created.

This means that the signal pool used to represent barrier regions can expand dynamically in
an unstructured way at the same time as it is being forced. Contrast this to the signal pool for an
array, which is fixed by the structure of calls to $egfunction and its relatives. This problem has
a simple solution; when the signal pool has been forced, it is simply forced again. If it is empty,
forcing can stop; otherwise it has grown and should be forced again. The signal pool can be kept in
an M-structure and updated atomically. We thus represent a barrier as an M-structure containing a

signal pool.

12.3.3 Compiler changes

In order to allow the Eager Haskell code generator to conghil@rograms, we add functions which
explicitly create a barrier region and synchronize on it. The abstract interface to barriers can be
found in Figure 12-1. TheewBarrierfunction creates a new barrier object. TwighBarrier func-

tion takes a barrier object, a function, and an argument. It tells the run-time system that the barrier
is currently in force, then applies the function to its argument. Any suspension which occurs during

the function application will be captured in the signal pool of the barrier. FintllychBarrier

190

Blx=pcP] B 7 = x=r7‘sed p Py
Blx=CxX] 57 = x=r1 ‘seq Cx X
Blx="1%X] 3 = x = withBarrier 3 (f X_1) X«
B[x = casey of D] 5 7 = x = withBarrier 5 (A_ — casey of D) ()
B[By; Bs] 51 = B[Bi] 57
B[[BQ]] B T
S[x=pc Pi] 7 = x‘seqT
Slx=CxX] 7 =T
Sx="1X.] 7 =T
S[x = caseE of D] 7 =T
S[B1; B 7 = S[Bi] S[Bz] 7
Plx=E] 7 = X=r71'sedE
7)[[81; BQ]] T = 73[[81]] T
P[B2] T
P[B1 > Bo] 7 = [= newBarrierr
B[B:] 8T
71 = S[Bi1] (touchBarrier 3)
P[B2] 71
T[B; > By = P[B1>>By] ()

Figure 12-2: Translation replacing barrier constructs with barrier functions and explicit synchro-
nization.

returns a value only when the signal pool of the provided barrier is empty.

We remove barriers after program optimization is complete, but before closure conversion oc-
curs. At this point, all subexpressions are properly namedetrexpressions have been un-nested.
The barrier removal algorithm is given y[B; >>> Bo] in Figure 12-2. Herd3; are the bindings
in the pre-region of the barrier a®} are the bindings in the post-region. The helper functidri
surrounds function calls and case expressions with a callttBarrier 5. We explicitly synchro-
nize simple local computations in the pre-region usfijg] in order to avoid transforming those
computations into functions as is done wiffix = case ..]. In effect, we create as much of the

signal tree as possible statically, and then insert calgttiBarrier when this is not possible.

12.3.4 A synchronization library

The functions in Figure 12-1 can also be provided to the user in a Barrier library. We can also

provide a combinator which applies a function to an argument and does not return until the resulting

191

computation has terminated:

applyTerminate : (a—b)—a—b
applyTerminate f x = touchBarrier b'seqr
whereb = newBarrier()
r = withBarrier b f x

Many parallel dialects of Haskell make use of classes whose sole task is to perform deep sequencing
on large data structuresie. , to traverse those data structures and ensure that they have been
fully computed. If we instead require the producer of such structures to terminate, we obtain deep
sequencing without the cost of traversing the data structure. The barrier's thread pool encapsulates

the “interesting” parts of such a traversal—the places where further evaluation is required.

192

Chapter 13

Conclusion

Chapter 11 presented a technique for running Eager Haskell programs on a multiprocessor, and
Chapter 12 detailed hopH programs might be compiled using the Eager Haskell compiler. How-
ever, eager evaluation shows great promise in everyday Haskell compilation. In this chapter we
outline future directions for work in eager evaluation, and discuss improvements which must be
made to the Eager Haskell implementation to turn it into an production-quality tool. We conclude

with a brief survey of the accomplishments so far and the most promising future directions.

13.1 Semantics

In Chapter 3 we presented a semanticsXemwhich contained numerous extensional equivalences.
These equivalences are included with an eye to simplifying the equational proofs found elsewhere
in the thesis. However, we have played somewhat fast and loose in the rules we have added. Several
of the rules can be derived from one another; this redundancy could, with care, be eliminated.
Meanwhile, the consistency of most of the expansion rules has not been formally established. This
requires proofs of contextual equivalence—rarely a simple task in practice.

From a practical standpoint, there is still no standard way to discuss the semantics of functional
programming languages. Numerous semantic styles exist with varying tradeoffs, and within those
styles subtle differences can have dramatic semantic impact. Naturally, these particular styles are
driven by the applications for which they are used. A common framework is required before these
varying approaches can comfortably be compared.

Such a framework needs to be built up starting with small building blocks. An inclusive small-

step semantics, such as the one presentekifpis a good starting point. From there, other varieties

193

of semantics are a matter of imposing a structure on permitted reductions. For example, the reduc-
tion strategies in Chapter 4 are expressed by restricting the reduction system, collapsing multiple
reductions (as iby,r), and imposing a structure upon the term being reduced. Big-step reduction
encodes strategy and reduction rules together, and can be justified from the small-step semantics in
a similar fashion. A well-designed core semantics will allow the correspondence between different

semantic styles to be justified in a purely mechanical fashion.

13.2 Eagerness

As we showed in Chapter 4, the Eager Haskell compiler is simply one point on a vast spectrum
of possible hybrid strategies. Restricting our attention to hybrid strategies whose semantics match
those of Haskell still leaves tremendous potential for new research. For example, it might be worth
using eager evaluation only for recursive function calls. Type information or termination analyses
could be used to guide transitions between laziness and eagerness. Limited eagerness for provably
terminating expressions has shown promise [36], but has not seen widespread use. Two particularly
productive avenues of exploration for mainly-eager evaluation appear to exist. First is to incremen-
tally improve the fallback model used in Eager Haskell. The second is to dispense with fallback

entirely and explore new eager execution models.

13.2.1 Fast stack unwinding

The purpose of the fallback process is to unwind the execution stack of the running program and to
transform the computations on that stack into demand-driven thunks. However, this need not happen
a frame at a time, nor are there particular limits on how much of the stack must be unwound (except
that we must always eventually unwind to the outermost useful computation). In fact, fallback is
really a bulk continuation capture mechanism, and any technique useful for continuation capture
can potentially be applied. With that in mind, we can structure the system so that fallback never
involves compiled code at all.

One technique for accomplishing thishalk fallback Compiled code must place markers on
the stack at call points. Every return point becomes an entry point. When fallback occurs, the run-
time system traverses the stack, making use of the information contained in the markers to transform
each frame into an appropriate thunk. Once the stack has been copied to the heap in this manner,

a non-local exit branches to the outermost level of computation, and the program is restarted in a

194

demand-driven fashion as usual.

Bulk fallback has obvious optimizations. A sufficiently clever implementation could perform
fallback without copying by simply transforming the markers directly into a linked heap structure
(or having each caller structure the frame so this is automatically the case). Execution would resume
on a new stack, and the old stack would become part of the heap, where it can be garbage-collected
as usual. Furthermore, the markers can serve double duty by storing garbage collection information
even in the absence of fallback, thus permitting pointer and non-pointer data to be freely intermixed
on the stack. A marker technique is already used for garbage collecting the stack in GHC [75].

Bulk stack unwinding requires care to identify strictly dependent frames. When a caller imme-
diately synchronizes on the result of its callee, the callee should be run first, and the caller can then
be run. This happens naturally with the current fallback mechanism (the caller will suspend). When
the stack is processed in bulk, the markers must indicate such strict dependencies if stack growth
during forcing is to be controlled.

It should also be noted that bulk stack techniques will increase the complexity of generated
code. Every function call must push a marker on the stack; the cost of a single store at each call site
adds up, and may not be worthwhile for infrequently used information. In addition, every return
point also becomes a function entry point. This is likely to increase the number of entry points
overall, and most particularly will add a second entry point to every single-entry non-leaf function.
An off-the-cuff experiment early in compiler development indicated substantial additional overhead
just for marker pushing in Eager Haskell programs. If we compile to native code (or mangle the
C compiler output as in GHC), mapping techniques involving the return address can be used to

eliminate these overheads.

13.2.2 Hybrid evaluation without fallback

A more ambitious exploration of hybrid evaluation would throw away the idea of fallback and ex-
plore an entirely different mechanism for mediating the transition between eagerness and laziness.
For example, itis possible to devise hybrid execution strategies in which every function call is guar-
anteed to return a value. This would restore an invariant useful for both strict and lazy compilation,
and make it easy to use techniques such as unboxing to optimize program code. However, such an
approach could not rely on the fallback mechanism described in this thesis; fallback requires that
any function call be able to suspend at any time. The resulting language would likely require a

mixture of both lazy and eager evaluation in compiled code, rather than relegating laziness to the

195

run time system.

13.3 Improving the quality of generated code

There are numerous places where the present Eager Haskell compiler and run-time system can be
improved. The simplest and most direct way to improve the run time of Eager Haskell programs is
to reduce the administrative overhead of the evaluation mechanism itself. This means a good deal of
performance tuning and optimization of the run-time system and garbage collector. In this section
we focus on improvements which can be made to the portions of the Eager Haskell implementation
(code generator and runtime) detailed in this thesis. In Section 13.4 we turn our attention to higher-

level compiler improvements.

13.3.1 Garbage Collection

Given the large garbage collection overheads associated with many of our programs (see Figure 10-
3), any improvement in the garbage collector will improve the run time of every Eager Haskell
program. Nursery collection is already fairly efficient (witness the relatively low GC overheads for
fib and queens); most of the optimization possible for nursery objects consists of inlining and loop
unrolling in the main collector loop. Tenured collection is substantially more expensive.

Simply decreasing the number of allocated and live objects will benefit any garbage collection
strategy. As noted in Section 7.3, the current code generator is aggressive about batching allocations,
and this often causes empty objects to live across function calls and garbage collection points.
Increasing the number of allocation points increases the number of suspension points in the program;
the corresponding increase in code size (even if that code is rarely executed) may slow program
execution. We hope to make this up by reducing the load on the garbage collector and dramatically
decreasing the number of write barrier checks which must be performed.

Garbage collector performance is often determined simply by the tuning of various collector
heuristics. For example, increasing the nursery size can dramatically increase memory footprint and
cause TLB thrashing or paging during collection. However, it decreases the rate at which objects
are copied, and the rate at which they are aged and subsequently tenured. Similar tradeoffs apply
to tenured space. In practice, no one set of parameters appears to work well for every program.
Nonetheless, it should be possible to improve the present parameters, which were fixed fairly early

in development based on a small subset of the final benchmarks.

196

The tenured collector sweeps eagerly and allocates very large bitmaps for marking. It should be
a simple matter to separate BiBoP chunk sweeping from large-object sweeping. Sweeping a BiBoP
chunk can be a simple matter of replacing its allocation bitmap with the mark bitmap. BiBoP chunks
which are allocated during marking can share a single mark bitmap, which is simply discarded
during sweeping. Large-object sweeping can be done using per-object mark bits; the extra word
of memory required for marking is more space-efficient than allocating mark bitmaps for the entire
heap. The chief challenge is devising a mechanism for mapping a pointer to the appropriate chunk
bitmap. At the moment chunk descriptors are stored in a separately-allocated data structure; placing
them in the chunk itself would make them easier to find, but might reduce the benefit of having
pointer-free object pages which would otherwise be untouched by the collector.

Limiting write barriers to tenured indirections would further simplify the implementation of
write barrier code (and reduce overhead). This would necessitate changes to the code generator.
Potentially suspensive back edges would allocate enough space for a tenured indirection. When
the corresponding binding is compiled, the empty slot can be overwritten with an indirection to the
newly allocated object. In this way, the results of computations are always allocated in the nursery
and filled in with initializing stores. The write barrier routine which introduces tenured indirections
into already-allocated objects can be eliminated.

Our current collector uses only two generations, a nursery and a tenured space. It is possible
to use more sophisticated non-moving generational schemes within tenured space. One simple ex-
ample would be to separate truly tenured objects from those which are merely long-lived. It should
only be necessary to trace objects reachable from roots once, when the root is written; subsequently

this memory should not be scanned again. This effectively creates a third generation.

13.3.2 Reducing synchronization

The chief overhead of non-strictness during ordinary evaluation is the cost of checking for various
exceptional conditions. In the present Eager Haskell implementation, this takes two forms: excep-
tion checks at every function entry point, and full/lempty checks when data is used.

There are numerous opportunities to eliminate full/empty checks from Eager Haskell programs.
For example, in a uniprocessor Haskell implementation we are not particularly concerned about the
loss of eagerness (and consequent loss of parallelism) caused by hoisting synchronization past a
function call. Permitting such hoisting will require minor tweaks to the array internals; the signal

pool is considered to be strict, and this can cause the compiler to introduce deadlocks along signal

197

pool paths when synchronization is hoisted past a hon-strict array initialization.

Many compilers give special treatment to “leaf functions”, where it is possible to avoid the over-
head of allocating a stack frame. Similarly, it is unlikely to be worth suspending and resuming leaf
calls: they represent a bounded (and generally small) amount of computation. We can therefore
eliminate stack checks from leaf functions. In fact, only recursive function calls can lead directly to
unbounded computation. We can therefore restrict stack checks to recursively bound functions and
unknown function applications (which may prove to be recursive). However, preliminary experi-
ments indicate that neither technique may be useful: functions are likely to suspend on unavailable
data anyway, and the cost of suspension is higher than the cost of thunk creation.

At the moment no interprocedural computedness information is used by the compiler. Because
synchronization is introduced after lambda lifting, obvious computedness information based on
lexical context is simply thrown away. It should be simple for the compiler to annotate programs
in order to preserve this information. Such an annotation can be used as an initial context during
synchronization introduction.

We can also use interprocedural analysis to provide more precise computedness information.
As noted in Section 6.10.4, strictness information is not necessarily a useful tool for reducing the
amount of synchronization in Eager Haskell programs, as it moves synchronization operations from
callee to caller, risking a dramatic increase in program size. In that section, we described com-
putedness analysis, which propagates information on computed arguments from caller to callee. It
remains to be seen whether computedness can be as effective as strictness in eliminating synchro-
nization.

Simple computedness is not always sufficient to eliminate checking. We are careful to remove
indirections in the local frame so that transitive dependency can be used for local synchronization.
However, we can pass an indirection as a strict function argument. The callee will eliminate the
indirection, but this will not affect the caller. Thus, even though the function may be known to be
strict, it is still not safe to eliminate the indirection check from the callee.

There are several possible answers to this problem. The code generator does not currently
distinguish between emptiness checks and indirection checks. These have the same overhead in the
common case, but the fallback code for emptiness is considerably more complicated as it requires
saving and restoring live data. Thus, even if the check is still necessary, it can be made cheaper.

Many values can never be indirections. At the moment, the compiler makes no use of this

fact. When a value cannot be an indirection, we can use transitive synchronization information

198

with complete impunity—even if the transitive dependencies might themselves yield an indirec-
tion. Determining which computations may yield an indirection is a straightforward static analysis
problem given the code generation rules. However, the precision of results will depend (as with
computedness, strictness, and many other analysis problems in functional programming) on precise
higher-order control flow and heap analysis. As with strictness, precision is probably unnecessary
in practice; it should be enough to record which functions may return indirections. This can be

captured using a simple boolean value.

13.3.3 Better representations for empty objects

The data structures used by Eager Haskell to represent empty proxies could be better chosen. The
most glaring example is suspensions (whose complexity is evident from Figure 5-4). As seen in
Figure 10-13, it is very rare for multiple values to result from a single suspension. We might
therefore use two representations for suspensions: the first suspended-upon variable would hold
the frame and dependency information; remaining suspended-upon variables would refer to this
first suspension as in the present scheme. However, the benefits of an additional scheme must be
weighed against the difficulty of maintaining two separate suspension representations.

We might instead take the opposite tack and attempt to unify the thunk mechanism and the
suspension mechanism. This has the potential to dramatically simplify the run-time system by
allowing all suspended computations to be treated in a uniform manner. Its chief drawback is the
relative complexity of a suspension (which requires a descriptor and two dependency fields) versus a
thunk (which only requires a function closure). One possible technique is to track the strict variables
in the frame rather than storing the direct dependency explicitly. Every descriptor and every closure
would include information indicating which frame entries are required for execution. This has an
additional advantage: when the run-time system resumes a suspension or a thunk, it is guaranteed
to make progress and will not re-suspend.

A few particular kinds of empty objects may deserve special treatment. At the moment, the
Eager Haskell compiler does not give any special treatmeubjections A projection is a binding
which fetches a single field from a constructor:

let head= casexsof
(X:_) =X
_ —error...

If headsuspends, we will create a suspension which incorporsetel xsis later evaluated, this

199

can result in a space leakeadwill retain the tail ofxsunnecessarily.

Two techniques exist which eagerly evaluhtsadwhenxs has been computed. Both use spe-
cial projection thunks In the simplest technique, the garbage collector performs projection when
possible [140]. When multiple projections of a single data structure occur statically (due to the use
of lazy pattern matching), a second technique causes all these projections to be evaluated when any
one of them is forced [123]. Either technique could prove useful in improving the space perfor-
mance of Eager Haskell programs: projections will still be performed eagerly by default, but when
they suspend they will generate a projection thunk rather than an ordinary suspension.

A similar optimization may be applied to touch-like operations whose discriminant is discarded.
Such expressions result from theqoperation in Haskell and from the various operators proposed
in Chapter 9 for implementing signal pools. Using a specialized representation for such operations

would be a first step to fixing some of their problems.

13.3.4 Object Tagging

It is worth revisiting our decision to represent a tag as a simple pair of integers. It is unclear whether
using a descriptor word in an object header actually slows code down noticeably. If it does not, the
descriptor approach gives far more flexibility in our choice of object representation and is preferable
to the more tightly constrained approach of using explicit tags. Use of descriptors is particularly

necessary for unboxing.

13.3.5 Unboxing

In GHC the use of unboxed values is an important part of efficient code generation [97]. The
Eager Haskell compiler does not give direct access to unboxed values. There are a number of
daunting technical problems which must be overcome in order to permit the use of unboxing. In
most functional languages, when a function application occurs it is guaranteed that a value will be
returned; in such a setting, returning an unboxed value is as simple as establishing a convention
for where the value will be placed (on the stack, in a register, etc.). In Eager Haskell there is no
guarantee that a function will return a value—any call may exhaust resources and suspend (consider,
for example, passing a large list to an unbolextjthfunction). Thus, we need some way to create

a suspension for an unboxed value. Any such mechanism effectively duplicates the behavior of

boxing.

200

In the presence of a native code generator and bulk fallback, returning unboxed values may
be simpler—whole segments of the stack can be restored in one go, and the usual function return
mechanism will suffice. In the absence of a native code generator (or another mechanism to save
and restore large pieces of the computation state) various workarounds are required. The simplest
is to box values as they are returned. Second simplest is to return a flag indicating whether the
corresponding value has been computed.

An apparently promising technique is to simply CPS-transform functions which return an un-
boxed value, transforming an unboxed return into an unboxed call. Unboxed values must be strictly
bound [97]; thus, all calls to functions returning an unboxed value look like this:

caseunboxedFunc a b of
unboxedValue- e

The continuation-passing transformation would transform such a call as follows:
unboxedFunlca b ¢ (AunboxedValue- €)

Note that a closure is created fereven if unboxedFunicdoes not suspend. If we knew that
unboxedFuncould not suspend, the closure could be created on the stack; however, we could use
straightforward unboxed return if we had that much information. The rest of the time we are obliged
to heap-allocate a closure fer even though the resulting closure will probably be short-lived. In
most cases this will be markedly more expensive than simply boxing the resuibokedFunc

Even in the absence of unboxed return, permitting the use of unboxed values remains a chal-
lenge. In order to represent data structures which contain a mix of boxed and unboxed data, one
of two technigues must be used. If we keep the current object representation, unboxed fields must
be placed in a separate, segregated structure. The main data structure would include all the boxed
fields plus a pointer to the structure containing the unboxed fields. Alternatively, we must change
the tag representation to permit a mix of boxed and unboxed data. The most obvious way of doing
so is to use descriptors rather than integer tags, as mentioned in the previous section. Otherwise,
objects can be partitioned into a boxed part and an unboxed part; the tag would indicate the size of
the respective parts.

Even establishing a calling convention for unboxed arguments is difficult in the presence of
suspension. Itis tempting to simply use the C calling conventions, passing unboxed arguments as C
arguments. However, it is not clear how this should interact with entry points (where no additional

arguments are expected). A more likely technique is to pass unboxed arguments on the shadow

201

stack along with regular arguments. If unboxed values are immediately popped from the stack on
function entry, stack descriptors might not be necessary; some sort of descriptor will be required for
unknown or curried function applications, however.

It is also difficult to mix curried function application and unboxing; the obvious expedient is to
box curried arguments and use a special entrypoint to unbox them again. This is one place where the
push-enter style of function application might work better than the eval-apply style: each function
contains code to handle stack checking and partial application, and as a result it is easier to use

specially-tailored calling conventions for every function.

13.4 Other compiler improvements

Eager Haskell is a research project, and like many other research compilers it doesn’t contain the
well-tuned and complete set of optimizations that one would expect from a production compiler. A
number of changes to optimization passes have the potential to dramatically improve the quality of
compiled code. We divide these changes into three classes. A good deal of the existing functionality
needs to be tuned for performance. Some parts of the compiler (such as deforestation) have been
improved upon by newer research. Finally, some important compiler passes are missing or will need
to be re-written entirely in order to support desired functionality.

In addition to maintenance work, there are a number of optimizations for procedural languages
which have not (to our knowledge) been tried in non-strict languages. By adopting an execution
strategy that is very nearly strict, we can hope to adapt some of these optimizations to Eager Haskell.

We examine one such opportunity—escape analysis.

13.4.1 Specialization

Haskell's type-based function overloading is elegant, but can be very expensive in practice. Opti-
mizing Haskell compilers perform class specialization in order to eliminate much of this overload-
ing at compile time [57]. However, it is often desirable to explicitly direct the compiler to produce
versions of overloaded functions which are specialized to particular types. This further reduces
overloading and often improves the code produced by class specialization. The Eager Haskell com-
piler performs class specialization, but at the moment it does not handle user-directed specialization

gracefully, and inter-module specialization information is not correctly emitted.

202

13.4.2 Control-flow analysis

Most static analyses of higher-order languages have a precision which depends in part on precise
control-flow analysis. Indeed, whole-program analysis of Haskell can potentially eliminate much
of the overhead of laziness [55, 35], and enable advanced optimizations such as interprocedural
register allocation [29]. Starting with the work of Shivers [122], numerous approaches to control
flow analysis have been proposed with varying degrees of precision and complexity. Most of the
relevant techniques can be found in the book by Niekstoal.[83].

At the moment, no formal control-flow analysis is performed by the Eager Haskell compiler.
An exhaustive analysis would require whole-program compilation. For many program analyses,
however, a crude approximation to control-flow information is more than sufficient. Given the
importance of control flow information to program analysis, it would be worthwhile to perform a
separate control flow analysis during compilation. The resulting information could then be used to

guide subsequent compiler phases. The whole compiler will then benefit if the analysis is refined.

13.4.3 Loop optimization

At the moment very little effort is made to perform loop optimizations on Eager Haskell programs.
Full laziness takes care of invariant hoisting, but there are no loop-specific optimizations. Worse
still, the worker/wrapper transformation, which is the cornerstone of loop optimization in GHC, is
severely lacking in Eager Haskell: it is only run on top-level functions with precise type information.
As explained in Section 6.10.4 it will not be nearly as useful in Eager Haskell in any case.

Instead, a separate pass must be written to perform loop optimizations, replacing the current
worker-wrapper phase. We envision a system which splits functions into three pieces (one or more
of which can often be omitted): a wrapper, a header, and a body. The wrapper is inlined; it de-
structures tuples and passes them to the header. The header is run on loop entry; it can contain any
synchronization required before the loop is run, and is a logical resting place for expressions hoisted
by full laziness. Finally, the body contains the actual loop recursion.

Because Eager Haskell loops are expressed using recursion, the loop-carried variables are passed
as arguments from iteration to iteration. It is often beneficial to eliminate invariant arguments.
Observations of compiled code indicate that this exposes opportunities for constant propagation
that otherwise would have required more complex static analysis to discover. Variables which are

not eliminated will subsequently be re-introduced by lambda lifting.

203

13.4.4 Improving inlining

Aggressive inlining can make Haskell programs dramatically more efficient. The Eager Haskell
compiler has always allowed the programmer to specify that certain functions must be inlined. In
addition, bindings which are used at most once are always inlined. Until comparatively recently
(November 2001) these were the primary forms of inlining in the compiler.

The current version of the compiler includes a phase (run several times during compilation)
which identifies candidates for inlining. A simple cost model is used to measure the size of the
IR for a binding. If the cost is below one inlining threshold, it will be inlined unconditionally; if
it is below a second, larger threshold then the binding is conditionally inlined. A new annotation
was added to indicate that particular functions shawtbe inlined. This annotation allows small
run-time support routines to be carefully coded so that only commonly-executed code is inlined.

However, there are a number of infelicities in the compiler’s inlining decisions. The inlining
decisions made by the compiler amp-down we decide whether to inline a function before we
know the impact that inlining will have on the function being inlined. This can be particularly
unfortunate when a fairly small function, which will be inlined unconditionally, is made up primarily
of calls to other unconditionally-inlined functions. We have in effect severely underestimated the
function’s size and the result is unintentional code explosion.

It is better to make inlining decisionsottom-up In a bottom-up approach to inlining, the
function is fully optimized (including all necessary inlining) before the inlining decision is made.
In this way, inlining decisions are based on the actual optimized function size. The bottom-up
approach is unfortunately more complex than the top-down approach: inlining decisions must be
integrated with program transformations, rather than being performed as a separate pass.

The cost model used for making inlining decisions is not actually based on any sort of measure-
ment of program performance, but instead relies upon a good initial guess at how programs should
behave. The accounting used when making conditional inlining decisions is shoddy at best, and in
practice conditional inlining is very rare. By contrast, the inliner in GHC assigns “discounts” to
function arguments when making conditional inlining decisions; these discounts reflect the fact that
the inlined code will shrink when particular arguments are known to be constant [100].

One consequence of the late arrival of compiler-directed inlining is that much of the Eager
Haskell prelude is explicitly marked for inlining. 1t would doubtless be better to conditionally inline

many of the larger functions which are currently being inlined unconditionally. However, a detailed

204

audit of prelude code will require a considerable amount of time and effort.

13.4.5 Range-based optimizations

At the moment, constant propagation in the compiler is fairly effective. However, many variables
have not one value, but a range of correct values. Because Eager Haskell arrays are bounds-checked,
optimizations based on variable ranges can have a strong impact on array performance. Though
range-based optimizations of Eager Haskell programs have been proposed on numerous occasions,
shortage of manpower and time has prevented any of these plans from coming to fruition. The
biggest challenge is the analysis required to determine variable ranges. The simple intraprocedural
cases are already handled by the compiler code; a simple abstract interpretation should expose
most of the remaining opportunities [83]. As with most other analyses of higher-order languages, a

precise analysis requires whole-program control-flow analysis.

13.4.6 Constructed products

A Haskell function can return multiple values by constructing a tuple and returning that tuple. Fre-
guently the callerimmediately fetches the fields from the newly-constructed tuple and discards it. In
both Id [49] and Haskell [21] it has proven beneficial to eliminate the tupling operations and instead
have such functions return multiple values. In GHC this optimization is expressed using unboxed
tuples.

Attempts to express such a transformation in Eager Haskell using continuation-passing ran into
a number of obstacles; most notably, lazy matching of the constructed result does not work at all. We
are currently brainstorming possible ways to express the transformation effectively in the framework
of A¢; adding explicit multiple-value bindings to the IR will complicate the compiler unnecessarily.
The simplest technique may be to express lazy projection in a manner that can be exploited by the

code generator to generate code which uses multiple-value return.

13.4.7 Better deforestation

The Eager Haskell compiler performs deforestation in a single pass [71, 70]. Opportunities for
deforestation are exposed mainly by aggressively inlining prelude code. This has several notable
failings. If inlined code fails to deforest, program size has increased (often dramatically) to no avail.

Because deforestation happens in a single pass, opportunities which would be exposed by program

205

simplification are missed—this accounts for the poor performance of the wavefront benchmark.
Finally, the need to prevent unintended code explosion during deforestation (particularly across list
append operations) is frequently at odds with the need to inline nested list traversals.

GHC has an innovative solution to deforestation—rewrite rules [94]. Rules allow the sophisti-
cated user to specify additional equational transformations to be used by the compiler. This allows
optimizations such as foldr/build [38] to be specified in prelude code. Just as important, it allows
prelude functions to be selectively inlined exactly when they would be candidates for deforestation.
The GHC prelude currently contains three versions of each deforestable prelude function. The first
is a wrapper used by the rewrite rules. The second is an efficient, but non-deforestable, version. The

third is the version which is used when deforestation is possible.

13.4.8 Escape analysis

At its simplest, escape analysis attempts to identify which heap objects do not escape the func-
tion call in which they are allocated. In a strict language, such objects can be allocated on the
stack. Stack-allocated objects do not require garbage collection; they are deallocated as a natural
consequence of function return. Intraprocedural escape analysis is performed in most functional
languages in the guise of constant propagation; it is interprocedural escape analysis which is an
interesting and hard problem. Lazy languages cripple interprocedural escape analysis; thunks are
stored into data structures and then returned, causing function arguments to escape.

Most of the time Eager Haskell programs run strictly, however. If we perform a standard strict
escape analysis, we run into only one problem: what becomes of stack-allocated data during fall-
back? We propose toromotesuch data to the heap. This will require an additional invariant: no
data structure in the heap may point to the stack. If this invariant is respected during normal execu-
tion, it is not hard to enforce it during fallback as well. Using bulk fallback might permit even this

restriction to be lifted.

13.5 Envoi

Hybrid evaluation shows great promise as a standard execution strategy for Haskell. The Eager
Haskell implementation demonstrates that the performance of eagerness is comparable with that
of laziness, and can be noticeably better on some problems. With care, we believe the remaining

shortcomings of the hybrid strategy can be addressed at the implementation level. By using Hybrid

206

evaluation, programmers should be able to run Haskell programs efficiently without an intimate
knowledge of the workings of the evaluation mechanism and without resorting to program annota-
tions. It is unacceptable for programs to fail unpredictably in the face of such common and simple
idioms as tail recursion.

The hybrid strategy presented in this thesis is just a start. It is encouraging to observe the
tremendous scope for future work. The present Eager Haskell can be improved dramatically, bring-
ing concomitant improvements in the quality of compiled code. Because the hybrid execution strat-
egy shares the same semantics as a lazy strategy, it benefits from many of the same optimizations:
compiler innovations on either side can be carried over to the other. Meanwhile, many of the most
interesting experiments in eager evaluation can occur with little or no change to the compiler. New
fallback mechanisms and heuristics are a matter of changes to the run-time system. Parallelization
is a sticky design problem, but again the necessary mechanisms can be cleanly separated from com-
pilation concerns. In short, Eager Haskell is an excellent substrate for future research in functional

programming.

207

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

H. Abelson and G. J. Sussmaftructure and Interpretation of Computer ProgramdIT

Press, Boston, 1986.

Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem Maessen, and Rishiyur S. Nikhil.
Semantics of pH: A Parallel Dialect of Haskell. RBroceedings of the Haskell Workshop
FPCA 95, La Jolla, CA, June 1995.

Shail Aditya, Arvind, and Joseph Stoy. Semantics of barriers in a non-strict, implicitly-
parallel language. IProceedings of the 7th ACM Conference on Functional Programming

Languages and Computer Architectuke Jolla, CA, June 1995. ACM.

Shail Aditya, Christine H. Flood, and James E. Hicks. Garbage collection for strongly-typed
languages using run-time type reconstructionLIBP and Functional Programmingages
12-23,1994.

Andrew Appel. Runtime Tags Aren’t Necessarlisp and Symbolic Computatip@:153—
162, 1989.

Andrew W. Appel. Garbage Collection can be Faster than Stack Allocatioformation

Processing Letter25(4), January 1987.

[7] Andrew W. Appel.Compiling With ContinuationsCambridge University Press, 1992.

[8] Andrew W. Appel. Modern Compiler Implmentation in MLCambridge University Press,

1997.

[9] Andrew W. Appel and Zhong Shao. An Empirical and Analytic Study of Stack vs. Heap Cost

for Languages with Closures. Technical Report CS-TR-450-94, Department of Computer

Science, Princeton University, March 1994.

208

[10] Z. Ariola and S. Blom. Cyclic lambda calculi. lImternational Symposium on Theoretical

Aspects of Computer Softwafendai, Japan, September 1997.

[11] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. InProceedings of the ACM Symposium on Principles of Programming Languages

pages 233-246. ACM, 1995. Full version in [14]; see also [73, 74].

[12] Zena M. Ariola and Arvind. A Syntactic Approach to Program TransformationsPrén
ceedings of the Symposium on Partial Evaluation and Semantics Based Program Manipula-
tion, Yale University, New Haven, CT, June 1991. Also MIT Computation Structures Group

Memo322.

[13] Zena M. Ariola and Stefan Blom. Lambda calculus plus letrec: graphs as terms and terms
as graphs. Technical Report DRAFT, Dept. of Computer and Information Sciences, Univ. of

Oregon, Eugene OR, USA, October 1996.

[14] Zena M. Ariola and M. Felleisen. The call-by-need lambda calculosrnal of Functional

Programming 7(3):265-301, May 1997. Full version of [11].

[15] Zena M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Technical Report
CIS-TR-96-04, Dept. of Computer and Information Sciences, Univ. of Oregon, Eugene OR,
USA, 1996.

[16] Arvind, Alejandro Caro, Jan-Willem Maessen, and Shail Aditya. A multithreaded substrate
and compilation model for the implicitly parallel language pH.Piroceedings of the Work-

shop on Languages and Compilers for Parallel Computggust 1996.

[17] Arvind, Jan-Willem Maessen, Rishiyur Sivaswami Nikhil, and Joseph E. Stgy.An im-
plicitly parallel A-calculus with letrec, synchronization and side-effeé&gctronic Notes in

Theoretical Computer Scienct6(3), September 1998.

[18] Arvind, Jan-Willem Maessen, Rishiyur Sivaswami Nikhil, and Joseph E. Stgy.An im-
plicitly parallel A-calculus with letrec, synchronization and side-effects. Technical Report
393-2, MIT Computation Structures Group Memo, October 1998. (Full version of [17] with

proofs).

209

[19] Lennart Augustsson. Implementing Haskell overloading.Ptaceedings of the 6th ACM
Conference on Functional Programming Languages and Computer Architepages 65—

73. ACM, 1993.

[20] Lennart Augustsson and et alThe HBC Compiler Chalmers University of Technology,

0.9999.4 edition.

[21] Clem Baker-Finch, Kevin Glynn, and Simon L. Peyton Jones. Constructed product result

analysis for Haskell. Technical report, University of Melbourne, 2000.

[22] Henk P. BarendregiThe Lambda Calculysolume 103 ofStudies in Logic and the Founda-

tions of MathematicsNorth-Holland, Amsterdam, revised edition, 1984.

[23] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T.S.E.
Maibaum, editorsHandbook of Logic in Computer Scienosmlume 2, chapter 2, pages

117-309. Oxford University Press, 1992.

[24] Joel F. Bartlett. SCHEME > C': A Portable Scheme-to-C Compiler. Technical Report
DEC-WRL-89-1, Digital Equipment Corporation, Western Research Laboratory, 1989.

[25] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:
A scalable memory allocator for multithreaded applicationdntarnational Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-I1X)
pages 117-128, Cambridge, MA, Nov 2000.

[26] Richard Bird, Geraint Jones, and Oege De Moor. More haste, less speed: lazy versus eager

evaluation.Journal of Functional Programming (5):541-547, September 1997.

[27] Robert D. Blumofe, Christopher F. Joerg, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. Cilk: An efficient multithreaded run-time system. Rroceedings of the ACM Con-
ference on Programming Language Design and Implementgpiages 132-141, Montreal,

Canada, 17-19 June 1998. ACM, SIGPLAN Notices.

[28] H.J. Boehm and M. Weiser. Garbage collection in an uncooperative environSeitivare

Practice and Experiencd 8(9):807-820, September 1988.

210

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Urban Boquist. Interprocedural Register Allocation for Lazy Functional Languagé&soin
ceedings of the Conference on Functional Programming Languages and Computer Architec-

ture, La Jolla, California, June 1995.

Luca Cardelli. Basic Polymorphic Typecheckin&cience of Computer Programming,,

1987.

Alejandro CaroGenerating Multithreaded Code from Parallel Haskell for Symmetric Multi-

processorsPhD thesis, MIT, January 1999.

J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise modeling of excep-
tions for the analysis of Java programs.AG@M SIGPLAN-SIGSOFTWorkshop on Program
Analysis for Software Tools and Engineerjipgges 21-31, September 1999.

Satyan Coorg. Partitioning non-strict languages for multi-threaded code generation. Master’s

thesis, MIT, May 1994.

Satyan Coorg. Partitioning non-strict languages for multi-threaded code generat8iatitn

Analysis Symposiynsept 1995.

Faxén, Karl-Filip. Optimizing lazy functional programs using flow-inferenceStatic Anal-

ysis Symposiupsept 1995.

Faxén, Karl-Filip. Cheap eagerness: speculative evaluation in a lazy functional language. In
Proceedings of the fifth ACM SIGPLAN ACM SIGPLAN International Conference on Func-
tional Programmingpages 150-161, Montreal, September 2000. ACM.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. Proceedings of the ACM Conference on Programming Language
Design and Implementatiompages 212-223, Montreal, Canada, 17-19 June 1998. ACM,
SIGPLAN Notices.

Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In
Proceedings of the 7th ACM Conference on Functional Programming Languages and Com-

puter Architecturepages 223-232, La Jolla, CA, June 1995. ACM.

Andrew Gill and Simon L Peyton Jones. Cheap deforestation in practice: An optimiser for

Haskell. InProceedings of the Glasgow Functional Programming Workshep5.

211

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Andrew J. Gill. Cheap Deforestation for Non-strict Functional Language3hD thesis,

University of Glasgow, January 1996.

Seth C. Goldstein, Klaus E. Schauser, and Dave E. Culler. Lazy Threads: Implementing a

Fast Parallel CallJournal of Parallel and Distributed Computing7(1), August 1996.

Seth Copen Goldstein. The Implementation of a Threaded Abstract Machine. Report
UCB/CSD 94-818, Computer Science Division (EECS), University of California, Berkeley,
May 1994.

Andrew Gordon, Kevin Hammond, and Andy Gill, et al. The definition of monadic 1/O for

Haskell 1.3. Incorporated into [46]., 1994.

William G. Griswold and David Notkin. Automated assistance for program restructuring.

ACM Transactions on Software Engineering and Methodql@¢g):228—269, 1993.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in HaskellACM Transactions on Programming Languages and Syste&(2):109—

138, March 1996.

Kevin Hammond, et al. Report on the programming language Haskell, version 1.3. Released

at FPCA '95. Supersedes [51], superseded by [95]., 1995.

John Hannan and Patrick Hicks. Higher-order UnCurryind?roceedings of the Symposium
on Principles of Programming Languagesan Diego, CA, January 1998.

Fergus Henderson, Zoltan Somogyi, and Thomas Conway. Compiling Logic Programs to C
Using GNU C as a Portable Assembler.lLiPS’95 Postconference Workshop on Sequential

Implementation Technologies for Programming Languafexember 1995.

James Hicks, Derek Chiou, Boon Seong Ang, and Arvind. Performance Studies of Id on the
Monsoon Dataflow Systendournal of Parallel and Distributed Computing8(3):273-300,
July 1993.

Paul Hudak.The Haskell School of Expression: Learning Functional Programming Through

Multimedia Cambridge University Press, New York, 2000.

212

[51] Paul Hudak, Simon L Peyton Jones, and Philip Wadler, eds., et al. Report on the Program-
ming Language Haskell, A Non-strict, Purely Functional Language, VersionSI@PLAN
Notices 27(5), May 1992. Superseded by [46].

[52] C.Barry Jay and N. Ghani. The virtuesipexpansionJournal of Functional Programming
5(2):135-154, April 1995.

[53] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equatioRs-In
ceedings of the 2nd Conference on Functional Programming Languages and Computer Ar-

chitecture 1985.

[54] Thomas JohnssorCompiling Lazy Functional LanguageBhD thesis, Chalmers University

of Technology, Gteborg, 1987.

[55] Thomas Johnsson. Analysing heap contents in a graph reduction intermediate language.
In Proceedings of the Glasgow Functional Programming Workshidlapool 1990, August
1991.

[56] Thomas Johnsson. Efficient graph algorithms using lazy monolithic ardaysnal of Func-

tional Programming 8(4):323-333, July 1998.

[57] Mark P. Jones. Partial evaluation for dictionary-free overloading. Technical Report RR-959,

Yale University Department of Computer Science, New Haven, CT, 1993.

[58] Mark P. Jones. The implementation of the Gofer functional programming system. Technical
Report RR-1030, Yale University Department of Computer Science, New Haven, CT, May
1994.

[59] Mark P. Jones, Alastair Reid, the Yale Haskell Group, and the OGI School of Science &
Engineering.The Hugs 98 User Manual

[60] Richard Jones and Rafael LinGarbage CollectionJohn Wiley & Sons, 1996.

[61] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementaigmand
Symbolic Computatiqry(4):315-335, 1994.

[62] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Norman
Adams. ORBIT: An Optimizing Compiler for Scheme. $iGPLAN Notices (Proceedings
of the SIGPLAN '86 Symposium on Compiler Constructidaly 1986.

213

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

John Launchbury and Simon L. Peyton Jones. Lazy functional state thred@imchkedings
of the ACM Conference on Programming Language Design and Implementasiges 24—

35, Orlando, FL, June 1994. ACM, SIGPLAN Notices. Superseded by [98].

Xavier Leroy. Efficient Data Representation in Polymorphic Languages. Rapports de

Recherche 1264, INRIA-Rocquencourt, August 1990.

Xavier Leroy. The ZINC Experiment: An Economical Implementation of the ML Language.

Rapports Techniques 117, INRIA-Rocquencourt, February 1990.

Xavier Leroy. The Objective Caml system release 3.00, documentation and user’s manual.

http://caml.inria.fr/ocaml/htmiman/index.html, 2000.
John R. Levinelinkers and LoadersMorgan Kaufman, Inc., Oct 1999.

Bil Lewis, Don LaLiberte, Richard Stallman, and the GNU Manual GrdgaU Emacs Lisp

Reference ManuaFree Software Foundation, 2.5 edition, Nov 1998.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters.
In Proceedings of the ACM Symposium on Principles of Programming Langupgges

333-343. ACM, 1995.

Jan-Willem Maessen. Eliminating intermediate lists in pH using local transformations. Mas-

ter’s thesis, MIT, May 1994.

Jan-Willem Maessen. Simplifying parallel list traversal. Technical Report 370, MIT Com-

putation Structures Group Memo, January 1995.

Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving the Java memory model us-
ing CRF. InProceedings of the 15th AnnualConference on Object-Oriented Programming
Systems, Languages and Applicatigmsges 1-12, Minneapolis, MN, Oct 2000. ACM SIG-
PLAN. Also available as MIT LCS Computation Structures Group Memo 428.

John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. Tech-
nical report, Fakultat fur Informatik, Universitat Karlsruhe, and Department of Computing

Science, University of Glasgow, October 1994. Superseded by [74].

John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda caldolusal
of Functional Programming8(3):275-317, 1998. Revision of [73]; see also [11].

214

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Simon Marlow and Simon L. Peyton Jones. The new GHC/Hugs runtime system. Available

from http://research.microsoft.com/Users/simonpj/Papers/new-rts.htm, Aug 1998.

Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John H. Reppy. Asynchronous
exceptions in Haskell. IProceedings of the ACM Conference on Programming Language

Design and Implementatippages 274—-285, 2001.

James S. Miller and Guillermo J. Rozas. Garbage collection is fast, but a stack is faster.
Technical Report AIM-1462, Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, 1994.

Robin Milner, Mads Tofte, and Robert Harpérhe Definition of Standard MLMIT Press,
Cambridge MA, USA, 990. Superseded by [79].

Robin Milner, Mads Tofte, Robert Harper, and Dave MacQudédre Definition of Standard
ML. MIT Press, revised edition, 1997. Revises [78].

J. C. Mitchell. Foundations for Programming Languagethe MIT Press, 1996.

Andrew Moran, Sgren B. Lassen, and Simon L. Peyton Jones. Imprecise exceptions, co-
inductively. In Andrew Gordon and Andrew Pitts, editoEdectronic Notes in Theoretical

Computer Scien¢erolume 26. Elsevier Science Publishers, 2000.

Greg Morrisett. Compiling with TypesPhD thesis, School of Computer Science, Carnegie

Mellon University, December 1995.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankinciples of Program Analysis

Springer, 1999.

Rishiyur S. Nikhil. A Multithreaded Implementation of Id using P-RISC GraphsPror
ceedings of the Workshop on Languages and Compilers for Parallel Computindper 768

in Lectures Notes in Computer Science, Portland, OR, August 1993. Springer Verlag.

Rishiyur S. Nikhil and Arvind. Implicit Parallel Programming inpH. Morgan Kaufman,

Inc., 2001.

Rishiyur S Nikhil, Arvind, and James Hicks, et al. pH language reference manual, version
1.0—preliminary. Technical Report 369, MIT Computation Structures Group Memo, January

1995. Working document describing pH extensions to Haskell.

215

[87] Rishiyur Sivaswami Nikhil. Id (Version 90.1) Language Reference Manual. Technical Report
CSG Memo 284-2, MIT Computation Structures Group Memo, 545 Technology Square,
Cambridge MA 02139, USA, July 1991.

[88] Rishiyur Sivaswami Nikhil. An Overview of the Parallel Language Id (a foundation for pH,
a parallel dialect of Haskell). Technical Report Draft, Digital Equipment Corp., Cambridge
Research Laboratory, September 1993.

[89] Will Partain. The nofib benchmark suite of Haskell programs. In J Launchbury and PM San-
som, editors,Functional Programming, Glasgow 199pages 195-202. Springer-Verlag,
1992.

[90] John Peterson and Mark P. Jones. Implementing type class&GRLAN Conference on

Programming Language Design and Implementatjwages 227-236, 1993.

[91] Simon L. Peyton Jones. Tackling the Awkward Squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. presented at the 2000 Marktoberdorf Sum-

mer School.

[92] Simon L Peyton Jone3he Implementation of Functional Programming Languadgsntice

Hall, 1987.

[93] Simon L. Peyton Jones. Implementing Lazy Functional Languages on Stock Hardware: the

Spineless Tagless G-machirdaurnal of Functional Programming(2), April 1992.

[94] Simon L. Peyton Jones, C. A. R. Hoare, and Andrew Tolmach. Playing by the rules: rewriting

as a practical optimisation technique.Rroceedings of the Haskell Worksh@®01.

[95] Simon L Peyton Jones and John Hughes. Haskell 98, a non-strict, purely functional language.

http://www.haskell.org/definition/, February 1999.

[96] Simon L Peyton Jones and John Hughes. Standard libraries for Haskell 98.
http://www.haskell.org/definition/, February 1999.

[97] Simon L. Peyton Jones and John Launchbury. Unboxed Values as First Class Citizens in
a Non-strict Functional Language. Rroceedings of the 1991 Conference on Functional

Programming Languages and Computer Architect@ambridge, MA, September 1991.

216

[98] Simon L. Peyton Jones and John Launchbury. State in Haskeltnal of LISP and Symbolic
Computation8(4):293-341, December 1995. Elaboration of [63].

[99] Simon L. Peyton Jones and David Lestenplementing Functional Languages: A Tutorial

Prentice-Hall, Englewood Cliffs, N.J., 1992.

[100] Simon L. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell compiler inliner.

Journal of Functional Programmindo appear.

[101] Simon L. Peyton Jones and Will Partain. Measuring the Effectiveness of a Simple Strict-
ness Analyser. In K. Hammond and J.T. O’Donnell, editéhmceedings of the Glasgow

Workshop on Functional Programming/orkshops in Computing. Springer Verlag, 1993.

[102] Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, C. A. R. Hoare, and Simon Marlow.
A semantics for imprecise exceptions. Rroceedings of the ACM Conference on Program-
ming Language Design and Implementatipages 25-36. ACM, SIGPLAN Notices, May
1999.

[103] Simon L. Peyton Jones and AidL. M. Santos. A transformation-based optimiser for

Haskell. Science of Computer ProgrammirgR(1-3):3—47, 1998.

[104] Rinus Plasmeijer and Marko van EekeleRunctional Programming and Parallel Graph

Rewriting Addison-Wesley, 1993.

[105] William Pugh. Fixing the Java memory model. Pnoceedings of the ACM Java Grande
ConferenceJune 1999.

[106] Niklas Rojemo. Garbage Collection and Memory Efficiency in Lazy Functional Languages
PhD thesis, Chalmers University of Technologyjtéborg, Sweden, 1995. Full version of
[107] and other papers.

[107] Niklas Rbjemo. Highlights from nhc—a space-efficient Haskell compiler.Ptaceedings
of the 7th ACM Conference on Functional Programming Languages and Computer Architec-

ture, La Jolla, CA, June 1995. ACM. Expanded in [106].

[108] Amr Sabry. What is a purely functional language®urnal of Functional Programming

8(1):1-22, January 1998.

217

[109] Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage collection for Haskell.

In Functional Programming Languages and Computer Architectages 106-116, 1993.

[110] André Santos.Compilation by Transformation in Non-Strict Functional Languag&hD

thesis, University of Glasgow, 1995.

[111] Vivek Sarkar.Partitioning and Scheduling Parallel Programs for MultiprocessoPRstman,
London and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research Mono-

graphs in Parallel and Distributed Computing.

[112] K.E. Schauser, D.E. Culler, and S.C. Goldstein. Separation constraint partitioning: A new
algorithm for partitioning non-strict programs into sequential thread®rdceedings of the

ACM Symposium on Principles of Programming Languag&M, 1995.
[113] Klaus Schauser. Personal communication, June 1995.

[114] Klaus E. Schause€ompiling Lenient Languages for Parallel Asynchronous Execuftiid

thesis, University of California, Berkeley, May 1994.

[115] Klaus E. Schauser, David E. Culler, and Thorsten von Eicken. Compiler-controlled Multi-
threading for Lenient Parallel Languages. Rroceedings of the Conference on Functional
Programming Languages and Computer Architectumume 523 olecture Notes in Com-

puter ScienceSpringer Verlag, August 1991.

[116] Klaus E. Schauser and Seth C. Goldstein. How Much Non-strictness do Lenient Programs
Require? InFunctional Programming and Computer Architectu&an Diego, CA, June
1995.

[117] Jacob B. Schwartz. Eliminating intermediate lists in pH. Master’s thesis, MIT, 2000.

[118] Peter Sestoft. The garbage collector used in caml light. archived email message, October
1994.

[119] Zhong Shao and Andrew W. Appel. Space-Efficient Closure RepresentatiBrodeedings
of the ACM Conference on Lisp and Functioanl Programmihme 1994.

[120] Andrew Shaw.Compiling for Parallel Multithreaded Computation on Symmetric Multipro-
cessors PhD thesis, MIT, October 1997.

218

[121] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reconcile & Fences (CRF): A New
Memory Model for Architects and Compiler Writers. Rroceedings of the 26th Interna-

tional Symposium on Computer Architectuidlanta, GA, May 1999. ACM.

[122] Olin Shivers.The semantics of scheme control-flow analy8ikD thesis, Carnegie Mellon

University, May 1991. Technical Report CMU-CS-91-145, School of Computer Science.

[123] Jan Sparud. Fixing some space leaks without a garbage colledtondtional Programming

Languages and Computer Architectupages 117-124, 1993.

[124] Guy L. Steele. RABBIT: a Compiler for Scheme. Technical Report MIT/AI/TR 474, Artifi-

cial Intelligence Laboratory, Massachusetts Institute of Technology, May 1978.

[125] Guy L Steele Jr. Building interpreters by composing monad<Prateedings of the ACM
Symposium on Principles of Programming Languagegies 472—492. ACM, 1994.

[126] Joseph E. Stoy. The Semantics of Id Ail€lassical Mind: Essays in Honor of C.A.R.Hoare
(A.W.Roscoe, ed.pages 379-404. Prentice Hall, New York, 1994.

[127] Volker Strumpen. Indolent closure creation. Technical Report 580, MIT Laboratory for

Computer Science Technical Memo, June 1998.

[128] Xinan Tang, Jian Wang, Kevin B. Theobald, and Guang R. Gao. Thread Partitioning and
Scheduling Based On Cost Model. Rioceedings of the!® Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA'9Newport, Rhode Island, June 1997.

[129] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. Til: a type-directed opti-
mizing compiler for ml. InProceedings of the ACM Conference on Programming Language

Design and Implementatiopages 181-192. ACM, SIGPLAN Notices, May 1996.
[130] The GHC TeamThe Glasgow Haskell Compiler User’'s Guide, Version 5.02

[131] Frank Tip. A survey of program slicing techniquedournal of Programming Languages
3(3):121-189, September 1995.

[132] Christiana V. Toutet. An analysis for partitioning multithreaded programs into sequential

threads. Master’s thesis, MIT, May 1998.

219

[133] Ken R. Traub.Sequential Implementation of Lenient Programming LanguaBé® thesis,

MIT, September 1988.

[134] Guy Tremblay and Guang R. Gao. The Impact of Laziness on Parallelism and the Limits
of Strictness Analysis. In A. P. Wim Bohm and John T. Feo, editbigh Performance

Functional ComputingApril 1995.

[135] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection at
compile-time. InProceedings of the ACM Symposium on LISP and Functional Programming

pages 45-52. ACM, 1984.

[136] Philip Wadler. Theorems for free! IRroceedings of the 4th Conference on Functional

Programming Languages and Computer Architect@eptember 1989.

[137] Philip Wadler. Deforestation: Transforming programs to eliminate tréasoretical Com-

puter Sciencer3:231-248, 1991.

[138] Philip Wadler. The essence of functional programmingPioceedings of the ACM Sympo-
sium on Principles of Programming Languagpages 1-14. ACM, 1992.

[139] Philip Wadler. A HOT opportunity.Journal of Functional Programmingr(2):127-128,
March 1997.

[140] Philip L. Wadler. Fixing some space leaks with a garbage colle8oftware Practice and
Experiencel7(9):595-609, 1987.

[141] M. Weiser. Program slicindEEE Transactions on Software Engineerii@®(4), July 1984.

[142] Paul R. Wilson. Uniprocessor garbage collection techniquesPrda. Int. Workshop on

Memory Managemenhumber 637 in LNCS, Saint-Malo (France), 1992. Springer-Verlag.

[143] Paul R. Wilson. Uniprocessor garbage collection technig@€3V Computing Survey$o

appear. Revised version of [142].

[144] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. 1995 International Workshop on Memory Man-

agementKinross, Scotland, UK, 1995. Springer Verlag LNCS.

220

Appendix A

The Defer List Strategy for A\~

Section 4.6 briefly sketched the defer list strategy used in implementing ljgkhrid Figure A-1 we
formalize the defer list strategy in the context\@f. In practice, creating and destroying threads of
execution can be expensive, even when they are extremely lightweight as in the fully eager strategy
of Section 4.4.1. In addition, it is possible to flood the system with vast amounts of blocked work.
Finally, the amount of parallelism that can actually be exploited in a real system is usually bounded
by the number of available processors.

The most notable feature of the strategy is that every binding in a thread is accompanied by an
initially empty binding group known as itsefer list We refer to a binding and its accompanying de-
fer list aswork. The defer list itself contains work—all of ftendinguntil the binding has completed
execution. The rules IStore and indirect behave much as the analogous store and indirect rules in
the fully eager strategy (Figure 4-5). In addition, however, they take the work on the defer list and
resumeit, i.e. schedule it for executioh. The defer rule tells us that if the active tesm= Sy
requires a variablg which is still being computed—that is, it is sitting on the stack of any thread or
on any defer list—then the current wofk = Sly] ; by) should be added to the defer Iist for y.

The rules also describe tpél approach tavork stealing Evaluation begins with a fixed number
of threads (which correspond in this strategy to the processors of a multiprocessor). All but one
of these threads is initially empty. When a thread is empty, it rstesil a victim is chosen at
random from the threads with non-empty stacks, and the bottommost piece of work is removed.

This work becomes the new stack for ttieef. Thus, threads do not maintain a stack, but rather

!Note that there is a policy decision here: the work is added taapef the work stack. Other placements of the
work are possible, including auxiliary structures to hold pending resumptions. The strategy given here is the one used in
the originalpH implementation.

221

o (x=v;b);Kkr |t = x=v,he(b(Kr |t (IStore)
he (x=y;b);kr |t = x=y,he(b)kr |t (indirect)
(x=letrechyine ; b); k) — (bo; (Xx=-er; b1); k) 7r (Spawn

he ((x=98y];bo); Bly=e;bi])r | t
= he (By=e; (x=9)y];b), u])r [t (defer)

h e ((x=S]; bo); KBy =€ by] | t
= he(QBY=e; (x=Sy:by) b || t (defer)

h e ((x=Sy; bo); KT || Bly=e; by]
= he (K1 || By=e: (x=Sy; by), by] (defer)

heelr |t hefk |1t (steal)

Figure A-1: Eagerness using defer lists and work stealing

a dequeue: local work is handled stack-fashion, but steals are handled queue-fashion. This work-
stealing strategy is borrowed from the multithreaded language Cilk [27].

Note also that the spawn rule in Figure A-1 is virtually identical to the enter block rule in the
strict strategy (Figure 4-4). This highlights the similarity of the two strategies: by default, bindings
are evaluated immediately in program order. If that is not possible, the strict strategy fails; the eager
strategy suspends.

The indirect rule is optional in an eager calculus. Given a bingiagy we can instead attempt
to instantiatey and suspend if the attempt fails. This was the approach used in the implementation
of Id. Its advantage is that no indirection mechanism is necessary. The disadvantage (beyond
the cost of keeping two copies gf is that trivial computationg = vy find their way onto defer
lists that would otherwise have been empty. In effect, instead of creating indirections the system
creates deferred “copying work”. This subtly alters the termination semantics of the language in the

presence of barriers [18].

222

