
Hybrid Eager and Lazy Evaluation for Efficient Compilation of

Haskell

by

Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c© Massachusetts Institute of Technology 2002. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

17 May 2002

Certified by .
Arvind

Charles and Jennifer Johnson Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hybrid Eager and Lazy Evaluation for Efficient Compilation of Haskell

by

Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
on 17 May 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

The advantage of a non-strict, purely functional language such as Haskell lies in its clean equational
semantics. However, lazy implementations of Haskell fall short: they cannot express tail recursion
gracefully without annotation. We describeresource-bounded hybrid evaluation, a mixture of strict
and lazy evaluation, and its realization inEager Haskell. From the programmer’s perspective, Eager
Haskell is simply another implementation of Haskell with the same clean equational semantics.
Iteration can be expressed using tail recursion, without the need to resort to program annotations.
Under hybrid evaluation, computations are ordinarily executed in program order just as in a strict
functional language. When particular stack, heap, or time bounds are exceeded, suspensions are
generated for all outstanding computations. These suspensions are re-started in a demand-driven
fashion from the root.

The Eager Haskell compiler translatesλC , the compiler’s intermediate representation, to ef-
ficient C code. We use an equational semantics forλC to develop simple correctness proofs for
program transformations, and connect actions in the run-time system to steps in the hybrid evalua-
tion strategy. The focus of compilation is efficiency in the common case of straight-line execution;
the handling of non-strictness and suspension are left to the run-time system.

Several additional contributions have resulted from the implementation of hybrid evaluation.
Eager Haskell is the first eager compiler to use a call stack. Our generational garbage collector uses
this stack as an additional predictor of object lifetime. Objects above a stack watermark are assumed
to be likely to die; we avoid promoting them. Those below are likely to remain untouched and there-
fore are good candidates for promotion. To avoid eagerly evaluating error checks, they are compiled
into specialbottom thunks, which are treated specially by the run-time system. The compiler iden-
tifies error handling code using a mixture of strictness and type information. This information is
also used to avoid inlining error handlers, and to enable aggressive program transformation in the
presence of error handling.

Thesis Supervisor: Arvind
Title: Charles and Jennifer Johnson Professor of Computer Science and Engineering

3

Acknowledgments

I would like to to those who have helped me along through the long haul. Most especial gratitude

goes to Andrea Humez, who has supported me as friend and confidante over eight and a half years.

On the technical I have been influenced by so many people an exhaustive list is out of the question. I

would like to single out mypH co-conspirators, especially Alejandro Caro, Mieszko Lis, and Jacob

Schwartz. I learned a tremendous amount in my collaborations with Lennart Augustsson, Rishiyur

S. Nikhil, Joe Stoy, and Xiaowei Shen. Finally, Arvind’s support and interest has made thepH and

Eager Haskell projects possible and kept things on the straight and narrow.

5

Contents

1 Introduction 18

1.1 Functional languages . 18

1.1.1 Strict languages . 19

1.1.2 Non-strict languages . 20

1.1.3 The importance of purity . 21

1.2 Evaluation Strategies . 23

1.2.1 Lazy Evaluation . 23

1.2.2 Eager Evaluation . 24

1.2.3 Multithreaded strategies for parallelism 25

1.3 The advantages of eagerness over laziness . 26

1.4 Contributions . 28

1.5 Overview of this thesis . 30

2 Representing Eager Programs: TheλC Calculus 32

2.1 Overview . 32

2.2 Notation . 33

2.3 Functions . 34

2.4 Application . 34

2.5 Blocks . 35

2.6 Primitives . 36

2.7 Algebraic Data Types . 36

2.8 Case Expressions . 37

2.9 Other syntax . 39

7

3 The Semantics ofλC 40

3.1 Extensionality . 40

3.2 Equivalence . 41

3.3 Conversion . 43

3.3.1 Functions . 43

3.3.2 Primitives . 44

3.3.3 Algebraic types . 44

3.3.4 Binding . 46

3.3.5 Structural rules . 47

3.4 λC is badly behaved . 49

3.5 Canonical forms ofλC . 49

3.5.1 Full erasure . 49

3.5.2 Fully named form . 50

3.5.3 Binding contexts . 52

3.5.4 Named form . 52

3.5.5 Argument-named form . 53

3.5.6 Flattened form . 53

3.6 Reduction ofλC . 53

4 Evaluation strategies forλC 56

4.1 Overview . 56

4.2 Evaluation mechanisms . 57

4.2.1 Term structure . 57

4.2.2 Starting the program . 58

4.2.3 Evaluation context . 58

4.2.4 Function calls: manipulating the stack . 59

4.2.5 Results . 59

4.2.6 Deadlock . 60

4.2.7 Storing and fetching values . 60

4.2.8 Placing non-values on the heap . 60

4.2.9 Placing computations on the heap . 61

4.2.10 Garbage collection . 62

8

4.3 Reduction strategies . 62

4.3.1 A lazy strategy . 62

4.3.2 A strict strategy . 63

4.4 Eagerness . 64

4.4.1 A fully eager strategy . 65

4.4.2 The hybrid strategy . 66

4.5 How strategies treat the heap . 67

4.6 Other Eager Strategies . 68

4.7 Resource-bounded Computation . 69

5 Run-time Structure 71

5.1 Overview . 71

5.2 Driving assumptions . 72

5.2.1 Architectures reward locality . 72

5.2.2 Branches should be predictable . 72

5.2.3 Compiling to C will produce better code 73

5.2.4 Non-strictness is rare . 73

5.2.5 Values are common . 74

5.3 Tagged data . 74

5.4 Function structure . 77

5.5 Currying . 79

5.5.1 The eval-apply approach . 80

5.5.2 The push-enter approach . 82

5.5.3 Analysis . 83

5.6 Suspensions . 84

5.7 Thunks . 87

5.8 Indirections . 88

5.9 Garbage Collection . 89

5.9.1 Multiprocessor collection constrains our design 89

5.9.2 Write barrier . 90

5.9.3 Nursery management . 91

5.9.4 Fallback policy . 92

9

5.9.5 Promotion policy . 93

5.9.6 Tenured space management . 94

5.9.7 Problems with the tenured collector . 95

5.9.8 Towards better storage management . 96

6 Lowering Transformations 97

6.1 Optimizations . 98

6.2 Constant Hoisting . 99

6.3 Lambda lifting . 101

6.4 Splitting huge expressions . 103

6.5 Top-level common subexpression elimination . 104

6.6 Constant applicative forms . 105

6.7 Pseudo-constructors . 106

6.8 Back edge insertion . 106

6.9 Making synchronization explicit . 108

6.9.1 Introducing synchronization . 109

6.9.2 Eliminating excess synchronization . 109

6.10 Eliminating additional synchronization . 111

6.10.1 Hoisting to eliminate redundant synchronization 111

6.10.2 Using Transitivity . 112

6.10.3 Partitioning versus explicit synchronization 113

6.10.4 Interprocedural synchronization elimination 114

6.11 Canonical loweredλC . 117

7 Eager Code Generation 118

7.1 Save points . 118

7.2 Frame structure . 121

7.3 Allocation . 122

7.4 Functions . 123

7.5 Constructors . 125

7.6 Function application . 126

7.7 Primitive expressions . 128

7.8 Case expressions . 129

10

7.9 Suspensive bindings . 131

8 Bottom Lifting: Handling Exceptional Behavior Eagerly 133

8.1 Semantics of divergence . 135

8.1.1 The meaning of a divergent expression 136

8.2 Evaluation strategies for divergence . 137

8.3 Identifying bottom expressions . 138

8.3.1 Strictness information . 138

8.3.2 Type information . 138

8.3.3 Compiler assistance . 139

8.4 Enlarging the lifted region . 139

8.5 Lifting divergent terms . 140

8.6 Divergent computation at run time . 141

8.7 Related work . 141

9 Implementing Lazy Arrays 143

9.1 Signal Pools . 145

9.2 Usingseq . 146

9.3 Fairness usinglastExp . 147

10 Results 149

10.1 The benchmarks . 150

10.1.1 Fib . 151

10.1.2 Clausify . 151

10.1.3 fibheaps . 151

10.1.4 Queens . 151

10.1.5 Paraffins . 151

10.1.6 Primes . 152

10.1.7 Multiplier . 152

10.1.8 Wavefront . 153

10.1.9 Matrix Multiply . 153

10.1.10 Gamteb . 153

10.1.11 Symalg . 154

11

10.1.12 Anna . 154

10.2 Eager Haskell versus GHC . 154

10.3 Garbage collection . 158

10.4 Function Application . 163

10.5 Fallback . 166

10.6 Suspension . 167

10.7 Forcing variables . 169

10.8 Space-efficient recursion: the multiplier benchmark 172

11 Scheduling Eager Haskell on a Multiprocessor 178

11.1 Indolent task creation . 179

11.2 Scheduling Strategy . 180

11.3 Scheduling in the presence of useless computation 181

11.4 Memory Structure: The Principle of Monotonicity 182

12 Compiling pH Programs Using the Eager Haskell Compiler 186

12.1 What is a barrier? . 186

12.2 Barriers in thepH compiler . 187

12.2.1 A lazier barrier . 187

12.2.2 Reducing state saving . 188

12.3 Barriers in Eager Haskell . 189

12.3.1 Tracking the work . 189

12.3.2 Run-time system changes . 190

12.3.3 Compiler changes . 190

12.3.4 A synchronization library . 191

13 Conclusion 193

13.1 Semantics . 193

13.2 Eagerness . 194

13.2.1 Fast stack unwinding . 194

13.2.2 Hybrid evaluation without fallback . 195

13.3 Improving the quality of generated code . 196

13.3.1 Garbage Collection . 196

12

13.3.2 Reducing synchronization . 197

13.3.3 Better representations for empty objects 199

13.3.4 Object Tagging . 200

13.3.5 Unboxing . 200

13.4 Other compiler improvements . 202

13.4.1 Specialization . 202

13.4.2 Control-flow analysis . 203

13.4.3 Loop optimization . 203

13.4.4 Improving inlining . 204

13.4.5 Range-based optimizations . 205

13.4.6 Constructed products . 205

13.4.7 Better deforestation . 205

13.4.8 Escape analysis . 206

13.5 Envoi . 206

A The Defer List Strategy for λC 221

13

List of Figures

1-1 Simple expression parser written using parsing combinators 22

2-1 Syntax ofλC . 33

3-1 Syntactic equivalences for terms inλC . 41

3-2 Conversion inλC . 42

3-3 Instantiation contexts inλC . 46

3-4 Derivations forσm andτm . 47

3-5 Strict contexts inλC . 48

3-6 Restrictedν rules for full naming . 50

3-7 Fully named form ofλC . 50

3-8 Order of floating matters . 51

3-9 Binding contexts inλC . 52

3-10 Argument-named form ofλC . 53

3-11 Argument-namedλC during reduction . 54

3-12 General dynamic reduction rules forλC . 55

4-1 Structure of terms during evaluation . 57

4-2 Reduction rules used by every strategy . 58

4-3 Reduction rules for lazy strategy . 63

4-4 Additional reduction rule for strict strategy . 64

4-5 A fully eager strategy . 65

4-6 Hybrid eager and lazy strategy . 66

4-7 Reduction in the presence of exceptions . 69

5-1 Boxed representation of numbers . 75

14

5-2 Partial application of a simple closure. 81

5-3 Applying a partial application . 83

5-4 Suspension structure . 84

5-5 Updating transitive dependency fields. 86

5-6 Elision and shortcutting of indirections. 88

6-1 Correctness of full laziness . 101

6-2 Reverse instantiation is CSE . 104

6-3 Synchronization elimination for transitive dependencies 113

6-4 Worker/wrapper requires additional synchronization 115

6-5 Fully synchronized, loweredλC . 116

7-1 Skeleton code forfib . 124

7-2 Code for constructors . 125

7-3 Three cases of function application . 127

7-4 Code for primitive expressions . 128

7-5 Code forcaseexpressions . 130

7-6 Spawn code . 132

8-1 Semantics of divergence . 135

8-2 Hybrid reduction with divergence . 137

8-3 Hoisting divergence from a multi-disjunct case. 140

9-1 Thewavefront benchmark . 143

9-2 Implementing arrays usingSignalPools . 145

9-3 ImplementingSignalPools . 147

10-1 Run times of benchmarks . 156

10-2 Slowdown of Eager Haskell compared to GHC. 157

10-3 Percentage of total run time spent in garbage collector. 159

10-4 Number of write barrier checks, normalized to mutator time. 161

10-5 Actual number of write barriers triggered, normalized to mutator time. 161

10-6 Barrier indirections per write barrier . 162

10-7 Function entries, normalized to mutator time. 164

15

10-8 Entries toGeneralApply, as a percentage of all applications 164

10-9 Fallbacks per second . 165

10-10The consequences of fallback . 166

10-11Touch operations normalized to mutator time . 167

10-12Percentage of touches which force . 168

10-13Function entries upon resumption . 168

10-14Percentage of indirections which are followed . 169

10-15Variables forced, normalized to time . 170

10-16Variables forced, proportionally . 170

10-17Original multiplier code . 172

10-18Inlined multiplier code . 173

10-19Run times of different versions of multiplier . 174

10-20Slowdown of Eager Haskell compared to GHC on multiplier. 174

10-21Speedup of re-annotated multiplier . 176

11-1 Monotonic update of objects . 183

12-1 Types and functions for representing barriers . 190

12-2 Barrier translation . 191

A-1 Eagerness using defer lists and work stealing . 222

16

List of Tables

1.1 A taxonomy of languages, semantics, and strategies. 20

5.1 Different cases of curried function application and their presumed frequency 79

5.2 The eval-apply approach to partial application used in Eager Haskell 81

5.3 The push-enter approach to partial application used in GHC. 82

10.1 Benchmarks presented in this chapter . 150

10.2 Run times of benchmarks . 155

10.3 Write barrier behavior . 160

10.4 Function entry behavior . 163

17

Chapter 1

Introduction

The advantage of a non-strict, purely functional language such as Haskell lies in its clean equa-

tional semantics. This clean semantics permits the programmer to create high-level abstractions that

would ordinarily require special-purpose tools. It should be possible to code using these high-level

abstractions without any knowledge of the underlying execution model. However, lazy implemen-

tations of Haskell fall short: they cannot express tail recursion gracefully without annotation. These

annotations change the semantics of programs, often destroying their equational semantics.

This thesis will describeresource-bounded eager evaluation, a hybrid of strict and lazy eval-

uation, and its realization inEager Haskell. From the programmer’s perspective, Eager Haskell

is simply another implementation of Haskell [51, 46, 95, 96] with exactly the same semantics as

the usual lazy implementations of the language. Hybrid evaluation provides efficient tail recursion

without the need for program annotation. Internally, programs are ordinarily executed in a strict

fashion. When resource bounds are exceeded, computation falls back and is restarted lazily. The

fallback mechanism uses techniques from lazy language implementations to efficiently suspend and

resume ongoing computations.

1.1 Functional languages

The idea of afunctionallanguage traces its origins to theλ-calculus [22]. Early efforts at turning the

lambda calculus into a programming language establish the pattern for later work: A distinction is

made between apure language [108], in which variables can be freely instantiated with their value,

and animpurelanguage with side effects and a simpler implementation. In either case higher-order

functions can be written by treating function values in the same way as any other program data.

18

Later efforts formalize the treatment of arbitrary data structures by introducing algebraic data types

and strong static typing.

In this thesis, we refer to higher-order, polymorphically-typed programming languages [139] as

functional programming languages. These languages—such as SML [78, 79], Caml and OCaml [66,

65], Id [87, 88],pH [85, 86], Clean [104], and Haskell [95]—share many common traits. All of

them are rooted at some level in theλ-calculus; functions are lexically scoped, and can be created

anonymously, passed as arguments, returned as results, or stored in data structures. All use an

elaboration of polymorphic type inference [30] with algebraic data types. Storage is managed by

the compiler and run-time system, using some combination of garbage collection and compiler-

directed storage allocation.

There are three major differences which distinguish functional languages from one another: fine

type structure, language semantics (strict versus non-strict), and execution strategy. For the purposes

of this thesis, we will generally ignore typing considerations. Every functional language enriches

basic Hindley-Milner polymorphic type inference [30] in a different way, and these enrichments

leave a distinctive stamp on the structure and style of programs which are written; however, such

differences ordinarily disappear after type checking and explicitly-typed intermediate representa-

tions are used.

More important for the purposes of this thesis are the differences in language semantics (strict

versus non-strict) specified by a particular language, and in the execution strategy (eager versus

lazy) chosen by the language implementation. Language semantics define what results a program

must produce. Execution strategy influences every aspect of language implementation, dictating

the ways in which programs are run and optimized, and consequently the style in which programs

are written. Different execution strategies are suited to particular semantics. In an effort to make

distinctions between semantics and strategies clear, Table 1.1 presents a taxonomy of the languages

and concepts we discuss in this chapter.

1.1.1 Strict languages

Languages such as Standard ML and OCaml have strict semantics: subexpressions of a program

(bindings and function arguments) are evaluated in the order in which they occur in the program.

When a function in a strict language is called, every argument is avalue: A particular integer, a

pointer to a list, the closure of a particular function.

There are certain programs that cannot be expressed efficiently in a purely functional language

19

Languages ML, OCaml Id, pH Haskell, Clean
Moniker “Strict” “Multithreaded” “Pure”

Semantics strict — non-strict —
Side effects — impure — pure

call-by-value multithreaded lazy
Strategy

— eager — hybrid

Table 1.1: A taxonomy of languages, semantics, and strategies.

with strict semantics [26], but can be expressed efficiently in a procedural language by using side

effects, or in a non-strict language by using laziness. As a result, in practice all strict functional

languages areimpure: they include side effects and state. The difference between a strict functional

language and a procedural language is therefore a difference of degree: functional languages offer

a richer and stronger type system and carefully delimit the scope of side effects by segregating

mutable types from pure (immutable) types.

The need for side effects combined with the ordering constraints imposed by strict semantics

scuttles strongequational reasoning. In practice, this means that manipulating a strict program

involves checking many side conditions. For example, we might like to rewritehead[e1, e2] to e1;

however, in a strict language we must prove thate2 terminates and is side-effect-free before such a

transformation is legal. Conventionally, this means that a good deal of code motion (especially loop

invariant hoisting and the like) is limited to primitive operations.

1.1.2 Non-strict languages

The Haskell programming language isnon-strict. We need not compute function arguments before

invoking a function; instead, we interleave the computation of arguments and results. This makes

it possible to write arbitrary recursive bindings: the value returned by a computation may be used

(possibly indirectly) in that computation. For example, the following binding creates a cyclic list:

oneTwos = 1 : two : oneTwos
where two = head oneTwos+ 1

In strict languages, only functions may be recursively defined, and cyclic structures such asoneTwos

must be created using mutation. In a non-strict language we can write cyclic definitions directly.

It falls to the language implementation to perform the necessary side effects to create a cyclic data

structure. These side effects must be correctly interleaved with the computation oftwo; regardless of

20

the strategy used to perform this interleaving, the control structure of the underlying implementation

must be sophisticated.

A pure language also permits infinite data structures to be expressed in a regular way. For

example, we can construct the infinite list of fibonacci numbers using one line of code:

let fibList = 1 : 1 : zipWith(+) fibList (tail fibList)
in fibList !! 100

Note that a non-strict semantics must define carefully what is meant by ananswer. In this example

it should be sufficient to compute and return the100th element offibList (which in turn requires the

previous99 elements to be evaluated). The expressionfibList !! 100 is theroot of computation; in

non-strict programming languages it is customary to evaluate until the root is in Weak Head Normal

Form (a simple syntactic constraint) [92].

It is particularly natural to realize definitions such asfibList using a lazy evaluation strategy,

where list elements are computed only when they are needed. Reduction strategy is often closely

bound to particular semantics in this way. An unfortunate consequence of this close association is

that details of reduction strategy often impinge upon semantics. If this happens, even small changes

to reduction strategy may have unintended consequences for the meaning of programs.

Historically, non-strict evaluation has been used in languages such as Id andpH to exploit the

parallelism implicit in a functional language. Id andpH incorporate impure features such as barriers

and side effects. In an impure language there may be outstanding side effects or barriers after a

result is obtained. The semantics must therefore define a notion oftermination, which is defined

for the entire program rather than just the root. Consequently, even the side-effect-free subsets of

these languages have a weak equational semantics (comparable to those of strict languages). For

example, thefibList example returns a result but does not terminate. The semantics of non-strict

languages with barriers have been explored extensively in the context of Id andpH [126, 3, 2, 17,

18]. These languages represent a middle ground between strict languages and purely functional

non-strict languages.

1.1.3 The importance of purity

By contrast, Haskell has a strong equational semantics, made possible by the fact that it is pure (for

convenience, we refer to non-strict, purely-functional languages simply as “pure” in the remainder

of this thesis). This encourages a style where high-level program manipulation is possible, permit-

ting a high degree of meta-linguistic abstraction [1] within Haskell itself. For example, in most

21

opGroup op term = exp
where exp = exp+.+ op+.+ term >>− Op

||! term

expr = opGroup(lit ’+’) term

term = opGroup(lit ’*’) factor

factor = lit ’(’ ..+ expr+.. lit ’)’
||! var >>− Var
||! const >>− Const

Figure 1-1: Simple expression parser written using parsing combinators. The result is both a gram-
mar and a valid Haskell program.

languages we would generate a parser using a standalone tool which takes a grammar and gener-

ates code which parses that grammar. In Haskell, a grammar can be written directly as a program

using any of a number of suites of parsing combinators. Figure 1-1 the grammar of a simple ex-

pression parser, written using the same parsing library used by the Eager Haskell compiler itself.

Because this is full-fledged Haskell code, we can write functions such asopGroupwhich generates

a grammar fragment; a standalone tool does not permit this kind of abstraction.

In an impure language we cannot express such computations with the same degree of abstrac-

tion. The expressive power of a pure language can be used in numerous ways. The Haskell

language itself uses monads to encapsulate state and control flow in a purely functional setting.

Monads obey a simple set of algebraic rules which can be used to reason about monadic pro-

grams [138, 125, 69, 98, 43, 91]. Hudak’s textbook [50] is devoted to describing how graphics,

animation, and sound can be encapsulated and manipulated naturally within Haskell.

The level of abstraction and expressiveness permitted by equational reasoning is Haskell’s most

important advantage. It is always possible to re-code a Haskell program in, say, C and usually we

will realize a performance gain from doing so. However, the effort and complexity involved in such

a project may be prohibitive, and in the worst case will result in marginal performance improvement.

It is generally easier and more productive to make algorithmic improvements to the original Haskell

program. This can reduce the asymptotic complexity of a program rather than simply speeding it up

by a constant factor.

Equational reasoning is used extensively by compilers. Many equational optimizations are quite

simple, but are considered critical to efficiency; Santos [110] examines these transformations and

22

their effects in his dissertation. Even complex and dramatic transformations such as deforesta-

tion [135, 137] can be captured using simple equational rules, as in the foldr/build optimization

of Gill [38, 39, 40]. Complex equational transformations are often guided by static analysis. The

oldest example of such a transformation is full laziness [53], which generalizes the loop invariant

hoisting of procedural languages. Arbitrarily complex constant subexpressions (usually including

function calls) are hoisted out of arbitrary recursive procedures; analysis identifies subexpressions

for which such hoisting will be beneficial.

The root of equational reasoning is an equational semantics. In Haskell, it isalwayssafe to

replace a variable with its definition, or to name a subexpression and “lift” it out of its original

context. Haskell can be specified using a simple order- and context-independent set of evaluation

rules (equational rules). Theλ-calculus is itself a particularly simple set of equational rules which is

then used as the basis for the semantics of all functional programming languages. TheλC calculus

presented in Chapters 2 and 3 elaborates on theλ-calculus, capturing the constructs of desugared

Haskell.

1.2 Evaluation Strategies

A program will generally have multiple reducible expressions (redexes) according to our equational

semantics. Anevaluation strategyis a method for identifying one or more of these redexes as candi-

dates for reduction. Anormalizing strategyguarantees that evaluation will never “get stuck” (signal

an error or fail to terminate) if it is possible to produce an answer according to our equational rules.

Pure languages require a normalizing strategy. There are a broad range of normalizing evaluation

strategies for theλ-calculus [22]. The call-by-name (leftmost) strategy is the simplest, and serves as

the inspiration for lazy evaluation. The Gross-Knuth strategy evaluates all the current redexes of a

term in parallel; it serves as the inspiration for parallel evaluation strategies based on fair scheduling.

1.2.1 Lazy Evaluation

In principle,anynormalizing strategy can be used as the basis for implementing a pure language.

In practice, most normalizing strategies are inefficient; for example, the call-by-name strategy re-

computes the value of an expression each time it is used. Existing Haskell implementations use

call-by-need evaluation. An expression is computed only if its value is required; this computation

is performed at most once, and the result is remembered for subsequent uses. A distinguished root

23

computation is used (often implicitly) to determine whether a particular expression is required; the

goal of evaluation is to compute the value of this root (in Haskell, the root of computation ismain;

in general the root is comparable to the main function of a procedural language). Lazy evaluation

has been formalized with call-by-need semantics [11, 14].

Lazy compilers use very different implementation techniques from those used in procedural

languages. In a lazy compiler, particular attention is paid to the creation and invocation ofthunks.

A thunk contains the information required to represent a computation, which is saved until it can be

proven that the computation is necessary. When its value is required, a thunk isforced. The thunk

is then overwritten with its value, so that future attempts to force it simply retrieve the value rather

than repeating the computation.

Thunks may have an indefinite lifespan, and the associated computation may require an arbitrary

amount of data in order to complete. For this reason, thunks are typically created in the heap.

Forcing a thunk, however, triggers computation much like a function call in a procedural language;

this may in turn force other thunks and trigger further computation. A stack may therefore be used

for forcing thunks just as it is used for nested function calls in a procedural language. In a lazy

language, stack frames represent individual computations rather than procedure activations.

The lazy evaluation mechanism itself—creating thunks, testing them to see if they have been

evaluated, fetching suspended computations from them, updating them, and so forth—introduces

a tremendous amount of overhead which simply does not exist in a procedural language. If the

value of a computation is not needed, its thunk is unnecessary; if the value is needed, it is generally

cheaper to compute it immediately rather than creating a thunk. Compilers for lazy languages

perform extensive analysis in order to eliminate one or more steps in thunk creation and update, and

intermediate representations for lazy languages define a virtual machine whose operations represent

those steps. Examples include the G-machine [54], TIM [99], and the spineless, tagless G-machine

[93]. Compilation of lazy languages is treated extensively in several books [92, 99, 104], though all

these treatments are somewhat out of date.

1.2.2 Eager Evaluation

In an eager evaluation strategy, expressions are evaluated as they are encountered (i.e. in the order

in which they occur in the program text). Strict languages are implemented using call-by-value,

an eager evaluation strategy. Call-by-value is not a normalizing strategy. However, under call-by-

value there is a simple correspondence between a primitive operation (such as integer addition)

24

and its realization on the machine (load values into registers and add). We represent the state of a

computation as a stack of nested activation frames, each containing the local data for a procedure

call. As a result, it is relatively easy to produce an efficient implementation of a strict language using

eager evaluation. Compilers for strict languages draw directly on the techniques used to compile

procedural languages such as C, Java, and Scheme. Consequently, a program written in a strict

language will nearly always run faster and more efficiently than an identical one written in a non-

strict language. This efficiency advantage means that compilers for strict languages make universal

use of the call-by-value strategy; when we refer to “a strict compiler” we mean “a compiler for

a strict language using the eager call-by-value compilation strategy.” Appel has written excellent

overviews of the compilation of both procedural languages [8] and strict functional languages [7].

1.2.3 Multithreaded strategies for parallelism

Parallel execution strategies have evolved over time, but all are multithreaded eager strategies,

that is, they focus on the management of very small threads of computation. Id implementa-

tions [133, 49, 42, 84] originally made use of multithreading to tolerate remote memory latencies.

Memory accesses occur in two phases: each transaction is initiated, and other code is run until

a response is received. Fine-grained threads are a particularly good match for this computation

model: computations run freely in parallel when their inputs are available, and block when they are

not. A long-latency memory operation and a non-strict dependency look much the same from the

perspective of the compiled code.

Unfortunately, the Id evaluation model is not particularly suited to execution on ordinary unipro-

cessor or shared memory multiprocessor (SMP) machines. On a modern microprocessor, caching

masks the latency of memory operations, rewarding applications which exhibit temporal and spa-

tial locality. This is fundamentally at odds with the unstructured control flow of an application

using fine-grained threads. Rather than providing a means to tolerate latencies, the mechanisms of

multithreaded execution become a source of overhead and complexity on a machine with limited

parallelism.

ThepH compiler [16, 31] addresses these issues, with the goal of runningpH [86, 85] programs

efficiently on an SMP machine. Data is stored on a garbage-collected heap in shared memory;

memory access is by ordinary loads and stores. Fine-grained partitions (equivalent to the fine-

grained threads of Id implementations) are grouped together into suspensive threads. A suspensive

thread allows the compiler to generate an efficient schedule for a group of partitions based on the

25

assumption that non-strictness will be rare in practice. A work-stealing execution model based on

the one in Cilk [37] is used to ensure that parallel computations are as coarse-grained as possible.

ThepH implementation still shares a number of important properties with its forebears. InpH

the presence tests required by non-strictness are accomplished using a level of indirection. Every

computation has a separately-allocated proxy; the proxy is initially empty, and is eventually up-

dated with a pointer to the actual value it should contain. Parallel execution occurs using a cactus

stack: every function call allocates a frame on the heap to contain its local variables (and various

suspension-related data structures). By heap-allocating frames, multiple sibling calls can easily co-

exist in parallel, and computations can suspend and resume without copying execution state between

stack and heap. There was some hope that sufficiently fast allocation and garbage collection could

be as fast as stack allocation [6, 9]. In practice, however, the advantages of stack-based execution

(fast allocation and deallocation of activation frames, good cache locality, ease of interoperability

with other languages) are compelling [77], and Eager Haskell uses a stack for function calls.

Meanwhile, if we are to believe Schauseret. al.[116] then the picture for multithreading is very

bleak indeed. The Id programs they survey are by and large easy to transform into strict code; those

that are not amenable to this transformation can be transformed so that all non-strictness is captured

in data structures. Conditionals and function calls can be strict. Indeed, Shaw [120] showed that

such programs can be efficiently compiled using simple structured parallelism with no need for

synchronizing memory (though a certain amount of parallelism is lost in his approach). The result

is essentially a strict functional language with automatic parallelization.

1.3 The advantages of eagerness over laziness

In this thesis we deliberately take a very different tack: rather than compiling programs written for

multithreaded execution, we attack the much harder problem of compiling a pure language using an

eager evaluation strategy. Eager Haskell programs possess the clean equational semantics of a pure,

non-strict language which are the root of Haskell’s expressiveness; they aresemanticallyindistin-

guishable from the same programs compiled with a lazy Haskell compiler. This is accomplished

by using ahybrid evaluation strategy which evaluates eagerly by default, but uses laziness to bound

resource usage. These resource bounds permit our implementation to handle code such asfibList

which constructs infinite data structures. In Chapter 4 we characterize the space of hybrid evaluation

strategies, including the resource-bounded strategy used in Eager Haskell.

26

Lazy evaluation performs very badly in the presence ofaccumulating parameters. Consider the

following canonical example:

fact n = factLoop n1
where factLoop0 a = a

factLoop k a = factLoop(k− 1) (a ∗ k)

In a strict functional language, code such as this is typical—we express the iterative computation

factas a tail-recursive function with the accumulating parametera. Tail recursion does not consume

stack space, and no allocation is required. When we use a lazy language implementation, the picture

is dramatically different:a must not be computed unless it is used. For example, if we evaluate

fact 5, we will eventually create five nested thunks representing the computation . WhenfactLoop

returns, the resulting chain of thunks will finally be forced and the multiply operations will actually

be performed.

An an optimizing Haskell compiler such as hbc [20] or the Glasgow Haskell Compiler [130] can

use strictness information to efficiently compilefactLoop; it can be shown thata must eventually

be used and can therefore be passed by value. However, accumulating parameters need not be used

strictly, in which case no optimization is possible. Further, different Haskell systems will produce

very different results for code such as this depending on the precision of strictness analysis (an

unoptimizing system such as hugs [59] or nhc [106] will always build the chain of closures). In

order to obtain consistent behavior,factLoopmust be annotated usingseq:

fact n = factLoop n1
where factLoop0 a = a

factLoop k a = ak ‘seq‘ factLoop(k− 1) ak
where ak = a ∗ k

This says “make sureak is evaluated before callingfactLoop”. We can also use strict function

application$!, which is defined in terms ofseq:

fact n = factLoop n1
where factLoop0 a = a

factLoop k a = factLoop(k− 1) $! a ∗ k

In either case, the annotation is consistent with program semantics; in general, however, adding

annotations changes the semantic behavior of our programs, and can be a source of unintended

deadlock.1

1An interesting example: as this dissertation was undergoing final revision, it was discovered by others thatseq
annotations actually destroy the equational semantics of monadic operations in the presence of divergence.

27

The need for annotation is Haskell’s biggest performance pitfall. A glance at the Haskell and

Haskell-cafe mailing lists in March 2002 (a fairly typical month in the author’s experience) revealed

41 messages (out of a total of 398) discussing how to structure and annotate tail recursive code

so that it behaves reliably and efficiently. Only two or three of the remaining messages in that

time were performance-related. Even more messages are routed to compiler-specific mailing lists;

programmers assume the stack and heap overflows they see are the fault of a compiler bug and not

a simple consequence of constructing and forcing an overly-long chain of lazy computations.

In Eager Haskell we solve this problem. Hybrid evaluation means that accumulating parameters

will ordinarily be eagerly evaluated as we compute. If, however, we encounter an expensive compu-

tation, we will fall back to lazy evaluation in the hopes that the result will be discarded. Under this

regime, an iteration using accumulating parameters will never have more than a single associated

thunk at a time.

1.4 Contributions

This thesis describes resource-bounded hybrid evaluation, a novel execution strategy for non-strict,

purely functional programming languages, and its realization in the Eager Haskell compiler. Hy-

brid evaluation permits iterative algorithms to be expressed using tail recursion, without the need to

resort to program annotations. For a list comprehension version of Queens, our most tail-recursion-

intensive benchmark, Eager Haskell outperforms the Glasgow Haskell Compiler (GHC) by28%.

Adding annotations to this benchmark speeds up GHC by up to8%; in order to match the per-

formance of Eager Haskell, however, list comprehensions must be re-written as explicit recursion,

which effectively means re-coding the benchmark. Similarly, on the multiplier benchmark strict-

ness annotations speed GHC up by20%. The same annotations have no significant effect in Eager

Haskell. We believe that by eliminating the need for annotation hybrid evaluation represents the

better choice of execution strategy for Haskell.

Under hybrid evaluation, code is ordinarily executed in program order just as in a strict func-

tional language. When particular stack, heap, or time bounds are exceeded, an exception is signaled,

and computation falls back. During fallback function calls are transformed into thunks and program

execution gradually suspends. When fallback has completed, execution restarts with the root. New

computations proceed eagerly as before; existing thunks, however, are only forced on demand. Un-

like previous eager language implementations, Eager Haskell has exactly the same clean equational

28

semantics as lazy Haskell does. However, eager evaluation avoids one of the biggest pitfalls of lazy

evaluation: the inability to express iteration in a clean and natural way.

Resource-bounded execution bounds the amount of computation which cannot be reached from

the root. This effectively results in a fixed-size tile of computation being performed between each

fallback step. Each fallback step results in progress on the root computation. We therefore conjec-

ture that the worst-case runtime and space of an Eager Haskell program is a constant factor larger

than the equivalent bounds for lazy execution. However, the reduction in space consumption of tail

recursion are likely to reduce asymptotic space usage in many cases.

This thesis makes a number of smaller contributions which are relevant to other language im-

plementations:

• In order to better understand the performance consequences of various reduction strategies

and program transformations, we have developed a semantics forλC (a realization of our

compiler’s intermediate representation). Building on Ariola and Arvind [12] we associate par-

ticular implementation mechanisms with corresponding semantic actions. The use of a com-

mon equational framework to compare radically different language implementation strategies

is novel; previous efforts in this direction have focused on drawing semantic distinctions or

on modeling a particular implementation.

• Eager Haskell is (to our knowledge) the first eager, non-strict functional language implemen-

tation to make use of a call stack, which is far more efficient in the common case than placing

frames on the heap.

• By offloading the overhead of non-strictness to the run-time system, dramatic changes in the

execution strategy of Eager Haskell are possible by making changes to the run-time system

without modifying the compiler itself.

• Functions in a memory-safe language such as Haskell contain many error checks. For exam-

ple, theheadoperation on lists must check its argument and signal an error if it is the empty

list. We refer to an expression which always signals an error as adivergentexpression. Often

(as inhead) these expressions account for the majority of code in a particular function. This

code is rarely executed, and should not be inlined. In addition, divergent expressions have

a very strong equational semantics: no expression which depends upon a divergent expres-

sion can execute. A number of important program transformations are based upon this fact.

29

The compiler identifies divergent expressions statically using type and strictness information.

Divergence information is used to segregate error handling code from regular control flow

to avoid the cost of inlining error handlers, and to guide transformations around divergent

expressions.

• A divergent expression must not be evaluated eagerly; if the answer does not depend on the

divergent expression, doing so will terminate the program spuriously. Divergent expressions

are compiled into specialbottom thunks; these are always evaluated lazily, preserving nor-

malization in the face of error handling.

• The object representation in Eager Haskell combines the idea of object update from lazy lan-

guages with the presence-checked I-structure memory conventionally used by multithreaded

compilers.

• The Eager Haskell garbage collector uses the stack as an additional predictor of object life-

time: near the top of the stack, where old and new objects are intermixed, objects are assumed

to be likely to be updated or to die and will not be promoted. Old objects lower down in the

stack are likely to remain untouched and therefore are good candidates for promotion.

1.5 Overview of this thesis

We begin the thesis by presenting the Eager Haskell compiler’s intermediate representation,λC .

Chapter 2 describes the constructs inλC . Chapter 3 present an exhaustive semantics forλC , includ-

ing a number of extensional rules crucial to equational reasoning but not required for an operational

reading. Chapter 4 characterizes different execution strategies forλC . Between lazy and eager

evaluation, there is an enormous space of possible eager execution strategies. A hybrid strategy

combines execution rules from both strict and lazy strategies, resulting in a stack-based eager eval-

uation strategy. Resource-bounded execution is one point within a broad range of hybrid strategies.

Having described the resource-bounded strategy, we shift our focus to implementation. Chap-

ter 5 describes the data structures and run-time mechanisms used by the Eager Haskell compiler.

Chapter 6 describes the various program transformations, most notably the insertion of explicit syn-

chronization operations, required to turnλC into a form suitable for code generation. Chapter 7

describes the final code generation step which maps canonicalλC to C code.

Having described the basic hybrid implementation, the next two chapters fill in crucial detail.

30

Chapter 8 explains how type and strictness information are used to identify divergent expressions,

and how these expressions are handled by the compiler and the run-time system. Chapter 9 describes

the implementation of arrays in Eager Haskell. Preserving non-strict array semantics in the face of

resource-bounded execution is a daunting task: when array initialization suspends, it is not clear

which computations should resume and in what order.

Chapter 10 presents benchmark results for Eager Haskell. We compare Eager Haskell with the

Glasgow Haskell Compiler, the only optimizing Haskell compiler currently under active develop-

ment. The Eager Haskell implementation is able to beat GHC on several benchmarks, but is about

60% slower overall. Much of this figure is due to the relative maturity of the two compilers. We

then examine various aspects of the compiled code and run-time system in detail. Those applica-

tions which perform poorly often stress particular aspects of the runtime; this code is relatively slow

compared to compiled code. Finally, we conclude Chapter 10 with a case study of tail recursion.

Annotations in the multiplier benchmark speed it up by20% under GHC, but have no effect in Eager

Haskell.

We conclude the thesis with several chapters on future work. In Chapter 11 we describe how

the present Eager Haskell implementation can be made to run on a multiprocessor. We propose

to schedule computation based on randomized work stealing. The fallback mechanism is a natural

match for indolent task creation; work stacks contain thunks which are created during fallback. Our

design avoids locking whenever possible; we articulate a general monotonicity principle, and use it

to devise a protocol for lock-free update of shared data.

In Chapter 12, we describe how to add barriers to Eager Haskell, allowingpH programs to be

run using the new compiler and run-time system. The record-keeping required to track suspended

work closely parallels the mechanisms used to track work in our array implementation, and to track

outstanding thunks in the multiprocessor version of Eager Haskell.

Finally, in Chapter 13 we conclude by looking at the future of uniprocessor Eager Haskell. A

number of crucial compiler optimizations are either missing or severely crippled. There is ample

potential for future work on problems such as unboxing in an Eager setting. In light of the results

in Chapter 10 it should be possible to tune the run-time system to better handle the most common

uncommon cases. Overall, however, the system is solid and the promise of hybrid evaluation is

evident.

31

Chapter 2

Representing Eager Programs: TheλC

Calculus

This thesis assumes that the source syntax of Haskell has been compiled into a simpler interme-

diate representation,λC . The techniques for performing this translation—type checking, pattern-

matching compilation, and desugaring of list comprehensions and monad syntax—are well-under-

stood and widely used. They are covered exhaustively in other sources [99, 92, 95, 90]. This chapter

gives a brief overview of the features ofλC , and introduces the terminology and notation used in

this thesis. A semantics forλC is given in the next chapter.

2.1 Overview

The syntax ofλC is summarized in Figure 2-1. It has a great deal in common with other calculi

used for reasoning about non-strict languages. The most important commonality is the use of alet

construct to capture sharing. It has a few distinguishing features:

• Data structures are created using constructors and examined using case expressions.

• Case expressions are used to force or synchronize evaluation.

• Arity of functions and of applications is explicitly represented.

• Primitives applications are distinguished.

• Recursive (letrec) and non-recursive (let) bindings are distinguished.

32

e∈ E ::= x Variable
| E ~Ek k> 0 Application
| pk ~Ek k> 0 Primitive appl.
| Ck ~Ek k > 0 Constructor appl.
| λ~xk → E k> 0 Function
| casex = E of D
| let x = E1 in E2 x /∈ FV[E1]
| letrec B in E

b ∈ B ::= x = E Binding
| B ; B Group
| ε Empty binding

d ∈ D ::= Ck ~xk → E Regular disjunct
| → E Default
| D ; D Disjunct group
| ε Empty disjunct

v ∈ V ::= Ck ~xk k > 0 Simple constructor
| (λ~xk → E) ~yj 06 j < k Closure

Figure 2-1: Syntax ofλC

TheλC calculus formalized here is an outgrowth of previous work on theλS calculus [17, 18].

The use of thecaseconstruct for strict binding (Section 2.8) was inspired by the Core syntax at the

heart of the Glasgow Haskell Compiler [103]. Unlike Core,λC is not explicitly typed. In this sense

λC is more similar to its precursorλS . However,λC eliminates impure constructs, a central theme

of λS , and substitutes strict binding usingcase; in this respect is is equivalent in power to ordinaryλ

calculi. All of these calculi are close relatives of the call-by-needλ-calculus [14], the most widely-

studied lambda calculus with explicit sharing. However, unlike the call-by-need calculus but like

Core,λC is designed to cleanly represent actual Haskell programs during compilation.

2.2 Notation

In this and subsequent sections we will use a few convenient shorthands to simplify the notation.

Eager Haskell is lexically scoped, and the usual assumptions about renaming of variables are made

to prevent scope conflicts. The notation~xk stands for thek-ary vector of variablesx1, x2 . . . xk. The

ith element of such a vector is writtenxi . We omitk and write~x when arity is clear from context

(for example, the arity of primitive and constructor applications is fixed by the syntax). The vector

33

notation extends to all syntactic elements in the obvious way. We will sometimes want to replace

theith element of such a vector; in this case we write the vector out longhand like so:

x1 . . . xi . . . xk −→ x1 . . .E′ . . . xk

or we can abbreviate the source vector, whenxi is arbitrary or is constrained elsewhere:

~xk −→ x1 . . .E′ . . . xk

In either case, we understand thatx1 andxk are placeholders, and1 6 i 6 k.

Variables scope straightforwardly. The arguments~x of a λ-expressionλ~x → e scope over the

bodye. The variablex in the binder of thecaseexpressioncasex = e of D scopes over the disjuncts

D, and the variables~x of the disjunct binderCk xk → e scope over the right-hand sidee. Finally,

the binding for a variablex in a binding blockletrec x = e1 ; B in e2 extends over the entireletrec

expression. Indeed, the order of bindings in a block does not matter (a notion which we formalize

in Figure 3-1), and we will by convention place interesting bindings leftmost in our presentation.

2.3 Functions

We write thek combinator inλC as follows:

λa b→ a

In general, functions use a version of the familiar lambda notation:

λ~xk → E

This notation indicates a function ofarity k; thexi are theargumentsof the function and the expres-

sionE is thebodyof the function. Semantically, nested functionsλ~xi → λ~yj → E are equivalent to

a single function with combined arityi+ j, λ~xi ~yj → E. Operationally, however, we treat these two

expressions very differently, and our compiler will produce different code for them. It is for this

reason thatλC represents function arity explicitly.

2.4 Application

Function application inλC is by juxtaposition as usual:

k a b

34

Here we apply the functionk to two argumentsa andb. Like functions, application have an associ-

ated arity:

E ~Ek

Again, nested applications((f ~xi) ~yj) are semantically equivalent to a single application(f ~xi ~yj), but

imply very different operational readings. In particular, note that ak-ary function may bepartially

appliedto fewer thank arguments (sayi) yielding a function ofk− i arguments.

2.5 Blocks

We can name thek combinator as follows:

k = λa b→ a

In general, we can bind any expression:

x = E

We refer to this as abinding for x. E is thedefinitionof x; x is bound to E.

Bindings are grouped together intoblocks, or let-expressions. These are written as follows in

Haskell:

let two = g x x
four = g two two

in g four four

TheλC notation is similar. However, we useletrec to indicate the possibility that the bindings may

be mutually recursive:

letrec t = g f f
f = g t t

in t f

The expressiont f is theresultof the block. Mutual recursion allows a definition to refer to any of

the variables bound in the same block:

letrec r = k x r in r

For pragmatic reasons, it is frequently useful to distinguish non-recursive bindings. We uselet to

indicate a single, non-recursive binding:

35

let t = g x x
in let f = g t t

in g f f

As with function arity, the distinction betweenlet and letrec has no semantic impact, but affects

details of code generation and manipulation.

2.6 Primitives

Primitive operations are not considered to be function symbols. Instead,λC has distinguished syntax

for aprimitive application:

intplus a b

All primitive applications aresaturated—i.e. a primitive of arityk is always applied to exactlyk

arguments. We denotek-ary primitives with the notationpk. Particular primitives are distinguished

using superscripts, as inpi
k:

pi
k
~Ek

The Haskell language allows primitives to be partially applied, passed as arguments, and so forth.

Saturating primitive applications is simple: replace every occurrence of primitivepi
k with a k-ary

function.

pi
k −→ (λ~xk → pi

k ~xk)

This saturation operation is performed by the compiler as it transforms Haskell source intoλC .

In practice, many of the primitive operations in Eager Haskell are familiar mathematical func-

tions. We will use infix notation freely to keep sample code clear. Thus we writefib (n− 1) +

fib (n− 2) rather thanintplus(fib (intminus n1)) (fib (intminus n2)).

2.7 Algebraic Data Types

In Haskell, algebraic types neatly combine sum and product constructs into a single mechanism.

For example:

data Treeα = Node(Treeα) α (Treeα)
| Leaf

tree= Node(Node Leaf2 Leaf) 5 (Node Leaf7 Leaf)

36

This declaration states that an object of typeTreeα is either aLeaf (which we refer to as a constant

or a nullary constructor), or it is aNodewith a left subtree, a datum (of typeα) and a right subtree.

In λC we omit data declarations, and distinguish constructors by using uppercase (a convention

which is observed in Haskell as well):

t = N (N L 2 L) 5 (N L 2 L)

Instead of explicit data type declarations, we define the functionsτ [Ck] which returns the type of

a constructor andκ[τ] which yields the set of constructors of a particular type. We readκ[Ck] as

κ[τ [Ck]] in the obvious way. Thusκ[N] = {N,L}.

We use the notationC0 to indicate an arbitrary constant. These include the integers, floating-

point numbers, unary algebraic constructors, and the like. Similarly,k-ary constructors are notated

asCk, with particular constants or constructors using superscripts, as inCi
k:

Ci
k
~Ek

Like primitive applications, constructor applications are saturated.

We use Haskell’s notation for lists and tuples. The empty list is written[] and cons is written as

infix colon (:). Square braces make longer lists more readable:

1 : 1 : 2 : 3 : 5 : [] ≡ [1, 1, 2, 3, 5]

2.8 Case Expressions

Thecaseconstruct is the most complex part ofλC . Consider the followingcaseexpression:

casecs= xsof
a : as→ revApp as(a : ys)
→ ys

This caseexpressionscrutinizesthediscriminant xs. It first ensuresxs is evaluated (it is a value,V

in Figure 2-1). Second, the resulting value is bound to the namecs. Third, one of the twodisjuncts

is selected based on the value ofxs. Disjuncts are labeled with a single constructor; the final disjunct

may instead be labeled as thedefaultdisjunct using (as it is here). Ifxsis a cons cell, it will match

the first disjuncta : as; it is thenprojected: a is bound to the head ofxsandas is bound to its tail.

Finally, thebodyof the disjunct,revApp as(a : ys), is executed.

A case expression thus serves four different purposes in the language:

37

• Ensuring its discriminant has been evaluated.

• Naming the discriminant, with the guarantee that this name is always bound to a value.

• Selecting an execution path based on the value of the discriminant.

• Fetching fields from objects with algebraic type.

Note that the typing rules of Haskell guarantee that all the constructors which appear in a par-

ticular caseexpression belong to the same type. Only one disjunct may be labeled with a given

constructor. For clarity, we prefer to avoid default disjuncts when a single constructor is missing

from a case expression—thus, we should replace the default disjunct in the above expression with

the empty list:

casecs= xsof
a : as→ revApp as(a : ys)
[]→ ys

In practice, acaseexpression may not performall of the above functions. Ordinarily we do not

name the discriminant, and thus omit this notation from the case expression:

casexsof
a : as→ revApp as(a : ys)
[]→ ys

When a datatype has a single disjunct, as is the case with tuple types, there is no need to select a

disjunct for execution.

casepair of
(a,)→ a

Naturally, not every constructor has fields, and thus fetching is not always necessary (it does not

occur in the[] disjunct inrevApp). Similarly, if a field of a constructor is not required (as in the

above definition), it is replaced with the wildcard patternand is not fetched.

We consider an expression to have terminated when it is a value. Sometimes the compiler must

ensure that a particular expression has been computed, but its actual value does not matter. Every

expression inλC is lifted—it admits the possibility of non-termination. We refer to non-terminating

expressions asbottoms, notated⊥. A caseexpression with only a default disjunct checks that its

discriminant has terminated:

38

casea of
→ a + 1

We call the resulting expression atouch (by analogy with the touch operation in the SMT eager

abstract machine [16]). Unlike othercaseexpressions, the discriminant of a touch may have any

type. Theseqoperator in Haskell is represented by a touch operation:

seq a b= casea of
→ b

Touches are inserted by the compiler in order to control program evaluation.

Not every type in Haskell is lifted. Thenewtypedeclaration creates an unlifted “wrapper type”;

this type has a single constructor which accepts a single (lifted) component as an argument. As a

result,caseexpressions and constructors for such types can be eliminated from the program. They

are erased after type checking, and are not represented inλC .

2.9 Other syntax

The syntax forλC in Figure 2-1 includes a few constructs that have not been described thus far. First,

it defines the notion of avalue. Values are simple constructor expressions and unsaturated function

applications (closures). Second, our notation separates bindings and disjuncts with a semicolon.

As in Haskell, we omit these semicolons when indentation makes the grouping clear. Finally, it is

convenient to add an empty grouping constructε—for example, this allows us to treat a singleton

binding as a binding group. This eliminates a special case from many rules.

39

Chapter 3

The Semantics ofλC

In the Chapter 2 we presented the syntax ofλC , the calculus we use as an intermediate representation

for Eager Haskell programs. In this chapter we present a semantics forλC . The semantics of

λC are equivalent in power to theλ-calculus, the call-by-needλ-calculus, or the core calculus of

GHC [103]. Our presentation is unique in several ways. Unlike core, we give small-step reduction

semantics for thecaseconstruct. We also include a limited set of extensional conversions. Such

conversions are not included in the call-by-needλ-calculus [14], and do not appear to have been

widely studied forlet-based calculi in general.

3.1 Extensionality

Our presentation ofλC begins by focusing onconversionrather thanreduction. We examine conver-

sion because thecaseconstruct simultaneously expresses three semantic properties: Projection of

products, extraction of sums (coproducts), and unlifting of lifted data [80, Chap 2]. The equational

theory ofλC therefore includes extensional expansion rules for these three uses of case.

The purpose of extensionality is to capture observational equivalence: we say two termsM

andN are observationally equivalent when they behave the same way in all contexts. A calculus is

extensional when convertibilityM = N is congruent to observational equivalence for all terms [22].

We express extensional rules as expansions; the virtues (such as confluence) of expansion rather than

contraction for extensionality have been revisited in recent years [52].1

1Note that in a calculus with constants, extensional equivalence usually requires a typed calculus. For example,η-
expansion must guarantee that the expression being expanded is of function type. The limited expansions permitted in
λC are type-independent; rules such asηa will be meaningless (but harmless) if performed at the wrong type.

40

Identities on bindings
ε ; B ≡ B unit
B0 ; B1 ≡ B1 ; B0 commutative
B0 ; (B1 ; B2) ≡ (B0 ; B1) ; B2 associative

Identities on disjuncts
Ci

k ~x→ E0 ; Ci
k ~y→ E1 ≡ Ci

k ~x→ E0 redundant
→ E0 ; Ci

k ~y→ E1 ≡ → E0 default
Ci

k ~x→ E0 ; Cj
l ~y→ E1 ≡ Cj

l ~y→ E1 ; Ci
k ~x→ E0 independent

Figure 3-1: Syntactic equivalences for terms inλC . The usualα renaming equivalences are as-
sumed. Reduction rules are obtained by reading conversions left to right.

The conversions given in this section do not makeλC as a whole extensional; there are equiv-

alent terms such asλx→ f x andf which are not convertible. Instead, the new rules simplify the

correctness proofs for many widely-used program transformations. They also serve to reinforce the

parallels between the use ofcaseand constructors inλC and the use of constructs such as pairing

and projection in otherλ-calculi.

3.2 Equivalence

We consider terms to be equivalent (written≡) when they differ in unimportant ways. In Chapter 2

we noted that the order of bindings inletrec expressions does not matter; we formalize this with

the first three rules in Figure 3-1. Similarly, our disjunct syntax is very permissive. The order

of independent disjuncts is unimportant. Unusually, we permit multiple disjuncts with the same

constructor. In this case the first disjunct takes precedence. Similarly, a default disjunct supersedes

the disjuncts which follow it. These equivalences simplify our rules for merging and splittingcase

expressions (particularlyηa andχp, see Section 3.3.3). A compiler, of course, simply erases useless

disjuncts.

We omit α-renaming rules from the figure.Throughout this thesis we assume the usualα-

equivalences hold, and all conversions hold modulo the usual rules prohibiting name capture.In

the Eager Haskell compiler, all program identifiers are distinct; renaming occurs when aλC term

is duplicated, for example when a function is instantiated or a new arm is added to acase. Fresh

names are used when new variables are introduced by naming or expansion.

41

(λx1 ~xk → e) y = (λ~xk → e [y / x1]) βvar

pi
k ~vk = pi

k ~vk δ axiom schema

casey = Ci
k ~y of Ci

k ~x→ e; d =
casey = Ci

k ~y of
→ e [~y /~x]

χc (constructor)

casey = Ci
k ~e of Cj

l ~x→ e; d = casey = Ci
k ~e of d χp (mismatch)

casex = v of → e = let x = v in e χd (discharge)

→ e = Cj
l ~x→ e; → e ηa (new arm)

e = casex = e of → x ηl (lift)

letrec x = e; b in IE[x] = letrec x = e; b in IE[e] ιe (instantiate)
x = e; IB[x] = x = e; IB[e] ιb (inst. binding)
x = IE[x] = x = IE[IE[x]] ιr (inst. rec.)
Ci

k ~x→ IE[x] = Ci
k ~x→ IE[Ci

k ~x] ιd (inst. disj.)
casex = e of ID[x] = casex = e of ID[e] ιc (inst. case)

casex = e of
ID[casey = x of → e]

=
casex = e of
ID[let y = x in e]

ιl (unlift)

e = let x = e in x ν (name)

let x = e1 in e2 = letrec x = e1 in e2 ρ (let conv.)
x /∈ FV[e1]

IE[letrec b in e] = letrec b in IE[e] σm (hoist)
FV[IE[]] ∩ BV[b] = ∅

letrec b in (casex = e0 of → e1) = casex = e0 of → letrec b in e1 σl (case hoist)
FV[e0] ∩ BV[b] = ∅

S[casex = e0 of → e1] = casex = e0 of → S[e1] σs (strict hoist)
x /∈ FV[S[]]

casex = e0 of →
casey = e1 of → e2

=
casey = e1 of →
casex = e0 of → e2

σt (swap touch)

x /∈ FV[e1] ∧ y /∈ FV[e0]

λ~xk → λ~yj → e = λ~xk ~yj → e τl (mergeλ)
(e e1 . . .ej) ej+1 . . .ek = e e1 . . .ek τa (merge app)
x = letrec b in e = b ; x = e τf (flatten)
letrec b1 in letrec b2 in e = letrec b1 ; b2 in e τm (merge let)

FV[b1] ∩ BV[b2] = ∅

letrec ε in e = e εd (drop)
letrec b1 ; b2 in e = letrec b2 in e εe (erase)

BV[b1] ∩ FV[letrec b2 in e] = ∅

Figure 3-2: Conversion inλC . All conversions hold modulo the usual rules prohibiting name cap-
ture.

42

3.3 Conversion

We initially view theλC calculus as a purely mathematical system. In Figure 3-2 we list the conver-

sions among terms, notated=. When it comes time to actuallyevaluateaλC program, rather than

manipulate it equationally, we require only a limited subset of the conversions presented here. We

present these rules in Figure 3-12; Chapter 4 is devoted exclusively to various reduction strategies

for λC . When speaking of evaluation, we view the conversions as left-to-right reduction rules.

3.3.1 Functions

The most fundamental rule in anyλ-calculus isβ-reduction. InλC we make use of a very minimalist

form, βvar. Only arguments which are variables can be reduced, and reduction occurs by simply

substituting the parameter variable for the argument variable. Mostlet-basedλ-calculi (such as the

call-by-need calculus,λS , and Core) make use of theβ let rule instead. We can deriveβ let in λC

as follows:

(λx→ e1) e2 = (λx→ e1) (let y = e2 in y) (ν)
= let y = e2 in (λx→ e1) y (σm)
= let y = e2 in e1 [y / x] (βvar)
≡ let x = e2 in e1 (α)

As we shall see, theβvar rule arises naturally out of the desire to separate the static portions of

reduction (ν andσ) from dynamicβ reduction itself.

Theβvar rule isunary—we disregard the arity of functions and applications. We include merge

rules(τl, τa), but it should be clear that for the purposes ofβ reduction they are unimportant. When

we readλC operationally, we will restrictβvar to full arity, andτa will be used in taking apart

closures of partial applications. Lambda merging(τl) optimizes the process of reducing function

applications.

Note that there is noη rule for function application. In an untyped calculus with constants, there

are only two ways to determine that a term must represent a function: either it is actually a lambda

expression, or it is always applied to some arguments. If weη-abstract a function, we obtain an

immediateβ redex:

(λ~xk → e) = (λx→ (~xk → e) x) (η)
= λx x2 . . . xk→ e [x / x1] (βvar)
≡ λ~xk → e (α)

Similarly, η-abstracting an application also yields a (nearly) immediateβ redex:

43

e0 e1 = (λx→ e0 x) e1 (η)
= (λx→ e0 x) (let y = e1 in y) (ν)
= let y = e1 in (λx→ e0 x) y (σm)
= let y = e1 in e0 y (βvar)
= e0 (let y = e1 in y) (σm)
= e0 e1 (ν)

These limited readings ofη therefore have no practical application on their own. They can, however,

be useful when combined with instantiation:

let f = e in f e1 = let f = e in (λx→ f x) e1 (σm, ν, βvar)
= let f = e in (λx→ e x) e1 (ιe)
= (λx→ e x) e1 (ε)
= (let f = λx→ e x in f) e1 (ν)
= let f = λx→ e x in (f e1) (σ)

In general, we canη-expand a binding if every occurrence of the bound variable is a function

application.

3.3.2 Primitives

By their nature, primitives require special reduction rules. We leave the set of primitives open-

ended. The main thing to note about theδ axiom schema is that primitives take values as arguments,

and in a single step produce a value as a result.

3.3.3 Algebraic types

The caseconstruct and constructor application are the fundamental operations for manipulating

algebraic types. There is no specific constructor application rule. Calculi such asλS distinguish

between unevaluated and evaluated constructor applications. InλC any constructor application

can be treated as “evaluated” if its arguments have been named. At that point,caseexpressions

which depend upon it may be discharged(χd). When viewingλC operationally, we will distinguish

evaluated constructor applications by their position in the term.

As noted in Chapter 2, the algebraic types inλC actually encompass three concepts at once:

Lifting (distinguishing evaluated and unevaluated terms), pairing and projection, and sum types.

This results in a large number of conversions oncaseexpressions. We examine the conversions for

each category separately.

44

Lifting

A caseexpression can be discharged when its discriminant is a value(χd). This is the only

rule which erases acaseexpression; consequently, termination of acaseexpression is contingent

upon termination of the discriminant, as we would expect. Dischargeχd represents elimination of

lifting—the lifted expression is determined to be non-bottom and thus can be erased.

Any expression may safely be touched in place. The lifting rule(ηl) describes this possibility.

If the expression is⊥ then the resulting expression will be⊥ as well. If the expression can be

converted into a value, then the introducedcasemay be discharged.

The bound variable of acaseexpression can be considered to beunliftedwithin the case body.

This is not strictly true: the case instantiation ruleιc permits the discriminant to be instantiated

before it has terminated. However, thecaseexpression as a whole terminates only if the discriminant

does—in which case a copy of the discriminant will terminate as well. This means we can safely

discharge inner touches of the bound variable. We state this as a very restricted form of instantiation

(ιl). We imaginesomevalue being instantiated, causing the discharge of the innercase.

Pairing

The tuple(x1, x2) corresponds to pairing. Projection is represented by the substitutions performed

in the constructor ruleχc. The corresponding disjunct instantiation ruleιd represents surjective

pairing, the extensional rule for products (akin toη for function spaces). In thecaseframework it

is natural to write this rule as an expansion—ιd does the work ofιc in advance, in the sense that a

disjunctCi
k ~y→ ewill only be kept ifx has the formCi

k ~e.

Sum types

Similarly, we can represent sum types by using the termsLeft x1 andRight x2 to represent injection.

The rulesχc andχp perform selection. The ruleηa is the extensional axiom for sum, permitting

us to expand acaseexpression to explicitly handle all the constructors of a particular type. In this

case extensionality effectivelyreversesthe action of selection, rather than anticipating it. This re-

flects the categorical duality of sum and product—the extensional axioms are oriented in a direction

where they are naturally used for expansion, rather being oriented according to our concept ofcase

reduction, and the direction of expansion for sum is opposite that of product.

45

IE[] ::= � | λ~xk → IE[]
| pk E1 . . . IE[] . . .Ek | IE[] ~E
| Ck E1 . . . IE[] . . .Ek | E E1 . . . IE[] . . .Ek

| letrec IB[] in E | casex = IE[] of D
| letrec B in IE[] | casex = E of ID[]

IB[] ::= x = IE[] | IB[] ; B

ID[] ::= Ck ~x→ IE[] | ID[] ; D
| → IE[] | D ; ID[]

Figure 3-3: Instantiation contexts inλC

3.3.4 Binding

Binding is crucial to evaluation inλC . Both βvar andχd require arguments to be named. As

reduction proceeds nested block structures must be flattened in order to expose new opportunities

for reduction. Most important, variable instances must be instantiated with their definitions.

We noted in Section 2.5 that non-recursive binding blocks (let) are distinguished from recursive

blocks (letrec) primarily for pragmatic reasons. The let conversion rule(ρ) states thatlet can be

converted freely intoletrec; the reverse conversion can be applied if the binding is non-recursive.

Instantiation

All the instantiation rules forλC make use of theinstantiation contextsdescribed in Figure 3-3. An

instantiation context describes which occurrences of a variable can be replaced by that variable’s

definition. InλC any variable occurrence which is in scope is a candidate for instantiation. Oper-

ational strategies will substantially restrict the scope of instantiation by restricting the instantiation

context.

The three instantiation rules forcaseexpressions(ιd, ιc, ιl) have already been discussed in

Section 3.3.3. There are also three instantiation rules forletrec bindings. This is because there are

three parts of aletrec expression which might be candidates for instantiation. Occurrences in the

result expression may be instantiated by(ιe). Occurrences in other bindings may be instantiated

by (ιb). Finally, recursive occurrences may be instantiated using(ιr), in which a definition is

substituted within its own body.

Note no instantiation rule is given forlet expressions. Instantiation of the result is trivial to

derive as follows:

46

let x = letrec b in e in IE[x] =
let x = letrec b in e in
IE[letrec b in e]

ιe

= IE[letrec b in e] ε

let x = letrec b in e in IE[x] = letrec b ; x = e in IE[x] τf
= letrec b ; x = e in IE[e] ιe
= letrec b in IE[e] εe

letrec b1 ; x = letrec b2 in e in x = letrec b1 in letrec b2 in e ιe

letrec b1 ; x = letrec b2 in e in x = letrec b1 ; b2 ; x = e in x τf
= letrec b1 ; b2 ; x = e in e ιe
= letrec b1 ; b2 in e εe

Figure 3-4: Derivations forσm andτm

let x = e in IE[x] = letrec x = e in IE[x] (ρ)
= letrec x = e in IE[e] (ιe)
= let x = e in IE[e] (ρ)

Naming

Naming is accomplished using the naming ruleν. In Figure 3-2, we give a completely unrestricted

form of naming. Naming can be derived by running other conversions backwards:

e = letrec ε in e (εd)
= letrec x = e in e (εe)
= letrec x = e in x (ιe)
= let x = e in x (ρ)

There are a number of reasons to favor the explicit inclusion ofν in λC . If we view the rules

as left-to-right reductions, then we must either includeν or permit reversed instantiation(ιe) and

erasure(ε). Reverse instantiation permits us to invent terms from thin air—hardly a model of

evaluation. Instead, we allow naming of preexisting expressions.

Inclusion of a naming axiom also frees us to place particular operational interpretations on nam-

ing, instantiation, and erasure. We would like to view naming as a static process—subexpressions

need only be named once—while instantiation is dynamic. Erasure corresponds to Garbage Collec-

tion and memory management; reduction should make progress even in its absence.

3.3.5 Structural rules

Repeated instantiation and reduction often gives rise to deeply-nested bindings. These bindings can

in turn interfere with evaluation. For this reason, there are a number ofstructural ruleswhich ma-

47

S[] ::= � | S[] ~E
| let x = E in S[] | pk E1 . . .S[] . . .Ek

| letrec b in S[] | casex = S[] of D

Figure 3-5: Strict contexts inλC

nipulate binding constructs. The simplest structural rules are the rules for merging nested functions

and applications(τl, τa) which were discussed in Section 3.3.1.

It must be possible to erase bindings which are no longer being used. We state binding erasure

(εe) as a rule on binding blocks; this permits multiple mutually-recursive bindings to be discarded

in a single pass. If every binding in a block can be erased, then the block itself can be eliminated

as well(εd). Erasure allows the elimination of “semantic noise”—bindings left behind by repeated

naming and instantiation steps. As noted in Section 3.3.4, erasure can also be used to model the

actions of a garbage collector.

In order to performβvar andχd reductions, nested bindings must be hoisted out of applications

and constructor arguments. The general hoisting rule(σm) states that aletrec contained in an

instantiation context may be hoisted outside that context. Note thatσm is actually aderivedrule;

it can be described using a mix of instantiation and erasure as shown in Figure 3-4. We include

σm in our conversion rules for two reasons. First, flattening is a necessary part of straightforward

left-to-right reduction. Second, we are uncomfortable with a semantics that gives a central semantic

role to erasure, and particularly any reduction strategy that requires erasure. Erasure played just

such a central role in some early call-by-need calculi [73].

Thecaseconstruct also introduces bindings. Becausecaserequires its discriminant to terminate,

these bindings cannot be hoisted freely. They can, however, be hoisted fromstrict contexts(σs):

the arguments of primitives and the discriminants ofcaseexpressions (see Figure 3-5). Note that

σs also allowscaseto be hoisted from the result part of a block; this simply inverts theσm rule.

Finally, nested touch operations may be freely interchanged(σt).

In any let-based calculus,let-blocks themselves can become highly nested. Such nested blocks

can be flattened out; indeed, terms in alet-calculus can be viewed as graphs, in which case the exact

binding structure does not matter at all [15, 13, 10]. We therefore provide rules(τf , τm) to flatten

nested blocks. Again, the merge ruleτm can be derived as shown in Figure 3-4; again, the proof

relies on reverse erasure.

48

3.4 λC is badly behaved

The conversions presented in figure 3-2 can be used to justify many common transformations of

Haskell programs. However, when viewed as reductions they are not confluent, nor doesλC possess

normal forms. Non-confluence is a common property oflet-based calculi with the rulesιb andιr—

mutually recursive bindings can be instantiated such that they cannot then be brought back together.

It was problems with non-confluence that led to graph-based views oflet expressions; non-confluent

reductions change expression structure, but do not change the unfoldings an expression generates.

Absence of normal forms is a consequence of the generality of theν andηl rules. It is possible

to name or lift any expression:

e = let x = e in x (ν)
= let x = let y = e in y in x (ν)
. . .

These rules can be restricted syntactically, restoring normal forms; we will examine such a restric-

tion in the next section. However, the more general versions are useful for proofs (see Chapter 6).

3.5 Canonical forms ofλC

The front end of the Eager Haskell compiler translates programs directly into the fullλC calculus,

but in practice it is simpler to manipulate program code if the syntax of the language is restricted in

various ways. In this section we examine various canonical program forms and how programs may

be transformed into those forms.

3.5.1 Full erasure

The erasure rules(εe, εd), when used in isolation, form a strongly-normalizing reduction system. It

is easy to see that erasure terminates: Every erasure step makes a term strictly smaller. To see that

erasure is confluent, note erasure cannot make a dead binding live again. Thus, any pair of erasure

reductions can be brought back together in a single step.

Note that the erasure rules forλC are not safe for a language with side effects or termination

detection such asλS (and thuspH). The ruleεe can freely erase non-terminating computations. In

Eager Haskell these non-terminating computations will be garbage collected dynamically if they are

left unerased by the compiler.

49

n ~E −→ (let x = n in x) ~E
E E1 . . .n . . .Ek −→ E E1 . . . (let x = n in x) . . .Ek

pk E1 . . .n . . .Ek −→ pk E1 . . . (let x = n in x) . . .Ek

casex = n of D −→ casex = (let y = n in y) of D
let y = e in n −→ let y = e in let x = n in x
letrec b in n −→ letrec b in let x = n in x
Ci

k ~x→ n −→ Ci
k ~x→ let x = n in x

→ n −→ → let x = n in x

n ∈ N ::= E ~Ek | λ~xk → E
| pk ~Ek | casex = E of D
| Ck ~Ek

Figure 3-6: Restrictedν rules for full naming

L ::= let x = E in L | x
| letrec B in L

E ::= x | x~xk
| λ~xk → L | pk ~xk
| casex of D | Ck ~xk

B ::= x = E | B ; B

D ::= Ck ~xk → L | D ; D
| → L

Figure 3-7: Fully named form ofλC

3.5.2 Fully named form

Many compiler phases—particularly those which perform static analysis or code motion—can be

expressed more smoothly when every program expression is given a name. For this we can use

the naming axiomν. Because naming is non-normalizing (Section 3.4) we restrict naming contexts

as shown in Figure 3-6. We also prohibit the naming of identifiers (where it would be redundant)

andlet andletrec expressions. Together these restrictions prevent theν rule from being applied to

any portion of its own right-hand side, thus guaranteeing that naming will terminate. This syntactic

restriction also means that naming redexes are disjoint, insuring confluence.

In conjunction with naming, it is useful to movelet and letrec expressions outwards using

theσm rules. This creates a clear separation between ordinary expressionsE and binding blocks

L. We can also flatten blocks(τf , τm) to simplify block structure. However, whenλC is used

50

f (let x = e1 in x) −→ let x = e1 in
(let y = e2 in y) f x (let y = e2 in y)

let x = e1 in
−→ let y = e2 in

f x y

f (let x = e1 in x) −→ let y = e2 in
(let y = e2 in y) f (let x = e1 in x) y

let y = e2 in
−→ let x = e1 in

f x y

Figure 3-8: Order of floating affects order of nesting. Here two possible reduction sequences give
rise to different results.

as an intermediate representation it is useful to preserve the distinction betweenlet and letrec.

Consequently, we only flatten blocks on the right-hand sides of bindings(τf).

We can derive a flattening rule forlet blocks as follows:

let x = (let y = e0 in e1) in e2 = letrec y = e0 ; x = e1 in e2 (ρ, τf)
= let y = e0 in let x = e1 in e2 (ρ, τm)

This derived flattening rule has the advantage it does not create aletrec from the nestedlet expres-

sions. The syntax after naming, lifting, and flattening can be found in Figure 3-7. We call thisfully

namedλC .

Full code motion usingσm is guaranteed to terminate. Everyσm reduction moves alet or

letrec expression further out; eventually every such block is the result of acasedisjunct, function,

or another block, or is the value of a binding. However, the order in which bindings are floated

outwards affects the order in which they end up nested, as shown in Figure 3-8. Floating order

is semantically irrelevant, but will affect which expressions are evaluated in an eager strategy; we

discuss this further in Chapters 4 and 6. Once code motion is complete, flattening usingτf (and the

derived rule given above) is very simple; each use ofτf moves exactly one block.

For simplicity, we have described the translation to fully named form a rule at a time: first name

(ν), then perform code motion(σm), then flatten(τf). If the rules are applied in exactly this order,

“identity bindings” can be created:

x = let y = e0 in n −→ x = let y = e0 in let z = n in z (ν)
−→ y = e0 ; x = let z = n in z (τf)
−→ y = e0 ; z = n ; x = z (τf)

51

BE[] ::= λ~xk → BE[]
| pk E1 . . .BE[] . . .Ek | BE[] ~E
| Ck E1 . . .BE[] . . .Ek | E E1 . . .BE[] . . .Ek

| letrec B[] in E | casex = BE[] of D
| letrec B in BE[] | casex = E of BD[]

B[] ::= �
| x = BE[] | B[] ; B

BD[] ::= Ck ~x→ BE[] | BD[] ; D
| → BE[] | D ; BD[]

Figure 3-9: Binding contexts inλC

Here the bindingx = z could have been avoided by flattening first:

x = let y = e0 in n −→ y = e0 ; x = n (τf)

To avoid introducing identity bindings, we must flatten usingτf before naming and before each

code motionσm.

3.5.3 Binding contexts

All the named forms ofλC have a common feature: They arebinding-centeredrather thanexpression-

centered. By naming subexpressions we can manipulate bindingsx = E rather than expressions

themselves. This observation is useful in proving the correctness of some of the transformations

outlined in Chapter 6. When manipulating terms in named form, it is frequently useful to refer to a

binding contextrather than anexpression context. Binding contexts for theλC calculus as a whole

are given in Figure 3-9.

3.5.4 Named form

Fully named form gives a name toeveryprogram expression. This obscures the fact that certain

expressions occur intail position: as the result of a function or block, or in a case disjunct. If we

restrict naming to instantiation contextsIE[n] and flatten as before we obtain thenamedform of λC .

Here arbitrary expressionsE are allowed in the result positionL described in Figure 3-7. The net

result is that onlynestedsubexpressions are named and hoisted. Named form is useful for program

transformations which do not need to tabulate all the expressions in the program.

52

L ::= E | let x = E in L | letrec B in L

E ::= Ck ~xk | casex = P of D
| x~xk | λ~xk → L | P

P ::= x | C0 | pk ~Pk

B ::= x = E | B ; B

D ::= Ck ~xk → L | → L | D ; D

Figure 3-10: Argument-named form ofλC

3.5.5 Argument-named form

An even weaker form of naming isargument-named form, shown in Figure 3-10. Unlike named

form, argument-named form does not name primitive expressions or constantsC0 in strict contexts

S[p]. Thus, primitive expressions may occur as arguments to other primitive expressions and in

casediscriminants. To convert to argument-named form we simply restrict naming to instantia-

tion contexts which are not of the formS[p]. Motion of the resulting blocks remains unaffected.

Argument-named form is used as the basis for code generation in the Eager Haskell compiler.

3.5.6 Flattened form

In Section 3.5.2 it was noted thatlet-motion is not confluent—lifting bindings in a different order

results in a different nesting of the binding structure. By merging nested blocks usingτm confluence

can be restored at the cost of losing information about the recursive structure of the bindings. This

leads to a fully-flattened form ofλC . The fully flattened syntax seen during reduction is shown in

Figure 3-11

3.6 Reduction ofλC

Not all of the conversions listed in Figure 3-2 are necessary for reduction ofλC programs. In

the next chapter we will restrict our attention to a greatly restricted subset ofλC ; we call this

subset thedynamic reduction rules. These rules, shown in Figure 3-12, assume that programs have

been converted to argument-named form (as given in Section 3.5.5), and that they have been fully

flattened (Section 3.5.6). The reductions in Figure 3-12 differ from the conversions in Figure 3-2 in

53

L ::= E | letrec B in E

E ::= caseP of D | F | P

F ::= F ~xk | λ~xk → L

P ::= x | V | pk ~Pk

B ::= x = L | B ; B

D ::= Ck ~xk → L | → L | D ; D

Figure 3-11: Argument-namedλC during reduction

a few important ways. The remainder of this section examines those differences.

Instantiation is limited to values and variables which reside on the heap; we do not instantiate

an expression until it has been completely evaluated. The syntax for terms undergoing evaluation,

shown in Figure 3-11, reflects this need and therefore differs slightly from the argument-named

syntax of Figure 3-10. Similarly, instantiation only occurs when a variable’s value is required for

further computation; we therefore restrictιb to strict contextsS[x].

The βvar rule is restricted tofull arity applications. This reflects aneval/applyapproach to

curried function application: functions expect a particular number of arguments, and the caller must

provide them (possibly with the assistance of the run-time system). We combine naming and lifting

in order to split applications at greater than full arity:

(λ~yk → e) ~xk xk+1 . . . xi = ((λ~yk → e) ~xk) xk+1 . . . xi (τa)

=
(let x = (λ~yk → e) ~xk
in x) xk+1 . . . xi

(ν)

=
let x = (λ~yk → e) ~xk
in x xk+1 . . . xi

(σm)

When a closure is instantiated into an application, the resulting application must be flattened(τa)

before it can be further reduced (either byβvar or byν). This corresponds to fetching the arguments

from the closure in preparation for performing a call or allocating a larger closure.

The rules forcasereduction are largely unchanged. The exception is a dynamic optimization of

the discharge ruleχd. When the bound variable is not used, the binding need not be created, as it is

immediately subject to erasure:

case = v of → e = let = v in e (χd)
= e (ε)

54

x = v ; y = S[x] −→ x = v ; y = S[v] ιb (instantiate value)
x = z; y = S[x] −→ x = z; y = S[z] ιb (instantiate variable)

(λ~xk → e) ~yk −→ x = e [~y /~x] βvar

(f ~x) ~y −→ f ~x~y τa (merge app)

(λ~yk → e) ~xk xk+1 . . . xi −→ let x = (λ~yk → e) ~xk
in x xk+1 . . . xi

ν (split app)

S[pi
k ~vk] −→ S[pi

k ~vk] δ axiom schema

casey = Ci
k ~e of Cj

l ~x→ e; d −→ casey = Ci
k ~e of d χp (mismatch)

casey = Ci
k ~y of Ci

k ~x→ e; d −→ casey = Ci
k ~y of

→ e [~y /~x]
χc (constructor)

casex = v of → e
case = v of → e

−→
−→

let x = v in e
e

χd (discharge)

x = letrec b in e −→ b ; x = e τf (flatten)

letrec b ; h ; t in main −→ letrec h ; t in main εe (garbage coll)
BV[b] ∩ FV[letrec h ; t in main] = ∅

Figure 3-12: General dynamic reduction rules forλC

This reflects the actual behavior of an implementation. A previously-created value is not copied

when scrutinized by acaseexpression. Acaseexpression whose discriminant is, say, a boolean

value may not create that value explicitly; it may instead be manifest in the control flow of the

program itself.

Because function bodies and case disjuncts may contain nestedletrec blocks, we must still

use the flattening ruleτf . Again, the syntax in Figure 3-11 indicates that the right-hand side of a

binding may be aletrec during reduction. As we shall see in the next chapter, the flattening rule is

the linchpin of our evaluation strategies. The difference between strict, lazy, and eager evaluation is

determined to a great extent by howletrec blocks are treated by the implementation.

55

Chapter 4

Evaluation strategies forλC

Between call-by-value and lazy strategies there is an enormous space of possible eager strategies.

The Eager Haskell implementation is simply one point in this space. In this chapter we characterize

the space of eager languages by describing a series of evaluation strategies for theλC calculus. The

strategies we use are defined by imposing additional structure onλC terms. This additional structure

evokes the structure of a real machine; the strategies we present here are designed to reflect actual

language implementations.

4.1 Overview

A term in theλC calculus usually has many possible redexes. A reduction strategy narrows the

choice of redexes. The strategies we present in this chapter are under-specified: the strategy may

consider more than one redex to be a candidate for reduction. For example, none of the strategies

we present completely specifies the order of evaluation for primitive arguments. Ambiguities of this

form in a strategy represent places where the implementation has a choice; a particular language

implementation resolves these ambiguities in particular ways. We can study the differences between

particular implementations by examining how they resolve these ambiguities. In this thesis we

refine one strategy—the hybrid lazy/eager strategy—by eliminating ambiguities. The result will be

a semantics for Eager Haskell which reflects the choices made in the language implementation.

We begin our presentation by describing some of the evaluation mechanisms used in functional

languages, and presenting the corresponding notation we will use in our reduction strategies (Sec-

tion 4.2). We then present lazy (Section 4.3.1) and strict (Section 4.3.2) strategies forλC . We

use these well-known strategies to define the notion of aneagerstrategy (Section 4.4), which per-

56

C ::= letrec H • T in main Program
H ::= x = E | H, H | ε Heap
T ::= F | T ‖ T | ε Threads
R ::= 〈K〉 R | 〈K〉 Stack
K ::= x = L ; K | ε Frame

Figure 4-1: Structure of terms during evaluation

forms additional reductions beyond those required by the lazy strategy. A fully eager strategy (Sec-

tion 4.4.1) captures the entire space of non-strict strategies, but does not lend itself to an efficient

implementation.

As a result, we narrow our search to hybrid strategies that mix strict and lazy execution (Sec-

tion 4.4.2). Ordinarily, execution proceeds just as in a strict language. However, the implementation

contains a fallback mechanism to suspend computations in the presence of recursive dependencies.

By measuring the resource consumption of the program and initiating fallback when the stack or

heap become too full, we achieve normalization 4.7.

4.2 Evaluation mechanisms

In order to capture the evaluation mechanisms used by various strategies, we impose additional

structure on the syntax in Figure 3-11. This structure, shown in Figure 4-1, allows us to express our

strategies as simple virtual machines. At any time, we can replace the separators, , • , ‖ with

semicolons; and rewrite the stack〈k〉 r to k ; r, resulting in an ordinaryλC term.

4.2.1 Term structure

The main programC is a binding blockletrec h • t in mainwhich returns a distinguished value

main. The special treatment ofmain is implicit in the Haskell language; the top level of a Haskell

program is a collection of modules, each of which is a collection of bindings. It is only within this

topmost binding block that we use special notation to organize the bindings. It’s important to note

that the basic structure ofλC terms has not otherwise changed.

We divide the program bindings into two parts: the heapH and the threadsT. The separator

• between them was chosen simply to make it easy to distinguish the heap from the threads. The

heapH can be thought of as the memory of our abstract machine. It is an unordered collection of

bindings separated by commas.

57

h • 〈x = v ; k〉 r ‖ t ≡ x = v, h • 〈k〉 r ‖ t (store)

x = v, h • 〈y = S[x] ; k〉 r ‖ t −→ x = v, h • 〈y = S[v] ; k〉 r ‖ t ιb (fetch)
x = z, h • 〈y = S[x] ; k〉 r ‖ t −→ x = z, h • 〈y = S[z] ; k〉 r ‖ t ιb (indirect)

〈x = (λ~xk → e) ~yk ; k〉 r −→ 〈x = e [~y /~x]〉 〈k〉 r βvar (call)
〈x = (λ~xk → e) ~yk〉 r −→ 〈x = e [~y /~x]〉 r βvar (tail call)

〈 〉 r ≡ r (return)

letrec b ; h • t in main −→ letrec h • t in main εe (garbage coll)
BV[b] ∩ FV[letrec h • t in main] = ∅

Figure 4-2: Structured reduction rules used by every strategy; remaining rules (τa, ν, δ, χ) are
purely local and identical to those in Figure 3-12.

The threads are an unordered collection of stacks separated by the parallel marker‖ ; only one

of strategies, the fully eager strategy (Section 4.4.1), actually makes use of multiple threads, but the

notation will be used again in Chapter 11 to describe multiprocessor hybrid strategies.

A stackRconsists of an ordered list of frames〈k〉 . The leftmost frame in a stack is thetopmost

frame. A frame is an ordered collection of bindings delimited with angle brackets〈〉 . The leftmost

binding in the topmost frame is theworking term. In the fully eager strategy (Section 4.4.1), the

stack always has a single entry. Similarly, in the lazy strategy (Strategy 4.3.1) there is always exactly

one binding per frame.

4.2.2 Starting the program

Initially, the heapH contains all the top level bindings of the program (except the binding formain).

There is a single thread whose working term is the top-level binding formain:

letrec h • 〈main= e〉 in main

4.2.3 Evaluation context

To understand how the term structure works, we must examine the mechanisms used in our reduction

strategies. All our strategies restrict reduction to the working terms in the program. Only the rules

in Figure 4-2 manipulate the structure of the stack and heap. Thus, the local evaluation rules which

carry over from Figure 3-12—τa, ν, δ, χ—are wrapped in the following context:

letrec h • 〈x = � ; k〉 r ‖ t in main

58

These rules correspond to local evaluation and local control flow; they will be implemented in a

very similar manner regardless of reduction strategy.

4.2.4 Function calls: manipulating the stack

Theβvar rules and the return rule manipulate the stack, and therefore operate on the stack as a whole:

letrec h • � ‖ t in main

An ordinary full-arity function call pushes a frame:

letrec h • 〈x = (λ~xk → e) ~yk ; k〉 r ‖ t in main
−→ letrec h • 〈x = e [~y /~x]〉 〈k〉 r ‖ t in main (call)

The body of the function is instantiated and pushed onto the stack. When the topmost frame be-

comes empty, it is popped (erased) and controlreturns:

letrec h • 〈 〉 〈k〉 r ‖ t in main
≡ letrec h • 〈k〉 r ‖ t in main (return)

The bindings in a frame〈k〉 represent the flow of control in a function. When we call, the frame

is left on the stack, and evaluation resumes with the next binding when we return. Section 5.4

describes the realization of function calls in Eager Haskell.

When a function call is the last binding in a frame, we can perform tail-call optimization, trans-

ferring control directly from the current function to the new function without enlarging the stack.

This is the purpose of the tail call rule:

letrec h • 〈x = (λ~xk → e) ~yk〉 r ‖ t in main
−→ letrec h • 〈x = e [~y /~x]〉 r ‖ t in main (tail call)

As noted in Section 3.6,βvar is restricted (dynamically) to full arity applications. Partial applica-

tion of a function will perform allocation (see Section 4.2.7); oversaturated application will invoke

the run-time system, which can split the function application in two (split app). Implementation

techniques for curried function application are described in Section 5.5.

4.2.5 Results

We do not permit the stack to become completely empty. Instead, the lazy and hybrid strategies pro-

vide a special rule (outermost) for handling this last stack frame. This rule represents the outermost

level of control in the program, which is usually mediated by the run-time system. We consider

execution to be complete whenmainhas been bound to a value:

59

letrec h • 〈main= v〉 ‖ t in main

This is the simplest rule governing the outermost frame, and is shared by all the strategies in this

chapter. In Section 4.6 we discuss termination rules for multithreaded evaluation.

4.2.6 Deadlock

Under any strategy, if a program reaches a state where there are no redexes, but wheremain has

not been bound to a value, then the program hasdeadlocked. We assume programs are well-typed,

and deadlock therefore cannot be caused bye.g.applying a number to arguments. In the presen-

tation of each strategy we will describe how deadlock can occur and how it can be detected by an

implementation. Deadlock is equivalent to divergence (⊥).

4.2.7 Storing and fetching values

When the active term binds a value, it cannot be reduced any further. It is removed from the frame

and stored onto the heap:

letrec h • 〈x = v ; k〉 r ‖ t in main
≡ letrec x = v, h • 〈k〉 r ‖ t in main (store)

Recall that values include constants and constructor applications (both of which are represented in

Eager Haskell by tagged heap objects; see Section 5.3) andclosures(function applications at less

than full arity; the Eager Haskell realization of closures is described in Section 5.5 and Section 6.3).

In each case the store rule corresponds to allocating space forx and storingv into that space.

Instantiation corresponds to fetching values previously stored to the heap. An actual implemen-

tation fetches a value only when it is needed. We therefore restrict fetches to strict contexts in the

active term:

letrec x = v, h • 〈y = S[x] ; k〉 r ‖ t in main
−→ letrec x = v, h • 〈y = S[v] ; k〉 r ‖ t in main (fetch)

In the Eager Haskell implementation, a fetch operation corresponds to fetching the tag of an object

on the heap, or fetching the contents of a boxed number; see Section 5.3.

4.2.8 Placing non-values on the heap

Every strategy presented in this chapter except for call-by-value permits non-values to reside on the

heap. This has substantial impact on the language implementation: values and non-values must be

60

represented in a way that allows them to be distinguished. As we will see in Section 4.5, this richer

heap structure adds power to the language. It is important to remember that that power has a cost:

extra tagging and boxing of values may be required when they are stored, and extra checking will be

required before a variable can be fetched. Different tagging methods are compared in Section 5.3.

Bindings on the heap of the formy = z areindirections. Indirections are created when a term

contains a variable in result position:

b = C2 7 b, i = (λx→ x), h • 〈y = i b〉 r

−→ b = C2 7 b, i = (λx→ x), h • 〈y = b〉 r (tail call)
≡ b = C2 7 b, i = (λx→ x), y = b, h • r (store indirection)

−→ b = C2 7 b, i = (λx→ x), h • 〈y = C2 7 b〉 r (fetch)
≡ b = C2 7 b, i = (λx→ x), y = C2 7 b, h • r (store)

In the first pair of reductions, we allocate an indirection fromy to b; in the second we must instead

copy the entire structure ofb. Indirections represent a substantial space savings when many reduc-

tions of this sort occur. Moreover, it is possible for the garbage collector to remove indirections;

they therefore represent only a transient space overhead. However, the cost is increased implemen-

tation complexity: heap accesses must detect and handle indirections correctly (Section 5.8 explains

the handling of indirections in Eager Haskell).

4.2.9 Placing computations on the heap

The lazy and hybrid strategies also place computations in the heap. For example, the hybrid strate-

gies contain the following rule:

h • 〈x = e; k〉 r
≡ x = e, h • 〈k〉 r (suspend)

In practice,e is represented by a data structure containing (at minimum) a code pointer and ref-

erences to the free variables ofe. A computation cannot be loaded; instead, its value must be

computed. This is done by pushing it onto the stack:

x = e, h • 〈y = S[x] ; k〉 r
≡ h • 〈x = e〉 〈y = S[x] ; k〉 r (force)

An actual implementation will restore the state saved during suspension, then execute the code to

computee. The binding is not actuallyremovedfrom the heap. Instead we indicatex is being

evaluated by overwriting the heap binding with a special “empty” value. Whenx = e has been

computed, the heap binding is overwritten with the resulting value. Control then returns to the

61

forcing computation; in this respect, forcingx = e is similar to calling the functionx = f ~x. The

implementation details of creating and forcing suspensions and thunks are described in Sections 5.6

and 5.7.

4.2.10 Garbage collection

The garbage collection ruleεe deserves a quick mention. We only garbage collect bindings which

are found in the heap. One strategy presented in this chapter, the fully eager strategy of Section 4.4.1,

keeps unevaluated bindings outside the heap; this specifically prevents them from being garbage

collected. Any dead binding in the heap may be subject to garbage collection. The actual garbage

collection techniques used in Eager Haskell are described in Section 5.9.

4.3 Reduction strategies

All the strategies we describe have a few common features. First, all reduction occurs in the working

term of some thread. Second, no reduction will be permitted insideλ expressions or case disjuncts.

Our strategies will be distinguished by a few main features:

• How a nestedletrec block is flattened.

• When or if a computation can be suspended and copied to the heap.

• When or if a computation can be forced, moving it from the heap back to the stack.

• When or if a new thread must be created.

As we shall see, these elements capture the behavior of strict, lazy, and eager functional language

implementations.

4.3.1 A lazy strategy

Any lazy strategy must have two important properties:

• Only bindings whose value is required to obtain the value of the root should be reduced.

• It mustpreserve sharing—bindings outsideλ expressions must be reduced at most once (note

that this reduction is notoptimal; redexes insideλ are duplicated freely when instantiation

occurs).

62

h • 〈x = letrec b in e1〉 r −→ b, h • 〈x = e1〉 r τf (allocate)

x = e, h • 〈y = S[x]〉 r ≡ h • 〈x = e〉 〈y = S[x]〉 r (force)
e /∈ var ∧ e /∈ V

h • 〈x = y〉 r ≡ x = y, h • r (store indirection)

y = e, h • 〈x = y〉 ≡ x = y, h • 〈y = e〉 (outermost)

Figure 4-3: Reduction rules for lazy strategy (See also Figures 4-2 and 3-12)

Rules for a lazy strategy are given in Figure 4-3. When aletrec block is encountered, the

bindings are allocated(τf) as suspended computations (thunks) on the heap (in our notation the

semicolons separating bindings must also be replaced by commas). When a variable is required, its

value isdemanded; if the value is not yet available, it must be forced. Every frame contains a single

binding; as a result all function calls are tail calls, and only forcing a variable will cause the stack to

grow.

A special case occurs when the outermost binding is rewritten to an indirection. In this case,

the rewritten binding replaces the indirection on the stack (store and force). This guarantees that

reduction will continue until the outermost binding has actually been fully evaluated.

Deadlock occurs in the lazy strategy when a variable which resides on the stack is a candidate

for instantiation. For example:

y = 4 ∗ x, h • 〈x = y + 1〉 r
−→ h • 〈y = 4 ∗ x〉 〈x = y + 1〉 r (force)

deadlock

We noted in Section 4.2.9 that a binding is overwritten with a special value when it is forced. In lazy

languages, this special value is traditionally known as a “black hole”. The implementation detects

deadlock by noticing thatx is a black hole as we attempt to evaluatey.

4.3.2 A strict strategy

The strict strategy has three important characteristics:

• Only values may be stored in the heap.

• Bindings are executed in the order in which they occur in the program text.

• All variable references in the active term must refer to values on the heap.

63

h • 〈x = letrec b in e1 ; k〉 r −→ h • 〈b ; x = e1 ; k〉 r τf (enter block)

Figure 4-4: Additional reduction rule for strict strategy (See also Figures 4-2 and 3-12)

These restrictions on evaluation permit the strict strategy to be implemented very efficiently. A

variable reference is assumed to refer to a value—no checking is required to verify that this is the

case. Contrast this with the lazy strategy in the previous section: a variable may refer to a value, a

thunk, an indirection, or a black hole. None of the extra mechanisms for suspending and resuming

computations need to exist in a strict language.

As a result, the strict strategy forλC given in Figure 4-4 is very simple—just one rule for

flattening letrec blocks so that bindings are evaluated in program order. The drawback to this

strategy is that we must restrictλC itself: The only recursive references permitted inletrec blocks

are between functions. It is invalid to reference a binding which has not yet been evaluated.

Note that while the strict strategy executes a given program in order, the compiler still has a

great deal of liberty in ordering program bindings. The process of canonicalization itself, which

transformed an arbitraryλC program into argument-named form, is not fully specified. By varying

the order in which function arguments are named and lifted, for example, different execution orders

will result. Furthermore, the compiler is always free to reorder bindings when the results of doing

so cannot be observed.

4.4 Eagerness

We call a strategyeager if there are infinitely many programs for which the strategy performs

βvar, δ, or χd reductions which would not have been performed by the lazy strategy. Some eager

strategies are trivial: the compiler for a lazy language may introduce eagerness statically when

analysis shows that it is safe to do so [36]. In this chapter, we focus on strategies which permit

unlimited eagerness—that is, the use of eager evaluation is not constrained to expressions with

particular static properties. The call-by-value strategy is clearly eager: aletrec-bound variable

is evaluated even if it is never referenced. In the remainder of this chapter we examine several

eager strategies for non-strict languages. In Chapter 8, we will introduce simple static constraints

to handle dynamic error conditions. By default, however, expressions will continue to be eagerly

evaluated.

64

h • x = letrec b in e1 ‖ t −→ h • x = e1 ‖ b ‖ t τf (spawn)

h • x = v ‖ t ≡ x = v, h • t (store value)
h • x = y ‖ t ≡ x = y, h • t (store indirection)

Figure 4-5: A fully eager strategy (See also Figures 4-2 and 3-12)

4.4.1 A fully eager strategy

In order to construct a maximally eager strategy, we should attempt to compute every single binding

in the program eagerly. We can do so by running these bindings in parallel. Every binding is

evaluated in a separate thread. Every call will therefore be a tail call, and there is consequently no

need for a stack or continuations. Thisfully eagerstrategy is captured in Figure 4-5. The eagerness

of the model can be seen by comparing the spawn rule to the enter block rule in the strict strategy

(Figure 4-4). Both rules immediately begin evaluating the bindings of the block; the strict strategy

does so one at a time, whereas the lazy strategy evaluates every binding in parallel.

The fully eager strategy is extremely general—we can at any time choose to evaluate any thread

or threads. This freedom of choice means that we can, for example, simulate lazy evaluation simply

by keeping track of the “currently needed” thread and focusing all effort on evaluating that thread.

Indeed, we can simulate any non-strict strategy by choosing which bindings are actually evaluated.

The generality of the fully eager strategy is also its downfall. Note that any thread in the system

may becomeblocked. This happens when a variable requires instantiation, but the binding for that

variable is still being computed in another thread. No reductions on that thread can be performed.

An actual implementation could quickly become swamped by partially-completed computations

which are awaiting results. A reasonable implementation must distinguish between threads which

are blocked and threads which are not blocked.

The fully eager strategy has another failing: it breaks computations up into tiny, short-lived

threads. Thread state must be allocated and tracked dynamically. Switching to an arbitrary thread

requires arbitrary control flow. The combination of dynamic resource usage and unconstrained

control flow are a disaster for a modern architecture, where temporal and spatial locality are vital to

efficient execution. An efficient eager strategy must impose structure on the threads so that there is

a clear way to manage control flow and resource allocation.

65

h • 〈x = letrec b in e1 ; k〉 r −→ h • 〈b ; x = e1 ; k〉 r τf (enter block)

h • 〈x = e; k〉 r ≡ x = e, h • 〈k〉 r (suspend)

h • 〈x = y ; k〉 r ≡ x = y, h • 〈k〉 r (store indirection)

x = e, h • 〈y = S[x] ; k〉 r ≡ h • 〈x = e〉 〈y = S[x] ; k〉 r (force)
e /∈ var ∧ e /∈ V

y = e, h • 〈x = y〉 ≡ x = y, h • 〈y = e〉 (outermost)

Figure 4-6: Hybrid eager and lazy strategy (Compare Figures 4-3 and 4-4)

4.4.2 The hybrid strategy

Both strict and lazy languages solve this problem in a similar fashion: A stack of frames is used to

group together related bindings. A stack provides a systematic and well-understood way to manage

both control flow and local storage. It is therefore worthwhile to seek a stack-based eager strategy.

(The actual implementation of the stack is described in Section 5.2.3.)

One natural course is to combine elements of the strategies we understand well—the lazy strat-

egy and the strict strategy. This results in the hybrid strategy found in Figure 4-6. Most of the rules

are identical to rules for either the lazy or the strict calculus. Bindings are started in program order,

so the enter rule is identical to the rule in the strict strategy (Figure 4-4). Demand-driven evaluation

(evaluate) works just as in the lazy strategy (Figure 4-3). However, if no suspension exists on the

heap for variabley in x = S[y] theny is pending and resides somewhere in the stack. In this case

we must create a suspension forx on the heap and continue executing the work on the stack (the

implementation of suspension is described in Section 5.6).

We might expect the suspension rule to require that the variabley occur in a strict context

S[y]. Doing so would yield a “minimally lazy” hybrid strategy—suspension would occur only when

absolutely required by non-strictness. Unfortunately, this makes our strategy sensitive to the order

of bindings in the program text; we examine this inconsistency in the next section.

The suspend rule for Eager Haskell contains no such restriction. Indeed, the active term may

be suspended atany time for any reason, even if it is possible to evaluate it immediately. This

extra flexibility captures a large and interesting range of implementation choices. For example, by

immediately suspending the bindingsb upon entering a block, we obtain exactly the effect of the

allocate rule in the lazy strategy.

66

4.5 How strategies treat the heap

One crucial difference between the strategies discussed thus far is their treatment of the heap. Con-

sider an instantiation contextx = S[y]. Under the strict strategy,y has been computed andmust

reside somewhere on the heap (see Section 4.3.2). Under the fully eager strategy, uncomputed

values lieoutsidethe heap in the thread pool (Figure 4-5). Under the hybrid and lazy strategies,

uncomputed values may reside on the stack (completely empty data structures; see Section 5.3)or

in the heap.

The ability to place uncomputed bindings on the heap adds power to the language; the hybrid

and lazy strategies will successfully execute some programs which do not terminate under the fully

eager strategy. Consider the following example:

letrec forever x = casex of → forever x
const x y = x
y = forever z
z = const5 y

in z

In the strict strategy, we cannot execute this program at all—it contains the mutually-recursive value

bindingsy andz. In the lazy strategy, we evaluatez, which callsconst. Sinceconstignores its second

argument, it does not matter thaty refers to a non-terminating computation—z is reduced to 5 and

the binding fory can be garbage collected.

In the fully eager strategy, we attempt to evaluate the binding fory. This evaluation blocks or

suspends becauseforeverrequires the value ofz. The bindingz is computed and discardsy. At this

point, the binding fory still exists as an independent thread. This thread can be run forever; more

important, its execution resources can never be reclaimed. In contrast, the hybrid strategy creates

a suspension fory on the heap. This suspension is ignored by the call toconst, and can simply be

garbage collected.

Under the hybrid strategy, there is a choice when evaluating this example. When the binding

for y is encountered, it may be suspended; in this case the binding forzwill eventually be evaluated

andy discarded exactly as with the lazy strategy. If, however, the binding fory is run eagerly, then

execution will suspend because the value forz is required. Again,zwill be run, this time discarding

the newly-created suspension. In either case, the net effect is the same: Execution ofy is abandoned,

and the storage required for the suspension can be reclaimed oncez has discarded it.

However, consider what happens under the hybrid strategy if we reverse the order ofy and

67

z in the above example. Ifz is evaluated first, it yields 5. The strategy may then choose to runy

forever without suspending: simply reversing the order of two bindings has changed the termination

behavior of the program. The general suspension rule permits us to suspend and eventually garbage

collect the already-discarded computation ofy. However, the strategy of Figure 4-6 does not give a

policy for applying this rule.

4.6 Other Eager Strategies

The eager strategies implemented in Id andpH do not display the sensitivity to evaluation order

which is possible in the hybrid strategy. This is because they define program termination in a

stronger way (see Section 4.2.5). We consider a hybrid program to have terminated when we obtain

a value formain. Both Id andpH require thateverycomputation terminate. This condition is easy

to express in the fully eager strategy: A program terminates when there are no longer any threads

to be run. In the example, the binding fory musteventually be run, and as a result the program will

neverterminate.

Naturally, the evaluation strategies used in Id andpH make their own set of tradeoffs in the name

of efficiency. Briefly, every program binding has an associatedlocation, which is either empty or

full. Empty locations correspond to the bindings in the thread pool under the fully eager strategy. An

empty location has an associateddefer listwhich lists bindings which have suspended awaiting the

location’s value. When a location becomes full, these bindings are re-started. In this way, threads

which certainly cannot make progress are distinguished from those which may potentially contain

useful work. A formalization of the defer-list strategy can be found in Appendix A; it requires

additional notation to describe the structure of defer lists.

The hybrid approach is demand-driven, whereas the defer list approach is producer-driven. Both

techniques have advantages and drawbacks. The defer list approach keeps computations alive (on

defer lists) even if their results are never required. The problem of scheduling in the presence

of defer lists is in general a murky one; when a defer list is re-started, it is unclear when it is

appropriate to run the newly re-started computations. However, there will never be any attempt to

run a suspended computation.

The hybrid strategy, on the other hand, can immediately discard the resources associated with

useless computations. There is no question when to schedule formerly suspended computations—

they should be run when their values are demanded. However, it is possible to re-start a suspension

68

h • 〈x = S[y] ; k0 ; y = e; k1〉 r ≡ x = S[y], h • 〈k0 ; y = e; k1〉 r (suspend)

h • 〈x = S[y] ; k0〉 r0 〈b ; y = e; k1〉 r1 ≡
x = S[y], h
• 〈k0〉 r0 〈b ; y = e; k1〉 r1

(suspend)

h • 〈x = f ~x ; k〉 r ≡ x = f ~x, h • 〈k〉 r (thunk)
h • 〈x = f ~x〉 r ≡ x = f ~x, h • r (tail thunk)

y = e, h • 〈x = S[y] ; k〉 r ≡ y = e, x = S[y], h • 〈k〉 r (no-force)
e /∈ var ∧ e /∈ V

h • 〈x = f ~x ; k〉 r ≡ h • 〈x = f ~x ; k〉 r (call exception)
|r| > stackmax

y = e, h • 〈x = S[y] ; k〉 r ≡ y = e, h • 〈x = S[y] ; k〉 r (force ex.)
|r|> stackmax∧ e /∈ var ∧ e /∈ V

h • 〈x = v ; k〉 r ≡ x = v, h • 〈k〉 r (heap ex.)
e(|h|, |r|) > resourcemax

h • 〈x = e〉 ≡ h • 〈x = e〉 (outer end)
resourcemax← f(|h|, resourcemax)

letrec b, h • r in main −→ letrec h • r in main εe (gc)
BV[b] ∩ FV[letrec h • r in main] = ∅
resourcemax← g(|b|, |h|, resourcemax)

Figure 4-7: Reduction in the presence of exceptions. Underlines indicate fallback is in progress.
Compare to Figure 4-6.

(on demand) only to immediately discover that a value upon which it depends remains unavailable.

4.7 Resource-bounded Computation

Any eager strategy presenting the same language semantics as lazy evaluation must stop the exe-

cution of runaway computations such asforever from Section 4.5. Efficiency demands that these

computations be cut short before they use an inordinate amount of time and space. This leads us

naturally to the idea ofresource-bounded computation: limit the amount of time and space which

can be used by a computation, and use suspension to fall back and shut down computations when

those resource bounds are exceeded.

We view the fallback process as a form of exception mechanism. This idea is formalized in

Figure 4-7. When multiple rules apply to a given term, the rules in Figure 4-7 take precedence

over those in Figure 4-2. Ordinarily, computation proceeds eagerly; computations suspend only

69

when a required variable resides on the heap (due to non-strictness). This is expressed as two rules

(suspend)—one when the relevant variable is bound in the same stack frame, the second when the

variable is bound deeper in the stack.

When resource bounds are reached, an exception is signaled, andfallback begins, indicated

by underlining the stack. During fallback, we disallow stack growth. This means that subsequent

function calls must suspend (the thunk rules) and that computations which would usually require

evaluation of a heap value must themselves suspend rather than forcing the computation on the heap

(the no-force rule).

In order to bound the time and space used by a computation, we must check resource bounds

in three places (the actual implementation of this policy is described in Section 5.9.4). First, the

amount of stack which is used must be bounded; thus, we check stack usage at every function

call and every evaluate. If usage exceeds the bound on stack growthstackmax then an exception is

signaled. Second, the total space usage must be bounded. This is checked at every allocation point;

the monotonic functione adjusts for the fact that heap and stack usage may be accounted for in

different ways.

Finally, we must bound the total time used by any computation. These rules do not measure

time directly. Instead, we note that the heap grows steadily as evaluation progresses. Thus, space

usage and time usage are closely correlated. The only exception to this is when garbage collection

occurs: here the heap may shrink once again. Thus, we compute a new resource boundresourcemax

each time we garbage collect. The bound is a functiong of the current bound, the current space

usage, and the amount of garbage collected.

Exceptional execution guarantees that the stack must shrink. When it is empty exceptional

execution ends, and the program resumes ordinary eager execution once more. At this point the

resource bounds are reset based on the resources currently in use by the suspended program. Note

that suspended computations are re-started in a demand-driven fashion: the exception ends with a

single computation on the stack, and the forcing mechanisms is used to evaluate suspensions as they

are required.

70

Chapter 5

Run-time Structure

Data representation is vital to efficient compilation of a non-strict language. This chapter examines

some of the tradeoffs inherent in various data representation choices. The tagged data representation

used by the Eager Haskell compiler is described, and its advantages and potential drawbacks are

noted. The chosen structure leads to a natural division of responsibility between compiled code and

the Eager Haskell language runtime. This division is outlined, and the structure of the run-time

system is described.

5.1 Overview

Our choice of data representation is affected by several factors. Recall from Section 4.2.9 that

non-strict languages must distinguishvaluesfrom computations. Polymorphically-typed languages

must represent data in a uniform manner when it is used in a polymorphic context [64] unless they

can eliminate polymorphism statically [129, 82]. In a higher-order language we must also represent

function closures and curried partial applications in some fashion. In addition, any language which

supportsprecisegarbage collection must provide a way for the garbage collector to identify heap

references, and must establish some invariants on heap usage. Finally, if we wish to run our pro-

grams in parallel we must establish the conventions by which multiple threads may access the heap.

All these choices constrain our data representation and thus influence the structure of the code we

generate.

In this chapter we review data representation strategies used elsewhere and present the strategy

used by the Eager Haskell compiler. We use a tagged, boxed representation for all program data.

Tags are represented as simple integer values rather than pointers to descriptors in order to simplify

71

the primary control flow of the program.

5.2 Driving assumptions

An modern architecture is optimized to make particular coding idioms run extremely fast. A lan-

guage implementation should, whenever possible, generate code with these idioms in mind. Simi-

larly, compilers are often designed to ensure that particular source-language idioms produce efficient

code. We begin by outlining the assumptions we make about modern architectures and about the

behavior of Eager Haskell programs; the remainder of the chapter describes in detail how these

assumptions will guide our implementation.

5.2.1 Architectures reward locality

Modern architectures provide a multilevel memory hierarchy which rewards applications which

exhibit temporal and spatial locality. We assume the existence of multiple levels of caches, including

separate instruction and data caches for the most recently-accessed portions of memory. At higher

levels of the memory hierarchy, a program with a large address space will incur overhead for misses

in the translation lookaside buffer (TLB) when translating virtual addresses to physical addresses.

When address spaces become very large, portions of memory will be paged to disk. For such large

address spaces, a program with poor locality will quickly slow to a crawl.

5.2.2 Branches should be predictable

In order to optimize control flow for the common case, we take advantage of the features of modern

processors, particularly branch prediction. We assume that indirect branches to unknown code are

unpredictable, and thus expensive. For this reason we avoid using function pointers as part of

ordinary control flow.

Similarly, we use branch prediction hints (provided by recent versions of gcc) to indicate that

particular execution paths are common or rare. This also causes the C compiler to segregate rarely-

executed basic blocks from the main control flow of a function. This improves the instruction cache

performance of our programs.

72

5.2.3 Compiling to C will produce better code

The Eager Haskell compiler generates gcc code. The techniques and tradeoffs involved in compil-

ing high-level languages to C have been examined in great detail elsewhere [31, 93, 42, 48, 24, 65].

The most compelling argument for compiling via gcc is the maturity and portability of the com-

piler. In order to generate high-quality machine code, a compiler must incorporate an instruction

scheduler, a register allocator, and a good-quality code generator and peephole optimizer. It requires

an enormous amount of effort to match gcc even on a single architecture. For example, the most

mature optimizing compiler for Haskell, GHC, includes a native code generator for Intel machines.

However, GHC generates faster code (at the cost of extra compile time) by compiling via gcc.

We choose gcc rather than another C compiler for two reasons. First, gcc is available on every

popular machine architecture. Second, gcc provides support for a number of language extensions

which make the task of mapping Haskell to C much easier. Many compilers make use of gcc’s

ability to map global variables to machine registers [31, 93, 48]. Recent versions of gcc can compile

arbitrary tail recursion; previous compilers often resorted to complex trickery to avoid running out

of stack [93, 31]. Finally, the provision of branch prediction annotations makes it much easier for

the Eager Haskell compiler to express and exploit the assumptions made in the previous section.

Compiling to C rather than generating machine code does place a burden on the run-time system.

An allocation-intensive language such as Eager Haskell requires a precise garbage collector, and

must therefore maintain ashadow stackcontaining the live pointers in a computation. This shadow

stack is treated as a root by the garbage collector. This increases overhead in two ways. First, an

additional machine register is required to maintain the shadow stack pointer. Second, the compiler

must explicitly generate code to save and restore shadow stack entries. The C register allocator is

also making decisions about which variables will reside in registers and which must be kept on the

stack. Inevitably these decisions do not coincide and extra memory operations result.

5.2.4 Non-strictness is rare

The most important assumption made by the Eager Haskell compiler is that non-strictness is rarely

used even in non-strict programs. Most of the time programs can be run eagerly, in exactly the order

given, and without requiring suspension. This assumption is certainly true of Id programs [116],

and motivated Shaw’s stripped down parallel implementation of a subset of Id [120]. Occasionally

non-strict semantics will actually require suspension; occasionally resource bounds will be reached

73

and execution will suspend. However, we focus our energies on making ordinary, non-suspensive

execution as fast as possible while still permitting non-strictness and suspension to occur.

5.2.5 Values are common

A corollary to the presumed rarity of suspension is a second assumption: most of the time an Eager

Haskell program manipulates values. It must be easy and fast to distinguish a value from a non-

value, and tests which make this distinction should be biased to favor values. When a suspended

computation or an indirection is encountered, the implementation should take pains to make sure

future computations can use the desired value directly.

In order to optimize control flow for the common case, we use branch prediction hints to indicate

that suspension is rare. We avoid the use of indirect branches when checking whether a particular

object has been evaluated. This stands in stark contrast to both GHC and hbc; in both cases objects

are tagged with a function pointer which, when called, evaluates the object. As a result, every single

casestatement (at least in GHC) involves an indirect branch—even if the data involved has already

been evaluated.

The GRIN project makes the same set of architectural assumptions, but takes a very different

approach to compiling lazy languages [55]. Constructors and thunks are treated uniformly as integer

tags. Whole-program control flow analysis reveals which tags reach particulareval instructions

(equivalent tocaseexpressions in Eager Haskell), and these are checked for explicitly. Boquist then

uses the same whole-program analysis to perform interprocedural register allocation [29]. However,

the techniques used in GRIN require whole-program compilation and a native code generator; we

ruled out both approaches in designing the Eager Haskell compiler.

5.3 Tagged data

In order to support non-strict execution, all data in Eager Haskell istaggedandboxed. Boxing

means that all data—even primitive values such as characters and floating-point numbers—is allo-

cated on the heap. This has a measurable runtime cost—the cost of allocating additional storage

for primitive data, initializing it, and garbage collecting it, and the cost of fetching primitive data

from memory when it is required. Tagging means that all heap data is prefixed by a tag, which in

Eager Haskell is a pairMkTag (ident, size). The size is used by the garbage collector. Theident

distinguishes the following things:

74

43

���������

Integer

�������
	

0

3.14159

Double-precision float

�������
�
���

+-k
��� � �����Multiple

precision
bignum

Figure 5-1: Boxed representation of numbers in Eager Haskell. Note thatDoubles have a word of
padding after the tag so that the data will be doubleword-aligned.

• The various disjuncts of an algebraic data type (which contain pointers).

• Function closures and partial applications (Section 5.4).

• Values containing non-pointer data (Int, Double, Integer), shown in Figure 5-1.

• Indirections (Section 5.8).

• Barrier indirections used for enforcing heap invariants (Section 5.9.2).

• Completely empty data structures, which are currently under computation; they will eventu-

ally be filled in with a value or a suspension. This is the representation used for computations

which reside in the stack in our strategies (Section 4.2.9).

• Thunks: suspended function calls due to an exception (Section 5.7).

• Suspensions:caseexpressions whose data was unavailable (Section 5.6).

We order the identifiers so that values are positive and non-values (including indirections) are nega-

tive. The compiled code deals only with values; all non-values are handled by the run-time system.

Tagged, boxed memory is not the only possible data representation in a non-strict language.

Some hardware, such as the Monsoon dataflow machine (the primary target of the Id compiler),

provides support for type-tagged memory. This can be exploited to distinguish pointers from non-

pointers, or to distinguish empty objects and values. A closely related technique is to tag the data

itself. This technique has long been a staple of Lisp systems, and is used by emacs [68], Caml

Light [65, 118], and gofer and hugs [58]. Typically, particular settings of the low-order bits of a

machine word incorporate limited type information, at the minimum indicating whether the word

should be interpreted as an integer or a pointer. The current implementation ofpH uses an interesting

75

variation of this technique, in which pointers are encoded as valid double-precision IEEE NaNs (not

a numbers) [31]. This provides a contiguous integer range and allows the use of unboxed floating-

point numbers; it also yields a large enough address range to allow pointers to be accompanied

by type information. However, thepH object representation requires a 64-bit machine architecture

in order realize full performance, and the memory consumption of pointer-intensive programs is

doubled.

Using tagged values rather than tagged memory has certain attractions. Both tagging techniques

impose overhead to tag and untag data; however, shifting and masking value tags can be done in a

machine register; tagged memory requires additional memory operations. If we use tagged values,

small integers and nullary constructors—both very common—need not be stored in separate, tagged

memory locations. The Eager Haskell garbage collector mitigates this cost by redirecting references

to nullary constructor and small integers so that they point to a fixed table.

The biggest drawback to using tagged values is that they usually require tagged memory as well.

There simply aren’t enough free bits in a pointer word to distinguish all possible object sizes and

constructor tags that might exist within a single algebraic datatype. As a result, most pointers refer

to tagged memory (Lisp systems typically reserve a special pointer tag for cons cells so that this

common case does not require tagging). At the same time, tagging techniques impose additional

constraints on the ranges of values. This can prove especially difficult when interacting with libraries

that assume (for example) that 32-bit integers are available.

In a system using integer tags, object sizes and layouts are limited by the way information is

encoded in the tag. Instead of tagging objects with a simple integer, we can tag them with a pointer

to a descriptor. A descriptor can be shared by many objects, and is usually generated statically.

As a result, the descriptor can be much larger than one or two machine words. Using a descriptor

permits pointer and non-pointer data to be commingled in essentially arbitrary fashion.

Some descriptors—most notably those used in GHC and in hbc—can be thought of asactive

tags. One entry of the descriptor table is a function; in GHC and hbc this is the function which

forces a thunk. Thus, forcing a thunk is a matter of entering the code stored in the descriptor. This

technique can be extended to other portions of the system. For example, including a pointer to

a garbage collection routine in every descriptor makes it easy to use unusual garbage collection

techniques for particular heap objects [93, 140].

In a strongly typed language, it is possible to dispense with tagging entirely [5, 4]; if the garbage

collector knows the type of every root, then it is simple to determine the types of all reachable

76

objects. However, callers must pass type information whenever a polymorphic function is invoked

in order to determine the types of objects referenced from the stack. Moreover, in a language with

algebraic data types tags are still required to distinguish the different constructors in a type. As a

result, type-based garbage collection is seldom worthwhile.

On a system with a large address space, it is often possible to use a BiBoP (big bag of pages)

allocator to segregate objects with different tags [144]. Memory is divided into fixed-size chunks

(often one or more virtual memory pages in size); each chunk contains objects of a single size or with

a single tag. The data structure used to manage chunks contains appropriate tagging information.

We reject this approach in Eager Haskell for several reasons. First, an object can have many tags

over its lifespan due to suspension; this would require a cheap method for migrating objects between

pages. Second, Eager Haskell is extremely allocation-intensive; as a result, allocation must be

cheap. The BiBoP technique requires separate allocation state for every possible tag used by the

program.

The BiBoP techniqueis a good method for structuring a high-level allocator such as the shared

multigenerational heap used in Eager Haskell. Here object tags are preserved, and the allocator

segregatessomeobjects simply for convenience. For example, by segregating objects of similar

size a mark-sweep allocator can use a single bitmap for marking and allocation [28]. Similarly,

pointer-free objects can be segregated from objects which must be traced by the collector, reducing

page faults during collection [60].

5.4 Function structure

Having decided to compile Eager Haskell programs to C, another fundamental decision must be

made: How to map Haskell functions to C functions. This is a tricky decision for any language with

a substantially different control structure from C itself.

By choosing to compile Eager Haskell to C, we are obliged to have idiomatic Haskell programs

compile to idiomatic C whenever possible. For example, we treat nested primitive expressions

as single units for the purpose of code generation (see Section 3.5.5), allowing the C compiler to

generate the best possible code for them. We therefore map each Eager Haskell function to a single

C function. Weavoid turning individual Haskell bindings into functions because we subvert the C

compiler’s ability to do register allocation, branch prediction and the like.

We also assume that larger functions are (within reason) better. Haskell functions tend to be very

77

small; C functions are generally much larger. As we note in Section 6.4, truly enormous functions

strain the resources of the C compiler, and the Eager Haskell compiler takes steps to break such

functions into smaller pieces at logical boundaries in the control flow.

There are a number of calling conventions that may be adopted. The shadow stack can be

maintained either as a separate data structure, or each function can have a local array of shadow stack

entries which are then linked together, embedding the shadow stack in the C stack. Eager Haskell

function arguments can be passed either as C arguments or they can be pushed on the shadow

stack. Simple tests confirm that maintaining a separate shadow stack is substantially more efficient.

Surprisingly, even in the absence of a garbage collector using the shadow stack for parameter passing

was approximately as efficient as using the C calling conventions. Garbage collection requires

spilling arguments to the shadow stack and further shifts the balance.

When code suspends, we must somehow package up the point in the function body where exe-

cution should resume. We take our cue from Cilk [37], and give every function a set of numbered

entry points. The entry point is passed as an argument to the function. Entry point zero is the dis-

tinguished entry point indicating the beginning of the function. If the entry point is nonzero, we

perform an indexed jump to the resumption point in the function. Simple functions will have only

one or two entry points, and their control flow is simplified to reflect that fact.

The Cilk implementation contains an additional refinement of the entrypoint technique: two

copies of every parallel function are generated. Theslow clonepasses arguments on a shadow stack

(thesteal stack) and uses entrypoints. Thefast cloneuses the ordinary C calling conventions and

is specialized with respect to the initial entry point. Ordinary function calls use the fast clone; the

slow clone is used only after work stealing or suspension. A quick off-the-cuff experiment with this

technique in Eager Haskell revealed that the resulting code ran substantially slower. Again, alloca-

tion and nested function call require arguments to be spilled to the shadow stack where they can be

found by the garbage collector. By placing resumption points at existing control flow boundaries

the cost of checking the entry point can be minimized, and increased instruction cache miss rates in

the 2-clone code appear to dominate.

There are numerous other techniques for mapping source functions to C procedures. Scheme

48 [61] generates its interpreter by partially evaluating a simple scheme-like language called pre-

scheme. Multiple scheme procedures are coalesced into a single C procedure; much of the inter-

preter collapses into a single function. Grouping functions in this way allows tail-recursive functions

to be transformed naturally into loops, and permits calling conventions to be tailored to the context

78

Function
Partial Known Statically

Application application non-closure unknown
Partial Rare Uncommon Uncommon

Full Arity Common Most common Common
Oversaturated Least common Uncommon Uncommon

Table 5.1: Different cases of curried function application and their presumed frequency. Here Least
common< Rare< Uncommon< Common< Most common.

in which functions are actually used. However, Eager Haskell code is currently rather bulky, and

this technique would subvert function splitting and result in unmanageably large C functions.

GHC chooses to place each thunk in a separate C function [93]. This fits in naturally with the

lazy execution model: a thunk is entered and executed independently of the containing function. The

resulting functions are knitted together by post-processing the assembly output of the C compiler.

ThepH [31] and Mercury [48] compilers had a notion of entrypoints similar to the Eager Haskell

compiler; however, they rely on a non-portable feature of gcc (taking the address of labels). This

results in slightly faster code, but modern versions of the trick are not sufficiently robust for produc-

tion use.

5.5 Currying

Currying is popular in Haskell, and curried functions must be represented in an efficient manner.

However, C isnot curried. Many ML implementations make tradeoffs in the efficiency of curried

function application in favor of speeding up tupled application [7]; in Haskell such a tradeoff would

generally be unacceptable. We make two key assumptions about the function calls in Eager Haskell

programs: Most function calls invoke a known function, and most function calls occur at (exactly)

full arity. Thus currying and higher-order function calls, while frequently used, still only account for

a small proportion of calls overall. We also assume that a function is ordinarily only curried once;

the resulting partial application is likely to be applied to all of its missing arguments. Semantically

(see Figure 3-12), the merge app rule will usually be followed by an immediateβvar, and we will

rarely need the split app rule.

The simplest implementation of currying statically transforms a function withn arguments into

n functions each taking a single argument and returning a function. We would write this inλC as

follows:

79

λx0 x1 x2 x3 → e = λx0 → λx1 → λx2 → λx3 → e

This can be mapped very naturally to C, as every function call occurs at full arity. However, it

does the worst possible job of the common case: a full-arity application of ann-argument function

generatesn−1 closures. The Id compiler [133] uses a similar technique, but adds a second “full ar-

ity” entrypoint to every function. This makes full-arity applications of uncurried functions efficient;

full-arity applications of existing partial applications are still inefficient.

Techniques exist to statically eliminate currying [47]. In practice, these techniques require

whole-program analysis. The analyses also tend to err on the side of the “most-curried” version

of each function. Additional closures result, and full-arity application suffers.

Instead of statically compiling away currying, extant Haskell compilers generate code designed

to deal with curried function application while making full-arity application as fast as possible.

There are two basic approaches to compiling currying, theeval-applyapproach and thepush-enter

approach. In examining these two techniques, we identify the function being applied as a partial

application, a statically known function which has not been partially applied, or a statically unknown

function. We identify a call site (dynamically) as a full-arity application, a partial application, or

an over-saturated (more than full arity) application (note that we cannot know statically whether

an application of an unknown function will be at partial arity, full arity, or oversaturated, so this

distinction will need to be made at run time in these cases). Together, these give rise to nine different

cases of function application, summarized in Table 5.1. Both techniques will group some of the nine

cases together, and will move functionality required for the less common cases into the run-time

system.

5.5.1 The eval-apply approach

In Eager Haskell we use the eval-apply approach to compile partial application. The compiler

generates code for a function assuming it is being invoked at full arity. It is the caller’s responsibility

to create and unpack partial applications. This means that full arity application of a known function

can use a simple, fast calling convention (such as the regular C convention). Because there are

generally many more call sites than functions in a program, all calls to statically unknown functions

are handled in the run-time system. The eval-apply technique is summarized in Table 5.2. In

particular, no special treatment is given to oversaturated function applications. An oversaturated

application is treated as a full arity application yielding a partial application or an unknown function.

80

Function
Partial Known Statically

Application application non-closure unknown
Partial merge (τa), store static store store stack

Full Arity copy closure (ιb), βvar direct call (βvar) βvar

Oversaturated merge (τa), split (ν), βvar, apply split statically (ν) split (ν), βvar, apply

Table 5.2: The eval-apply approach to partial application used in Eager Haskell. Rule names refer
to rules in Figures 3-12 and 4-2.

Partial applications build aclosure. In Eager Haskell a closure looks just like an ordinary data

structure—see Figure 5-2. The tag indicates the object size (as usual) and the remaining arity of the

closure. The first field is the function pointer. The remaining fields (if any) are the arguments to

which the function has been applied. This means that closures areflat—if we apply a function of

n arguments toi arguments, then apply the resulting closure toj arguments, we will construct two

closures—one of sizei and the second of sizei + j. Closures are also required for functions with

free variables; this is discussed in more detail in Section 6.3.

All three cases of known function application can be handled at compile time. Oversaturated

applications of known functions are split into a full-arity application and an unknown application.

Full arity applications result in a simple function call. Partial applications allocate and fill in the

closure directly.

Any function call involving a closure is handled by a run-time system function calledGeneral-

Apply. We represent unknown functions as closures, soGeneralApplyhandles both the “Partial

Ap” and “Unknown” cases in Table 5.2. Finally,GeneralApplyensures that the closure has been

computed. If this check were not done inGeneralApplyit would need to be done at the site of every

unknown function application.

Arg 3

Arg 2

Arg 1

����� ���	��

code
for

function

� ��
����

State on entering the Apply function

����� ���	���
code
for

functionArg 3

Arg 2

Arg 1

Resulting partial application

Figure 5-2: Partial application of a simple closure.

81

Function
Partial Known Statically

Application application non-closure unknown
Partial Copy, call, revert Direct call, revert Call, revert

Full Arity Copy, call Direct call Call
Oversaturated Copy, call, unwind Direct call, unwind Call, unwind

Table 5.3: The push-enter approach to partial application used in GHC.

Compiled code invokesGeneralApplyby pushing function arguments onto the shadow stack as

usual. The closure is then pushed on top of them. The entrypoint passed toGeneralApplyindicates

the number of arguments which have been pushed;GeneralApplyis therefore the only function

which is called with a nonzero entry point from user code. This allows a single function to handle

every possible case of function application.

5.5.2 The push-enter approach

The push-enter approach is used in GHC and hbc, and is described in detail in books on functional

programming implementation [92, 99]. It differs from the eval-apply approach in two important

respects. First, oversaturated applications are handled by a special return convention which avoids

creating an intermediate closure for partial applications in tail position. Second, as a result of this

return convention a function can be invoked at any arity; the burden of arity checking is shifted from

the caller to the callee. This requires the use of a contiguous stack for argument passing (in practice

the shadow stack is used). The push-enter convention used in GHC is summarized in Table 5.3.

The basic push-enter approach is very simple: the arguments (regardless of number) are pushed

on the stack from right to left, and the function is called. Upon entry the function performs an

argument satisfactioncheck; if not enough arguments were supplied, then the run-time system is

invoked to create and return a partial application. Otherwise execution continues normally. Note

that if a function is called with too many arguments, the arguments required for execution will reside

at the top of the stack; no special code is required for this case.

By shifting the task of arity checking from caller to callee, we can make a special optimization

for tail calls. In the eval-apply approach, if a partial application ofg is in tail position in a function

f then the compiler will generate and return a closure for the function. However,f ’s caller might

immediately apply the resulting closure to additional arguments. In the eval-apply approach, the ex-

cess arguments are pushed before callingf . Now when the tail call tog occurs, the extra arguments

82

Arg 4

Arg 5

Arg 3

Arg 2

Arg 1

���������

Stack on function entry

���������

Arg 4

Arg 5

	�

�
code
for

functionArg 3

Arg 2

Arg 1

State on entering the Apply function

Figure 5-3: Applying a partial application to its remaining two arguments. Arguments must be
shuffled to the top of the stack to make room for the arguments in the closure.

already reside on the stack, andg can run directly.

As with the eval-apply approach, the calling convention can be simplified when a function

with known arity is called. Partial applications of known functions can branch directly to the run-

time system. Full-arity and oversaturated applications of known functions can skip the argument

satisfaction check. As a result, every function has two entry points: one for known applications, and

a second for unknown applications which performs the argument satisfaction check and branches to

the first.

A partial application is represented much as in the eval-apply approach, as an ordinary object

which contains a pointer to the function and a copy of the arguments which must be pushed. The

apparent entrypoint of a partial application is a run-time routine which checks for arguments on

the stack; if any have been provided, the partially applied arguments are pushed and the partially

applied function is entered. If enough arguments were provided, the function will run; otherwise a

flattened closure will result.

5.5.3 Analysis

If the shadow stack is to be used for argument passing, it would seem that the push-enter approach

has a compelling advantage over the eval-apply approach: it handles partial application and full-arity

application just as gracefully, and avoids closure creation for oversaturated applications. However,

the push-enter approach requires additional state: we must keep track of the base of the pushed

arguments. This frame pointer must be saved and restored across non-tail calls.

The eval-apply approach also has a compelling advantage: flexibility. For example, function

83

���������

	�

�����������

��������� 	

frame

	�

�����������

��������� 	

frame

������� ����� �"!

t

v

x

y

susp

trans

#�$ �&%'��(

function) (���*�+

������� ����� �"!

��������� 	

result

Figure 5-4: The computation ofx andy suspended becausev itself (in gray) suspended. These
suspensions share a single synchronization point, and therefore share a single frame. The compiler-
generated frame descriptor (top right) indicates that frame entries 3 and 4 should be resumed to-
gether. The suspended-upon field and the transitive suspension field both point tov.

arguments can be passed in either left-to-right or right-to-left order. Pushing arguments from right

to left makes applying a closure simpler: the partially-applied arguments can simply be pushed onto

the stack as in the push-enter approach.

Pushing arguments from left to right requires sliding the stack to make room for closed-over

arguments (Figure 5-3). However, lambda lifting (Section 6.3) works by abstracting functions with

respect to their free variables. These are therefore the first arguments in any function application.

In a tail-recursive loop, the free variables will be preserved. Using left-to-right argument order,

arguments and local variables can be pushed and popped without affecting the free variables. For

example, the first three arguments to the function in Figure 5-3 might be its free variables; com-

putation can leave these elements of the stack in place across tail calls. In practice we expect

tail-recursive loops to be much more common than partial applications, and we therefore choose to

push arguments from left to right.

5.6 Suspensions

The semantics of suspensions were discussed in Section 4.2.9. A function may have several associ-

ated suspensions. We make no attempt to share state between suspensions, or between suspensions

and the currently-running function activation. We suspend simply by copying chunks of the stack. If

a function hasn independent suspension points, we may end up withn copies of its frame. Nonethe-

84

lessn is statically bounded albeit potentially large.

Sharing suspension state places several severe constraints on the compiler and run-time system.

First, extant suspension state (if any) must be tracked. Second, the structure of a function’s frame

must be carefully chosen to permit sharing. In practice this means that variables must be assigned

fixed, non-overlapping frame slots. This scuttles attempts to represent the frame compactly, and

requires a liveness map for each suspension point to prevent the garbage collector from retaining

dead frame entries. Because most function calls will never suspend, we reject suspension techniques

which bottleneck access to the frame.

A suspension may, when executed, produce values for several bindings. Consider aletrec with

two recursively-produced valuesx andy which are fed back:

letrec t = (x, y)
v = const7 t
x = v + 2
y = v ∗ x

in t

This leads to a problem with sharing. We must allocate a location forx and a location fory in order

to constructt. If an exception is signaled while we are runningconst, v will not be a value. We

synchronize once onv before computingx andy. Both x andy must become valid suspensions.

Moreover, ifx is forced this fact must be reflected iny andvice versaor we will duplicate compu-

tations. Thus, a suspension is a two-level structure, as shown in Figure 5-4. The complete contents

of the suspended frame are shared. Suspended locations likex andy contain a pointer to this shared

frame, and have their tags changed to “suspended”.

In addition to the copied stack frame, the shared part of a suspension includes two additional

pieces of data. The first of these is a compiler-generated suspension descriptor. When user code

suspends, it ensures its frame is up to date on the shadow stack and calls the run-time system. The

suspension descriptor is passed as an argument. This descriptor gives the function and entrypoint

where resumption must occur and indicates where suspended variables such asx andy reside in the

frame. This descriptor is used to construct the suspension and to run it when it is resumed.

A suspension will not be resumed until the variable which has been suspended upon is fully

evaluated. This avoids performing a force action immediately followed by a suspend (Figure 4-6),

whose net effect would be to copy data from a suspension to the stack and then back to the heap

again. The run-time system stores a pointer to the suspended-upon data; if this is itself a suspension,

that suspension is evaluated.

85

��������� ���������

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

SUSP

Figure 5-5: Updating transitive dependency fields.

Fallback creates long chains of dependent closures; indeed, there may be more closures than

can be made to fit on the stack, since fallback occurs when the stack grows full. To limit stack

growth we add atransitive dependencefield. This initially points to the suspended-upon variable.

It can later be adjusted by the run-time system to point to the variable responsible for a particular

suspension. This variable is checked and forced first before the suspended-upon variable. Using

this technique allows us to place a constant bound on the stack consumption of the run-time system.

Because fallback prevents stack overflow, arbitrary programs will make progress in bounded

stack space. In principle, there is thus no need for constant-space tail recursion in Eager Haskell.

In practice, of course, there are compelling reasons to preserve tail recursion wherever possible; the

exception mechanism is comparatively expensive, and frequent stack growth results in poor cache

performance.

Maintaining the transitive dependence field at first blush seems simple: simply traverse the chain

of suspensions, and update the transitive dependence fields of objects on the chain to point to the

first non-suspension. This can be done simply by keeping track of the beginning and end of the

suspension chain. This is the technique used for shortcutting indirections, as shown in Figure 5-6.

Commonly, however, the transitive dependence is a value, or can immediately be forced resulting in

a value. Once the transitive dependence field points to a value, it is effectively useless, and we must

re-traverse the chain of dependencies from the beginning.

The Eager Haskell compiler instead uses an algorithm which requires2k stack slots, for some

fixed k > 1. Figure 5-5 shows the technique fork = 3. As the chain of suspensions is traversed,

86

entries are pushed on the stack. When2k entries have been pushed, the transitive fields of thek

oldest entries are made to point to thek entries above them, in reverse order. The interior2k − 2

entries are popped, leaving the initial and final entry on the stack. The traversal continues from

these two entries.

To understand the source of efficiency in this technique, consider a chain of length exactly2k.

We must force the suspensions in the chain starting from the end and working back to the beginning.

After collapsing the chain, only entries1 and2k are on the stack. We force suspension2k and pop

it. We now need to force entry2k − 1, but only entry1 resides on the stack. Entry1 is transitively

dependent on entry2k, which has been evaluated, so its direct dependency is followed instead and

2 is pushed. The transitive dependency of entry2 is 2k− 1. Once entry2k− 1 has been forced, the

direct dependency of entry2, entry3, will be followed. This will cause entry2k − 2 to be forced,

and so on. Thus, after collapsing the transitive dependency chain we can find the next suspension

to be forced by chasing two pointers at a time.

5.7 Thunks

A thunk represents the suspended application of a function to some arguments. Thunks are in-

troduced when a function call is encountered during fallback (Figure 4-7). An argument can be

made for two different approaches to thunk representation—it is similar to both a closure and to a

suspension.

A thunk is effectively a suspension of theGeneralApplyfunction described in Section 5.5. In

order to force a thunk, we must evaluate a closure and apply it to some arguments. However, the

structure of a thunk is particularly simple. A function returns a single value, so there is no need to

worry about producing multiple values when it is forced. The size of the frame uniquely determines

the number of arguments involved in the application. The closure (which may be the suspended-

upon variable) is always the first slot of the thunk.

Like a closure, a thunk represents a function applied to some arguments. There are two crucial

differences between them. First and most important, a closure is a fully-computed value. A thunk

is not—it requires forcing. It must therefore be clearly distinguished from a closure. Second, we

represent closures in flattened form, as a code pointer and a group of arguments. Many thunks are

created specifically because the apply function cannot obtain the value of its closure, so creating a

flattened thunk is impossible in general.

87

���������
	 �
�

�������

�������������

�������������

�������������

���������
	 �
�

�������

�������������

�������������

�������������

Figure 5-6: Elision and shortcutting of indirections.

We adopt a simple closure-like structure for thunks. However, we use a special “thunk” descrip-

tor which is distinct from the descriptor for a suspension. The fields of a thunk are the function

closure followed by its arguments. As with a closure, the arguments are stored in reverse order

so that they can be copied directly to the stack. A thunk is forced simply by copying its contents

verbatim to the stack and invokingGeneralApply.

5.8 Indirections

In common with lazy function language implementations, Eager Haskell requires the use ofindirec-

tions [92, 99]. Problems with sharing occur whenever a computation returns an already-computed

value (see also Section 4.2.8):

head xs@(x :) = x

This example seems simple enough: when we eagerly evaluate, we can simply fetch the value of

x from xs and return it. However, consider what happens ifxs is a suspension, and an exception

occurs while it is being forced. In that case we must construct and return a suspension forhead xs.

When the suspension is successfully forced, it must beupdatedto refer tox; if this update does

not occur, the suspension will need to be forced again every time it is used. Ifx is already a value,

we might perform this update simply by copyingx into the suspension forhead xs. However, in

generalx may itself be a suspension. If we duplicate a suspension each copy will need to be forced

88

separately. We therefore replacehead xswith an indirection pointing tox.

Compiled code treats indirections as uncomputed locations: attempting to evaluate an indirec-

tion causes a call to the run-time system. The run-time system handles indirections in much the

same way as other implementations do [93, 31]—itelidesthem. Chains of indirections are followed

until a non-indirection is reached. All the indirections in a chain are made to point to the non-

indirection, as shown in Figure 5-6. If it is a value, it is returned to the compiled code; otherwise it

is treated just as any other empty object would be. The garbage collector also elides indirections as

they are traced; this allows indirections to be eliminated immediately. Indirections therefore cannot

increase the total space usage of a program, though they will increase the rate of allocation.

The presence of indirections in the run-time machinery for Eager Haskell can have surprising

effects on code generation. These effects are discussed in Section 6.10.2.

5.9 Garbage Collection

The need to box the results of every computations means that Eager Haskell programs are very

allocation-intensive. Much of this data is short-lived. As a consequence, garbage collector perfor-

mance has a first-order effect on the performance of Eager Haskell programs. However, the garbage

collector is a separable piece of the Eager Haskell implementation, and its inner workings need not

be understood in detail in order to follow the presentation in the rest of this thesis.

The Eager Haskell compiler uses a hybrid generational garbage collector. To keep object allo-

cation fast, the nursery is a series of fixed-sizechunksof memory. Allocating an object is a simple

matter of incrementing the heap pointer. As each nursery chunk is exhausted, the heap pointer is

reset to point to the next chunk. When the nursery is full, a nursery collection is initiated. Live nurs-

ery objects are copied, either into the new nursery or into tenured space. Tenured space is collected

using a non-moving mark-sweep algorithm.

5.9.1 Multiprocessor collection constrains our design

The Eager Haskell garbage collector is designed to run efficiently on a uniprocessor, while still per-

mitting multiprocessor coherence. Our experience withpH indicates that the scalability of multipro-

cessor garbage collection affects the scalability of the language implementation as a whole [31]. It

is surprisingly difficult to retrofit a uniprocessor language implementation to permit multiprocessor

garbage collection unless multiprocessor operation is part of the original design.

89

The need for efficient allocation and the need for efficient multiprocessor collection impose

conflicting constraints on memory use: allocation must be fast, demanding a simple bump-a-pointer

allocator and copying collection, and yet memory coherence must be as simple as possible, meaning

that objects should not move around memory or otherwise change in ways that would require inter-

processor synchronization.

Generational collection imposes a natural division upon the memory hierarchy: the nursery is

purely local, providing fast allocation and access; tenured space uses a slower allocator, but its

contents will not move and can be shared freely. This division has several important consequences

for the present uniprocessor allocator.

5.9.2 Write barrier

Any generational garbage collector must track references from tenured objects to nursery objects.

There are a number of algorithms for doing so, each of which enforces slightly different invariants

on memory [60]. In Eager Haskell we guarantee that objects are tenureden masse—that is, if an

object is promoted during nursery collection, then the objects it points to will be promoted as well.

On occasion, objects which are promoted by the collector areupdatedto contain pointers to

nursery objects. For example, a long-lived suspension might be promoted and later forced; the

suspension must then be updated with the forced result. In Eager Haskell we accomplish this by

tracking updates to shared objects using awrite barrier. In compiled code, any update which might

possibly refer to a tenured object must check if a write barrier is necessary and if so call the run-time

system. The impact of write barriers on compiled code is discussed further in Section 7.3.

In Eager Haskell the nursery is purely local. As a result, we must clearly distinguish pointers

within shared memory (which may be dereferenced by any processor) from pointers which point

from shared memory into the nursery (which may only be dereferenced by the owning proces-

sor). Checking every single pointer dereference would clearly add unacceptable overhead to our

programs. Instead, Eager Haskell uses a special kind of indirection—thebarrier indirection—to

represent references from shared memory into the nursery. In addition to a pointer to the nursery

object, a barrier indirection includes the identifier of the processor which created the indirection and

a link field. The indirection may be followed only by the creating processor. The link field is used

by the garbage collector to find all the barrier indirections created by a particular processor. When a

nursery collection occurs, the objects referenced by barrier indirections are moved to tenured space,

and the barrier indirections are changed into ordinary indirections.

90

5.9.3 Nursery management

By guaranteeing that nursery data will be purely local, we can allocate and collect each nursery

independently and in parallel with the nurseries of other processors. There are a few aspects of

nursery management which are worth highlighting.

As noted in Section 5.3, the Eager Haskell run-time system incorporates static tables of nullary

constructors and small integers. When the collector finds such an object in the nursery, the reference

is redirected to the static table. It is important to note that dynamic program operations such asInt

arithmetic will not generate references to the static constructor table; there would be considerable

overhead in checking each result to see if it lies within the table bounds. By relying on the garbage

collector, only the small fraction of objects which survive garbage collection need be checked.

During a nursery collection, every single nursery indirection is removed. In order to remove

an indirection, all locations which refer to that indirection must be changed to refer directly to its

destination. This is easy during garbage collection, but frequently impossible in compiled code;

by the time a pointer is discovered to refer to an indirection, the object from which that pointer

was fetched may no longer be in scope. Thus, the indirection elimination performed by the garbage

collector is strictly more powerful than that performed by the suspension mechanism in the run-time

system (Section 5.8).

While the nursery is composed of fixed-size chunks of memory (currently 32 kilobytes, or 4K

words), the number of chunks in the nursery is not fixed. The nursery size is set based on a target

object retention rateR:

chunksnext =
wordsretainR

wordschunk

The goal is to allocateR words for each word which is copied by the garbage collector. In this

way we hope to bound collection time with respect to allocation time while keeping the memory

footprint small.

The estimate in the above equation makes a few sloppy assumptions. Retention rate is assumed

to scale linearly with nursery size. Actual retention rates behave exponentially when retention is

large. At the desired retention (R = 53) the behavior is close enough to linear for our purposes.

Number of words copied isn’t necessarily an accurate estimate of collection time. There is a

hard upper limit on nursery size of slightly more than 4MB; very large nurseries cause paging and

TLB thrashing during collection. Similarly, a nursery which fits into the processor cache can be

collected quite a bit faster than one which is just slightly larger; discontinuities in collection times

91

can therefore be observed when nursery size hovers around cache size. We have access to actual

collection time, and could use that number instead of retention in setting nursery size. However,

doing so would not address these discontinuities.

Current retention may not be a good predictor of future retention. When a computation changes

phases, this assumption is usually violated. In particular, the fallback mechanism often induces large

changes in allocation behavior even in otherwise uniform computations. Unfortunately, the run-time

system has no simple way to predict the effect of phase changes. In practice, the assumption does

not appear to lead to performance problems whenR is set to acceptable values. It is possible to use

other techniques to estimate future retention; for example, we can estimate the slope of the retention

curve and use that to size the nursery. However, there is no general technique to predict sudden

changes in allocation behavior.

5.9.4 Fallback policy

Control passes to the garbage collector code each time a chunk is exhausted; by measuring heap

consumption in chunk-sized units, we shift heap resource checks to the garbage collector. The

routine which parcels out nursery chunks is therefore also responsible for checking resource bounds

and initiating fallback when necessary. This avoids the cost of checking resource bounds at every

single allocation point.

Fallback can also be initiated when the C stack becomes too full; this condition is checked in

the compiled code at every function entry point by comparing the C stack pointer to an overflow

threshold. During fallback, this threshold is set so that the stack check always fails; the run-time

system code for stack overflow creates a thunk for the called function.

In Figure 4-7, the stack boundstackmax is assumed to be fixed. However, the total resource

boundresourcemax is reset after fallback and after every garbage collection. The run-time system

must therefore perform three computations specified in Figure 4-7:e(|h|, |r|) computes the current

resource usage of the program.g(|b|, |h|, resourcemax) resetsresourcemax after garbage collection.

Finally, f(|h|, resourcemax) resetsresourcemax after fallback.

Both e andg are computed by the nursery chunk exhaustion code. At present, the stack of

an Eager Haskell program is limited to approximately one chunk in size. Fallback due to stack

overflow is nonetheless virtually unheard of; resource bounds are usually reached first. As a result,

the amount of live stack is not significant and is ignored in computinge andg. Current resource

usagee is computed based onestimatedheap usage. Nursery usage is estimated by multiplying

92

the retention rate of the previous nursery collection by the current live nursery. Tenure usage is

estimated in a similar manner—past retention multiplied by current usage. These quantities are

computed precisely when garbage collection occurs.

At the moment the actual resource cutoffresourcemax is only reset when fallback occurs. It is

set based on the previous two values ofresourcemax. The value ofresourcemax shrinks slowly over

time until a lower bound is reached; fallback becomes slightly more frequent as time passes.

There is a good deal more room for experimentation with fallback parameters. For example, a

program with a large amount of persistent data which isn’t changing over time will nonetheless have

a higher measured heap usage; this means that such a program will fall back more often. Similarly, a

larger nursery will (for any particular fixed retention rate) be more likely to cause fallback. It may be

more productive to use two independent measures of resource consumption: total words allocated

(which measures the passage of time), and total live data (which prevents excessive retention).

5.9.5 Promotion policy

In a generational garbage collector, promotion policy—which objects in the nursery are moved to

the shared heap—is a strong determinant of performance. Objects which remain in the nursery for

too long are repeatedly copied, increasing collection overhead. Objects which are promoted and die

soon after will continue occupying memory until the next global garbage collection, increasing the

memory footprint of the program and reducing TLB and virtual memory performance.

Every object which is reachable from tenured space is unconditionally tenured. In a functional

language such as Eager Haskell updates to tenured objects are rare, and it is likely reachable objects

will eventually be promoted regardless of the tenuring policy we choose. Tenuring them sooner

eliminates copying overhead.

Of those objects which remain, only objects which have survived at least one garbage collec-

tion (and those objects reachable from them) are considered as candidates for promotion. This is

easy to track; we simply keep track of the portion of the nursery which is occupied after each nurs-

ery collection. This is the same information we use to compute wordsretain. However, rather than

promoting all surviving data, we further constrain the collector: we divide the GC stack into two

segments, the old segment and the new segment. The old segment contains a mixture of references

to tenured data, references to static data, and references to data which has survived at least one

nursery collection. Only the new segment may contain references to data allocated since the last

nursery collection. Only objects reachable from the old segment are considered as candidates for

93

promotion. We assume that data in the new segment is actively being used in computation, and is

more likely to die than data in the old segment.

Within the old segment we apply a similar heuristic to empty objects which are referenced

directly by the stack. We assume these objects will be filled as soon as control returns to the stack

frame which contains them. We keep a separate watermark for empty objects, only promoting those

which are in the oldest part of the old segment of the stack.

5.9.6 Tenured space management

The tenured object space in the Eager Haskell implementation is designed to be as simple as possi-

ble. In its simplest incarnation, objects are allocated using the Cmalloc function and freed using

free. Two bitmaps are used to track tenured data. One bitmap is used for marking during tenured

collection. The second tracks the locations of objects so that dead objects can be identified and freed

during the sweep phase.

There are two cases where objects are allocated directly in tenured space, rather than being

promoted there from the nursery. Some arrays are too large to reasonably be copied. Such objects

are expensive enough to create and initialize that we assume they will be long-lived in any case.

Large arrays are therefore allocated directly in tenured space. In addition, the run-time system relies

on external C libraries to support certain operations (most notably multiple-precision arithmetic).

These external libraries do not obey the Eager Haskell calling conventions, and therefore cannot

make use of the nursery heap pointer. The tenured allocator is used in these functions as a fail-safe

allocation mechanism.

We saw in Section 5.9.2 that a write barrier must be used to track references from tenured space

into the nursery. In addition, references from top-level data structures into the heap must also be

tracked. These references are created when top-level computations (Constant applicative forms;

see Section 6.6) are evaluated. This can be seen as a special case of the write barrier. The write

barrier code detects when the object written does not reside in the heap; these objects are placed on

a specialroot list which is traced when the mark phase is in progress.

Tenured garbage collection happens entirely asynchronously. When tenured space becomes

sufficiently full, a flag is set indicating that a mark phase is under way. A mark bitmap is allocated

and cleared. Marking is then interleaved with nursery collection: rather than ignoring references to

tenured space, the collector marks them.

The mark phase continues until every processor has performed a full nursery collection. While

94

the mark phase is in progress, all newly-promoted data is assumed to be live (objects are allocated

black [60, 143]). As a result, all live data will be marked. The sweep phase is (for the moment) very

naive: the entire heap is swept in a single pass. Incremental sweeping is preferred in order to reduce

caching costs and allow newly-deallocated objects to be reused quickly; we anticipate that such a

change would be comparatively simple.

5.9.7 Problems with the tenured collector

The tenured collector pays for simplicity by being suboptimal in a number of respects. The amount

of memory used by the tenured allocator is not bounded; we can still promote objects from the

nursery after a mark phase is initiated. When nursery retention is high tenured space can often grow

dramatically due to promotion during marking. In practice, however, nursery retention is only a

problem when tenured space and nursery space are similar sizes—meaning the nursery is very large

(due to high retention) but tenured space is very small (and usually set to grow substantially). We

therefore accept soft bounds on memory consumption as a minor artifact of our collection strategy.

A mark phase is typically initiated in the middle of a nursery collection. However, marking

is not considered complete until afull nursery collection is complete. Thus, on a uniprocessor the

mark phase typically spanstwo nursery collection phases. We delay the start of marking until the

start of the next nursery collection. On a multiprocessor (where other processors will be initiating

nursery collections in parallel) this is likely to mean that the mark phase begins while the initiating

processor is completing its nursery collection.

The use of monolithic mark bitmaps can lead to excessive memory consumption. The amount of

memory required is equal to1/32 of the total address range of allocated objects. If tenured objects

are allocated in a contiguous region, this amounts to a small (3.1%) storage overhead. However,

there are often large holes where no tenured objects can be allocated—for example, the allocation

of chunks for the nursery invariably creates holes in tenured space. Consequently, the actual space

overhead of monolithic bitmaps is much larger. This space overhead is also reflected in sweeping

time, as the sweep phase traverses the entire mark and allocation bitmaps.

Finally, the tenure allocator may not be easy to parallelize. Mostmalloc implementations rely

on a single global lock, serializing object allocation even in multi-threaded programs. No attention is

paid to issues such as false sharing of cache lines; such matters are only problematic on multiproces-

sor machines, and solving them usually requires slowing down uniprocessor allocation. Fortunately,

special multiprocessormalloc implementations such as Hoard [25] address these problems well,

95

and can be used as plug-in replacements for the systemmalloc implementation.

However, there are other concerns in usingmalloc for tenured data. Much of the meta-data

kept in the mark bitmaps and in object tags is redundant with information kept bymalloc in its

own data structures. The tenure allocator effectively pays twice to track this data. In addition, tenure

allocation is very bursty—objects are allocated during nursery collection and freeden masseby the

sweep phase. An ordinarymalloc implementation assumes a much steadier pattern of allocation

and deallocation [144]. Finally, the tenure bitmaps must be kept up to date using expensive atomic

memory operations. By integrating bitmap maintenance with the synchronization already performed

by the allocator, we can hope to reduce overall synchronization.

5.9.8 Towards better storage management

Fortunately, it is possible to make incremental modifications to the tenured allocator to address many

of these shortcomings. Some tweaks are simple: for example, the sweep phase has been modified

to ignore nursery chunks, mitigating one source of holes in the allocation bitmap.

A custom-written BiBoP allocator is now used for commonly-allocated small objects. Each

chunk contains same-sized objects (though not necessarily the same tag). Objects are allocated by

looking for clear bits in the allocation bitmap. Allocation can occur in parallel, requiring only a

single atomic operation (test and set) to manipulate the bitmap. During the sweep phase the mark

bitmap is copied to the allocation bitmap, implicitly freeing unmarked objects. This is substantially

faster and more efficient than callingmalloc and free for each object, though the underlying

allocator is still used for large or uncommon object sizes. An additional refinement which has been

implemented is to use separate chunks for pointer-free objects. Such chunks need not be scanned

during marking, reducing the load on the cache and TLB.

Using a BiBoP allocator will permit further streamlining of the tenure allocator in the future.

It is possible to maintain mark bitmaps on a per-chunk basis, perhaps by organizing the bitmaps

into multi-level structures akin to processor page tables. This technique is used with great success

in the Boehm-Demers-Weiser collector [28], where the conservative collection scheme can create

numerous holes in the heap. Objects outside BiBoP chunks can be tracked using a naive technique

such as storing them in a doubly-linked list. For large objects (more than 128 words) this technique

has a lower space overhead than optimal use of a mark bitmap. This must be weighed against

the complexity of distinguishing BiBoP objects from large objects during the mark phase; at the

moment all tenured objects are treated identically.

96

Chapter 6

Lowering Transformations

The Eager Haskell compiler essentially uses a single intermediate representation—λC—for the en-

tire compilation process. Optimization passes rewriteλC into λC ; static analyses are defined on

λC . This allows compilation phases to be re-ordered with comparative freedom. Nonetheless, the

λC generated by desugaring is not suitable for code generation. We must eventually constrain the

form of this code in order to make sure it is suitable for code generation.

Thus, the transformations onλC really divide into two classes.OptimizationstransformλC

into equivalentλC ; these passes are outlined in Section 6.1 and are (with the exception of Bottom

Lifting, described in Chapter 8) well-understood.Loweringphases transformλC into a lower-level

form suitable for code generation. The first step in lowering is to convert the program to argument-

named form, a process which was described in detail in Section 3.5.5. This is followed by the

following transformations:

• Expand string constantsinto the corresponding Haskell lists, or alternatively into applica-

tions of a string expansion function to some more compact internal representation.

• Hoist constants(except for small constants) to top level (Section 6.2).

• Lambda lift (Section 6.3)

• Split huge expressions(Section 6.4).

• Top-level common subexpression elimination(CSE) (Section 6.5)

• Convert constant applicative forms(CAFs) to thunks (Section 6.6)

• Insert pseudo-constructors(Section 6.7)

97

• Insert back edges(Section 6.8)

• Make synchronization explicit (Section 6.9)

In this chapter we examine the lowering phases in detail. Many of them are quite simple; we fo-

cus the majority of our attention on the final phase, which is the insertion of explicit synchronization

into aλC program. First, however, we sketch the optimization phases performed on Eager Haskell

programs once they have been type checked.

6.1 Optimizations

The Eager Haskell compiler does all of its optimizations onλC before any of the lowering transfor-

mations. With the exception of bottom lifting, which we cover in Chapter 8, these transformations

are well-understood; briefly:

• Simplification consists mainly of ordinary reductions according to the rules of theλC calcu-

lus given in Figure 3-2:β, δ, χ, etc. Most other optimization phases depend heavily upon the

program transformations performed by the simplifier.

• Inlining is really an application of theι rules fromλC ; however, this can result in uncon-

trolled code growth. Therefore, unlike most other simplification rules inlining cannot be done

unconditionally, but must be controlled by static heuristics. The Eager Haskell compiler,

in common with other optimizing Haskell compilers [100], is very aggressive about inlin-

ing. Inlining enables many subsequent program transformations, including deforestation and

strictness-based optimizations.

• Local CSE. In Section 6.5 we give a general correctness argument for CSE.

• Strictness-based case reorganization. Strictness analysis provides information on which

arguments are unconditionally required by a particular function [92, 101]. This information

allows us to perform code motion oncaseexpressions when it would otherwise be unsafe

according to the rules ofλC . This is because strictness analysis gives information about

infinite unfoldings of computations.

• Class specialization[57] specializes functions which make use of Haskell’s type classes [45,

19, 90] to particular instances of those classes. This turns most instances of parametric poly-

98

morphism into monomorphism, and transforms calls of unknown functions (class methods)

into calls of known functions (particular instances of those methods).

• Deforestation of list computations removes intermediate data structures, usually enabling

additional optimizations. The deforestation performed by the Eager Haskell compiler is de-

scribed in the author’s Master’s thesis [70] and is related to the shortcut to deforestation [38].

Unlike its precursors, the deforestation pass in Eager Haskell re-structures code to use itera-

tive evaluation as much as possible, and to maximize the parallelism of the generated code. A

more general approach to deforestation ofpH and Eager Haskell programs has been explored

by Jacob Schwartz [117]; it allows arbitrary code to be deforested, but does not allow the

compiler to choose traversal direction or use associativity to eliminate inter-iteration depen-

dencies and thus increase parallelism.

• Full lazinessgeneralizes the hoisting of loop invariants. It must be done carefully in order to

prevent large increases in space usage [110]. Section 6.2 gives a general correctness argument

for full laziness. In an eager language, there is a risk that full laziness will create unnecessary

computation, by hoisting an expression from a context where it would never have been run.

• Arity raising . We canη-abstract a function if all its call sites are known; such a transforma-

tion can be derived directly from the rules ofλC . The arity analysis required is described by

Jacob Schwartz in his thesis [117].

• Bottom lifting hoists error handling code out of function bodies, using type and strictness

information to identify expressions which are guaranteed to diverge. We devote Chapter 8

to this topic, as it is necessary in Eager Haskell to prevent the eager evaluation of divergent

functions such aserror.

Many of the concerns addressed in this chapter in the context of lowering transformations ap-

ply equally to program optimization. For example, anycasehoisting transformation risks losing

eagerness as described in Section 6.9.1.

6.2 Constant Hoisting

In Section 5.3, we noted thatall values in Eager Haskell will be boxed—that is, they must be repre-

sented by a tagged data structure in memory. In order to mitigate the expense of boxing, argument-

named form permits static constants to be included in primitive expressionsP (see Figure 3-10).

99

Constants which are immediately used in a primitive computation need not be boxed. Thus, our

code generator can handle an expression such asn + 1 orx> 5.0 without boxing.

However, many constants must still occur in boxed form—they may be stored into data struc-

tures or passed as arguments to functions:

let x = 35
in fib x

It is very easy to construct anaggregate constantby applying a constructor to arguments which are

themselves constant:

let nil = []
h = ’h’
i = ’i’
iStr = i : nil
hi = h : iStr

in hi

We would like to avoid generating code to construct constants on the heap. Instead, the code gener-

ator should emit a correctly-formatted heap object at compile time. We therefore need some way to

distinguish static constants (especially aggregate constants) from dynamically-generated data.

We would also like static constants to beshared. If a constant occurs within a function, the

statically-compiled heap object must be used by every call to that function. If a constant occurs in

multiple functions, we would like to combine all instances of that constant.

We can accomplish both these objectives—distinguishing static and dynamic constants and shar-

ing constants—by hoisting constants to top level. Any constructor at top level is a constant, and can

be compiled as such; constructors which occur elsewhere are dynamic. If the same constant occurs

in multiple places, all occurrences will be hoisted to the top level; it is then a simple matter to com-

bine them using top-level CSE (Section 6.5). Constant hoisting is actually a specific case of full

laziness—a static constant is a group of bindings which taken together have no free variables. Full

laziness in general, and constant hoisting in particular, can be justified very easily using the rules of

λC ; see Figure 6-1.

Constant hoisting is logically separated from full laziness for several reasons. First, static con-

stants play an important role in many simplifications, such ascasedischarge and constant folding

(staticδ reduction). It is therefore useful to leave constants where they will be used until late in

compilation. Second, allowing constants in primitive expressions means that we do not wish to

100

z = (letrec b ; x = e in x) ; B0[x = z]
−→ z = (letrec b ; x = e in x) ; B0[x = (letrec b ; x = e in x)] ιb
−→ B0[x = (letrec b ; x = e in x)] εe
≡ B1[z = (letrec b ; x = e in x)] α
−→ B1[b ; x = e; z = x] τf
−� B0[b ; x = e; z = x] ι
−→ B0[b ; x = e] εe

z = (letrec b ; x = e in x) ; B0[x = z]
−� z = (letrec b ; x = e in x) ; B1[x = z] ι
−→ z = (letrec b ; x = e in x) ; B1[ε] εe
−→ b ; x = e; z = x ; B1[ε] τf
−� b ; x = e; z = x ; B0[ε] ι
−→ b ; x = e; B0[ε] εe

Figure 6-1: Correctness of full laziness inλC . HereB0[] = B1[][x/z]

unconditionally hoist constants; again, we should leave them in place until it is clear which primi-

tive expressions will exist in the final program. Finally, it is frequently undesirable to perform full

laziness on expressions with aggregate type [110]. However, constant expressions should be hoisted

regardless of their type; we therefore must distinguish constant expressions when hoisting.

There is one final trick involved in the compilation of static constants. Small integer constants

and nullary constructors are very common in Haskell programs. Moreover, such constants are

frequently created dynamically as the result of primitive operations and function return. As noted

in Section 5.3, the run-time system includes static tables of small constants. The code generator

generates a reference to the appropriate static table when it encounters a boxed small constant. This

avoids having the garbage collector do the redirection later on.

6.3 Lambda lifting

Any language which permits first-class, nested, lexically scoped functions must choose a repre-

sentation for closures. A closure packages up the free variables and entry point of a nested func-

tion so that it can later be invoked. Numerous possible closure representations exist; sophisticated

schemes for choosing among them have been explored in the LISP, ML, and Scheme communi-

ties [124, 62, 119, 7]. In principle, any of the closure representation techniques used in strict lan-

guages can be applied to Haskell programs. However, in practice extant Haskell implementations

use one or two closure representations uniformly. There are a number of factors to account for this:

101

• Non-strictness itself is the major source of overhead in non-strict languages; implementation

effort is better spent eliminating this overhead than optimizing closure representations.

• Uniform closure representations are simple to implement.

• Currying is popular in Haskell, and curried functions must be represented in an efficient

manner (see Section 5.5).

• Closure conversion algorithms in strict languages focus on identifying short-lived closures;

these can use a stack-based closure representation. The non-strict semantics of Haskell mean

that function closures are likely to escape the context in which they were created, so very few

opportunities for stack-based representation exist.

Eager Haskell represents closures by lambda lifting [53, 92, 99]. Lambda lifting a function

replaces its free variables by function arguments. A closure is created simply by partially applying

the lambda-lifted function to the actual free variables. However, the lambda lifting algorithm avoids

creating closures by passing the free variables at function call sites wherever possible. Thus, no

closure is created for a full-arity application of a known function. However, lambda lifted functions

may in general require a large number of additional arguments.

Note also that Eager Haskell uses aflat representation for partial applications. It is possible to

partially apply a function repeatedly. If that function has been lambda-lifted, then we must repeat-

edly fill in all the free variables in each closure. More sophisticated closure conversion algorithms

share a single vector of free variables in this case. Indeed, it is possible to share free variable vec-

tors when closing over multiple functions. However, care must be taken to ensure that this does not

capture unnecessary free variables and cause space leaks [119].

Closure conversion need not be expressed as a program transformation. In the Glasgow Haskell

Compiler, closures are explicitly distinguished, but no representation is chosen for them. Instead

their free variables and arguments are tracked. A thunk is simply a closure which does not have

any arguments; the two share exactly the same representation. The closure representation, fixed

by the code generator, segregates boxed and unboxed data. Partial applications are represented in

a different fashion from other closures; they contain a pointer to the function closure which was

partially applied, along with an ordered vector of function arguments. A partial application cannot

segregate boxed and unboxed data; they are freely intermixed and additional data is required for the

garbage collector to distinguish which objects are pointers.

102

Performing lambda lifting as a separate compiler pass as in Eager Haskell has several advan-

tages. First, it simplifies the code generator, which can assume that all free variables refer to top-

level constructs. Second, it allows us to clearly separate the issue of closure representation from that

of code generation. Ignoring typing, most closure representations could be expressed in terms of ex-

isting language constructs such as tuples. However, it is challenging to perform closure conversion

in a type-preserving manner, particularly in the presence of unboxed types [129, 82].

6.4 Splitting huge expressions

The Eager Haskell compiler aggressively inlines functions which only have a single call site. This

frequently enables further optimization based on the calling context—constant folding of arguments,

fetch elimination (ιd), case discharge (χ), common subexpression elimination, and so forth. How-

ever, it can also lead to extremely large functions in the compiler output (in some small benchmarks

the entire program becomes a single top-levelmain function with a few internal loops). We are

generating C code which is then compiled with an optimizing C compiler; the compilation time of

gcc (when optimizing) is quadratic in the size of the largest function. As a result, it was sometimes

taking hours to compile the C code produced by the compiler.

Conceptually, the solution to this problem is quite simple: split any large function into smaller

functions. Functions cannot be split arbitrarily, as doing so might disrupt the flow of control in the

compiled program. We only split entire definitions or case disjuncts, where changes in control flow

already occur. Code which is split must be a certain minimum size: it is not beneficial to create a

function if the resulting function call will be more expensive than the code which was split.

The actual splitting process relies on an unusual feature of our intermediate representation: it

is possible to represent aλ-expression with no arguments at all. The lambda lifter treats such an

expression as it would any other function, adding arguments to represent free variables and lifting

the resulting function to top level.

Thus, we perform splitting by introducing zero-argument functions immediately before lambda

lifting, replacing an expensive but splittable expressionewith

let x = λ→ e in x

A binding such asx = λ → e causes the lambda lifter to replaceeveryoccurrence ofx with a

call x ~x. If there were more than one occurrence ofx this would result in duplication of work.

103

x = e; IB[e] = x = e; IB[x] ιb
letrec x = e; b in IE[e] = letrec x = e; b in IE[x] ιe
let x = e in IE[e] = let x = e in IE[x] ιe
casex = e in ID[e] = casex = e in IE[x] ιc

Figure 6-2: Reverse instantiation is common subexpression elimination inλC .

Introducing an extra binding as shown ensures that the lambda-lifter introduces exactly one call to

the split function.

6.5 Top-level common subexpression elimination

In procedural languages common subexpression elimination is usually restricted to primitive oper-

ations; in Haskell any expression may be subject to CSE. This is justified by reversing the rules for

instantiation inλC—these reversed rules can be seen in Figure 6-2. Top-level CSE is concerned

primarily with the first of these rules, which allows us to eliminate identical bindings:

x = C2 5 7
y = C2 5 7

=
x = C2 5 7
y = x

Note that CSE alone is not enough; ideally CSE ought to eliminate the identity bindingy = x

as well. At the top level of a module, this task is complicated by the Haskell module system; bothx

andy might be exported to the outside world, in which case it may not be possible to eliminate all

occurrences of either one. This is one of the reasons top-level CSE is separated from ordinary CSE;

the other reason is that aggressive inlining can sometimes result in many copies of a single function.

Top-level CSE after lambda lifting eliminates all but one of the extra functions. Finally, top-level

CSE ensures that there is at most one copy of each static constant in a module.

One drawback of top-level CSE is that it isper-module. No attempt is made to combine identical

top-level objects in separate modules. Thus, a function which is inlined in many different modules

might leave a copy of its code in each of those modules. Mechanisms such as type class specializa-

tion [57] and rewrite rules [94] are a better solution than inlining if a function can be simplified on

its own, without integrating it into its calling context.

When two bindingsx andy can be combined, top-level CSE attempts to preserve whichever one

is exported. For example, ifx is exported, we simply replace all occurrences ofy with x. If two

exported constants are combined, replace one of them with an identity bindingy = x; this represents

a static indirection in the generated code, which is usually more space-efficient than including two

104

static copies of the same data.

Functions complicate matters somewhat; the compiler attempts to preserve the arity of all ex-

ported functions. For example, imaginex andy are defined as follows:

x = λa b→ (a ∗ b) + a
y = λc d→ (c ∗ d) + c

In this casex andy can be combined. However, if we simply replacey by y = x, y will have arity 0

and all calls toy will pass throughGeneralApply(see Section 5.5). For efficient compilationy must

have the formλc d→ . . . , preserving its arity. Thus, we replacey as follows:

x = λa b→ (a ∗ b) + a
y = λc d→ x c d

It is fairly unusual to explicitly export the same function under two different names; we would

therefore expect this corner case fairly infrequently. In practice, a definition can be exported to

other modules when one of its uses is a candidate for inlining. This causes wrappers and static

indirections to be generated more often than might be expected.

6.6 Constant applicative forms

We have detailed two compilation phases—constant hoisting and lambda lifting—which lift con-

stant expressions to the topmost level of the program. The eventual goal is to have the compiler

treat all top-level bindings as static constants for which no code needs to be generated. Bindings

elsewhere in the program will be evaluated dynamically and will require code.

However, Haskell allows the programmer to write top-level bindings which arenot constant.

Haskell implementors refer to these expressions asconstant applicative forms, or CAFs [92]. A

CAF may represent an enormous amount of computation, so it is not acceptable to run it more than

once. We must therefore ensure that the value of a CAF is preserved when it is run. This presents

problems at a number of levels. First, we need to distinguish CAFs so that the code generator treats

them as dynamic computations rather than static top-level objects. Second, we need to include some

mechanism in the run-time system to record the value of a CAF when it has been run. Finally, we

must complicate the run-time system with a mechanism—the root list, described in Section 5.9.6—

for tracking CAFs which point into the heap.

In Eager Haskell we evaluate CAFs lazily. In theCAF conversionphase, we transform each

CAF into a top-level thunk as follows:

105

t = e −→ t = thunk t CAF
t CAF = λ→ e

The code for the CAFt is encapsulated in a functiont CAF with no arguments. This function can

only have top-level free variables, and thus need not be lambda lifted. A zero-argument function

cannot be directly referenced in user code; there is no indication that it needs to be applied, nor

any direct way to store its result. However, we can create a thunk for it; this thunk contains the

function and no arguments. The code generator generates code fort CAF just as it would for any

other function. The thunk forcing mechanism can handle zero-argument functions without difficulty.

Whent is forced, it will be overwritten with the final value oft CAF, and if t contains heap pointers

it will be placed on a root list to be traced by the garbage collector.

6.7 Pseudo-constructors

In Section 6.5 we noted that top-level bindings of the formx = y should be compiled as static

indirections; in Section 6.6 we posited the existence of athunkprimitive to mark top-level thunks.

However, at run time these constructs are simply represented by a special tag and some fields con-

taining pointer data—that is, we construct them in exactly the same way we would construct an

ordinary data object, the only difference being their special tag value. We exploit this fact to further

simplify the code generator. We introducepseudo-constructors INDIRandTHUNK to represent the

special tags, and transform the code into constructor expressions:

x = y −→ x = INDIR y
y = thunk f a b −→ y = THUNK f a b

Additional pseudo-constructors are introduced for language constructs with similar behavior. For

example, bottom thunks (Chapter 8) use a special pseudo-constructorBOTTOM, and thethunk

primitive is used internally to implement arrays (Chapter 9). Indeed, static partial applications can

be represented using pseudo-constructors (though at the moment, for historical reasons, the Eager

Haskell compiler handles them explicitly).

6.8 Back edge insertion

Once an execution mechanism has been chosen, the trickiest aspect of compiling a non-strict lan-

guage is generating code for mutually dependent bindings:

106

letrec a = zipWith(+) p p
p = 1 : a

in p

Under the lazy strategy (Figure 4-3), we create a thunk for every binding in aletrec block, then rely

on the mutual dependencies between these thunks to fix an evaluation order for our code. To create

the mutually dependent thunks, the compiler generates code which operates in two phases [92].

First, storage is allocated for all the thunks in the block—in this case,p must be large enough to

hold a cons cell anda must be large enough to hold the applicationzipWith (+) p p. Having

allocated the storage, the thunks are then filled in. Here the final two arguments ofa will point to

the storage allocated forp. It is unsafe for other computations to usep or a until both have been

completely filled in. Once this has happened,p can be returned and execution continues as normal.

In an eager language it is less clear how to proceed. Eagerly evaluatinga requires a valid heap

object forp. Simply transposing the bindings cannot help—the cons cell forp can then be built,

but will require a valid heap object fora. We solve the problem by allowingemptyheap objects to

be created. Empty objects are full-fledged, valid heap data and can safely be used in computation.

When an empty object is encountered, computation must suspend until it is filled in. The existence

of these empty objects was noted in Section 5.3; they represent points in our semantics where the

corresponding binding resides on the heap (Section 4.5). In the case ofletrec-bound variables, this

is because the relevant bindings occur later in program order and have not yet been reached.

In principle, the Eager Haskell code again proceeds in two steps: first, empty objects are allo-

cated for each binding in theletrec. Then the bindings are executed (eagerly) in order. Each binding

stores its result into the corresponding empty object, and changes its tag to indicate that it has been

filled.

In practice, we need not allocate an empty object foreveryletrec binding. Instead, we allocate

them only for bindings which are actually referenced before they are defined. Thus, in the above

example an empty object would be allocated forp but not fora.

letrec {- Back edge[p] -}
a = zipWith(+) p p
p = 1 : a

in p

If we construct a graph of dependencies between bindings, these will be the back edges of that

graph. The back edge insertion phase adds annotations to the program which explicitly mark which

variables lie along back edges and where empty objects must be allocated for them.

107

Note that the bindings in aletrec block need not occur in any particular order. We would

consider different bindings to be back edges depending on the order chosen. The back edge insertion

phase also chooses an order for bindings. A constructor or partial application can be allocated and

filled in without suspending; by contrast, a more complex expression may require the value of a

still-empty binding. For this reason, the Eager Haskell compiler orders constructors before bindings.

After orderingp (a value binding) beforea (a function call) and inserting back edges our example

will look like this:

letrec {- Back edge[a] -}
p = 1 : a
a = zipWith(+) p p

in p

6.9 Making synchronization explicit

The strategies given in Chapter 4 restrict instantiation to strict contextsS[]. Any synchronization

which might be required to obtain the value of a variable is also restricted to a strict context (wit-

ness the force and suspend rules in Figures 4-3 and 4-6); a binding need not be examined (and

synchronized upon) unless its value is needed for further computation.

We imagine that instantiation corresponds simply to loading a value from memory. Synchro-

nization, however, is a good deal more expensive; in Eager Haskell it involves loading and checking

the tag on a data structure. Tying together instantiation and synchronization leads to excessive syn-

chronization. Consider this variation upon the humble fibonacci function, as compiled by the Eager

Haskell compiler:

myfib x =
casex< 2 of

False →
let y = x− 1 in
let z = y− 1 in
let a = myfib yin
let b = myfib zin
a + b + z

True → x

Here,x occurs in two different strict contexts—in the testx< 2 and in the binding fory. However,

the binding fory cannot be computed untilcasex< 2 has discharged—thus, weknowthatx will be

computed in both cases, and can avoid synchronization.

108

6.9.1 Introducing synchronization

In the Eager Haskell compiler we make synchronization explicit. This decouples instantiation and

synchronization: instantiation must occur in any strict context; synchronization occurs only where it

is explicitly indicated by acaseexpression. Introducing synchronization is similar in many respects

to converting to fully named form (Sections 3.5.4–3.5.3). Theηl (lift) rule explicitly synchronizes

an arbitrary expression. We can apply the rule to every variable which occurs as part of a primitive

expression. This explicitly separates synchronization and instantiation. For our example, this yields

the following code:

myfib x =
case(casex of → x< 2) of

False →
let y = (casex of → x− 1) in
let z = (casey of → y− 1) in
let a = myfib yin
let b = myfib zin
casez of →
casea of →
caseb of →
a + b + z

True → x

Once synchronization has been inserted, a hoisting step is required to return the program to argument-

named form, using the strict hoisting ruleσs. Compare this to naming (Section 3.5.4), where after

naming usingν new bindings are lifted usingσm. In our example, only the outermostcaseexpres-

sionrequireshoisting:

myfib x =
casex of →
casex< 2 of
. . .

6.9.2 Eliminating excess synchronization

Making synchronization operations explicit does not actually reduce the amount of synchronization

in the program. This task falls to theιl (unlift) rule, which eliminates nested synchronization. This

allows us (for example) to eliminate the synchronization forx in the binding ofy in fib. Similarly,

theχd rule can be used (in conjunction with instantiation and uninstantiation) to eliminate synchro-

nization on value bindings. Whencasex of → e is eliminated the identity bindinglet = x in e

109

often results. This is easily avoided by tracking which variables will be subject tocaseelimination;

we avoid inserting synchronization on these variables in the first place. Hoistingcaseexpressions

as they are introduced further reduces the need for excess synchronization.

However, synchronization elimination purely according to the rules ofλC has two major prob-

lems. Consider the first part ofmyfibafter synchronization elimination:

myfib x =
casex of →
casex< 2 of

False →
let y = x− 1 in
let z = (casey of → y− 1) in
let a = myfib yin
. . .

Note that the binding fory will always yield a value when it is executed. We call bindings such asy

anda which contain no explicit synchronization operationsnon-suspensive.

Note that whilea = myfib yis a non-suspensive binding, suspension may occur non-locally

inside the recursive callmyfib y. Thus, a non-suspensive binding does not necessarily yield a

value. However, any non-suspensive binding which does not involve function call (constructors,

non-synchronizingcaseexpressions, and primitive functions)will yield a value. We call such a

bindingunlifted. No synchronization is required for occurrences of unlifted variables such asy once

they have been bound.

We thereforeoughtto be able to avoid synchronization ony when computingz. We work around

this by noting that an unlifted binding can be replaced bycase:

myfib x =
casex of →
casex< 2 of

False →
casey = x− 1 of →
casez = y− 1 of →
let a = myfib yin
. . .

This is justified by hoisting existingcaseexpressions, instantiating, and erasing. Indeed, the com-

piler could simply represent unlifted bindings in this way rather than usinglet. We choose to

represent the bindings usinglet as a notational convenience for the code generator. Therefore we

obtain the following code formyfibafter synchronization elimination:

110

myfib x =
casex of →
casex< 2 of

False →
let y = x− 1 in
let z = y− 1 in
let a = myfib yin
let b = myfib zin
casea of →
caseb of →
a + b + z

True → x

6.10 Eliminating additional synchronization

There are a number of ways to improve upon the simple synchronization introduction described in

the previous section. Because each synchronization operation carries a run-time cost, it is worth

eliminating as many synchronization operations as possible. In this section we discuss several

techniques for removing unnecessary synchronization.

6.10.1 Hoisting to eliminate redundant synchronization

We might consider hoisting synchronization which isnotrequired to restore the program to argument-

named form. For example, the following contrived example synchronizes twice ony:

let z = (casey of → y− 1) in
casey of →
casez of →
y + z

If we hoistcasey past the binding forz we obtain:

casey of →
let z = (casey of → y− 1) in
casez of →
y + z

which simplifies to:

casez of →
let z = y− 1 in
y + z

111

The binding forz is now unlifted, eliminating synchronization onzand simplifying the compilation

of the binding forz itself.

Hoistingcaseexpressions in this fashion is not always beneficial. Consider hoistingcasea in

myfib:

myfib x =
. . .
let a = myfib yin
casea of →
let b = myfib zin
caseb of →
a + b + z

True → x

We have made the bindingb = myfib zstrict in a; this eliminates most of the eagerness inmyfib. If

we are attempting to runmyfib xin parallel, that attempt has just failed. Ifb happened to consume

a large data structure, then we have increased the space requirements of the program. The Eager

Haskell compiler is conservative about hoisting synchronization past alet expression: hoisting is

only performed if the expression bound is unlifted, or the definition involved is strict in the hoisted

variable. Thus, the compiler hoists the contrived example, but does not hoistcasea in myfib.

6.10.2 Using Transitivity

There are often transitive relationships between program bindings. Consider the code on the left-

hand side of Figure 6-3. It should be sufficient to synchronize ony. Knowing thaty is computed

shouldimply thatx is computed. This is shown by the unfold/fold argument given in the figure. We

account for transitive dependencies when introducing synchronization intoλC .

Unfortunately, a fully computed value may turn out to be an indirection. This complicates the

use of transitive dependencies to eliminate synchronization; generated code would need to check for

indirections even if synchronization is eliminated. In the common case (full location, no indirection)

this is just as expensive as full synchronization. The Eager Haskell compiler and run time system

take several steps to ensure that indirection checks need only occur at synchronization points.

First, the code generator ensures that the “most computed” value of a variable is kept. Once

again consider the code in Figure 6-3. Ifx is an indirection pointing to the value 5,casex in the

binding fory will call the run-time system, eliminate the indirection, and re-bindx to point directly

to 5. Finallyy is bound to 10. When we synchronize ony, x is bound to a value as well.

112

let y = casex of → x ∗ 2 in
casex of →
casey of →
x + y ∗ y

−→

let y = casex of → x ∗ 2 in
casex of →
case casex of → x ∗ 2 of →
x + y ∗ y

ιe

−�

let y = casex of → x ∗ 2 in
casex of →
casex ∗ 2 of →
x + y ∗ y

ιl, ε

=
let y = casex of → x ∗ 2 in
case casex of → x ∗ 2 of →
x + y ∗ y

σs (reversed)

=
let y = casex of → x ∗ 2 in
casey of →
x + y ∗ y

ιe (reversed)

Figure 6-3: Synchronization elimination for transitive dependencies

Second, the run-time system eliminatesall indirections in a suspended frame before resuming

it. Consider what happens ifx is initially empty. Thencasex in the binding fory will suspend,

andcasey will suspend in turn. Now there are two different suspensions with a separate copy of

x. Imaginex later evaluates to an indirection pointing to the value 5. When the result is demanded,

the binding fory will be demandedseparately. It does not matter thaty will synchronize onx and

eliminate the indirection; this will not change the second copy of the frame used to computecasey,

wherex will still point to an indirection.

6.10.3 Partitioning versus explicit synchronization

Past work on synchronization elimination in eager languages has focused onpartitioning. Code is

divided intopartitions, each of which synchronizes on a series of inputs, then runs to completion,

possibly spawning new partitions as it does so. This approach was implemented in the Id compiler

by Ken Traub, who describes the technique in his dissertation [133]. Later work introduced inter-

procedural analyses to improve partitioning [112, 114, 33, 34, 132]. Similar work was done in the

context of the strict language SISAL [111, 128].

Compilation based on partitioning has one important problem: there is no clear and natural

connection between the unpartitioned and partitioned program. On a modern architecture, very dy-

113

namic control flow is expensive, and usually partitions end up being run in a particular order in

practice. Virtual machines exist which simplify the task of creating and ordering partitions, includ-

ing TAM [115, 42, 41] and PRISC [84]. However, functions and case disjuncts still incorporate

a notion of “inlets”, one per input (or group of inputs), which perform necessary synchronization

when a value arrives from another thread. The work on the SMT [16] abstract machine and the

code generator forpH [31] were the first attempt to consider thread ordering primarily as a com-

pilation problem, rather than a mechanism to be provided by the abstract machine. Partitions are

grouped intonon-suspensive threads. This provides a natural flow of control; it also allows control

dependencies between partitions in a thread to be used to eliminate synchronization. Arguments are

passed by reference rather than by sending them individually to entry points.

Taking its cue from SMT, Eager Haskell focuses primarily on making sequential, non-suspensive

control flow efficient. Synchronization elimination is an important part of doing so; however,

we must not go to great lengths to eliminate synchronization if doing so will complicate control

flow. Thus, while synchronization elimination in Eager Haskell is similar to demand set partition-

ing [133], we do not attempt to impose a new intermediate representation with special provisions

for threaded control flow.

6.10.4 Interprocedural synchronization elimination

At the moment, the synchronization introduction phase of the Eager Haskell compiler only accounts

for transitive dependencies within one procedure. However, functional programs are frequently

composed of many very small functions. We might hope to remove a good deal more synchroniza-

tion simply by propagating interprocedural dependency information.

There are several techniques that can be applied to compute such dependency information. In-

terprocedural partitioning analyses [112, 33, 34, 132] attempt to compute a partial order among

inputs and outputs of a function in order to impose ordering constraints among partitions. However,

those algorithms which were successfully implemented had very high complexity in practice [113].

In addition, one of the chief benefits of interprocedural partitioning analysis was the ability to group

multiple function inlets into a single entry point. BecausepH and Eager Haskell use a single entry

point for functions, the benefit to using such an analysis is likely to be much smaller.

114

let y = f x in
g y

−→ casey = f x of →
g y

(in GHC)

−→
let y = f x in
casey of →
g y

(in Eager Haskell)

Figure 6-4: Worker/wrapper requires additional synchronization under Eager Haskell. Hereg is
strict iny.

Using Strictness Information

The interprocedural analysis problem becomes much simpler if, instead of partially ordering inputs

and outputs, we restrict our attention to a much simpler property: whether a particular input is

alwaysrequired during computation. This is strictness analysis [92]. The literature on strictness

analysis is vast; however comparatively few algorithms are in daily use, and these are generally the

simplest ones. Simple analysis produces useful improvements in practice; more complex analyses

simply do not yield enough additional precision to justify their cost.

For example, the Glasgow Haskell Compiler computes strictness directly as a boolean property

of function arguments [101]. Strictness information is used to divide functions into aworkerand a

wrapper. The wrapper ensures all strict arguments have been computed, then invokes the worker.

The worker is compiled assuming the strict arguments are available. The hope is that many strict

arguments can safely be computed before a function call; by inlining the wrapper the compiler

attempts to eliminate much of the synchronization at each call site based purely on the calling

context. In particular we can eliminate synchronization on the strict variables of loops and recursive

calls entirely.

The Eager Haskell compiler performs strictness analysis (repeatedly), representing strictness

using boolean expressions. This is used for strictness-based code motion and for a weak worker-

wrapper transformation directed primarily at unboxing tuples (not at reducing synchronization). The

present synchronization introduction algorithm uses strictness information to determine whether

hoisting synchronization past a function call will result in a loss of eagerness. However, strictness

is not used directly to eliminate synchronization. The problem (once again) is indirections. If

y = f x andf is strict in its single argument, then synchronizing ony will ensure thatx has also been

computed. However,x may still refer to an indirection which was eliminated within the call tof x.

An indirection check is just as expensive as synchronization; little has been saved.

115

L ::= E | U
| let x = E in L | letrec B in L
| let x = U in L

E ::= caseP of D | x~xk
| casex of D | xk ~xk
| casex = x of D

U ::= V | P

P ::= x | C0

| pk ~Pk

B ::= x = E | B ; B
| x = U | Back edge{x}

D ::= Ck ~xk → L | D ; D
| → L

Figure 6-5: Fully synchronized, loweredλC . Compare with Figure 3-10.

If instead we synchronize onx in the calling context, we transform every binding of the form

y = f x to a binding of the formy = case x of → f x. There is no longer any concern

about indirections, as the synchronization is handled within the local frame. This is the effect

of the worker/wrapper transformation in GHC. However, this can actuallyincreasethe amount of

synchronization in an Eager Haskell program. The problem occurs when a strict argument is itself

the result of a function call. Consider the example in Figure 6-4. In GHC, the bindingy = f x will be

unwrapped, yielding acaseexpression as shown. However, thiscaseexpression carries no runtime

cost—the callf x is guaranteedto return a value. Indeed, the transformation has eliminated the need

to construct and force a thunk fory. By contrast, Eager Haskellcannotguarantee thatf x returns a

value; if resources are exhausted during the call, it will suspend. Thus, a separate synchronization

step is required. Performing the worker/wrapper transformation ong therefore replaces asingle

synchronization ing with a synchronization operation at every call site ofg. This will in general

increase the size and complexity of generated code.

Computedness

In Eager Haskell,computednesscan be used to eliminate synchronization. Computedness indicates

which arguments of a function arecertain to be values when the function is called. In principle,

116

this is easy to compute: consider every call site of a function. If an argument has been computed

at every call site, that argument is certain to be computed, and it need not be synchronized. At this

level the property can be computed using bit vectors to represent sets of strict arguments.

The real challenge, of course, is in identifying call sites. In a higher-order language, they can

be approximated using control-flow analysis [122, 83, 55]. Because Eager Haskell compiles files a

module at a time, full control flow analysis is impossible. However, the vast majority of functions

are only called at full arity. We can do a good job of computedness analyses on these functions. Fur-

thermore, we can use a technique similar to the worker/wrapper transformation or to loop preheader

insertion [7] by splitting recursive functions into aheaderwhich performs necessary synchroniza-

tion and abodywhich is always invoked locally at full arity. In this way we hope to capture many of

the benefits of strictness analysis without increasing the amount of code for synchronization, while

at the same time maximizing the effectiveness of a very simple computedness analysis.

6.11 Canonical loweredλC

Figure 6-5 shows the final syntax ofloweredλC after performing the lowering transformations

described in this chapter. The most obvious difference is that loweredλC explicitly distinguished

unlifted constructs from lifted constructs. We use underlines to distinguish unlifted variablesx

from their lifted counterpartsx. Unlifted expressionsU are distinguished syntactically from lifted

expressionsE, and unlifted bindingsx = U from lifted bindingsx = E. When an unlifted variable

is a back edge in aletrec, it is referred to in lifted form asx before the binding and in unlifted

form asx afterwards. We distinguish three forms ofcaseexpression:caseP of D, whereP is

a simple primitive expression which need never be boxed;casex of D, which dispatches on an

unlifted variable and requires no synchronization; andcasex = x of D, which synchronizes onx

and suspends if necessary.

Beyond the distinction between lifted and unlifted constructs, there are a few other distinctions

between loweredλC and argument-namedλC . Known full-arity applicationsxk ~xk are distinguished

from unknown applicationsx~xk; recall from Section 5.5 that known applications can call the target

function directly, whereas unknown applications must invoke theGeneralApplyfunction in the run-

time system. Pseudo-constructors mark thunks, static partial applications, and variables which occur

in an expression context. The bindings inletrec expressions are considered to occur in program

order; back edges are marked explicitly.

117

Chapter 7

Eager Code Generation

In Chapter 6 we examined lowering transformations intended to simplify the task of code generation.

In this chapter we detail the actual code generation process. The code generator begins with the low-

level λC shown in Figure 6-5. The final output of the code generator is a C program; there is no

special low-level intermediate representation.

The mechanics of suspension and garbage collection are the main source of complexity in the

code generator. Minimizing the number of save points (Section 7.1) reduces the need to keep the

frame up to date, and decreases the complexity and size of the entrypoint mechanism sketched

in Section 5.4. The structure of the frame (Section 7.2) determines how variables are saved and

restored and how the garbage collector identifies live variables. Minimizing the number of points at

which allocation can occur reduces the amount of code required to keep the frame up to date, but can

complicate garbage collection (Section 7.3). Once frame structure and save point placement have

been determined, the remainder of code generation is reasonably straightforward; the remainder of

the chapter details the mapping fromλC code to C.

7.1 Save points

In Eager Haskell there are four situations in which local data must be saved and restored from the

shadow stack: When computation suspends (Section 5.6), when allocation fails and the garbage

collector is invoked (Section 5.2.3), when a suspensive binding is started, and when one function

calls another one. This last case exists because any function call may invoke the garbage collector

(every function may allocate: if nothing else, the exception mechanism may need to allocate a thunk

for the call).

118

We refer to places where the compiler saves and restores live data assave points. The Eager

Haskell compiler attempts to combine save points as much as possible. Consider theλC code for

thezip function from the Haskell prelude:

zip xs ys =
casexsof
[] → []
(x : xt) →

caseysof
[] → []
(y : yt) →

let tl = zip xt yt in
let hd = (x, y) in
hd : tl

Here bothcasexsandcaseysmay suspend. Note, however, that ifcaseyssuspends it is perfectly

safe to repeat the entire computation ofzipupon resumption. Doing so simply results in a redundant

test ofxs. The compiler therefore re-uses the same save point for bothcasexsandcaseys. Similarly,

the recursive callzip xt ytalways requires the live variables to be saved and restored. If the allocation

of hd invokes the garbage collector, there is no need to save any state at all. After garbage collection,

execution can be resumed immediately after the recursive call,beforethe live variables are restored.

The attempt to allocatehd will be repeated.

The rules for determining save points are very simple. At compile time, we keep track of the

preceding save point, if any. Acaseexpression will share this save point (if none exists, a new one

is introduced). A call to the allocator can share a preceding save point, but subsequent code may

not and the save point must be killed. A function call always requires its own save point, as the

live variables are unconditionally saved across the call. A suspensive binding kills the save point;

however, the live variables of subsequent computations are saved and restored by the thread spawn,

so it acts as a new save point.

By assigning the same save point to nestedcaseexpressions, the number of function entry

points is reduced, in turn reducing the amount of testing and branching required for the entry point

mechanism. In the case ofzip there is a single entry point—the beginning of the function—and as

a result there is no need for any kind of entry point check at all. This is typical of Haskell code:

functions written using pattern matching result in a series of nestedcaseexpressions, and there is

never any need to check the entry point.

There is one restriction on sharing of save points bycaseexpressions: Acasecannot discrimi-

119

nate upon a field fetched in acaseexpression sharing the same save point. This typically occurs as

a result of nested pattern matching, yielding code like this from Queens:

h m v1 =
casev1 of

(n, i2) →
casei2 of

[] → True
v2 : v3 →

casev2 of →
. . .

Here, a new save point is required forcasei2 becausei2 is fetched fromv1, and another new save

point is required forcasev2 becausev2 is fetched in turn fromi2. This restriction is another effect

of the use of indirections. Imagine thatv1 is a tuple whose second fieldi2 is an indirection, and that

the two outercaseexpressions share a single save point. Whencasei2 encounters the indirection,

the run-time system will be invoked and control will resume withcasev1. However,v1 will still

contain an indirection, andcasei2 will once again fail.

An alternative to splittingcaseexpressions in this way would be to have the run-time system

remove indirections reachable transitively from the frame. However, barrier indirections cannot be

eliminated until the referenced data has been promoted by the collector. Eager tenuring of nursery

data tends to move empty objects out of the nursery, increasing write barriers and dramatically

reducing performance. We therefore accept additional save points as a necessary cost of an efficient

garbage collection strategy.

The only cost of grouping save points is the expense of a small amount of extra computation in

the rare event that acaseexpression suspends or that the garbage collector is invoked. In addition to

reducing the number of entry points, grouping save points has a number of other beneficial effects.

The C code produced by the compiler is shorter, resulting in smaller binaries and faster compile

times. Combining entry points also appears to improve thequality of the machine code generated

by the C compiler. Most combined save points occur at natural control flow boundaries, such as

function call sites and the beginnings of threads; fewer basic blocks means greater scope for code

transformation.

120

7.2 Frame structure

It is tempting to view the frame simply as an activation frame, where local variables are kept during

computation. However, in Eager Haskell the shadow stack is used primarily to communicatelive

pointer databetween compiled code and the run-time system. The compiler must therefore ensure

that the frame isprecise—that is, that the run-time system can identify which frame data is still in

use. If frame information is imprecise, there will be space leaks: the garbage collector will retain

large data structures which are no longer in use (as they will be referred to either from the stack or

from a suspension). It is important for the compiler to guarantee precision: in a functional language

there is no way for the programmer to eliminate space leaks which are artifacts of compiler impre-

cision [119, 107, 106, 140, 123]. By contrast, procedural languages generally accept imprecision;

the programmer can fix space leaks by “nulling out” variables that cause excess retention.

The most flexible technique is to emit liveness maps, which indicate which frame entries actually

contain live pointer data. This allows the frame to be structured in the most efficient possible

manner—indeed, pointer and non-pointer data can be commingled on the shadow stack, simplifying

unboxing (Section 13.3.5). However, the run-time system must find the appropriate liveness map

in some fashion. Efficient techniques associate liveness information with return addresses [60,

143]. This is difficult when compiling via C: There is no simple way to create static tables relating

return addresses to liveness information.1 As a result, a compiler producing C must push additional

liveness information onto the stack at every function call.

Instead, in Eager Haskell we ensure that the frame contains only live data. This means that the

frame will always be as small as possible. Saving and restoring the frame when suspension occurs

is a simple matter of copying a segment of the shadow stack; however, the compiler must copy data

from one part of the frame to another when the frame shrinks. Thus, the stack will be smaller than

if an explicit descriptor were passed, but more instructions are required to save and restore stack

state. The frame need only be kept up to date at save points; minimizing the number of save points

mitigates the cost of stack shuffling. However, frame updates are unavoidable at call sites, so it

is unclear whether the Eager Haskell implementation benefits from keeping the frame small. We

expect that liveness maps will be required as the compiler evolves.

1Indeed, creating a single static table from information contained in multiple object files produced by multiple com-
piler runs requires non-portable linker support [67].

121

7.3 Allocation

As noted in Section 7.1, heap allocation can share its save point with prior code, but subsequent

code will require a new save point. This can be a particular problem when a series of allocations

occur in quick succession. Worse still, each such allocation will perform a separate check of the

heap pointer and will require separate code to invoke the garbage collector. Fortunately, the Eager

Haskell allocator makes it simple tobatchallocations: a single allocation action yields a large chunk

of memory which can be initialized to contain multiple heap objects.

The existence of back edges and recursive bindings complicates allocation. When a variable is

recursively bound, an empty object must first be allocated to hold the variable’s value (Section 6.8).

Later, the empty object must beupdatedto reflect the actual value of the binding.

The present Eager Haskell compiler simplifies the problem by assuming that every binding

updates a previously-allocated empty location. For constructors and primitives it is easy to arrange

for the empty location to be large enough to accommodate the resulting value. Even when a binding

contains a conditional, space can be allocated for the largest of the possible results—unused space

will be reclaimed by the garbage collector.

It is not possible in general to statically determine how much space the result of a polymorphic

function call will require. The Eager Haskell compiler allocates a fixed-sizecontinuation object(or

simply continuation) for every function call. The continuation is passed to the function; if the result

of the function is small enough, the continuation is updated directly, otherwise the continuation is

updated with an indirection pointing to newly-allocated storage which holds the result.

Experiences with the code generated by the Eager Haskell compiler have pointed out a number

of poor features in this technique for dealing with updates. The need to pass a continuation object

to every function call naturally increases function call overhead. Also, the Eager Haskell compiler

assumes every single binding is an updating store, which means every binding requires a write

barrier for generational garbage collection.

In addition, the compiler presently batches allocations at control flow boundaries (multi-branch

or suspensivecaseexpressions). This means that the space for long chains of bindings—even if

they are non-recursive—is allocated in one go and then gradually filled in. This in turn makes it

more likely some objects will be promoted between allocation and update, requiring a write barrier.

It also increases the time spent in garbage collection by adding live (but empty) objects which must

be moved. The compiler has traded the cost of checking the heap pointer repeatedly (due to less

122

aggressive batching) for the cost of performing additional write barriers (by keeping empty objects

alive across garbage collection). The overhead of a write barrier is approximately the same as the

overhead of allocation in the common case; nothing has been gained.

An alternate implementation of updates would compile code such that only bindings on back

edges were candidates for update. A back edge annotation causes an empty object to be allocated

which is large enough to hold an indirection. This is used as a proxy for the final value of the binding.

When the binding has been computed, the proxy can be updated with an indirection pointing to the

new binding. This approach has a number of benefits. Continuation objects can be eliminated,

leading to a more efficient (and more natural) function call mechanism. Allocation can be batched

so that groups of unlifted bindings are allocated at once; all bindings will perform initializing stores.

Finally, only empty proxies are subject to update, and they are updated only with indirections, so

the write barrier can use a simple mechanism for recording outstanding writes.

The problem of updates exists in Haskell as well as in Eager Haskell, and the mechanisms used

in lazy compilers closely parallel the ones described in this section. Most early Haskell implemen-

tations took some pains to ensure that objects were updated in place whenever possible [92, 99, 93].

However, implementations must support indirections irrespective of the existence of updates. Be-

cause there are efficient mechanisms for eliminating indirections, providing a special mechanism

for update-in-place may well be a false economy. Recent versions of GHC have eliminated update-

in-place entirely in favor of indirection [75].

7.4 Functions

Generating code for a lambda-lifted function is a straightforward process. Figure 7-1 shows the

code for the outermost portion of thefib function. The first line defines the static closure for the

function,Main$fib. The static closure is used when thefib function is passed as an argument to a

higher-order function or stored into a data structure. The tag of the closure indicates thatfib takes a

single argument, and that the closure does not contain any partially applied arguments. The body of

the function itself is namedMainfibP. The entry point,EntryPt, is passed using the C calling

conventions. Every Eager Haskell function which uses a non-zero entry point starts by checking

EntryPt. Note theuntaken annotation, indicating thatEntryPt is expected to be zero. Thefib

function uses two entry points, zero (combined with the wrapper code for the function itself, and

thus shown in the figure) and three. If additional entry points are used, the body of theif contains

123

static const PHOb Main$fib[2] = { MkTag(1, 1), &MainfibP };

static PHFunc(MainfibP) {
if (untaken(EntryPt != 0)) {

goto Restore3;
}
{

PHPtr $3, x$1 ; /* C locals for continuation and argument */
/* The beginning of the function is a valid suspension point. */
static const PHOb SuspDesc0[4] = { MkTag(UTagTag, 3),

MkTag(1, 5),
&MainfibP,
0x2}; /* $3 is computed. */

Restore0:
x$1 = SP[0]; /* Restore argument from stack */
$3 = SP[1]; /* Restore continuation from stack */
if (0) {

TailEntry:
EntryPt = 0;

}
CheckStack(Main$fib);
/* Lambda body */
...

}
}

Figure 7-1: Code for the outermost part of the one-argument functionfib in moduleMain. This is a
slightly cleaned-up and commented version of actual compiler output.

aswitch statement dispatching onEntryPt.

The Eager Haskell compiler keeps data in C variables, saving and restoring it from the shadow

stack only when necessary. On entry tofib, the argument and the continuation must be restored from

the stack. This happens immediately after theRestore0 label. The beginning of the function is also

the save point for the conditional in thefib function. A descriptorSuspDesc must be generated for

every save point; it is this descriptor which is passed to the run-time system when suspension occurs.

Functions which call themselves tail recursively are particularly common in Eager Haskell.

Self tail calls use a different calling convention: instead of pushing the arguments onto the stack

and calling, the C locals and the stack are both updated directly. This allows the code for restoring

arguments from the stack to be bypassed, and the tail call branches directly toTailEntry. EntryPt

controls the behavior of code in unlifted bindings, and must therefore be reset to 0 to reflect the fact

124

static const PHOb Main$con_1529[3] = { (PHOb)MkTag(2,2),
(PHOb)fieldTagCAF(MkTag(1,0)),
(PHOb)fieldTagCAF(MkTag(1,0))};

...
if (Reserve(4)) {

Suspend();
gc(4, SuspDesc0);
goto Restore0;

}
con_1522$8 = HPat(4);
InitTag(con_1522$8, MkTag(Empty, 2));
/* , :: , */
con_1522$8[1] = (PHOb)IntBox(1);
con_1522$8[2] = (PHOb)e_1296$6;
StoreCon(con_1522$8, MkTag(1,2));

Figure 7-2: Code for the static constant[[]] and the dynamically-constructed tuple(1, e 1296),
taken from theQueensbenchmark.

that execution is continuing from the beginning of the function.

Note that the Eager Haskell compiler generates all the code associated with a particular construct

in one go, even if some of that code is commonly executed from elsewhere. ThusTailEntry,

variable restore code, and the like are all generated in place and wrapped inif (0) {...}. If (as

in fib) the function does not call itself tail recursively, thenTailEntry will be dead code and can

be eliminated by the C compiler.

The final piece of code before the body of thefib function itself is the stack check. This imple-

ments the exception mechanism used to throttle execution of Eager Haskell programs. The stack

pointer is compared to a threshold stored in memory. If the stack is too large, the run-time system

creates a thunk for the call tofib; the static closureMain$fib includes all the necessary information

for thunk creation. When an exception occurs the stack size is set to zero, causing all stack checks

to fail as described in Section 4.7.

7.5 Constructors

Figure 7-2 shows examples of the code generated by the compiler for static and dynamic constructor

expressions. A function closure is essentially a static constant, and unsurprisingly the code for static

list constant[[]] in Figure 7-2 looks very similar to the static closure forfib in Figure 7-1.

125

Dynamic constructor expressions produce two code fragments. Code for allocation is batched

as described in Section 7.3 (in the example shown it happens that only a single object is allocated);

later code actually fills in the object fields. Allocation occurs in three steps. A call toReserve

sets aside the appropriate storage. If garbage collection is required, execution suspends and the

garbage collector is invoked; after garbage collection execution is re-started from the preceding save

point. Otherwise, the allocated objects are emptied.InitTag indicates that this is an initializing

store; because the tag isEmpty, there is no need to initialize the remaining fields in the newly-

allocated object. Later, the fields of the object are filled in and the tag is immediately updated

with StoreCon. This indicates that the object contains live data, and performs the necessary write

barrier. As a result, the fields of the object must be completely initialized beforeStoreCon occurs.

On a multiprocessor, theStoreCon operation must also enforce memory coherence guarantees as

described in Chapter 11.

Recall from Section 6.2 that Eager Haskell stores smallInt constants and nullary constructors

in two static tables. Figure 7-2 includes references to both of those tables:fieldTagCAF generates

a reference to the nullary constructor table, andIntBox generates a reference to the table ofInt

constants.

Constructor expressions in tail position must update the continuation rather than updating a

newly-allocated value. If the constructor is small enough to fit in a continuation, the generated

code is identical; the only difference is that the continuation does not need to be allocated. If the

constructor is large, a new object is allocated and emptied. The continuation is updated with an

indirection pointing to the still-empty object. The new object is later filled in as usual.

7.6 Function application

Recall from Section 5.5 that the Eager Haskell implementation shifts the complexity of curried

function application into the run-time system. Compiling a function application is therefore rea-

sonably straightforward. We make a distinction between known, full-arity applications and other

applications, and between ordinary calls and tail calls. Because self tail calls are handled specially,

this leads to five cases, three of which are shown in Figure 7-3.

An ordinary full-arity function application must save live variables to the stack, push the func-

tion arguments and continuation, and then call the function. On return the live variables are restored

from the stack once again. The call tofib shown in Figure 7-3 happens to have four live variables;

126

PushVar(5); /* Make space for argument, live vars */
SP[2] = app_1235$6; /* Store live variables */
SP[3] = prim_1240$7;
SP[4] = app_1236$8;
SP[5] = x$1;
SP[0] = prim_1239$5; /* Store argument */
SP[1] = app_1235$6; /* Store continuation */
/* Non-tail call */
app_1235$6 = CallOb(Main$fib$P(0));
prim_1240$7 = SP[1]; /* Restore live variables */
app_1236$8 = SP[2];
x$1 = SP[3];
$3 = SP[4];

PopVar(2); /* Pop extra frame entries */
SP[0] = c2_992$2; /* Store closure */
SP[1] = TagBox(MkTag(1,0)); /* Store arguments */
SP[2] = c3_994$1;
return GeneralApply(2); /* Apply closure to two arguments */

SP[0] = prim_1540$6; /* Update both arguments on stack */
SP[1] = es_1253$4;
l_1250$2 = es_1253$4; /* Update local variables for arguments */
tl_1252$1 = prim_1540$6;
goto TailEntry; /* Loop */

Figure 7-3: Three cases of function application. First, an ordinary call to thefib function seen in
Figure 7-1. Second, a tail call to an unknown functionc2 with two argumentsc3 []. Finally, a
self-tail call from the internals of thelengthfunction.

a single argument is passed to thefib function. Functions are always called with the argument0,

indicating that execution starts at the beginning of the function (recall that all other entrypoints exist

for suspension; these are handled exclusively by the run-time system). Function results are returned

using the C calling conventions; theCallOb wrapper macro exists to support experimentation with

those conventions.

An unknown function application works nearly identically to an ordinary full-arity application.

The only difference is that the closure is pushed on the top of the stack, andGeneralApply is called

with the number of arguments being applied.

Tail calls work very similarly to ordinary calls. However, there is no need to save and restore

live variables across the call; instead, the existing frame is popped and the tail-recursive arguments

replace it. The result of the tail call isreturned directly to the caller. This makes it easy for the C

127

PHPtr prim_1540$6;
if (Reserve(2)) {

Suspend();
gc(2, SuspDesc0);
goto Restore0;

}
ReservePrefetch(2);
prim_1540$6 = HPat(2);
InitTag(prim_1540$6, MkTag(Empty, 1));
/* (Untouched binding) */
StoreInt(prim_1540$6, (LoadInt(tl_1252$1)+ 1));

if (((LoadInt(n_1319$5)+ LoadInt(v_1321$9))==
(LoadInt(m_1556$3)+ LoadInt(v_1555$2))))

{
...

} else {
...

}

Figure 7-4: Code for primitive expressions. The first fragment is the code for the binding
prim 1540 = tl 1252+ 1 from the length function (the code also allocates space for the box).
The second is the code forcase(n 1319+ v 1321) ≡ (m 1556+ v 1555) of . . . from Queens.

compiler to identify the tail recursive call and transform it into a jump. We show a tail recursive call

to GeneralApply in Figure 7-3.

As noted in Section 7.4, we handle self tail recursion specially. Figure 7-3 shows a tail-recursive

call from inside thelengthfunction. The tail-recursive arguments are stored both into the stack and

into the appropriate local variables. The code then branches to theTailEntry; there is no need

to restore the arguments from the stack. The hope is that arguments which are already loaded into

registers can remain there across the tail call, rather than being written to memory and immediately

read back in.

7.7 Primitive expressions

The nested primitive expressions ofλC translate to simple C expressions. Explicit synchronization

(Section 6.9) insures that variable references within primitive expressions refer to fully computed

values. Thus the variable references in Figure 7-4 simply fetchInt values from their boxes using the

LoadInt operation. When a primitive expression is bound, we must box the result. The first code

128

fragment in Figure 7-4 allocates a boxprim_1540 to hold anInt. TheStoreInt operation then

writes anInt value into the now-allocated box. Similar boxing and unboxing operations exist for all

primitive types.

When a primitive expression is the discriminant of a booleancase, the Eager Haskell compiler

generates a direct conditional rather than boxing and unboxing the boolean value. This is shown in

the second code fragment in Figure 7-4. This example also shows nested primitive expressions in

action: two additions and an equality test are performed with no intervening boxing.

The Eager Haskell compiler does provide a second mechanism for performing primitive appli-

cations which is more similar to the function application mechanism. A primitive ofn arguments

is mapped to a C function taking a continuation argument andn boxed arguments and returning a

boxed result. This provides an interface for various runtime routines which are written in C and

manipulate full-fledged Eager Haskell objects rather than primitive values. For example, the vec-

tor routines used in implementing arrays use this convention; see Chapter 9. The naming phase of

the compiler (Section 3.5.5) treats these primitives like ordinary function applications and names

their arguments and results. They are otherwise treated like ordinary primitives—arguments are

explicitly synchronized, and free variables need not be saved and restored across calls.

7.8 Case expressions

The simplest possible translation ofcaseexpressions in Eager Haskell transforms them into C

switch statements, with one branch percasedisjunct and a separate disjunct to handle synchroniza-

tion. This is exactly how multi-disjunct synchronizingcaseexpressions are compiled, as seen in the

first code snippet in Figure 7-5. When acaseexpression mentions fields of the matched object, they

are fetched on entry. Thelengthfunction only uses the tail (and not the head) of its list argument;

the code shown corresponds to the case disjunct(: es1253)→ TheHandleSuspend macro

handles suspension. The first two arguments are the entry point and descriptor of the appropriate

save point. The third argument is the variable,l 1250, which is being synchronized upon. The final

block of code is executed after the run-time system has suspended computation. It retrieves the

continuation (saved with the rest of the live variables before the run-time system is called), pops the

live variables, and returns.

The compiler produces specialized code for particular sorts ofcaseexpression. The special

cases handle instances where acaseexpression has one disjunct, or has two disjuncts and is non-

129

TagSwitch(l_1250$2) {
/* [] :: [] */
TagCase(1,0):

...
break;

/* : :: [] */
TagCase(2,2):

es_1253$4 = asPtr(l_1250$2[2]);
...
break;

default:
HandleSuspend(0,

SuspDesc0,
l_1250$2,
{

$3 = SP[2];
PopVar(3);
PHSuspRet($3);
ReturnTag($3);

});
}

if (TagIs(fap_1127$2, 1, 2)) {
PHPtr cf_800$10;
PHPtr r_801$9;
cf_800$10 = asPtr(fap_1127$2[1]);
r_801$9 = asPtr(fap_1127$2[2]);
...

} else {
...

}

HandleTouch(0,
SuspDesc0,
tl_1252$1,
{

$3 = SP[2];
PopVar(3);
PHSuspRet($3);
ReturnTag($3);

});

Figure 7-5: Code for threecaseexpressions. First,casel 1250from thelengthfunction. Second, a
tag check for the already-computedfap 1127from the Counter program. Finally, the synchroniza-
tion on theInt valuetl 1252from thelengthfunction.

130

synchronizing. We have already seen in Figure 7-4 that primitive booleancaseexpressions are

compiled directly intoif statements. Two-disjunct, non-synchronizingcaseexpressions need only

check a single tag. They are therefore compiled intoif statements, as seen in the second example

in Figure 7-5. Single-disjunct non-synchronizingcaseexpressions are trivial: No tag checking is

required, and fields are simply fetched from the referenced object.

Single-disjunct synchronizingcaseexpressions result from the insertion of explicit synchroniza-

tion (Section 6.9); they are handled by theHandleTouch macro as shown in the final fragment in

Figure 7-5.HandleTouch checks whether the provided object has been computed and suspends if

it has not. The check is annotated to indicate that no suspension is usually required.

7.9 Suspensive bindings

Suspensive bindings introduce thread spawns into Eager Haskell programs. If computation of a

binding suspends, subsequent code (the post-region) must nonetheless be executed. When the bind-

ing is resumed, the post-region mustnot be re-executed. This works by assigning an entry point

number to the post-region which is strictly larger than any possible entry point in the spawned

code itself, but strictly smaller than any prior entry point. For example, in Figure 7-6 the spawn is

assigned entry point 1 and the spawned code includes entry point 2. When the spawned code sus-

pends, it jumps to a specialspawn entry, here labeledSpawn1:. When control leaves the spawned

code—either normally or because of suspension—theEntryPt is compared to the entry point of the

spawn. If it is larger (EntryPt > 1), execution began within the spawned thread; the post-region

was run when the thread originally suspended. The entire frame is popped and control returns to

the run-time system. If it is smaller, then execution began prior to the spawn, and control continues

into the post-region.

The Eager Haskell compiler assumes that spawned code can suspend at any moment. Local

variables must in a consistent state before the post-region is executed. As a result, the live variables

of the post-region are saved to the stack before the spawn. After the spawned code has run, the

saved variables are restored and the post-region is executed. Variables which are modified within the

spawned code (usually the variable being bound such asv 898 in the figure, and any live variables

which are synchronized upon) arenotordinarily restored after the spawned code is run; their newly-

computed values are used instead. However, if the spawned code suspends these variables may be

in an inconsistent state; as a result the spawn entry includes code to restore them.

131

/* Thread spawn */
PushVar(2); /* Allocate space for live variables */
SP[0] = v_898$5; /* Save variables for post-region */
SP[1] = app_1537$6;
SP[2] = l_1052$7;
{

...
default:
HandleSuspend(2,

SuspDesc2,
actualProgramArgs_1557$4,
{

PopVar(1);
goto Spawn1; /* Continue with post-region */

});
...

}
if (0) {

Spawn1:
v_898$5 = SP[0]; /* Reload variable computed in thread */

}
if (untaken((EntryPt > 1))) {

/* Unspawn; we resumed within the spawned thread. */
PopVar(6); /* Pop live variables, return to run-time */
ReturnCon((PHPtr)NULL);

}
app_1537$6 = SP[1]; /* Reload variables live in post-region */
l_1052$7 = SP[2];
e2_846$2 = SP[3];
e1_844$3 = SP[4];
$9 = SP[5];
/* Post-region */
...

Figure 7-6: Code for a thread spawn resulting from the bindingv 898 =
caseactualProgamArgsof . . . in Queens.

132

Chapter 8

Bottom Lifting: Handling Exceptional

Behavior Eagerly

The eager strategies we presented in Chapter 4 have one important shortcoming: They do not yield

the expected semantics for the Haskellerror function. This is becauseerror, when called, prints an

error message on the screen and immediately terminates the program. For example, consider the

following term:

let unused = error "You used the unused variable"
in const7 unused

The lazy strategy will evaluateconst7 unusedto obtain 7. An eager strategy might choose to eval-

uateunusedeagerly, causing the program to terminate prematurely. Even worse, the hybrid strategy

could result in either behavior, depending on whether fallback occurs. If we eagerly evaluate a call

to error, we may terminate the program when the lazy strategy would have produced a result. In

order to compile Haskell eagerly, we must identify error handlers and treat them specially.

In a safe language such as Haskell error checks are common; aggressive program transformation

is necessary to produce efficient code in the face of such checking. At the same time, error handlers

have stronger semantics than ordinary expressions. By identifying error checks at compile time, we

can transform error checking code in ways that would not be permitted for other program constructs.

We discuss error handlers in the broader context ofdivergence. Divergent expressions will

never yield a value, either because they signal an error or because they fail to terminate. We present

a semantics for divergence using the same general techniques as the non-deterministic exceptions

found in Glasgow Haskell [102, 81, 76]. These past efforts presented a large-step semantics for

133

divergence. Unfortunately, a large-step semantics makes no distinction between reduction rules and

strategy. Because the details of reduction strategy are of paramount importance in designing the

Eager Haskell implementation, we present a small-step semantics for divergence in Section 8.1. In

Section 8.2 we describe how the various strategies can be extended to incorporate divergence. In the

hybrid strategy used in Eager Haskell all reductions involving divergence can be performed inside

the run-time system.

In order to compile divergent code, the Eager Haskell compiler uses a technique we callbottom

lifting. Bottom lifting identifies error handlers and hoists them out of program code. Hoisting error

checking in this way is beneficial even if error handling code is otherwise treated just like other

program code. This is because many functions in Haskell consist of just a few lines of code. For

example, the prelude provides simple accessor functions such asheadon lists:

head(x : xs) = x
head[] = error "head: null list"

In practice, it is more expensive to callheadthan it is to perform the computation directly. As a

result, Haskell compilers perform extensive function inlining. What happens when we inline, say,

(head args) in print (fib (read (head args)))?

main =
do args ← getArgs

print (fib (read (caseargsof
(x : xs)→ x
[]→ error "head: null list")))

We have duplicated the error message. This turns out to be larger than the rest of the code we

inlined!

There is a simple solution to this problem: don’t inline the error handling code. We split the

definition ofheadas follows:

head(x : xs) = x
head[] = headError

headError = error "head: null list"

We can inlineheadwhile leavingheadErroralone. We call this splitting bottom lifting because it

extracts code which diverges—which is semantically equivalent to⊥—and lifts it into a separate

procedure or thunk. A single error handler is shared by every occurrence ofheadin our programs.

134

E ::= . . . | ↑(E)
N ::= . . . | ↑(E)
V ::= . . . | ↑(V)

IE[] ::= . . . | ↑(IE[])
S[] ::= . . . | ↑(S[])

S[↑(e)] −→ ↑(e) ⊥s
casex = e1 of →↑(e) −→ ↑(e) ⊥c
↑(↑(e)) = ↑(e) ⊥e
↑(letrec bs in e) = letrec bs in ↑(e) ⊥l
↑(e) −→ e ⊥d

Figure 8-1: Syntax, contexts, conversions, and reductions for divergence.

We can spot divergent functions using a combination of strictness analysis and type information;

the techniques used are described in Section 8.3. However, bottom lifting comes into its own when

error handling code is part of a larger function. Consider this definition oftail:

tail (x : xs) = xs
tail [] =

let file = "PreludeList.hs"
in let line = 37

in let column = 0
in matchError file line column

Here the entire nestedlet expression is devoted to error handling. We can use our semantics to

enlarge the bottom region so that it encompasses the bindings forfile, line, andcolumn. The trans-

formations enabled by distinguishing divergent expressions are discussed in Section 8.4.

8.1 Semantics of divergence

We distinguish a divergent expressione by marking it with an uparrow,↑ (e). In Figure 8-1 we

present the semantics of divergent terms. These semantics are actually fairly straightforward. When

a term↑(e) occurs in a strict contextS[e], no progress can be made untile converges. Thus, whene

diverges we can replace the whole contextS[↑(e)] by ↑(e) (⊥s). We can push divergence markings

throughlet andletrec as in⊥l. Finally,⊥e is equivalent to⊥s when read as a left-to-right reduction;

no semantic harm can result fromaddingredundant exception markings, however, and we therefore

state it as a separate equivalence.

135

The definitions of strict contexts and instantiation contexts must be extended in order for in-

stantiation andcasehoisting to work as expected in the presence of divergence. We simply need

to extendIE[] andS[] to permit instantiation and hoisting past divergence. Note in particular that

casex = e0 of →↑(e) =↑(casex = e0 of → e) [ηl,σs,ηl reversed]; this rule is used in

Section 8.4 to enlarge a region of divergent code.

Our semantics for divergence is non-deterministic. The rule⊥s can choose any one of several

divergent primitive arguments. More subtly, rules such asσt reorder expressions and also permit

more than one divergent outcome. Performing reductions according to the rules in Figure 8-1refines

the program [81]—possibly decreasing the number of exceptional outcomes which may result. If

we allowed⊥s to be interpreted as an equivalence, we would discover that all divergent expressions

are equivalent:

↑(e0) = ↑(e0)+ ↑(e1) ⊥s (reversed)
= ↑(e1) ⊥s

This is a perfectly reasonable semantic view, but thene in ↑(e) serves no useful purpose;↑(e) ≡⊥.

In practice, we expect thattail [] will not print “Division by zero”, and we therefore expect some

distinction to exist between different divergent terms. This does mean that refining reductions are

non-confluent:↑(e0)+ ↑(e1) can reduce to the incommensurable values↑(e0) and↑(e1).

8.1.1 The meaning of a divergent expression

We have not addressed one crucial question: What does↑ (e) actually mean, and how does that

meaning compare to the meaning ofe itself? We can take two positions on this issue. The simplest

view is that↑(e) is simply anannotation, which indicates thatewill diverge when evaluated. Under

this view, it is perfectly legal to erase the annotation (⊥d); its only purpose is to guide our reduction

strategy. This is the view currently taken by the Eager Haskell implementation.

Alternately, we can view↑(e) as propagating a specialexception value. Such a value can be

caught by the top-levelIO computation. This approach is described in [102], where the exception-

handling primitive is namedgetException. From a semantic standpoint, this is quite simple; we

simply need to replace⊥d with the equivalencesgetException ↑ (e) = return $! Bad $! e and

getException v= return (OK v). At the language levelgetException::a→ IO ExValande::ExVal.

The IO type ofgetExceptionreflects its non-determinism; indeed, the semantics of [102] collect all

exceptional outcomes as a set, andgetExceptionselects non-deterministically from this set. This

avoids the need for refining reductions in the purely-functional part of the language. In order to

136

h • 〈x =↑(e) ; k〉 r ≡ x =↑(e), h • 〈k〉 r (suspend on bottom)

x = e, h • 〈y = S[x] ; k〉 r ≡ h • 〈x = e〉 〈y = S[x] ; k〉 r (force)
e /∈ var ∧ e /∈ V ∧ e /∈↑(E)

x =↑(e), h • 〈y = S[x] ; k〉 r −→ x =↑(e), h • 〈y = x ; k〉 r (propagate bottom)

x =↑(e), h • 〈y = x〉 −→ x = e, h • 〈y = x〉 (diverge)

Figure 8-2: The hybrid reduction strategy in the presence of distinguished divergent terms.

obtain an acceptable equational semantics in the face of divergence, we must either equate divergent

terms, or work with a collecting semantics of this sort.

Note that there is a disconnect here: For everyday equational reasoning, it is simplest if all diver-

gent expressions are considered identical. The programmer making this assumption will, however,

assume that any divergent behavior which is exhibited is related to the original program code. This

is the reason we state in Section 8.1 that theimplementation(and thus the underlying semantics)

must distinguish different divergent terms.

Note that regardless of whether↑(e) represents divergence or an exception value, it is always

safe to mark a non-terminating expression as divergent. In either case, we collapse away portions

of the term which depend strictly upon the divergent expression. In the former case, we eventually

erase the annotation; if we evaluatee, we get stuck. In the latter case, the divergence can be caught

usinggetException, in which casee will be evaluated strictly and non-termination will once again

result. The semantics given in Figure 8-1 are a direct reflection of the equivalences which hold in

the presence of non-termination. These equivalences are outlined in various sources, including two

works by Barendregt [22, 23].

8.2 Evaluation strategies for divergence

Adding divergent terms toλC only has a small effect on many of our reduction strategies. The strict

and lazy strategies only require the erasure rule⊥d; neither strategy requires special mechanisms

for dealing with divergent terms. (Note, however, that if↑(e) is viewed as an exception mechanism

as described in Section 8.1.1 then there is no⊥d rule, and⊥s reductions must be used to unwind

execution to the nearestgetException.) The hybrid strategy must be modified as shown in Figure 8-

2. Divergent bindings are never evaluated directly; they always suspend immediately (suspend on

137

bottom). Ordinarily, a divergent binding cannot be forced (force). Instead, a computation which de-

pends upon a divergent binding will diverge and this divergence must be propagated. We can justify

the reduction rule (propagate bottom) given in the strategy using a combination of instantiation,⊥e,

and⊥s. A divergent annotation is erased using⊥d only if we must do so to make progress. In this

case, there will be only a single binding remaining on the stack (diverge).

8.3 Identifying bottom expressions

The most basic step in bottom lifting is identifying subexpressions of the program which diverge.

Fortunately, there are several techniques which assist us in doing so.

8.3.1 Strictness information

Strictness analysis is the fundamental means of identifying error handling regions. A functionf is

strict in its argument iff ⊥=⊥. Note, however, that functions which return⊥ have the special

property thatf x =⊥ for any x. Thus, divergence is the degenerate case of strictness analysis,

where information about function arguments and free variables turns out to be irrelevant! Numerous

techniques have been proposed for performing strictness analysis [92, Ch. 22], with widely varying

tradeoffs between analysis speed, precision, and detail. For the purposes of bottom extraction,

however, any reasonable strictness analysis is sufficient. In the Eager Haskell compiler, where

boolean functions represent strictness, a divergent expression will have the constant functionFalse

as its strictness information. We need not evaluate the abstract function—we just simplify it (a

necessary step in computing its fixed point).

Note that once we have performed bottom lifting, we need not perform strictness analysis on the

bottom expressions again. Instead, we can use the results of bottom extraction to refine strictness

analysis. In practice, this reduces analysis time slightly, but does not improve precision (since

bottom extraction uses the same information base as strictness analysis does).

8.3.2 Type information

Consider for a moment the type of Haskell’serror function:

error :: ∀ a : String→ a

According to the type, the result of a call toerror must be ofany and everyHaskell type. There is

only one value that belongs to every type, and that value is⊥. This is the free theorem forerror’s

138

type. There is a general class of free theorems [136] with exactly the same property:

x :: ∀ α : τ1→ τ2→ . . . τn→ α, α /∈ τi =⇒ x e1 e2 . . .en ≡⊥

In essence, if a function’s result can have any type at all, the function will diverge when called.

Because Haskell already performs type inference, it is quite simple to check this condition. This

test is effective: error handling code entails a call to the Haskellerror function or its kin, so we will

always encounter a function with an appropriate type.

In practice, we use type information to refine strictness analysis. The two techniques are com-

plementary: types tells us certain expressions are bottom in the absence of strictness analysis, and

strictness analysis propagates that information through the rest of the program. Thus, our strictness

analysis phase performs two checks before it actually analyzes an expression: First, it skips analysis

if it encounters an already-lifted bottom. Second, it skips analysis if type information indicates the

expression is bottom.

8.3.3 Compiler assistance

The following definition oftail works identically to the one given earlier:

tail (x : xs) = xs

The compiler must insert an explicit error check when it is compiling the pattern match. The com-

piler can automatically tag the error-handling code as a bottom expression, or the error handler can

be emitted in lifted form from the start. In either case, bottom lifting costs next to nothing.

8.4 Enlarging the lifted region

We would like to make the region we extract as large as possible. The Eager Haskell compiler

does not explicitly remember a type or a strictness for every single subexpression in a program;

propagating this much information and keeping it up to date is onerous. The analyses described so

far are only useful for variable bindings, function applications, and variable references. In the code

for tail given in the beginning of the chapter, only the call tomatchError is identified as a bottom

expression; this expression must be enlarged to include thelet bindings which enclose it.

The semantics in Figure 8-1 provide the tools we need to enlarge regions of divergent code.

The rule⊥l (applied in reverse) allows us to hoist divergence pastlet andletrec. For example, the

139

↑(casex = e of []→ e0 ; z : zs→ e1)
= ↑(casex = (casey = e of → y) of []→ e0 ; z : zs→ e1) ηl

= casey = e of →↑(casex = y of []→ e0 ; z : zs→ e1) σs

=
casey = e of
[]→↑(casex = y of []→ e0 ; z : zs→ e1)
v : vs→↑(casex = y of []→ e0 ; z : zs→ e1)

ηa, χp

=
casey = e of
[]→↑(casex = y of []→ e0 [y / x] ; z : zs→ e1 [y / x])
v : vs→↑(casex = y of []→ e0 [y / x] ; z : zs→ e1 [y / x])

ιc

=
casey = e of
[]→↑(e0 [y / x])
v : vs→↑(e1 [y / x] [v / z] [vs/ zs])

ιd, χp, χd

≡
casex = e of
[]→↑(e0)
z : zs→↑(e1)

α

Figure 8-3: Hoisting divergence from a multi-disjunct case.

expressions intail have the formlet i = e0 in ↑(e) and are thus rewritten as↑(let i = e0 in e).

The ruleσs (again applied in reverse) allows us to hoist divergence out of a simplecaseexpression;

this can be extended to more complexcaseexpressions as shown in Figure 8-3. The enlargement

step takes 25 lines of code in the Eager Haskell compiler.

During enlargement the compiler also marks functions which return bottom expressions, making

note of their arity. Such functions are error handlers which have already been factored out of the

code by the programmer, or by previous compiler passes; we do not attempt to lift them again.

8.5 Lifting divergent terms

Lifting a divergent term is simply another form of lambda lifting (see Section 6.3). When the bottom

lifting phase encounters an expression of the form↑(e), e is abstracted with respect to its free vari-

ables and hoisted to top level. The only special feature of bottom lifting is that it is performedbefore

most optimizations, and can be repeated as often as necessary during compilation. In particular, bot-

tom lifting occurs before inlining decisions are made; by lifting out divergent expressions, functions

are made smaller and more easily inlineable. Early lifting does mean that divergent expressions will

not be optimized based upon the context in which they occur. However, since divergent expressions

140

represent exceptional control flow, we actually disable most optimization in such code anyhow.

Only contractingoptimizations are performed in divergent regions.

8.6 Divergent computation at run time

After bottom lifting, all divergent expressions in the body of the program will have the form↑(x)

or ↑(fk ~xk). This makes it particularly easy to represent such a computation. The marking on an

expression of the form↑(x) can simply be dropped; the annotation is useful only to indicate to the

optimizer thatx diverges. The transformations described in Section 8.4 can be crafted to ensure that

the binding forx itself has the form↑(fk ~xk).

Expressions of the form↑(fk ~xk) are simply a special form of thunk—thebottom thunk. They

are represented and run in precisely the same way as ordinary thunks (Section 5.7). Like ordinary

thunks, bottom thunks can be transformed into pseudo-constructors before code generation (Sec-

tion 6.7).

The run-time system must perform the reductions in Figure 8-2. Forcing a divergent binding

x =↑ (f ~xk) always fails, resulting in suspension (suspend on bottom). If an attempt is made to

force a suspensiony = S[x] which is dependent (directly or transitively) upon a divergent variable

x =↑(f ~xk), the suspension is overwritten with an indirection to the divergent expressiony = x

(propagate bottom). Similarly, when a thunky = x ~yk applies a divergent functionx =↑(f ~xk), the

thunk is also overwritten with an indirectiony = x. Finally, if the result of forcing the outermost

expression is divergent, we rewrite the tag of the bottom thunk so that it becomes an ordinary thunk

(diverge). This thunk can then be forced as usual, causing the program to actually diverge.

8.7 Related work

The hybrid execution strategy in Eager Haskell requires the compiler to distinguish divergent ex-

pressions in some fashion. At its heart, however, bottom lifting embodies a basic principle of

compiler construction: focus effort on the code which will be most frequently executed. The entire

field of profile-based optimization is predicated on the notion that aggressive optimization should

be restricted to procedures that are heavily executed. The technique we describe here uses obvious

static information to weed out code which is unlikely to run.

We know of no work either on selective inlining of just the hot portions of a procedure body

141

or hoisting infrequently-executed code fragments. There are, however, a number of closely related

branches of research that deserve attention. Program slicing has been used to improve the readability

or debuggability of programs, and to identify related computations in order to parallelize them [141,

131]. A program slice is an executable fragment which contains only the computations necessary

for producing a particular value. We imagine our bottom-lifted program as an executable fragment

which produces meaningful results in the absence of errors in the input.

Procedure extraction hoists related computations into a separate procedure [44]. As with pro-

gram slicing, extraction efforts are directed at improving the readability or debuggability of pro-

grams, and there is substantial crossover between the fields.

The transformations we perform on divergent expressions generalize and simplify optimizations

which already existed in our compiler. Shivers describes a similar set of transformations to hoist

dynamic type checks in scheme programs [122]. Similar concerns motivate special treatment of

exception handling code in procedural languages. For example, the Jalapeño compiler for Java uses

an intermediate representation where basic blocks continue past exceptional control flow [32].

142

Chapter 9

Implementing Lazy Arrays

In Haskell, theArray data type must be used in fairly restricted ways. AnArray is constructed using

the functionarray (or one of its variants), which is an ordinary Haskell function whose arguments

are the array bounds and aninitializer—a list of tuples(index, value) specifying the contents of the

array. These tuples are usually constructed using a list comprehension. Arrays are accessed using

the indexing operator “!”. Examples of both construction and indexing can be found in the code for

thewavefront benchmark in Figure 9-1.

There are a few crucial constraints on array comprehensions such as the one shown in the figure.

First, arrays are createdin bulk—the array is allocated and its contents are filled in using a single

operation. Second, arrays are bounds-checked. This is not in itself surprising; bounds-checked

arrays are an integral part of a modern strongly-typed programming language.

However, bounds checking interacts in a very unusual way with bulk construction. What if one

of the initializer elements has an out-of-bounds index? Haskell requires that the result ofarray be

undefined in this case. In this way, if an array has an out-of-bounds initializer, the error can be

caught and signaled when the array is used. However, this means that an array is undefined until

wave :: Int→ Array (Int, Int) Float
wave n = a

where a =
array ((1, 1), (n, n))

([((1, j), 1.0) | j ← [1 . . n]]++
[((i, 1), 2.0) | i ← [2 . . n]]++
[((i, j), (a!(i − 1, j) + a!(i, j − 1) + a!(i − 1, j − 1)) / 3.0)

| i ← [2 . . n], j ← [2 . . n]])

Figure 9-1: Thewavefront benchmark

143

every single index has been computed and bounds-checked.

This behavior is pronounced if we consider cases where the array is constructed non-strictly. In

wavefront array elements depend on the values above them and to their left. This recursive de-

pendence is valid in Haskell because only values, and not indices, depend on other array elements.

Johnsson [56] gives examples of graph operations which are more efficient if arrays are constructed

lazily. This allows both valuesand indices to depend on the values of other array elements. Ac-

cessing an as-yet-undefined array element causes more of the initializer elements to be evaluated;

an out-of-bounds initializer causes accesses to as-yet-undefined elements to fail, rather than forcing

the entire array to be undefined.

Ironically, “lazy” arrays in the style of Johnsson are actuallybettersuited to eager evaluation.

We can evaluate both indices and values eagerly, filling in array elements as we go. If the initializer

is written in an order which respects dependencies between array elements, there is no need for

array construction to ever suspend. In thewavefront example, all elements depend on previously-

defined elements (if we read the initializer from left to right), and thus the result can be built eagerly

without suspending. With Haskell-style arrays computation of element values must suspend until

the array has been fully initialized.

Under Johnsson’s semantics, array indices are still computed one at a time in the order in

which they are specified—though that computation is now interleaved with other execution. In

Eager Haskell we take Johnsson’s lazy array semantics one step further, by providing lazy, order-

independent arrays. An array element obeys I-structure semantics: it may be either empty or full,

and if it is empty any accessing computation will suspend until it becomes full. Indices for initial-

izers may be computed in any order; array elements are filled in as their indices are computed. If at

any time an index overlap occurs the current array operation fails.

In practice, initializers are evaluated eagerly; if a particular index computation suspends, it is

deferred and re-tried later. Ordinarily, we expect the programmer will write initializers which are

properly ordered, and suspension should not be necessary. However, consider what happens if

fallback occurs while an array is being constructed, causing array elements to remain undefined.

When we access such an element, it will not contain a suspension pointing to its contents. The

suspended initialization cannot be associated with a particular element of the array, and risks being

thrown away. There needs to be a mechanism for associating initialization computations with the

array as a whole. As we shall see in the remainder of this chapter, given the need for such a

mechanism it is not difficult to provide the very flexible ordering of initialization we desire.

144

data (Ix a)⇒ Array a b = MkArray a a(Vector b) SignalPool

array (l, u) ivs = MkArray l u (iVectorToVector v) pool
where size = rangeSize(l, u)

v = makeIVector size
pool = signalPool$

map(λ(i, x)→ iVStore v(index(l, u) i) x) ivs

MkArray l u v pool!i = vFetch v pool(index(l, u) i)

vFetch v pool i
| slotFull v i = getIVector v i
| poolEmpty pool = error "array element undefined."
| otherwise = thunk vFetch v(forcePool pool) i

Figure 9-2: Implementing arrays usingSignalPools

The standard HaskellArray constructors can be defined using a monadic mechanism such as

state transformers [63]. The State Transformer approach constructs a mutable array and fills its

elements in using update operations. When all elements of the array have been initialized, the

mutable array is “frozen”, converting it into the immutable array which is visible to the rest of the

program. We cannot easily use such mechanisms for lazy array construction; the final array is not

available until every update is complete. We therefore need an entirely new mechanimsm—signal

pools.

9.1 Signal Pools

In order to track suspended initializer computations, we define an abstraction, thesignal pool, which

can efficiently represent suspended initializers. A simplified implementation of arrays using this

abstraction can be found in Figure 9-2. We make use of I-structure vectors. TheiVStoreprimitive

stores a value into the array, returning the void value() once the array slot has been imperatively

modified. The signal pool is constructed from the results of all theiVStoreoperations using the

signalPoolfunction. Every array includes a signal pool.

Elements are fetched by thevFetchfunction. We check if an element is properly defined using

theslotFull function. If it is, we need not bother with the pool at all. If both the pool and the slot

are empty, there are no outstanding writes and the array element is simply undefined. An error is

signaled. Finally, if there are entries in the pool then the pool must be forced in the hopes that the

145

slot will be filled. We then attempt to fetch the array element once again.

Note that the list passed tosignalPoolis not an efficient representation. It containsbothevalu-

ated and unevaluated computations. Imagine all but two elements of ann-element array have been

computed. If we access one of the undefined elements, we would need to traverse the initializer list,

skipping over as many asn− 2 elements, before finally discovering a candidate to force. Mean-

while, the initializer list must be constructed and stored, more than doubling the space required by

an array! Clearly, most of these entries are already() and can be ignored.

We therefore require that signal pools take up minimal space. We add an entry to the pool only

when an initializer computation suspends. Thus, we construct the pool by running the initializer

computations. We check whether a given computation has completed; if it has not, we create a data

structure which can be used to later force the computation. We collect these data structures together

into the pool.

9.2 Usingseq

Haskell already includes a function that does exactly what we want! Theseqcombinator evaluates

its first argument, then returns the value of its second argument. The Eager Haskell compiler turns

calls toseqinto touch operations. If the touch operation succeeds, execution continues normally; if

the touch operation fails, then a suspension is created. Thus, it seems as if we can create a signal

pool simply by joining together computations withseq:

type SignalPool = ()
signalPool = foldr seq()

This yields a very efficient implementation of signal pools. ThesignalPoolfunction can be inlined,

and themapand foldr functions deforested [38, 70], so that the signal pool is computed directly

rather than generating an intermediate list. Unfortunately, inlining theseqcombinator makes com-

putation overly strict. The compiler will happily transform the program so that subsequent calls to

iVStorewill not happen if a store operation suspends. This will cause deadlock if array accesses

occur out of order:1

a = array (0, 2) [(a!0, 2), (a!2, 1), (2, 0)]

1Note that Johnsson’s original conception of lazy arrays would prohibit this example as well—stores occur in initial-
izer list order. The looser semantics we describe here are based on a desire to parallelize array generation, and on the fact
that map/reduce deforestation can be allowed to change the order of list elements to transform recursion into iteration.

146

type SignalPool = ()
signalPool = foldr lastExp()
poolEmpty = isWHNF

forcePool = try

Figure 9-3: ImplementingSignalPools

becomes:

. . .
let x = vFetch a0 in
caseiVStore a x2 of →
let y = vFetch a2 in
caseiVStore a y1 of →
caseiVStore a2 0 of → ()

The final store will never occur—the computation ofx will suspend, causing the entire signal tree

to deadlock.

The cause of this problem is simple: the Eager Haskell compiler has aggressively optimized our

program assuming it is side-effect-free. The internals ofarray have side effects. The solution to

the problem is surprisingly simple—prevent the compiler from inliningseqby putting it inside a

wrapper functionpoolSeq. Then we obtain:

. . .
let x = vFetch a0 in
let u = iVStore a x2 in
let y = vFetch a2 in
let v = iVStore a y1 in
let w = iVStore a2 0 in
u ‘poolSeq‘ v ‘poolSeq‘ w ‘poolSeq‘ ()

Here every computation will initially suspend except the computation forw. The computation

w ‘poolSeq‘ () will run to completion, yielding() and thus a minimal signal pool.

9.3 Fairness usinglastExp

Unfortunately, this is still not quite enough. The problem is that the remaining pool elements must

be forced in order. If we attempt to fetch either undefined element,u will be forced, forcingx in

turn. Becausev is still suspended,x will again attempt to force the pool, resulting in deadlock. We

would prefer that the pool attempt to make progress onall of its elements. In order to do so, we

147

must control suspension much more carefully. We use the functionlastExp. This function can be

defined as follows:

lastExp :: a→ a→ a
lastExp a b| isWHNF a = b

| isWHNF b = a
| otherwise = thunk lastExp(try a) (try b)

If either argument is defined, then we discard it and return the other one. This ensures thatlastExp

still yields a minimal signal tree. If neither argument is defined, we attempt to compute both argu-

ments and suspend. The final implementation is shown in Figure 9-3.

148

Chapter 10

Results

In this chapter, we present measurements of various aspects of the Eager Haskell compiler. We

use a selection of benchmarks culled from the thenofib Haskell program suite, plus a series of

test programs used during the development of thepH and Eager Haskell compilers. We begin by

detailing the benchmarks and their coding style (Section 10.1). We then present high-level run times

for Eager Haskell and for Glasgow Haskell (Section 10.2). Most programs run more slowly under

Eager Haskell than when compiled with the more mature GHC; however, the slowdown is usually

not more than a factor of two. The exceptions either trigger compiler bugs or violate one or more of

the assumptions made in the Eager Haskell implementation.

Succeeding sections look at particular aspects of compiled code. We begin with garbage col-

lection (Section 10.3). We then look at function application (Section 10.4) and fallback behavior

(Section 10.5). Finally, we look at the cost of suspension (Section 10.6) and variable forcing (Sec-

tion 10.7).

The real promise of eager execution is that it eliminates the need to annotate programs (espe-

cially tail recursion) to control strictness. The multiplier benchmark is one example of a program

which must be annotated in this way. We conclude the chapter with a case study of the multiplier

benchmark, examining its behavior with and without annotation and optimization (Section 10.8).

Three kinds of numbers are presented in this chapter. Times are always in seconds. Ratios

are generally presented as percentages, and marked as such. Event counts are listed in tables as

the raw numbers collected from program runs. In graphs times and ratios are presented in the

obvious manner. Most event counts are normalized with respect to mutator time; this allows us to

perform side-by-side comparisons of programs with radically different run times and vastly different

149

Name Abbrev Source Description Lines Code
Fib fib pH recursive nfib, all ints between 1 and 37 35 10
clausify claus spectral convert to clausal form, 7 times 188 87
fibheaps fheap spectral* array fibheap versus sort, size 10000 286 89
Queens queen pH n-queens, all ints between 1 and 12 55 26
queens qu-no imaginary n-queens, problem size 10 14 9
Paraffins para pH enumerate paraffins up to size 23 210 102
paraffins p-no imaginary various paraffins stats, up to size 17 89 65
Primes prime new sieve: every 100 primes through 50000 49 36
multiplier mult spectral pipelined multiplier, 2000 cycles 503 289
Wave wave pH float wavefront array relaxation,200× 200 46 20
MatrixMult MM pH int matrix multiply,100× 100 52 22
Gamteb-acaro gam pH Monte Carlo; uses trees, size 4000 702 518
gamteb g-no real uses arrays, multiple source files, size 2048702 526
symalg sym real compute sqrt(3) to 15000 places. 1146 885
anna anna real strictness analyzer, using “big.cor”. 9521 6383

Table 10.1: Benchmarks presented in this chapter. For comparison purposes, the Eager Haskell
compiler itself has 32328 lines and 21522 lines of code.

proportions of time spent in garbage collection.

10.1 The benchmarks

The benchmarks used in studying the Eager Haskell compiler are summarized in Table 10.1. The

pH benchmarks were used (sometimes in a slightly older form) to study the performance of thepH

compiler; results forpH on a Sun multiprocessor can be found in Alejandro Caro’s Ph.D. thesis [31].

All these benchmarks use a single source file.

The remaining benchmarks are part of the nofib suite of Haskell programs [89]. These are

roughly divided into three classes. Theimaginarybenchmarks are small, contrived programs writ-

ten specifically as benchmarks. Thespectralbenchmarks are slightly larger (but still small) pro-

grams written for purposes other than benchmarking. Thereal benchmarks are large multi-file

applications.

Several programs exist in both benchmark suites. ThepH versions have generally been tweaked

to deforest gracefully, or to eliminate trivial uses of infinite lists. ThepH benchmarks also use larger

problem sizes.

The benchmarks were chosen to provide a broad range of problems and coding style. Most no-

tably, thepH benchmarks do not contain any infinite lazy computations and tend to be array-heavy.

By contrast, many of the nofib-only benchmarks create large or infinite tree-like data structures.

150

10.1.1 Fib

The fib benchmark runs n-fibonacci (fibonacci with the recursive callfib (x− 1) + 1 + fib (x− 2))

for all Ints between 1 and 37. The program is little more than arithmetic and function calls, and

uses no non-strictness whatsoever. We include fib as a measure of two aspects of the compiler: call

overhead and slowdown due to the lack of unboxing.

10.1.2 Clausify

The clausify benchmark parses the logical expression(a = a = a) = (a = a = a) = (a = a = a)

and converts it to clausal forma seven times. This is an exercise in symbolic manipulation of

tree-like data structures.

10.1.3 fibheaps

The fibheaps benchmark generates a list of 10000 randomInts and sorts them two ways: using the

sort function from the prelude, and by constructing a fibonacci heap and then enumerating it. The

deleteMinroutine uses a small-scale array accumulation; the efficiency of this operation and of the

built-in sort determine the overall speed of the benchmark.

10.1.4 Queens

The queens benchmark enumerates the solutions to the n-queens problem using a naive generate-

and-test algorithm. The computation mainly takes the form of list comprehensions. Queens is used

as a test of deforestation [38, 70]; most of the intermediate lists can be eliminated. This also permits

shortcutting of control flow.

We evaluate two nearly-identical versions of queens. ThepH queens is listed first in all figures.

It has been tuned to use a deforestable intermediate list in the innermost loop. It enumerates all

solutions with board sizes between 1 and 12. The nofib queens, listed second, enumerates only the

10x10 solutions. The innermost loop is written using recursion.

10.1.5 Paraffins

The paraffins benchmark [85] enumerates all the paraffins (molecules with the chemical formula

CnH2n+2). This is a highly recursive problem: very large lists of partial solutions are constructed,

151

and once constructed each partial solution remains live for the remainder of the run. As a result,

paraffins is extremely GC-intensive, even when a generational collector is used.1

Again, two nearly-identical versions of paraffins were evaluated. ThepH paraffins, listed first,

simply lists the number of paraffins of sizen for eachn 6 23. The nofib paraffins, listed second,

prints a number of statistics relating to counts of partial solutions in addition to solution counts. It

only enumerates paraffins for whichn 6 17. Because of the combinatorial explosion in the number

of solutions (and the amount of live data in the program), thepH version takes quite a bit longer to

run. Larger problem sizes (n > 23) do not fit comfortably into physical memory.

10.1.6 Primes

A number of versions of the sieve of Eratosthenes have been written in Haskell, ranging in com-

plexity from two lines to a couple of pages of code. Non-strict sieves produce their output list

incrementally, and frequently the result is an infinite list of primes which is cut to size as needed.

Because the sieve makes use of a long, persistent list, it has proven troublesome in the past for

generational garbage collection [109].

The sieve used here prints the first of every 100 primes less than 50000. It has a couple of unique

features. The list of candidate primes is bounded above by 50000. The actual sieving operation itself

subtracts the infinite ordered list of multiples of the current prime from the list of candidate primes.

Subtraction of ordered lists requires 7 lines of code; with this primitive, the sieve itself can be written

in four lines. Because this version of the primes benchmark generates an infinite list for every prime

number, it places a good deal of stress on the thunking and cutoff mechanisms in the Eager Haskell

run-time system.

10.1.7 Multiplier

The multiplier benchmark performs a gate-level logic simulation of a clocked multiplier. This

benchmark is a classic example of the lazy style, using infinite streams to represent wire values

as they change over time. Only the outermost portion of the program limits list lengths in any way.

We therefore expect it to pose a major challenge to the Eager Haskell execution mechanism. There

are two dangers: on the one hand, if the compiler is aggressive in detecting infinite list creation,

much of the run time will be spent forcing thunks. A lazy Haskell implementation is focused on

1A Java version of paraffins is used by Sun to benchmark GC performance.

152

making this efficient, whereas this has been a secondary concern in Eager Haskell. On the flip side,

if such lists are not detected then they must be caught by the cutoff mechanism. This usually means

that large structures are generated; if several are alive at once it is likely they will stress the garbage

collector as well as the runtime.

The multiplier benchmark includes annotations intended to control function strictness. These

annotations ensure that wire values are computed in time order. We have argued in Section 1.3 that

eager execution should not require annotation for efficient execution. In Section 10.8 we examine

this claim in more detail by comparing annotated and unannotated versions of the benchmark on

larger problems.

10.1.8 Wavefront

The core of the wavefront benchmark is pictured in Figure 9-1. Wavefront represents the inner loops

of an array relaxation algorithm. A200×200 array ofFloats is initialized non-strictly starting from

the edges. This tests our ability to handle array non-strictness gracefully using the techniques from

Chapter 9.

10.1.9 Matrix Multiply

The matrix multiply benchmark squares a100×100 matrix of Ints. The naive textbook algorithm is

used: each element is computed using a single inner product operation. The inner product is written

using a deforestable list comprehension:

f i j = sum[a!(i, k) ∗ b!(k, j) | k← [1 . .n]]

Array elements in matrix multiply can all be computed independently. Thus, in contrast to wavefront

the order in which the result array is computed (which may change due to fallback) should not

matter.

10.1.10 Gamteb

Gamteb is a Monte Carlo photon transport simulation originally from Los Alamos. Heavy use is

made of very large tuples and of arrays ofDoubles. Two very different versions of gamteb were

evaluated.

ThepH version of the benchmark (listed first), which uses a problem size of4000, was obtained

by automatically translating the Id benchmark into Haskell. The resulting code was consolidated

153

into a single module; this has a similar effect to performing whole-program optimization. This ver-

sion of gamteb uses an array implementation based on complete binary tries. Under Eager Haskell,

a version compiled using ordinary Haskell arrays either allocates too much memory at once (if

function splitting is insufficiently aggressive) or crashes the C compiler (due to a bug ingcc, the C

compiler claims to need a terabyte of heap in order to compile).

The nofib version of gamteb (listed second) uses a smaller problem size of 2048. This version of

the benchmark appears to have been translated to Haskell by the original authors, and retains a neat

division into thirteen source modules. This prevents both Eager Haskell and GHC from performing

some of the most aggressive inlining optimizations which are possible with single-file compilation.

One happy consequence of this fact, however, is that the Eager Haskell implementation can use

arrays without overburdening the C compiler.

10.1.11 Symalg

The symalg benchmark computes the first15000 digits of the square root of 3. The symalg program

itself is designed to perform general arbitrary-precision calculations; it is the second-largest of the

benchmarks (11 source files, containing slightly more code than gamteb). In symalg arbitrary-

precision numbers are represented lazily using infinite binary trees of arbitrary-precisionIntegers.

This benchmark stresses the thunking and fallback mechanisms in Eager Haskell.

10.1.12 Anna

The final and largest benchmark, anna, reads in program code for a simplified Haskell-like language

(using parsing combinators), type checks it, and performs a high-precision strictness analysis. We

evaluate the largest of the test files,big.cor. Haskell is a nearly ideal language for the sort of

heavy symbolic manipulation which occurs in all three stages of anna. Parsing and static analysis

both involve a large number of higher-order function calls; this stresses the eval/apply mechanism

used in Eager Haskell.

10.2 Eager Haskell versus GHC

Raw timings for benchmark runs are presented in Table 10.2, and graphically in Figure 10-1. All

measurements were performed on 2-processor 466MHz Celeron PC with 384MB of RAM. The

measurement listed is the median of 10 run times. Neither GHC nor Eager Haskell yet work on

154

mutTime gcTime time ghcTime slowdown%
Fib 26.4555 2.7715 29.2145 15.1400 193.23%
clausify 0.6235 0.1060 0.7295 0.5500 140.00%
fibheaps 0.9585 0.3840 1.3435 0.7150 193.71%
Queens 19.6475 0.9435 20.5875 28.4900 72.41%
queens 0.2970 0.0560 0.3530 0.3200 112.50%
Paraffins 12.6560 28.5800 41.2465 22.6500 182.38%
paraffins 0.9120 1.3295 2.2435 2.0200 114.60%
Primes 35.9675 6.2990 42.2695 20.5850 205.56%
multiplier 4.3935 2.9690 7.3650 1.9250 383.12%
Wave 1.1310 1.4900 2.6190 0.1800 1486.11%
MatrixMult 1.4220 0.0530 1.4750 1.1500 131.30%
Gamteb-acaro 1.6740 0.6420 2.3155 2.2600 104.20%
gamteb 0.7465 0.1860 0.9315 1.1800 79.66%
symalg 0.5410 0.0190 0.5610 1.3200 43.18%
anna 4.0460 0.4630 4.5090 1.4650 308.19%

Table 10.2: Run times (in seconds) of benchmarks under Eager Haskell and GHC. Both user and
system times are included. Eager Haskell run time is broken down in to mutator time and garbage
collection time.

SMP machines; the main effect of the extra processor should be a decrease in system load from

background processes. The machine was running Red Hat Linux 6.1, Linux kernel version 2.2.12-

20. Both kernel and libc were recompiled to optimize for execution on i686. A single user was

logged in to a text console to perform the timings; the X server and network interfaces were shut

down for the duration.

The Eager Haskell compiler was run with optimization switched on (-O). The resulting C

code was compiled with gcc version 3.0.1. A long list of flags was provided to gcc:gcc -Os

-march=i686 -fstrict-aliasing -fno-keep-static-consts -fschedule-insns2 -fforce-

addr -freg-struct-return -fomit-frame-pointer. Compilation with-fomit-frame-pointer

allows the frame pointer register to be used as a shadow stack pointer. The-Os flag indicates that

code should be optimized for space; this proved faster than options which optimize for speed. The

-fno-keep-static-consts allows the compiler to get rid of unused info tables (such as the ones

generated by the Eager Haskell compiler for unused suspension points). The remaining flags tweak

minor aspects of program optimization.

The Eager Haskell run-time system was compiled to turn off all instrumentation except for

internal timers. These internal timers make direct use of the real-time clock in the Celeron (rdtsc);

timer calls therefore flush the processor pipeline but do not incur system call overhead. It is these

155

0

5

10

15

20

25

30

35

40

45

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

runTime
ghcTime

Figure 10-1: Run times of benchmarks under Eager Haskell and GHC.

times which are listed in Table 10.2. The run times reported by the shell are nearly identical (a tiny

bit larger); the difference can be seen in Figure 10-2.

GHC was run at its maximum optimization level:-O2 -fvia-C -optc-Os -optc-march=i686.

The same release of gcc, with the same major compilation flags, was used by both Eager Haskell

and GHC. Table 10.2 reports run time as recorded by the shell; this is the sum of both user and

system time.

Eager Haskell programs required about60% more time than their lazy counterparts (this is the

geometric mean of the slowdown across all benchmarks). This slowdown is shown graphically

in Figure 10-2. These results are encouraging, as the Eager Haskell compiler has a number of

notable shortcomings with respect to its more mature peer. For example, GHC compiles fib into

straightforward recursion, passing and returning unboxed numbers. In Eager Haskell, by contrast,

fib boxes all numbers, and contains a spawn (to preserve eagerness), resulting in multiple entry

points. In spite of this, the Eager Haskell version of fib is only twice as slow as GHC.

For several programs, Eager Haskell actually produces faster code than GHC. Consider queens:

in thepH version, where the innermost intermediate list is deforested, the Eager Haskell compiler

runs faster. It is only10% slower on the nofib version, whose inner loop is written recursively. This

156

0

50

100

150

200

250

300

350

400

450

500

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

100
slowdown

mslowdown

Figure 10-2: Slowdown of Eager Haskell compared to GHC, expressed as a percentage of GHC
run time. Lower is better; less than100% indicates a speedup. The wavefront benchmark was
approximately14.9 times slower than GHC; see Table 10.2. The two bars indicate OS and internal
timer measurements for Eager Haskell; they are similar in all cases.

explicit recursion permits GHC to take advantage of unboxing.

A particular surprise is symalg, which constructs an infinite tree. This turns out to be structured

ideally for the cutoff mechanism. A large tree is constructed eagerly; after cutoff, the result is

plucked from it with little additional evaluation. As a result, nearly all of execution is spent in user

code; the run-time system and GC are only rarely invoked. The result is fast execution.

The smaller array-intensive benchmarks generally work fairly well in Eager Haskell: gamteb is

approximately the same speed in Eager Haskell and GHC, matrix multiply is only slightly slowed

by the absence of unboxing, and the smaller run of paraffins (which uses much less storage) is only

about15% slower.

By contrast, Eager Haskell does very poorly on run-time system and GC-intensive code. Its

most notable failure is wavefront, which is nearly 15 times slower! Indeed, if we ignore this bench-

mark our mean slowdown drops to37%. The performance of wavefront is due to an unfortunate

interaction of poor optimization and bad fallback behavior. In Figure 9-1 we can see that wavefront

contains a non-strict dependency between each array element and its neighbors above and to the

157

left. The compiler breaks this dependency in the wrong place, preventing the array initialization

from being deforested. As a result, a list of suspended elements is created, and the suspensions are

then copied from the list into the array. Only then can they be forced, yielding the final result.

To make matters worse, array initialization falls back. This points to a major shortcoming

of signal pools: they are too fair. Wavefront does best when its loops are executed in program

order, from top to bottom and left to right. When an exception occurs in a signal pool, however,

computation ordering is effectively inverted. The array is gradually filled with suspensions as signal

pool computations attempt to run. After fallback, the last element of the array is demanded. This

causes demand to ripple backwards towards the elements which have been computed. We speculate

this problem will persist even if wavefront is properly deforested. Better scheduling of the signal

pool and faster suspension and resumption are required to mitigate this overhead. The current signal

pool implementation is done entirely using Haskell code similar to that shown in Figure 9-3; with

GC and run-time assistance performance can be improved dramatically.

The poor performance of the multiplier and anna benchmarks is easier to explain. The multiplier

benchmark contains large numbers of infinite lists generated by simple recursive functions. The

compiler inserts thunks into such loops to avoid creating large amounts of trivially useless data.

However, multiplier does use a good deal of data from every list. Thunks must be created and

then forced again. The anna benchmark creates many closures and stresses the apply routine in the

run-time system.

10.3 Garbage collection

Garbage collection times for Eager Haskell programs are listed along with the run times in Ta-

ble 10.2. These times only count time spent copying, marking, and performing write barriers; they

do not include the amount of time spent by the mutator allocating storage or checking for write

barriers. The graph in Figure 10-3 shows GC time as a percentage of total run time. In general,

Eager Haskell programs which outperform their lazy counterparts tend to spend very little time in

the garbage collector. However, the reverse is not necessarily the case. We expect high GC overhead

in wavefront and multiplier, reflecting additional allocation performed in the process of fallback and

thunk forcing. We must look elsewhere for the sources of overhead in the remaining programs.

As expected, Paraffins is extremely GC-intensive; however, it is not dramatically slower than

the other programs tested. However, for the larger problem size, GC time alone is larger than run

158

0

10

20

30

40

50

60

70

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

gcsecPerSec

Figure 10-3: Percentage of total run time spent in garbage collector.

time under GHC. If paraffins performance is to match or exceed the same program compiled with

GHC, GC performance must improve and mutator code must allocate less aggressively.

As noted in Section 7.3, the Eager Haskell compiler is probably too aggressive in batching

allocation points. This results in a large number of write barriers, and may cause empty objects to be

copied and promoted. In Table 10.3 and in Figures 10-4 and 10-5 we show the number of locations

which arecheckedto see whether a tenured write has occurred, and the number of locations where

such a write has actually happened and barrier indirections must be introduced.

No write barriers are necessary when non-pointer objects such as integers and nullary construc-

tors are written. For this reason, the number of allocations and the number of write barriers executed

are generally within a factor of two of each other (Table 10.3).

We distinguish between full-fledged write barriers and so-calledindirectionbarriers. Indirection

barriers occur when the object being promoted is already an indirection; in this case turning it

into a barrier indirection is a simple matter of filling in extra fields and changing its tag. Though

many indirection barrier checks occur in compiled code, actual indirection barriers are quite rare

(Figures 10-4 and 10-5). The fields of non-indirections must be scanned and replaced with barrier

indirections where necessary. This is shown in Figure 10-6. Very small numbers indicate that most

159

w
rit

eB
ar

rie
r

in
di

rB
ar

rie
r

ba
rr

ie
r

ac
tu

al
W

rit
eB

ar
rie

r
ac

tu
al

In
di

rB
ar

rie
r

ac
tu

al
B

ar
rie

r
ac

tu
al

P
er

W
rit

e%
ac

tu
al

P
er

In
di

r%
ac

tu
al

P
er

B
ar

%
ro

ot
F

ou
nd

re
se

rv
e

re
se

rv
eP

er
B

ar
%

F
ib

16
9

10
23

34
22

8
10

23
34

39
7

1
0

1
0.

59
%

0%
0.

00
%

2
10

24
87

91
6

10
0.

15
%

cl
au

si
fy

10
55

10
7

76
00

05
18

15
11

2
14

5
19

16
4

0.
01

%
0.

00
%

0.
01

%
0

16
98

60
0

93
.5

8%
fib

he
ap

s
99

66
78

99
04

11
19

87
08

9
75

41
5

75
46

0.
76

%
0.

00
%

0.
38

%
2

17
14

77
3

86
.3

0%
Q

ue
en

s
91

07
36

3
12

26
40

3
10

33
37

66
1

0
1

0.
00

%
0%

0.
00

%
2

65
77

71
99

63
6.

53
%

qu
ee

ns
36

92
6

20
35

38
96

1
21

9
3

22
2

0.
59

%
0.

15
%

0.
57

%
1

11
66

80
1

29
94

.7
9%

P
ar

af
fin

s
96

18
71

5
18

82
7

96
37

54
2

18
92

0
24

18
94

4
0.

20
%

0.
13

%
0.

20
%

2
19

17
05

17
19

8.
92

%
pa

ra
ffi

ns
62

20
13

40
17

62
60

30
10

93
15

11
08

0.
18

%
0.

37
%

0.
18

%
0

12
37

65
8

19
7.

70
%

P
rim

es
23

94
38

39
15

8
23

94
39

97
98

43
6

39
98

47
5

0.
41

%
24

.6
8%

0.
41

%
2

22
63

74
55

94
.5

4%
m

ul
tip

lie
r

44
73

38
5

11
78

31
3

56
51

69
8

28
72

4
55

66
34

29
0

0.
64

%
0.

47
%

0.
61

%
4

41
66

27
6

73
.7

2%
W

av
e

45
14

22
54

23
58

99
37

80
61

88
6

73
6

62
62

2
13

.7
1%

0.
14

%
6.

30
%

2
40

64
45

40
.9

0%
M

at
rix

M
ul

t
23

57
1

20
51

05
7

20
74

62
8

20
51

3
97

89
30

30
2

87
.0

3%
0.

48
%

1.
46

%
2

10
75

24
2

51
.8

3%
G

am
te

b-
ac

ar
o

51
79

23
13

18
37

7
18

36
30

0
11

92
9

20
19

4
32

12
3

2.
30

%
1.

53
%

1.
75

%
2

26
82

18
6

14
6.

06
%

ga
m

te
b

57
54

79
42

90
62

10
04

54
1

43
98

8
44

06
0.

76
%

0.
00

%
0.

44
%

4
12

98
81

6
12

9.
29

%
sy

m
al

g
33

27
3

15
47

7
48

75
0

14
1

15
0.

04
%

0.
01

%
0.

03
%

2
71

50
1

14
6.

67
%

an
na

25
43

71
0

92
97

53
34

73
46

3
36

86
41

0
40

96
0.

14
%

0.
04

%
0.

12
%

3
72

49
73

3
20

8.
72

%

Ta
bl

e
10

.3
:

W
rit

e
ba

rr
ie

r
be

ha
vi

or
.

T
he

fir
st

tw
o

co
lu

m
ns

in
di

ca
te

dy
na

m
ic

al
ly

ex
ec

ut
ed

w
rit

e-
ba

rr
ie

r
ch

ec
ks

pe
rf

or
m

ed
fo

r
w

rit
es

to
no

rm
al

ob
je

ct
s

an
d

to
in

di
re

ct
io

ns
.

T
he

se
ar

e
to

ta
le

d
in

th
e

“b
ar

”
co

lu
m

n.
T

he
ne

xt
th

re
e

co
lu

m
ns

in
di

ca
te

ho
w

m
an

y
of

th
es

e
ba

rr
ie

r
ch

ec
ks

ac
tu

al
ly

in
vo

lv
ed

w
rit

es
to

te
nu

re
d

ob
je

ct
s.

T
he

ne
xt

th
re

e
co

lu
m

ns
ex

pr
es

se
s

th
e

ac
tu

al
ba

rr
ie

rs
as

a
pe

rc
en

ta
ge

of
ba

rr
ie

rc
he

ck
s.

T
he

fin
al

th
re

e
co

lu
m

ns
in

di
ca

te
th

e
nu

m
be

r
of

C
A

F
s

ex
ec

ut
ed

(t
he

se
re

qu
ire

sp
ec

ia
lw

rit
e-

ba
rr

ie
r-

lik
e

tr
ea

tm
en

t)
,t

he
nu

m
be

r
of

re
se

rv
e

(b
at

ch
ed

he
ap

al
lo

ca
tio

n)
ac

tio
ns

,a
nd

th
e

ra
tio

be
tw

ee
n

w
rit

e
ba

rr
ie

r
ch

ec
ks

an
d

re
se

rv
at

io
ns

.
A

la
rg

e
nu

m
be

r
in

th
is

co
lu

m
n

in
di

ca
te

s
th

at
co

m
pa

ra
tiv

el
y

fe
w

al
lo

ca
te

d
ob

je
ct

s
re

qu
ire

d
a

w
rit

e
ba

rr
ie

r.
A

sm
al

ln
um

be
r

in
di

ca
te

s
m

an
y

w
rit

e
ba

rr
ie

rs
fo

r
ea

ch
al

lo
ca

tio
n

ac
tio

n.

160

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

noWriteBarrier
noIndirBarrier

actualWriteBarrier
actualIndirBarrier

Figure 10-4: Number of write barrier checks, normalized to mutator time.

0

10000

20000

30000

40000

50000

60000

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

actualWriteBarrier
actualIndirBarrier

Figure 10-5: Actual number of write barriers triggered, normalized to mutator time.

161

0

1

2

3

4

5

6

7

8

9

10

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

1
barriers/Write

barriers/Actual

Figure 10-6: Barrier indirections created per write barrier, for non-indirection write barriers and for
all write barriers.

write barriers refer to objects that need not be promoted—either because they have already been

promoted themselves or as in Fib because they already reside in the static constant table.

Note that the nofibqueensbenchmark appears to promote a great many objects with a small

number of write barriers. This is because suspension creation in the run-time system performs an

implicit write barrier—the checking required has already occurred for other reasons. This case only

occurs when empty data is promoted and then overwritten with a suspension. This is a relatively

rare occurrence, and is obvious in this benchmark only because the number of write barriers is itself

very small.

Actual write barriers are quite rare even at their most common (about6% of all checks in wave-

front, and less than2% in all other cases). Note that the array-intensive codes perform many more

write barriers. This is to be expected; objects in the large object area are assumed to be tenured,

and will drag their contents into tenured space as well. Wavefront is tremendously write-barrier

intensive, however. This additional traffic is again a result of the signal pool representation;lastExp

discards and re-creates a thunk each time it is forced unsuccessfully, and each of these new thunks

in turn must be promoted.

162

regularCall otherTail selfTail selfOver runFrame
Fib 204668345 76 371 0 0
clausify 2540317 37760 367990 0 3483
fibheaps 1152932 544852 509845 16 24148
Queens 22381141 3173569 54430754 0 61316
queens 383703 69643 1092586 0 606
Paraffins 9598419 82742 9534415 4947 4556
paraffins 622159 12707 612795 424 266
Primes 13282703 108 6981517 4950 2359878
multiplier 4701923 2506001 723436 0 616953
Wave 373304 619 40108 0 39831
MatrixMult 10828 3 1030321 0 2237
Gamteb-acaro 1309731 208834 1597562 3 53726
gamteb 650120 228239 464566 2 6747
symalg 37918 15466 48511 28 64
anna 8242900 7051493 1793626 3 28922

Table 10.4: Function entry behavior. Raw numbers are given for the four types of function call that
may occur in user code. The final column is function calls performed by the run-time system when
resuming suspended computations.

10.4 Function Application

There are two basic ways an Eager Haskell function is entered: either it is called, or a suspension

is resumed by the run-time system. We break down ordinary function calls into three categories

(Section 7.6): self tail calls, other tail calls, and regular (non-tail) calls. Similarly, we break down

resumptions into three categories: resumptions that re-start function execution from entry point

0, resumptions that re-start execution elsewhere in the function, but only have a single associated

location, and resumptions that have multiple associated locations (these must be associated with a

nonzero entry point).

Table 10.4 and the corresponding graph in Figure 10-7 show the breakdown of function entries.

TheselfOverstatistic represents self-tail calls for long-lived loops. TherunFramestatistic indicates

function entries due to resumption of suspensions. Unsurprisingly, fib is the most call-intensive of

the benchmarks. Both the queens benchmarks and the well-behaved array benchmarks (gamteb,

matrixmult, even paraffins) make heavy use of self tail recursion.

The GeneralApplyfunction handles unknown function application as outlined in Table 5.2.

This function is called both by user code and by the thunk-forcing mechanism in the run-time

system. Figure 10-8 distinguishes these two uses of application. The graph is normalized to the to-

163

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

runFrame
regularCall

otherTail
selfTail

selfOver

Figure 10-7: Function entries, normalized to mutator time.

0

10

20

30

40

50

60

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

thunkRun
userApplies

Figure 10-8: Entries toGeneralApply, as a percentage of all applications

164

0

500

1000

1500

2000

2500

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

NumCutoffs

Figure 10-9: Fallbacks per second

tal number of function calls; thus the scale represents the proportion of all calls which pass through

GeneralApply. Note the prevalence of thunks introduced by the compiler in primes and multiplier,

and thunks introduced by fallback in signal pools in wavefront. Multiplier, anna, and fibheaps all

include a large number of calls to unknown functions.

Nearly all general applications call a fully-computed closure at exactly full arity. The remaining

cases account for only hundredths of a percent of calls to GeneralApply. Two benchmarks, anna

and the nofib version of queens, occasionally pass an unevaluated closure toGeneralApply. These

closures are forced successfully in every case. Over-saturated applications occur only in the anna

benchmark. Interestingly, none of the benchmarks partially applies an unknown function. Closures

are created only for known functions; this task occurs directly in user code.

Applying a partial application requires stack shuffling. Only one of the benchmarks—anna—

makes extensive use of function closures. The cost of stack-shuffling is a likely reason for the poor

performance of this benchmark in Eager Haskell.

165

0

20

40

60

80

100

120

140

160

180

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

NumReversions
suspSusp

Figure 10-10: The consequences of fallback: thunks reverted and suspensions created, normalized
to the number of fallbacks.

10.5 Fallback

When an exception occurs, the execution state is unwound. This has two consequences: function

calls are reverted to thunks, and the computations which depend on them are suspended. Figure 10-

9 shows the frequency of exceptions in the various benchmarks. In Figure 10-10 we examine the

consequences of fallback, by normalizing the number of thunks and suspensions created to the

number of fallbacks. This is only accurate for thunk reversion; there are plenty of possible causes for

suspension, and they are not distinguished in the graph. Similarly, primes, multiplier and wavefront

create large numbers of thunks as a direct result of execution rather than as a result of exceptions.

The thunk forcing mechanism cannot distinguish these cases.

It is interesting to note that the thunk-intensive benchmarks also revert a larger number of func-

tion calls when exceptions occur. We can think of the height of the bars in Figure 10-10 as a rough

measure of the call depth of each program. Benchmarks which create and traverse long lists fre-

quently contain deep recursion, and consequently more thunk reversion occurs. This has another

interesting effect: the extra time required to revert and re-start these thunks means that the rate of

exceptions in these benchmarks is lower than normal.

166

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

touchCase
touchTouch

Figure 10-11: Touch operations (checks) normalized to mutator time. Broken down into freestand-
ing touch operations and those combined with acaseexpression.

10.6 Suspension

When user code encounters a location which does not contain a value, that location must be passed to

the run-time system. For sum types, this check—the touch—is combined with thecaseexpression,

but numeric and tuple types require a separate check. Figure 10-11 shows the rate at which checks

are performed. Most of these checks succeed; only a small proportion fail and require forcing, as

shown in Figure 10-12. Unsurprisingly, the benchmarks with the highest reversion rates also have

the highest suspension rates (as high as11% in multiplier). Most forcing operations yield a value,

permitting execution to continue. The remainder (the lower part of the bars in Figure 10-12) require

a new suspension to be created.

Once created, a suspension need not be forced. However, most suspensions are eventually

forced, a fact that is evident in Figure 10-13. A notable exception (apart from symalg, which does

very few touch operations) is anna. This indicates that a large number of unnecessary computations

are being run eagerly. It is possible that more aggressive program transformations could eliminate

this extra eagerness and thus avoid the unnecessary computation.

167

0

2

4

6

8

10

12

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

suspContPerTouch
suspPerTouch

Figure 10-12: Percentage of touch operations which must invoke the run-time system to force a
missing value. Lower bar indicates the proportion of such attempts which fail to obtain a value.

0

20

40

60

80

100

120

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

enterMulti
enterNonZeroOne

enterZero

Figure 10-13: Function entries upon resumption, as a percentage of suspensions created.

168

0

50

100

150

200

250

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

100
followPerTotal

Figure 10-14: Percentage of indirections which are followed. Numbers greater than100% indicate
that indirections are followed more than once on average.

Figure 10-13 also indicates how resumed computations make use of suspension points. Re-

sumption of suspensions is a rare enough occurrence compared to function call that it is lost in

the noise in Figure 10-7. Multiple-result suspensions are even rarer and therefore represent only

a tiny proportion of all function entries. The very complex machinery required for multiple-result

suspensions could undoubtedly be simplified in the common case.

10.7 Forcing variables

What happens during forcing depends on what sort of object is encountered. This is broken down

in two ways in Figure 10-15 and Figure 10-16.

Indirections are removed upon entry; in many cases this is sufficient, and the result is returned.

Figure 10-14 shows the proportion of indirections which are dereferenced. Three benchmarks fol-

low indirections more often than they create them: Primes, the nofib version of Paraffins, and Matrix

Multiply. In all three cases, an enormous number of indirections are created as a result of tenuring.

These indirections cannot be removed until the data they point to has been promoted. Already-

169

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

forceIndirSucc
forceException

thunkRun
forceThunkFail

forceSuspNoRun
runFrame

forceEmpty
forceBottom

Figure 10-15: Breakdown of variables forced, normalized to mutator time.)

0

20

40

60

80

100

120

140

fib claus fheap queen qu-no para p-no prime mult wave MM gam g-no sym anna

forceIndirSucc
forceException

thunkRun
forceThunkFail

forceSuspNoRun
runFrame

forceEmpty
forceBottom

Figure 10-16: Breakdown of variables forced, as percentages of all force operations.

170

tenured data continues to refer to the indirections until the next full collection. In Matrix Multiply,

most array accesses must follow an indirection as a result. In general, it appears that most indirec-

tions encountered in user code (and thus by force) reside in tenured space. This is not too surprising;

when an indirection is created directly in user code, the pointed-to value is used as much as possible.

Only when a write barrier introduces indirections unexpectedly does user code need to follow them.

At the same time, the garbage collector eliminates nursery indirections; tenured indirections tend to

persist much longer.

When an exception has been signaled, the forcing code removes indirections but does not run

suspensions or thunks. As function calls fall back, we would expect their callers to synchronize on

the results; such attempts will fail due to the pending exception. However, this seems to be relatively

uncommon in most of the benchmarks, as indicated by the “forceException” bar in Figures 10-15

and 10-16. Most benchmarks force a comparatively small number of thunks during fallback; only

in fibheaps, gamteb (pH version) and symalg are the number of force operations during fallback

comparable to the number during regular execution.

Only one of our benchmarks, anna, attempts to force a bottom thunk. Such attempts always fail.

Forcing of a bottom thunk is another good sign that the compiled code is excessively eager. Invalid

data is used in some computation, and the results are then discarded. It is possible that code motion

could eliminate the excess eagerness, improving performance and eliminating computations which

yield bottom.

It is similarly uncommon for benchmarks to attempt to force a completely empty object. This

occurs primarily as a result of algorithmic non-strictness: a computation refers to its result. This

occurs in all three of paraffins, multiplier, and wavefront. Other benchmarks (such as primes)

appear at the source level to use non-strictness in this fashion; however, program transformations

can eliminate the dependencies.

Most commonly, we are attempting to force either a thunk or a suspension. Only anna ever

attempts to force a thunk with an empty closure; these thunks can result only when an empty closure

is passed to GeneralApply from user code. Even in anna such thunks are rare. Other thunks are

simply forced; the results are then forced in turn if necessary.

The remaining bulk of forced objects are suspensions. Surprisingly, it appears that most suspen-

sions which are forced do not get run. Repeated fallbacks create long chains of suspensions. As the

chains are forced, shortcutting removes some elements from the stack; they must be re-examined

later. Only the suspensions at the end of the chain are forced. If enough resources are required to

171

inv = lift11 forceBit f
where f :: Bit→ Bit

f 0 = 1
f 1 = 0

. . .

forceBit:: Bit→ Bool
forceBit x= (x≡ 0)
headstrict:: (a→ Bool)→ [a]→ [a]
headstrict force[] = []
headstrict force xs= if force(head xs) then xselsexs
. . .

lift11 force f [] = []
lift11 force f (x : xs) = headstrict force(f x : lift11 force f xs)

Figure 10-17: Example of the original code for the multiplier benchmark. This code implements an
inverter.

force them, another exception will occur and the chain will be unwound once more. We conjecture

that the length of the suspension chain remains fairly steady for any given benchmark. The relative

size of the “forceSuspNoRun” bar versus the “runFrame” bar gives an idea of the usual length of

this chain for particular benchmarks. For example, clausify gives rise to long dependency chains.

By contrast, the chains of dependent suspensions in gamteb tend to be very short.

10.8 Space-efficient recursion: the multiplier benchmark

We noted in Section 1.3 that the use of eagerness eliminates the need to annotate programs to

obtain space-efficient tail recursion. The multiplier benchmark contains such annotations. Infinite

streams of bit values represent the inputs and outputs of logic gates in the simulated circuit. Without

strictness annotations, wire values can accumulate long chains of thunks over time. The code which

implements logic gates is parameterized with respect to a strictness function, as shown in the inverter

code in Figure 10-17.

Theheadstrictfunction used bylift11 (and its brethren for wider logic gates) is parameterized

with respect to an arbitrary strictness functionforce. Examination of the benchmark code reveals

that force is alwaysforceBit. It is straightforward to edit the program to eliminate the excessforce

argument from most function calls. At the same time,forceBitwas simplified to use the Haskellseq

function—the use of equality in the original benchmark works around the fact that early versions of

172

inv = lift11 f
where f :: Bit→ Bit

f 0 = 1
f 1 = 0

forceBit:: Bit→ Bool
forceBit x= x ‘seq‘ False

headstrict:: [Bit]→ [Bit]
headstrict[] = []
headstrict xs= if forceBit (head xs) then xselsexs

lift11 f [] = []
lift11 f (x : xs) = headstrict(f x : lift11 f xs)

Figure 10-18: The equivalent code after strictness annotations have been propagated. In order to
eliminate the annotations entirely, we simply need to changeheadStrictinto the identity function.

Haskell did not includeseq. The result is shown in Figure 10-18.

Using the re-written benchmark, it is very easy to eliminate strictness annotations from program

code: simply replaceheadStrictwith the identity function. This results in three versions of the

multiplier benchmark: theoriginal version shown in Figure 10-17, theinlined version of Figure 10-

18, and the version with no strictness annotations, which we will call thenon-strictversion.

Under GHC we expect the inlined version of the benchmark to run the fastest. The uninlined

version will be slowed down by the overhead of passing theforceparameter from function to func-

tion. The non-strict version will suffer from the excessive cost of creating and forcing thunks for

each wire value, and from garbage collecting those thunks. We expect the differences to be most

pronounced for unoptimized code: since the wire values are simple integers, there is some hopes

that strictness analysis and inlining will come to our aid.

Under Eager Haskell we expect the inlined and non-strict versions of the benchmark to run

at comparable speeds. The inlined benchmark will perform additional computedness tests on its

argument which are avoided by the non-strict benchmark. However, these tests should nearly always

succeed, and we therefore expect the additional overhead to be slight. Optimization should work

best on the non-strict code, where calls toheadStrictcan be inlined and eliminated. We do not expect

to benefit nearly as much with optimization turned off, asheadStrictwill still impose function call

overhead.

The actual measured times for the three benchmark versions are shown in Figure 10-19. Note

that eliminating strictness annotations is no magic bullet: the Eager Haskell code remains much

173

0

2

4

6

8

10

12

14

16

18

origUnopt strictUnopt nonstrUnopt origOpt strictOpt nonstrOpt

runTime
ghcTime

Figure 10-19: Run times of different versions of multiplier benchmark.

0

100

200

300

400

500

origUnopt strictUnopt nonstrUnopt origOpt strictOpt nonstrOpt

100
slowdown

Figure 10-20: Slowdown of Eager Haskell compared to GHC, expressed as a percentage of GHC
run time. The two bars indicate OS and internal timer measurements for Eager Haskell; they are
similar in all cases.

174

slower than its lazy counterpart. However, as shown in Figure 10-20 eliminating annotations does

improve our relative performance markedly.

In Figure 10-21 we compare the relative speed of the three different benchmarks when compiled

with optimization on. Under GHC, eliminating strictness annotations slows the program down by

approximately20%. Interestingly, the inlined version of the benchmark runs at about the same speed

as the original benchmark code; apparently inlining the higher-order functionforceBithas very little

effect. It is likely that the compiler is inlininglift11, forceBit, andheadstrictand eliminating any

trace of the higher-order argument.

Strictness annotations have no measurable effect on the run time of the optimized Eager Haskell

code. The third set of bars in Figure 10-21 shows that the two inlined versions run at almost exactly

the same speed. Note, however, that in the original benchmark Eager Haskell appears to be much

less aggressive in inlininglift11. This increases mutator time by about3%; however, higher-order

functions persist in the original code, causing more allocation of continuations and a large increase

in garbage collection overhead.

The unoptimized benchmarks tell a murkier story. The run-time ranking of the GHC programs

is inverted: the non-strict code now runs the fastest! This is most likely due to the fact that the

non-strict benchmark does not callforceBit. It is surprising, however, to see that this affects run

time by upwards of14%.

Even more puzzling is the fact that the inlined code is dramaticallyslowerthan the (equivalent)

original benchmark code. This is true for both compilers. This turns out to be due to slight tweaks

made to thelift21 function in the benchmark to adjust the way annotations were used. This increases

the call overhead oflift21 when optimization is switched off.

We noted that eager evaluation does have a liability of its own—it is expensive to create and then

force infinite lazy lists. The multiplier benchmark is centered upon such lists. The compiler attempts

to identify cyclic computations and introduces thunks along the back edges of uncontrolled loops.

This happens in three places in the multiplier benchmark. However, in practice large portions of

every list in the program are forced during execution. For all three versions of the benchmark, opti-

mized run times were similar (within a few percent) regardless of whether or not thunk introduction

was performed. This suggests that the cost of creating and forcing thunks is roughly comparable to

that of computing excess list elements within resource bounds—if most of those elements are later

consumed.

With annotations erased,lift11 is equivalent tomap, and the otherlift functions are equivalent to

175

70

75

80

85

90

95

100

105

110

115

120

orig/str orig/noStr noStr/str

100
ghc
EH
mut

70

75

80

85

90

95

100

105

110

115

120

orig/str orig/noStr noStr/str

ghc
EH
mut

Figure 10-21: Percentage speedup of multiplier when annotations are modified. Numbers less than
100% indicate slowdown. The baseline is70% so differences are clear. Top shows optimized
figures, bottom unoptimized ones. The final bar is mutator time under Eager Haskell.

176

versions ofzipWith. These are prelude functions, and all of them can be deforested by the compiler.

Indeed, it is possible the original version of multiplier used these functions, and thelift functions

were introduced only when space leaks made them necessary. We did not investigate the benefits

provided by rewriting the program in this way.

Our observations of multiplier are encouraging: the basic eager approach of resource-bounded

computation appears to avoid the space leaks which require lazy programmers to explicitly annotate

their code. At the same time, the overhead of excess space and time for infinite lazy computations

can be controlled. It is clear, however, that the overhead of such programs must be reduced if

performance is to match that of a lazy compiler.

177

Chapter 11

Scheduling Eager Haskell on a

Multiprocessor

Eager Haskell was designed with parallelism in mind. It is difficult to expose parallelism using

either strict or lazy evaluation, as they both impose strong requirements on program ordering. For

example, imagine a tail-recursive loop. Strict evaluation must perform exactly one loop iteration at

a time; a parallelizing compiler would need to prove that there are no data dependencies between

loop iterations in order to parallelize the loop.

There has been only limited success in using program analysis to extract parallelism from lazy

programs. In order to preserve lazy semantics, none of the work performed in parallel can be spec-

ulative. Consequently, any parallelizing transformation must first prove that the results it computes

are guaranteed to be used. Such analyses tend to give very local results—we discover a value is

certain to be used because its consumer is near its producer in the program. In such situations there

is rarely any benefit to multiprocessor parallelism, since the result is demanded too soon after its

computation is spawned [134]—the parallelism is useful, but too fine-grained.

In an eager language the situation is reversed—computations are assumed to occur speculatively

in parallel unless analysis proves that they can productively be serialized. By creating tasks as

lazily as possible and using a work-stealing scheduler, we exploit the coarsest-grain parallelism and

mitigate the overhead of task creation. Using these techniques we hope to make thread scheduling

less frequent in an eager language than thunk creation would be under lazy evaluation. We use

fallback to mitigate the effects of useless speculation.

In order to parallelize Eager Haskell, the run-time system described in Chapter 5 must be modi-

178

fied to identify work which can be performed in parallel, and to schedule that work across multiple

processors. Fortunately, much of the necessary mechanism is already in place. During fallback,

computation is suspended in a systematic way, yielding thunks. When computation is resumed,

work is only forced as needed. We can obtain parallelism by forcing these thunks in parallel rather

than waiting for them to be demanded.

In this chapter we elaborate this mechanism for running Eager Haskell programs in parallel

on a shared-memory multiprocessor (SMP), and identify possible hurdles which may prevent us

from extracting the parallelism we desire. We also describe a general technique, the principle of

monotonicity, for handling a shared heap without locking. Our parallelization strategy relies on this

technique to efficiently manage shared data.

11.1 Indolent task creation

When fallback occurs, two types of data structure are created to represent the state of outstanding

computation:

• A thunk is created for every procedure call.

• A suspension is created when a running procedure requires data which has not yet been com-

puted.

Every suspension which is created as a result of fallback will be dependent either upon another

suspension or upon a thunk; thus each such suspension will be transitively dependent on a thunk.

Any attempt to force such a suspension must therefore force a created thunk. Thus, when they are

created, suspensions cannot possibly embody useful parallelism.

We therefore focus on the thunks. It is simple for the run-time system to collect thunks as they

are created. This is a form ofindolent task creation [127]: no explicit representation exists for

parallel work until and unless fallback occurs.

Note that a suspension mayeventuallyembody useful parallelism. This is true if the suspension

will eventually be forced, but the thunk it depends upon is first forced by some other computa-

tion. If insufficient parallelism can be extracted by forcing thunks, then forcing suspensions whose

dependencies are available is the only alternative way to expose additional parallelism.

179

11.2 Scheduling Strategy

Recall from Section 5.4 that thunk creation occurs starting at the leaves of the call tree and working

toward the root. A coarse-grained thunk is one which is itself the root of a large call tree. There

is no a priori way to identify the size of this tree. However, it is clear that the deepest subtrees

must occur nearest the root. Thus, we should schedule the outermost thunks first in order to extract

coarse-grained parallelism.

This is exactly the goal of the parallel work-stealing strategy used in Cilk [27]. In Cilk, every

processor maintains a dequeue containing outstanding parallel work. A processor pushes and pops

computations from the top of its dequeue, treating it just like a call stack. However, if any processor

exhausts its available work (its dequeue becomes empty), itstealswork from a victim processor

selected uniformly at random. Work is stolen from the bottom of the victim’s dequeue.

After fallback in Eager Haskell thetopmostpiece of work (whether suspension or thunk) is

forced in order to guarantee that progress is made on the lazy work. In effect, the processor steals

work from itself. We run Eager Haskell programs on a multiprocessor by giving each processor its

own exception flag, shadow stack, andthunk stack. During fallback, thunks are pushed onto the

thunk stack as they are created. The computations nearest the root of the call tree are uppermost in

the thunk stack. Execution restarts from the root of the local call tree as before. Thieves steal work

by popping thunks off the thunk stack.

On a uniprocessor, the Eager Haskell run-time system is responsible for tracking resource

bounds and deciding when an exception should be signaled. This could lead to poor resource us-

age on a multiprocessor, as a single thread can run for long periods before exhausting its resource

bounds, while the remaining processors sit idle. Thus, an idle processor may raise an exception on

any other processor and thereby force the creation of additional work.

The protocol for work stealing in Eager Haskell is therefore structured as follows:

• Thief completes its local work.

• Thief selects a victim uniformly at random.

• Victim’s work stack is popped, unless it is empty.

• The work thus obtained is forced. If it has already been evaluated, this has no effect and more

work will be sought.

• If the victim’s stack was empty, set the victim’s exception flag and seek more work.

180

11.3 Scheduling in the presence of useless computation

Meanwhile, a little more work is required when an exception occurs. Naturally, newly-created

thunks must be pushed onto the thunk stack. It is, however, unclear what should be done with

thunks that arealreadyon the thunk stack. There are two cases of particular interest. First, there

may be a thunk on the thunk stack which represents data which will be required, but will not be

needed for a long time. Such a thunk is ripe for parallel execution, and should be retained in favor

of more short-lived thunks. Second, there may be a thunk on the thunk stack which represents the

useless tail of an infinitely-growing computation. Such a thunk is actively dangerous: it does not

represent useful work, and will result in wasted memory and processor time if it is forced.

Unfortunately, there is no simple way to distinguish these cases. In the following example,all

the thunks created whenbigtreesuspends represent infinite computations:

bigtree :: Integer→ Tree Integer
bigtree n = Node n(bigtree(n ∗ 2)) (bigtree(n ∗ 2 + 1))

We have already observed that infinite data structures will cause sequential execution to consume

excessive resources. This problem can be exacerbated in a parallel setting—if a processor obtains

the thunk of an infinite computation, it can continue consuming memory without bound.

The most promising solution to this problem is to permit the garbage collector to manage par-

allelism. The thunk stack should be considered aweak reference—objects which are reachable

only from the thunk stack should be garbage collected and removed. This gives a minimal liveness

guarantee for stealable thunks.

However, there remains a nettlesome problem: ifbigtree is stolen, the thief will run nothing

but calls tobigtree. There needs to be some mechanism to throttle such computations before they

swamp the system. This means that fallback cannot be a purely local operation; occasionally non-

root computations should seek work elsewhere in favor of resuming their current computation. This

is at odds with any sort of locality, so it should not happen too frequently. Unfortunately, the garbage

collector is much less helpful in this instance. Stealable thunks reside in shared memory, and so the

root of computation on every processor is always reachable from tenured space.

Solving this problem will require coordination between global garbage collection, fallback, and

thunk stealing. One simple algorithm would signal an exception on every processor when tenured

space becomes full. When a processor completes fallback, it garbage collects. With an empty stack,

the new nursery will be empty; only the global roots need be traced. When collection is complete,

181

dead thunks are discarded and work stealing begins anew. However, this effectively imposes a global

barrier each time tenured space fills, sacrificing much of the parallelism possible with independent

garbage collection.

11.4 Memory Structure: The Principle of Monotonicity

In addition to the coarse-grained problem of identifying and scheduling parallel work, the Eager

Haskell implementation must address the fine-grained problem of coordinating parallel access to

shared data. The data structures of Eager Haskell have been designed to permit lock-free parallel

manipulation of objects in shared memory. In this section we articulate a general principle, the

Principle of Monotonicity, which can be used to structure programs with lock-free synchronization,

and then show how the principle is applied to Eager Haskell.

The fundamental idea behind the Principle of Monotonicity is simple: as long as a shared object

may only be updated by a single processor, and is becoming “more defined” according to some

ordering, it can be read and updated using simple loads and stores; there is no need to resort to

atomic memory operations such as compare and swap. Such operations are required only for non-

monotonic updates.

The Eager Haskell realization of this principle is shown in Figure 11-1. The natural ordering for

Eager Haskell is the one imposed by evaluation: objects start out empty; they are computed exactly

once, at which point the empty object is overwritten with the computed value. Because there is

only a single writer, this store can take place without the use of atomic memory operations such

as compare and swap. If the computation suspends, the empty object is instead overwritten with a

thunk or a suspension. When a thunk is forced or a suspension is resumed, it must beatomically

emptied. This guarantees that exactly one thread runs the suspended computation.

The presence of indirections complicates this simple structure somewhat. Barrier indirections

exist to safely encapsulate nursery references. The garbage collector of the owning processor is

responsible for promoting the pointed-to data; the barrier indirection is then transformed into an

ordinary indirection as indicated in the figure.

Recall that we can shortcut indirections, as shown in Figure 5-6. Unlike the other transitions

shown in Figure 11-1, barrier shortcutting changes the state of an objectreference, and not of the

object itself. This means that any reference anywhere in the heap which points to an indirection can

instead be made to point to the destination of that indirection.

182

��������� ������	�
����

� �����

��� ������ � � ���

� �����

���	����

����
�
��
�

������ �! �" #�$

%'&)(!* +" % " , * %'&)(!* +" % " , *

� % ,!-." �

Figure 11-1: Monotonic update of Eager Haskell objects. Dashed arrows indicate permissible tran-
sitions for an objectreference, rather than for the actual object itself.

Note that an ordering has also been imposed on object references: those most distant from a non-

indirection are considered to be “greatest”, with the each indirection in a chain being progressively

“less”. In order to guarantee that shortcutting strictly decreases the length of an indirection chain,

each shortcutting step must be made atomically. Consider a chain of indirectionsa→ b→ c→ d.

Two threads might be competing to shortcuta; thread 1 wishes to shortcuta→ c, thread 2 wishes

to shortcuta→ d. If thread 2 succeeds, then thread 1 will actually beundoingsome shortcutting.

This can be dangerous if a reference has been made to point directly at an object such as thecons

cell shown, and is then moved back to point to an indirection.

The rules for reading and writing according to the principle of monotonicity are fairly simple.

Every object has astate, and a series ofpermitted transitionsfrom that state. An object in a par-

ticular state may contain an arbitrary (but well-defined) number of data fields. However, each pair

of adjacent states must be distinguishable by a single datum, which we refer to as the tag (itis the

object tag in Eager Haskell) which can be read and written atomically. If any non-monotonic tran-

sitions are permitted, then it must be possible to do an atomic compare-and-swap operation on the

tag as well.

The principle of monotonicity rests on our ability to identify certain states as having anowner

183

(these are the heavy states, Empty and Barrier, in Figure 11-1. The owning thread is permitted to

makemonotonic updatesto the state (heavy lines). The protocol for monotonic update is simple:

1. Non-tag data is written normally.

2. This data is committed to shared memory [121].

3. A write/write fence is performed on the written data and tag.

4. The tag data is written in a single operation.

5. The tag is committed to shared memory.

The fields updated during a monotonic transition must be disjoint from those fields which are valid

in the current state. It must be possible for another thread to read a consistent snapshot of the object

even when it is in the process of being updated.

Non-monotonic transitions can be performed by any thread. As a result, they require the use of

an atomic memory operation (such as compare and swap or load lock / store conditional) in order

to perform the state transition. In addition, non-monotonic transitionsmay notupdate any fields.

This means that the valid fields after a non-monotonic transition must be a subset of the fields valid

before the transition. Only the tag changes value.

Note that if a monotonic transition is possible from a particular state, the same transition must be

possible from any states reachable through a non-monotonic transition. Thus, in an exclusive state

a non-monotonic transition must move to an exclusive state with the same owner. Only a mono-

tonic transition can make an object’s state non-exclusive. From a non-exclusive state, of course, no

monotonic updates are possible; therefore all transitions are atomic and non-monotonic.

There are two ways to read the fields of a state, depending on the nature of that state. If an object

is in an exclusive state, and non-monotonic transitions do not invalidate any of the fields being read,

the owner can read object fields freely. If the object is not owned by the reading thread, or non-

monotonic transitions may invalidate fields being read, the following protocol must be obeyed:

1. The tag is read to determine the object state.

2. A read/read barrier is performed on the tag and the fields to be read.

3. The field data is reconciled with main memory [121].

4. All required fields are read.

184

5. A read/read barrier is performed on the fields read and on the tag.

6. The tag is reconciled with main memory.

7. The tag is read. If the state is unchanged, the data read is valid, otherwise the read must be

re-tried starting from the beginning.

If the initial state has no outgoing transitions then we can read the fields freely, and the second tag

check is not required. Similarly, if the accessed fields are valid in any reachable state, the check can

be skipped. In effect, we can think of a read as an atomic operation on the whole data structure, but

one which might possibly fail.

We must ordinarily be careful in allocating and deallocating shared objects. When a thread

performs an allocation, the resulting object is in an exclusive state and owned by the allocating

thread. Ordinarily the object does not contain useful data upon allocation; we can imagine an

infinite number of “just allocated” states in which the object fields contain garbage.

The act of storing a reference into a shared data structure (a so-calledbroadcasting store[105,

72]) counts as a monotonic transition. This means that the object’s tag must be initialized, and that a

commit and a write/write barrier are required between this initialization and the broadcasting store.

De-allocating a shared object requires knowing that it will not be accessed from any thread

again. The principle of monotonicity provides no direct evidence of this fact; it must be encoded

in the protocol or established in some other fashion. In Eager Haskell the garbage collector must

establish the necessary invariants.

Other techniques for non-blocking management of shared data can be expressed using the prin-

ciple of monotonicity. For example, we can expresstrylock (the non-blocking locking primitive)

andunlock very easily using a boolean tag:trylock attempts to atomically set the tag, returning

True if the attempt succeeds andFalseif the tag is already set. Iftrylock returnsTrue the protected

data can be accessed freely; access is relinquished usingunlock, which simply writesFalse into

the tag. As this example should make clear, the principle of monotonicity is not a magic bullet to

avoid mutual exclusion. Instead, it is a design principle to permit shared data to be manipulated in

a disciplined way without blocking.

185

Chapter 12

Compiling pH Programs Using the

Eager Haskell Compiler

The Eager Haskell compiler exploits the absence of side effects and barriers in order to enable

aggressive program optimizations such as full laziness. Nonetheless, both Eager Haskell andpH

share a common compiler infrastructure. By selectively disabling various program transformations

and re-enabling barrier syntax, the Eager Haskell compiler can be turned back into a compiler for

pH. However, barriers require compiler and run-time system support which is not provided by the

system described in this thesis. In this chapter we present an efficient design for implementing

barriers within the Eager Haskell compiler and run-time system.

12.1 What is a barrier?

A barrier is used to detect termination of a region of code, which we will call thepre-regionof the

barrier. When the pre-region has terminated, execution of thepost-regionmay begin. InpH the

pre-region and post-region of a barrier are collections of bindings in a largeletrec block. Barrier

regions can be nested arbitrarily.

A region of code has terminated whenall computations which occur dynamically in that region

have successfully yielded values—even if those values are never subsequently used. For example,

the pre-region may contain a large recursive function call. Every value in every invocation of that

large recursive call must be fully evaluated before the pre-region is considered to have terminated.

TheλS calculus [17] gives a detailed semantics for barriers.

186

12.2 Barriers in the pH compiler

The pH compiler targets an abstract machine called SMT [16]. Part of the SMT machine state is

thecurrent barrier. This tracks the termination state of ongoing computations. The core of every

barrier is a simple counter. This counter is atomically incremented before every thread spawn, and

atomically decremented once again when a thread terminates. When the barrier count reaches zero,

all computations in the pre-region have completed and the barrierdischarges. The post-region is

guarded bytouchingthe barrier. No post-region thread will be run until the barrier has discharged.

Note that when multiple threads are being run, these threads may be in the pre-regions of differ-

ent barriers. As a result, every thread has an associated barrier. This means that every suspension in

the system must record the current barrier. When a suspension is run, it must be run in the context

of the barrier which was in effect when it was created.

Nesting of barriers means that a binding may occur in the pre-region of many barriers at once.

In practice, we track only the innermost barrier region. Every barrier has an associatedparent—the

barrier region in effect on entry to its pre-region. Creating the new barrier increments the parent

barrier, and discharging the barrier decrements the parent barrier. In this way, computations need

only update the state of a single barrier as they execute.

12.2.1 A lazier barrier

The SMT implementation of barriers has a major drawback: it imposes the run-time cost of modify-

ing the barrier count on every single thread creation and termination. Moreover, barriers are shared

among threads which are potentially executing on multiple processors. Thus, barrier counters are

shared data, must reside in memory, and must be manipulated using expensive atomic memory

operations.

The overhead of atomic memory operations can be mitigated by tracking barrier counts locally,

but this merely decreases overheads rather than eliminating them. Instead, we shift the overhead

of barriers onto the suspension path. Recall that Eager Haskell does not explicitly spawn threads.

Instead, threads run until they are forced to suspend; when a thread suspends, or when it completes

execution, its successor thread is immediately run. Each time a thread suspends, the successor thread

becomes a new thread of execution. Thus, for a barrier region withn outstanding suspensions there

will be n suspended threads, plus a possible single running thread.

Thus, we can avoid tracking barriers when execution continues normally. We start with a barrier

187

count of one (the initial thread of execution). If no computation suspends, we eventually reach

the end of the barrier region and decrement the barrier count. It is now zero, and execution can

proceed normally. If suspension occurs and there is a successor thread then we increment the barrier

count. When a suspended thread is re-scheduled and executes to completion, the barrier count is

decremented once again.

Because successor threads are encoded in the execution order of the compiled program, there is

no easy way to check whether a given thread has a successor. However, the compilation scheme for

pH guarantees the existence of a successor thread if a thread has never suspended before. Thus, we

increment the barrier count every time a suspension is created. When control returns to the run-time

system after running a previously-created suspension, we decrement the barrier count once again.

12.2.2 Reducing state saving

In pH every computation takes place in the context ofsomebarrier. Conceptually, a global barrier

surrounds the entire program execution and indicates when the program has terminated. If the

system runs out of runnable work before this barrier has discharged, then deadlock has occurred.

Most programs execute almost entirely in the context of this global barrier. Nonetheless, every

suspension inpH includes a field to record the current barrier. This adds a word of overhead to

every suspension in the system. We would like to represent suspensions in a uniform way, yet still

be able to save or restore barrier state when required.

A simple trick can be used to accomplish this: make the code to restore the barrier look like

a suspension. If we suspend in the pre-region of a barrier (except the global barrier), we create

a regular suspension as usual. We then create a “barrier restoration” suspension. This special

suspension contains a reference to the current barrier and to the original suspension. The run-time

system resumes this suspension in exactly the same way as an ordinary suspension. Instead of

regularpH code, the suspension runs a stub which restores the barrier state and then jumps to the

original suspension. The use of barrier restoration suspensions adds a good deal of overhead—

an entire suspension—when suspension occurs in the pre-region of a barrier. However, the vast

majority of suspensions are smaller. We add overhead for barriers only when they are actually used.

Note that the global barrier need not be treated in the same way as local barriers. If the state

of the global barrier is shared among many processors, then updates become a major source of

contention. Instead, suspensions can be tracked locally on each processor. There is no need to

check the global state of the barrier until all other execution has ceased.

188

12.3 Barriers in Eager Haskell

Unlike pH, Eager Haskell does not have a notion of a “global barrier” at all. Indeed, if the value

of a suspended computation is not needed, the suspension is simply ignored and will be cleaned up

by the garbage collector. If we wish to allow Eager Haskell to generate barrier code, we must make

sure that the run-time system does not lose any of the work in a barrier region. In this section we

explore how to add barriers to Eager Haskell while still maintaining demand-driven suspension.

We take the low-overhead barrier described in the previous section as a starting point. Because

suspensions will only be run if they are demanded, we explicitly track all pre-region suspensions

and demand them. This has much higher overhead than simply counting suspensions. An additional

complication is that the Eager Haskell code generator has no provisions for representing barrier

constructs. Instead, we add explicit functions for creating and synchronizing on barriers. A sep-

arate phase of compilation replaces barriers with a mixture of touch operations and calls to these

special constructs. Placing these functions in a user-level library will allow future experiments with

different sorts of program synchronization (such as an efficient construct for hyperstrict evaluation).

We do not propose adding termination detection at the outermost level of Eager Haskell pro-

grams. The barrier implementation we describe in this section sacrifices many of the economies of

the Eager Haskell execution strategy. In particular, there is no way to discard disused computations

and still maintain the termination guarantees whichpH provides. At the top level these guarantees

simply allow us to detect deadlock; the Eager Haskell run-time system uses an entirely different set

of techniques (with different semantics) for deadlock detection. Most notably, Eager Haskell allows

deadlock in computations whose results are never used. No deadlock of any kind is permitted inpH

programs.

12.3.1 Tracking the work

Tracking all the work associated with the pre-region of a barrier is not difficult. Every barrier

includes an associated work pool. When suspension occurs in a barrier context, the suspended work

is added to the work pool of the current barrier. Before we can exit the current barrier region, we

must remove work from the work pool and force it (again in the context of the barrier) until the

work pool is empty.

The chief complication is deciding what should be done when a pre-region computation forces

a preexisting suspension. The run-time system must save the active barrier and force the suspension

189

data Barrier
newBarrier :: ()→ Barrier
withBarrier :: Barrier → (a→ b)→ a→ b
touchBarrier :: Barrier → ()

Figure 12-1: Types and functions for representing barriers

in a context with no active barrier. If the suspension being forced itself occurred in a barrier context,

then it will be a barrier restoration suspension and the appropriate barrier state will be restored.

12.3.2 Run-time system changes

We can represent the work pool of a barrier using a signal pool, as described in Section 9.1. A

signal pool gives a simple, language-level way to say “synchronize on all outstanding pre-region

computations”—simply touch the signal pool. In our array implementation, the signal pool was

constructed explicitly by user code. Sinceanyfunction may be called from within the pre-region of

a barrier, we do not want to do this in Eager Haskell. Instead, the run-time system adds suspensions

to the pool as they are created.

This means that the signal pool used to represent barrier regions can expand dynamically in

an unstructured way at the same time as it is being forced. Contrast this to the signal pool for an

array, which is fixed by the structure of calls to theseqfunction and its relatives. This problem has

a simple solution; when the signal pool has been forced, it is simply forced again. If it is empty,

forcing can stop; otherwise it has grown and should be forced again. The signal pool can be kept in

an M-structure and updated atomically. We thus represent a barrier as an M-structure containing a

signal pool.

12.3.3 Compiler changes

In order to allow the Eager Haskell code generator to compilepH programs, we add functions which

explicitly create a barrier region and synchronize on it. The abstract interface to barriers can be

found in Figure 12-1. ThenewBarrierfunction creates a new barrier object. ThewithBarrier func-

tion takes a barrier object, a function, and an argument. It tells the run-time system that the barrier

is currently in force, then applies the function to its argument. Any suspension which occurs during

the function application will be captured in the signal pool of the barrier. Finally,touchBarrier

190

BJx = pk ~PkK β τ = x = τ ‘seq‘ pk ~Pk
BJx = Ck ~xkK β τ = x = τ ‘seq‘ Ck ~xk
BJx = f ~xkK β τ = x = withBarrier β (f ~xk−1) xk

BJx = casey of DK β τ = x = withBarrier β (λ → casey of D) ()
BJB1 ; B2K β τ = BJB1K β τ

BJB2K β τ

SJx = pk ~PkK τ = x ‘seq‘ τ
SJx = Ck ~xkK τ = τ
SJx = f ~xkK τ = τ
SJx = caseE of DK τ = τ
SJB1 ; B2K τ = SJB1K SJB2K τ

PJx = EK τ = x = τ ‘seq‘ E
PJB1 ; B2K τ = PJB1K τ

PJB2K τ
PJB1 >>> B2K τ = β = newBarrierτ

BJB1K β τ
τ1 = SJB1K (touchBarrierβ)
PJB2K τ1

T JB1 >>> B2K = PJB1 >>> B2K ()

Figure 12-2: Translation replacing barrier constructs with barrier functions and explicit synchro-
nization.

returns a value only when the signal pool of the provided barrier is empty.

We remove barriers after program optimization is complete, but before closure conversion oc-

curs. At this point, all subexpressions are properly named andlet expressions have been un-nested.

The barrier removal algorithm is given byT JB1 >>> B2K in Figure 12-2. HereB1 are the bindings

in the pre-region of the barrier andB2 are the bindings in the post-region. The helper functionBJ·K

surrounds function calls and case expressions with a call towithBarrier β. We explicitly synchro-

nize simple local computations in the pre-region usingSJ·K in order to avoid transforming those

computations into functions as is done withBJx = case. . .K. In effect, we create as much of the

signal tree as possible statically, and then insert calls towithBarrier when this is not possible.

12.3.4 A synchronization library

The functions in Figure 12-1 can also be provided to the user in a Barrier library. We can also

provide a combinator which applies a function to an argument and does not return until the resulting

191

computation has terminated:

applyTerminate :: (a→ b)→ a→ b
applyTerminate f x = touchBarrier b‘seq‘ r

where b = newBarrier()
r = withBarrier b f x

Many parallel dialects of Haskell make use of classes whose sole task is to perform deep sequencing

on large data structures—i.e. , to traverse those data structures and ensure that they have been

fully computed. If we instead require the producer of such structures to terminate, we obtain deep

sequencing without the cost of traversing the data structure. The barrier’s thread pool encapsulates

the “interesting” parts of such a traversal—the places where further evaluation is required.

192

Chapter 13

Conclusion

Chapter 11 presented a technique for running Eager Haskell programs on a multiprocessor, and

Chapter 12 detailed howpH programs might be compiled using the Eager Haskell compiler. How-

ever, eager evaluation shows great promise in everyday Haskell compilation. In this chapter we

outline future directions for work in eager evaluation, and discuss improvements which must be

made to the Eager Haskell implementation to turn it into an production-quality tool. We conclude

with a brief survey of the accomplishments so far and the most promising future directions.

13.1 Semantics

In Chapter 3 we presented a semantics forλC which contained numerous extensional equivalences.

These equivalences are included with an eye to simplifying the equational proofs found elsewhere

in the thesis. However, we have played somewhat fast and loose in the rules we have added. Several

of the rules can be derived from one another; this redundancy could, with care, be eliminated.

Meanwhile, the consistency of most of the expansion rules has not been formally established. This

requires proofs of contextual equivalence—rarely a simple task in practice.

From a practical standpoint, there is still no standard way to discuss the semantics of functional

programming languages. Numerous semantic styles exist with varying tradeoffs, and within those

styles subtle differences can have dramatic semantic impact. Naturally, these particular styles are

driven by the applications for which they are used. A common framework is required before these

varying approaches can comfortably be compared.

Such a framework needs to be built up starting with small building blocks. An inclusive small-

step semantics, such as the one presented forλC , is a good starting point. From there, other varieties

193

of semantics are a matter of imposing a structure on permitted reductions. For example, the reduc-

tion strategies in Chapter 4 are expressed by restricting the reduction system, collapsing multiple

reductions (as inβvar), and imposing a structure upon the term being reduced. Big-step reduction

encodes strategy and reduction rules together, and can be justified from the small-step semantics in

a similar fashion. A well-designed core semantics will allow the correspondence between different

semantic styles to be justified in a purely mechanical fashion.

13.2 Eagerness

As we showed in Chapter 4, the Eager Haskell compiler is simply one point on a vast spectrum

of possible hybrid strategies. Restricting our attention to hybrid strategies whose semantics match

those of Haskell still leaves tremendous potential for new research. For example, it might be worth

using eager evaluation only for recursive function calls. Type information or termination analyses

could be used to guide transitions between laziness and eagerness. Limited eagerness for provably

terminating expressions has shown promise [36], but has not seen widespread use. Two particularly

productive avenues of exploration for mainly-eager evaluation appear to exist. First is to incremen-

tally improve the fallback model used in Eager Haskell. The second is to dispense with fallback

entirely and explore new eager execution models.

13.2.1 Fast stack unwinding

The purpose of the fallback process is to unwind the execution stack of the running program and to

transform the computations on that stack into demand-driven thunks. However, this need not happen

a frame at a time, nor are there particular limits on how much of the stack must be unwound (except

that we must always eventually unwind to the outermost useful computation). In fact, fallback is

really a bulk continuation capture mechanism, and any technique useful for continuation capture

can potentially be applied. With that in mind, we can structure the system so that fallback never

involves compiled code at all.

One technique for accomplishing this isbulk fallback. Compiled code must place markers on

the stack at call points. Every return point becomes an entry point. When fallback occurs, the run-

time system traverses the stack, making use of the information contained in the markers to transform

each frame into an appropriate thunk. Once the stack has been copied to the heap in this manner,

a non-local exit branches to the outermost level of computation, and the program is restarted in a

194

demand-driven fashion as usual.

Bulk fallback has obvious optimizations. A sufficiently clever implementation could perform

fallback without copying by simply transforming the markers directly into a linked heap structure

(or having each caller structure the frame so this is automatically the case). Execution would resume

on a new stack, and the old stack would become part of the heap, where it can be garbage-collected

as usual. Furthermore, the markers can serve double duty by storing garbage collection information

even in the absence of fallback, thus permitting pointer and non-pointer data to be freely intermixed

on the stack. A marker technique is already used for garbage collecting the stack in GHC [75].

Bulk stack unwinding requires care to identify strictly dependent frames. When a caller imme-

diately synchronizes on the result of its callee, the callee should be run first, and the caller can then

be run. This happens naturally with the current fallback mechanism (the caller will suspend). When

the stack is processed in bulk, the markers must indicate such strict dependencies if stack growth

during forcing is to be controlled.

It should also be noted that bulk stack techniques will increase the complexity of generated

code. Every function call must push a marker on the stack; the cost of a single store at each call site

adds up, and may not be worthwhile for infrequently used information. In addition, every return

point also becomes a function entry point. This is likely to increase the number of entry points

overall, and most particularly will add a second entry point to every single-entry non-leaf function.

An off-the-cuff experiment early in compiler development indicated substantial additional overhead

just for marker pushing in Eager Haskell programs. If we compile to native code (or mangle the

C compiler output as in GHC), mapping techniques involving the return address can be used to

eliminate these overheads.

13.2.2 Hybrid evaluation without fallback

A more ambitious exploration of hybrid evaluation would throw away the idea of fallback and ex-

plore an entirely different mechanism for mediating the transition between eagerness and laziness.

For example, it is possible to devise hybrid execution strategies in which every function call is guar-

anteed to return a value. This would restore an invariant useful for both strict and lazy compilation,

and make it easy to use techniques such as unboxing to optimize program code. However, such an

approach could not rely on the fallback mechanism described in this thesis; fallback requires that

any function call be able to suspend at any time. The resulting language would likely require a

mixture of both lazy and eager evaluation in compiled code, rather than relegating laziness to the

195

run time system.

13.3 Improving the quality of generated code

There are numerous places where the present Eager Haskell compiler and run-time system can be

improved. The simplest and most direct way to improve the run time of Eager Haskell programs is

to reduce the administrative overhead of the evaluation mechanism itself. This means a good deal of

performance tuning and optimization of the run-time system and garbage collector. In this section

we focus on improvements which can be made to the portions of the Eager Haskell implementation

(code generator and runtime) detailed in this thesis. In Section 13.4 we turn our attention to higher-

level compiler improvements.

13.3.1 Garbage Collection

Given the large garbage collection overheads associated with many of our programs (see Figure 10-

3), any improvement in the garbage collector will improve the run time of every Eager Haskell

program. Nursery collection is already fairly efficient (witness the relatively low GC overheads for

fib and queens); most of the optimization possible for nursery objects consists of inlining and loop

unrolling in the main collector loop. Tenured collection is substantially more expensive.

Simply decreasing the number of allocated and live objects will benefit any garbage collection

strategy. As noted in Section 7.3, the current code generator is aggressive about batching allocations,

and this often causes empty objects to live across function calls and garbage collection points.

Increasing the number of allocation points increases the number of suspension points in the program;

the corresponding increase in code size (even if that code is rarely executed) may slow program

execution. We hope to make this up by reducing the load on the garbage collector and dramatically

decreasing the number of write barrier checks which must be performed.

Garbage collector performance is often determined simply by the tuning of various collector

heuristics. For example, increasing the nursery size can dramatically increase memory footprint and

cause TLB thrashing or paging during collection. However, it decreases the rate at which objects

are copied, and the rate at which they are aged and subsequently tenured. Similar tradeoffs apply

to tenured space. In practice, no one set of parameters appears to work well for every program.

Nonetheless, it should be possible to improve the present parameters, which were fixed fairly early

in development based on a small subset of the final benchmarks.

196

The tenured collector sweeps eagerly and allocates very large bitmaps for marking. It should be

a simple matter to separate BiBoP chunk sweeping from large-object sweeping. Sweeping a BiBoP

chunk can be a simple matter of replacing its allocation bitmap with the mark bitmap. BiBoP chunks

which are allocated during marking can share a single mark bitmap, which is simply discarded

during sweeping. Large-object sweeping can be done using per-object mark bits; the extra word

of memory required for marking is more space-efficient than allocating mark bitmaps for the entire

heap. The chief challenge is devising a mechanism for mapping a pointer to the appropriate chunk

bitmap. At the moment chunk descriptors are stored in a separately-allocated data structure; placing

them in the chunk itself would make them easier to find, but might reduce the benefit of having

pointer-free object pages which would otherwise be untouched by the collector.

Limiting write barriers to tenured indirections would further simplify the implementation of

write barrier code (and reduce overhead). This would necessitate changes to the code generator.

Potentially suspensive back edges would allocate enough space for a tenured indirection. When

the corresponding binding is compiled, the empty slot can be overwritten with an indirection to the

newly allocated object. In this way, the results of computations are always allocated in the nursery

and filled in with initializing stores. The write barrier routine which introduces tenured indirections

into already-allocated objects can be eliminated.

Our current collector uses only two generations, a nursery and a tenured space. It is possible

to use more sophisticated non-moving generational schemes within tenured space. One simple ex-

ample would be to separate truly tenured objects from those which are merely long-lived. It should

only be necessary to trace objects reachable from roots once, when the root is written; subsequently

this memory should not be scanned again. This effectively creates a third generation.

13.3.2 Reducing synchronization

The chief overhead of non-strictness during ordinary evaluation is the cost of checking for various

exceptional conditions. In the present Eager Haskell implementation, this takes two forms: excep-

tion checks at every function entry point, and full/empty checks when data is used.

There are numerous opportunities to eliminate full/empty checks from Eager Haskell programs.

For example, in a uniprocessor Haskell implementation we are not particularly concerned about the

loss of eagerness (and consequent loss of parallelism) caused by hoisting synchronization past a

function call. Permitting such hoisting will require minor tweaks to the array internals; the signal

pool is considered to be strict, and this can cause the compiler to introduce deadlocks along signal

197

pool paths when synchronization is hoisted past a non-strict array initialization.

Many compilers give special treatment to “leaf functions”, where it is possible to avoid the over-

head of allocating a stack frame. Similarly, it is unlikely to be worth suspending and resuming leaf

calls: they represent a bounded (and generally small) amount of computation. We can therefore

eliminate stack checks from leaf functions. In fact, only recursive function calls can lead directly to

unbounded computation. We can therefore restrict stack checks to recursively bound functions and

unknown function applications (which may prove to be recursive). However, preliminary experi-

ments indicate that neither technique may be useful: functions are likely to suspend on unavailable

data anyway, and the cost of suspension is higher than the cost of thunk creation.

At the moment no interprocedural computedness information is used by the compiler. Because

synchronization is introduced after lambda lifting, obvious computedness information based on

lexical context is simply thrown away. It should be simple for the compiler to annotate programs

in order to preserve this information. Such an annotation can be used as an initial context during

synchronization introduction.

We can also use interprocedural analysis to provide more precise computedness information.

As noted in Section 6.10.4, strictness information is not necessarily a useful tool for reducing the

amount of synchronization in Eager Haskell programs, as it moves synchronization operations from

callee to caller, risking a dramatic increase in program size. In that section, we described com-

putedness analysis, which propagates information on computed arguments from caller to callee. It

remains to be seen whether computedness can be as effective as strictness in eliminating synchro-

nization.

Simple computedness is not always sufficient to eliminate checking. We are careful to remove

indirections in the local frame so that transitive dependency can be used for local synchronization.

However, we can pass an indirection as a strict function argument. The callee will eliminate the

indirection, but this will not affect the caller. Thus, even though the function may be known to be

strict, it is still not safe to eliminate the indirection check from the callee.

There are several possible answers to this problem. The code generator does not currently

distinguish between emptiness checks and indirection checks. These have the same overhead in the

common case, but the fallback code for emptiness is considerably more complicated as it requires

saving and restoring live data. Thus, even if the check is still necessary, it can be made cheaper.

Many values can never be indirections. At the moment, the compiler makes no use of this

fact. When a value cannot be an indirection, we can use transitive synchronization information

198

with complete impunity—even if the transitive dependencies might themselves yield an indirec-

tion. Determining which computations may yield an indirection is a straightforward static analysis

problem given the code generation rules. However, the precision of results will depend (as with

computedness, strictness, and many other analysis problems in functional programming) on precise

higher-order control flow and heap analysis. As with strictness, precision is probably unnecessary

in practice; it should be enough to record which functions may return indirections. This can be

captured using a simple boolean value.

13.3.3 Better representations for empty objects

The data structures used by Eager Haskell to represent empty proxies could be better chosen. The

most glaring example is suspensions (whose complexity is evident from Figure 5-4). As seen in

Figure 10-13, it is very rare for multiple values to result from a single suspension. We might

therefore use two representations for suspensions: the first suspended-upon variable would hold

the frame and dependency information; remaining suspended-upon variables would refer to this

first suspension as in the present scheme. However, the benefits of an additional scheme must be

weighed against the difficulty of maintaining two separate suspension representations.

We might instead take the opposite tack and attempt to unify the thunk mechanism and the

suspension mechanism. This has the potential to dramatically simplify the run-time system by

allowing all suspended computations to be treated in a uniform manner. Its chief drawback is the

relative complexity of a suspension (which requires a descriptor and two dependency fields) versus a

thunk (which only requires a function closure). One possible technique is to track the strict variables

in the frame rather than storing the direct dependency explicitly. Every descriptor and every closure

would include information indicating which frame entries are required for execution. This has an

additional advantage: when the run-time system resumes a suspension or a thunk, it is guaranteed

to make progress and will not re-suspend.

A few particular kinds of empty objects may deserve special treatment. At the moment, the

Eager Haskell compiler does not give any special treatment toprojections. A projection is a binding

which fetches a single field from a constructor:

let head= casexsof
(x :)→ x
→ error . . .

If headsuspends, we will create a suspension which incorporatesxs. If xs is later evaluated, this

199

can result in a space leak:headwill retain the tail ofxsunnecessarily.

Two techniques exist which eagerly evaluateheadwhenxshas been computed. Both use spe-

cial projection thunks. In the simplest technique, the garbage collector performs projection when

possible [140]. When multiple projections of a single data structure occur statically (due to the use

of lazy pattern matching), a second technique causes all these projections to be evaluated when any

one of them is forced [123]. Either technique could prove useful in improving the space perfor-

mance of Eager Haskell programs: projections will still be performed eagerly by default, but when

they suspend they will generate a projection thunk rather than an ordinary suspension.

A similar optimization may be applied to touch-like operations whose discriminant is discarded.

Such expressions result from theseqoperation in Haskell and from the various operators proposed

in Chapter 9 for implementing signal pools. Using a specialized representation for such operations

would be a first step to fixing some of their problems.

13.3.4 Object Tagging

It is worth revisiting our decision to represent a tag as a simple pair of integers. It is unclear whether

using a descriptor word in an object header actually slows code down noticeably. If it does not, the

descriptor approach gives far more flexibility in our choice of object representation and is preferable

to the more tightly constrained approach of using explicit tags. Use of descriptors is particularly

necessary for unboxing.

13.3.5 Unboxing

In GHC the use of unboxed values is an important part of efficient code generation [97]. The

Eager Haskell compiler does not give direct access to unboxed values. There are a number of

daunting technical problems which must be overcome in order to permit the use of unboxing. In

most functional languages, when a function application occurs it is guaranteed that a value will be

returned; in such a setting, returning an unboxed value is as simple as establishing a convention

for where the value will be placed (on the stack, in a register, etc.). In Eager Haskell there is no

guarantee that a function will return a value—any call may exhaust resources and suspend (consider,

for example, passing a large list to an unboxedlengthfunction). Thus, we need some way to create

a suspension for an unboxed value. Any such mechanism effectively duplicates the behavior of

boxing.

200

In the presence of a native code generator and bulk fallback, returning unboxed values may

be simpler—whole segments of the stack can be restored in one go, and the usual function return

mechanism will suffice. In the absence of a native code generator (or another mechanism to save

and restore large pieces of the computation state) various workarounds are required. The simplest

is to box values as they are returned. Second simplest is to return a flag indicating whether the

corresponding value has been computed.

An apparently promising technique is to simply CPS-transform functions which return an un-

boxed value, transforming an unboxed return into an unboxed call. Unboxed values must be strictly

bound [97]; thus, all calls to functions returning an unboxed value look like this:

caseunboxedFunc a b cof
unboxedValue→ e

The continuation-passing transformation would transform such a call as follows:

unboxedFunc′ a b c(λunboxedValue→ e)

Note that a closure is created fore even if unboxedFunc′ does not suspend. If we knew that

unboxedFunccould not suspend, the closure could be created on the stack; however, we could use

straightforward unboxed return if we had that much information. The rest of the time we are obliged

to heap-allocate a closure fore, even though the resulting closure will probably be short-lived. In

most cases this will be markedly more expensive than simply boxing the result ofunboxedFunc.

Even in the absence of unboxed return, permitting the use of unboxed values remains a chal-

lenge. In order to represent data structures which contain a mix of boxed and unboxed data, one

of two techniques must be used. If we keep the current object representation, unboxed fields must

be placed in a separate, segregated structure. The main data structure would include all the boxed

fields plus a pointer to the structure containing the unboxed fields. Alternatively, we must change

the tag representation to permit a mix of boxed and unboxed data. The most obvious way of doing

so is to use descriptors rather than integer tags, as mentioned in the previous section. Otherwise,

objects can be partitioned into a boxed part and an unboxed part; the tag would indicate the size of

the respective parts.

Even establishing a calling convention for unboxed arguments is difficult in the presence of

suspension. It is tempting to simply use the C calling conventions, passing unboxed arguments as C

arguments. However, it is not clear how this should interact with entry points (where no additional

arguments are expected). A more likely technique is to pass unboxed arguments on the shadow

201

stack along with regular arguments. If unboxed values are immediately popped from the stack on

function entry, stack descriptors might not be necessary; some sort of descriptor will be required for

unknown or curried function applications, however.

It is also difficult to mix curried function application and unboxing; the obvious expedient is to

box curried arguments and use a special entrypoint to unbox them again. This is one place where the

push-enter style of function application might work better than the eval-apply style: each function

contains code to handle stack checking and partial application, and as a result it is easier to use

specially-tailored calling conventions for every function.

13.4 Other compiler improvements

Eager Haskell is a research project, and like many other research compilers it doesn’t contain the

well-tuned and complete set of optimizations that one would expect from a production compiler. A

number of changes to optimization passes have the potential to dramatically improve the quality of

compiled code. We divide these changes into three classes. A good deal of the existing functionality

needs to be tuned for performance. Some parts of the compiler (such as deforestation) have been

improved upon by newer research. Finally, some important compiler passes are missing or will need

to be re-written entirely in order to support desired functionality.

In addition to maintenance work, there are a number of optimizations for procedural languages

which have not (to our knowledge) been tried in non-strict languages. By adopting an execution

strategy that is very nearly strict, we can hope to adapt some of these optimizations to Eager Haskell.

We examine one such opportunity—escape analysis.

13.4.1 Specialization

Haskell’s type-based function overloading is elegant, but can be very expensive in practice. Opti-

mizing Haskell compilers perform class specialization in order to eliminate much of this overload-

ing at compile time [57]. However, it is often desirable to explicitly direct the compiler to produce

versions of overloaded functions which are specialized to particular types. This further reduces

overloading and often improves the code produced by class specialization. The Eager Haskell com-

piler performs class specialization, but at the moment it does not handle user-directed specialization

gracefully, and inter-module specialization information is not correctly emitted.

202

13.4.2 Control-flow analysis

Most static analyses of higher-order languages have a precision which depends in part on precise

control-flow analysis. Indeed, whole-program analysis of Haskell can potentially eliminate much

of the overhead of laziness [55, 35], and enable advanced optimizations such as interprocedural

register allocation [29]. Starting with the work of Shivers [122], numerous approaches to control

flow analysis have been proposed with varying degrees of precision and complexity. Most of the

relevant techniques can be found in the book by Nielsonet. al.[83].

At the moment, no formal control-flow analysis is performed by the Eager Haskell compiler.

An exhaustive analysis would require whole-program compilation. For many program analyses,

however, a crude approximation to control-flow information is more than sufficient. Given the

importance of control flow information to program analysis, it would be worthwhile to perform a

separate control flow analysis during compilation. The resulting information could then be used to

guide subsequent compiler phases. The whole compiler will then benefit if the analysis is refined.

13.4.3 Loop optimization

At the moment very little effort is made to perform loop optimizations on Eager Haskell programs.

Full laziness takes care of invariant hoisting, but there are no loop-specific optimizations. Worse

still, the worker/wrapper transformation, which is the cornerstone of loop optimization in GHC, is

severely lacking in Eager Haskell: it is only run on top-level functions with precise type information.

As explained in Section 6.10.4 it will not be nearly as useful in Eager Haskell in any case.

Instead, a separate pass must be written to perform loop optimizations, replacing the current

worker-wrapper phase. We envision a system which splits functions into three pieces (one or more

of which can often be omitted): a wrapper, a header, and a body. The wrapper is inlined; it de-

structures tuples and passes them to the header. The header is run on loop entry; it can contain any

synchronization required before the loop is run, and is a logical resting place for expressions hoisted

by full laziness. Finally, the body contains the actual loop recursion.

Because Eager Haskell loops are expressed using recursion, the loop-carried variables are passed

as arguments from iteration to iteration. It is often beneficial to eliminate invariant arguments.

Observations of compiled code indicate that this exposes opportunities for constant propagation

that otherwise would have required more complex static analysis to discover. Variables which are

not eliminated will subsequently be re-introduced by lambda lifting.

203

13.4.4 Improving inlining

Aggressive inlining can make Haskell programs dramatically more efficient. The Eager Haskell

compiler has always allowed the programmer to specify that certain functions must be inlined. In

addition, bindings which are used at most once are always inlined. Until comparatively recently

(November 2001) these were the primary forms of inlining in the compiler.

The current version of the compiler includes a phase (run several times during compilation)

which identifies candidates for inlining. A simple cost model is used to measure the size of the

IR for a binding. If the cost is below one inlining threshold, it will be inlined unconditionally; if

it is below a second, larger threshold then the binding is conditionally inlined. A new annotation

was added to indicate that particular functions shouldnot be inlined. This annotation allows small

run-time support routines to be carefully coded so that only commonly-executed code is inlined.

However, there are a number of infelicities in the compiler’s inlining decisions. The inlining

decisions made by the compiler aretop-down: we decide whether to inline a function before we

know the impact that inlining will have on the function being inlined. This can be particularly

unfortunate when a fairly small function, which will be inlined unconditionally, is made up primarily

of calls to other unconditionally-inlined functions. We have in effect severely underestimated the

function’s size and the result is unintentional code explosion.

It is better to make inlining decisionsbottom-up. In a bottom-up approach to inlining, the

function is fully optimized (including all necessary inlining) before the inlining decision is made.

In this way, inlining decisions are based on the actual optimized function size. The bottom-up

approach is unfortunately more complex than the top-down approach: inlining decisions must be

integrated with program transformations, rather than being performed as a separate pass.

The cost model used for making inlining decisions is not actually based on any sort of measure-

ment of program performance, but instead relies upon a good initial guess at how programs should

behave. The accounting used when making conditional inlining decisions is shoddy at best, and in

practice conditional inlining is very rare. By contrast, the inliner in GHC assigns “discounts” to

function arguments when making conditional inlining decisions; these discounts reflect the fact that

the inlined code will shrink when particular arguments are known to be constant [100].

One consequence of the late arrival of compiler-directed inlining is that much of the Eager

Haskell prelude is explicitly marked for inlining. It would doubtless be better to conditionally inline

many of the larger functions which are currently being inlined unconditionally. However, a detailed

204

audit of prelude code will require a considerable amount of time and effort.

13.4.5 Range-based optimizations

At the moment, constant propagation in the compiler is fairly effective. However, many variables

have not one value, but a range of correct values. Because Eager Haskell arrays are bounds-checked,

optimizations based on variable ranges can have a strong impact on array performance. Though

range-based optimizations of Eager Haskell programs have been proposed on numerous occasions,

shortage of manpower and time has prevented any of these plans from coming to fruition. The

biggest challenge is the analysis required to determine variable ranges. The simple intraprocedural

cases are already handled by the compiler code; a simple abstract interpretation should expose

most of the remaining opportunities [83]. As with most other analyses of higher-order languages, a

precise analysis requires whole-program control-flow analysis.

13.4.6 Constructed products

A Haskell function can return multiple values by constructing a tuple and returning that tuple. Fre-

quently the caller immediately fetches the fields from the newly-constructed tuple and discards it. In

both Id [49] and Haskell [21] it has proven beneficial to eliminate the tupling operations and instead

have such functions return multiple values. In GHC this optimization is expressed using unboxed

tuples.

Attempts to express such a transformation in Eager Haskell using continuation-passing ran into

a number of obstacles; most notably, lazy matching of the constructed result does not work at all. We

are currently brainstorming possible ways to express the transformation effectively in the framework

of λC ; adding explicit multiple-value bindings to the IR will complicate the compiler unnecessarily.

The simplest technique may be to express lazy projection in a manner that can be exploited by the

code generator to generate code which uses multiple-value return.

13.4.7 Better deforestation

The Eager Haskell compiler performs deforestation in a single pass [71, 70]. Opportunities for

deforestation are exposed mainly by aggressively inlining prelude code. This has several notable

failings. If inlined code fails to deforest, program size has increased (often dramatically) to no avail.

Because deforestation happens in a single pass, opportunities which would be exposed by program

205

simplification are missed—this accounts for the poor performance of the wavefront benchmark.

Finally, the need to prevent unintended code explosion during deforestation (particularly across list

append operations) is frequently at odds with the need to inline nested list traversals.

GHC has an innovative solution to deforestation—rewrite rules [94]. Rules allow the sophisti-

cated user to specify additional equational transformations to be used by the compiler. This allows

optimizations such as foldr/build [38] to be specified in prelude code. Just as important, it allows

prelude functions to be selectively inlined exactly when they would be candidates for deforestation.

The GHC prelude currently contains three versions of each deforestable prelude function. The first

is a wrapper used by the rewrite rules. The second is an efficient, but non-deforestable, version. The

third is the version which is used when deforestation is possible.

13.4.8 Escape analysis

At its simplest, escape analysis attempts to identify which heap objects do not escape the func-

tion call in which they are allocated. In a strict language, such objects can be allocated on the

stack. Stack-allocated objects do not require garbage collection; they are deallocated as a natural

consequence of function return. Intraprocedural escape analysis is performed in most functional

languages in the guise of constant propagation; it is interprocedural escape analysis which is an

interesting and hard problem. Lazy languages cripple interprocedural escape analysis; thunks are

stored into data structures and then returned, causing function arguments to escape.

Most of the time Eager Haskell programs run strictly, however. If we perform a standard strict

escape analysis, we run into only one problem: what becomes of stack-allocated data during fall-

back? We propose topromotesuch data to the heap. This will require an additional invariant: no

data structure in the heap may point to the stack. If this invariant is respected during normal execu-

tion, it is not hard to enforce it during fallback as well. Using bulk fallback might permit even this

restriction to be lifted.

13.5 Envoi

Hybrid evaluation shows great promise as a standard execution strategy for Haskell. The Eager

Haskell implementation demonstrates that the performance of eagerness is comparable with that

of laziness, and can be noticeably better on some problems. With care, we believe the remaining

shortcomings of the hybrid strategy can be addressed at the implementation level. By using Hybrid

206

evaluation, programmers should be able to run Haskell programs efficiently without an intimate

knowledge of the workings of the evaluation mechanism and without resorting to program annota-

tions. It is unacceptable for programs to fail unpredictably in the face of such common and simple

idioms as tail recursion.

The hybrid strategy presented in this thesis is just a start. It is encouraging to observe the

tremendous scope for future work. The present Eager Haskell can be improved dramatically, bring-

ing concomitant improvements in the quality of compiled code. Because the hybrid execution strat-

egy shares the same semantics as a lazy strategy, it benefits from many of the same optimizations:

compiler innovations on either side can be carried over to the other. Meanwhile, many of the most

interesting experiments in eager evaluation can occur with little or no change to the compiler. New

fallback mechanisms and heuristics are a matter of changes to the run-time system. Parallelization

is a sticky design problem, but again the necessary mechanisms can be cleanly separated from com-

pilation concerns. In short, Eager Haskell is an excellent substrate for future research in functional

programming.

207

Bibliography

[1] H. Abelson and G. J. Sussman.Structure and Interpretation of Computer Programs. MIT

Press, Boston, 1986.

[2] Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem Maessen, and Rishiyur S. Nikhil.

Semantics of pH: A Parallel Dialect of Haskell. InProceedings of the Haskell Workshop,

FPCA 95, La Jolla, CA, June 1995.

[3] Shail Aditya, Arvind, and Joseph Stoy. Semantics of barriers in a non-strict, implicitly-

parallel language. InProceedings of the 7th ACM Conference on Functional Programming

Languages and Computer Architecture, La Jolla, CA, June 1995. ACM.

[4] Shail Aditya, Christine H. Flood, and James E. Hicks. Garbage collection for strongly-typed

languages using run-time type reconstruction. InLISP and Functional Programming, pages

12–23, 1994.

[5] Andrew Appel. Runtime Tags Aren’t Necessary.Lisp and Symbolic Computation, 2:153–

162, 1989.

[6] Andrew W. Appel. Garbage Collection can be Faster than Stack Allocation.Information

Processing Letters, 25(4), January 1987.

[7] Andrew W. Appel.Compiling With Continuations. Cambridge University Press, 1992.

[8] Andrew W. Appel. Modern Compiler Implmentation in ML. Cambridge University Press,

1997.

[9] Andrew W. Appel and Zhong Shao. An Empirical and Analytic Study of Stack vs. Heap Cost

for Languages with Closures. Technical Report CS-TR-450-94, Department of Computer

Science, Princeton University, March 1994.

208

[10] Z. Ariola and S. Blom. Cyclic lambda calculi. InInternational Symposium on Theoretical

Aspects of Computer Software, Sendai, Japan, September 1997.

[11] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda

calculus. InProceedings of the ACM Symposium on Principles of Programming Languages,

pages 233–246. ACM, 1995. Full version in [14]; see also [73, 74].

[12] Zena M. Ariola and Arvind. A Syntactic Approach to Program Transformations. InPro-

ceedings of the Symposium on Partial Evaluation and Semantics Based Program Manipula-

tion, Yale University, New Haven, CT, June 1991. Also MIT Computation Structures Group

Memo322.

[13] Zena M. Ariola and Stefan Blom. Lambda calculus plus letrec: graphs as terms and terms

as graphs. Technical Report DRAFT, Dept. of Computer and Information Sciences, Univ. of

Oregon, Eugene OR, USA, October 1996.

[14] Zena M. Ariola and M. Felleisen. The call-by-need lambda calculus.Journal of Functional

Programming, 7(3):265–301, May 1997. Full version of [11].

[15] Zena M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Technical Report

CIS-TR-96-04, Dept. of Computer and Information Sciences, Univ. of Oregon, Eugene OR,

USA, 1996.

[16] Arvind, Alejandro Caro, Jan-Willem Maessen, and Shail Aditya. A multithreaded substrate

and compilation model for the implicitly parallel language pH. InProceedings of the Work-

shop on Languages and Compilers for Parallel Computing, August 1996.

[17] Arvind, Jan-Willem Maessen, Rishiyur Sivaswami Nikhil, and Joseph E. Stoy.λS : An im-

plicitly parallelλ-calculus with letrec, synchronization and side-effects.Electronic Notes in

Theoretical Computer Science, 16(3), September 1998.

[18] Arvind, Jan-Willem Maessen, Rishiyur Sivaswami Nikhil, and Joseph E. Stoy.λS : An im-

plicitly parallel λ-calculus with letrec, synchronization and side-effects. Technical Report

393-2, MIT Computation Structures Group Memo, October 1998. (Full version of [17] with

proofs).

209

[19] Lennart Augustsson. Implementing Haskell overloading. InProceedings of the 6th ACM

Conference on Functional Programming Languages and Computer Architecture, pages 65–

73. ACM, 1993.

[20] Lennart Augustsson and et al.The HBC Compiler. Chalmers University of Technology,

0.9999.4 edition.

[21] Clem Baker-Finch, Kevin Glynn, and Simon L. Peyton Jones. Constructed product result

analysis for Haskell. Technical report, University of Melbourne, 2000.

[22] Henk P. Barendregt.The Lambda Calculus, volume 103 ofStudies in Logic and the Founda-

tions of Mathematics. North-Holland, Amsterdam, revised edition, 1984.

[23] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T.S.E.

Maibaum, editors,Handbook of Logic in Computer Science, volume 2, chapter 2, pages

117–309. Oxford University Press, 1992.

[24] Joel F. Bartlett. SCHEME− > C: A Portable Scheme-to-C Compiler. Technical Report

DEC-WRL-89-1, Digital Equipment Corporation, Western Research Laboratory, 1989.

[25] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:

A scalable memory allocator for multithreaded applications. InInternational Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX),

pages 117–128, Cambridge, MA, Nov 2000.

[26] Richard Bird, Geraint Jones, and Oege De Moor. More haste, less speed: lazy versus eager

evaluation.Journal of Functional Programming, 7(5):541–547, September 1997.

[27] Robert D. Blumofe, Christopher F. Joerg, Charles E. Leiserson, Keith H. Randall, and Yuli

Zhou. Cilk: An efficient multithreaded run-time system. InProceedings of the ACM Con-

ference on Programming Language Design and Implementation, pages 132–141, Montreal,

Canada, 17–19 June 1998. ACM, SIGPLAN Notices.

[28] H.J. Boehm and M. Weiser. Garbage collection in an uncooperative environment.Software

Practice and Experience, 18(9):807–820, September 1988.

210

[29] Urban Boquist. Interprocedural Register Allocation for Lazy Functional Languages. InPro-

ceedings of the Conference on Functional Programming Languages and Computer Architec-

ture, La Jolla, California, June 1995.

[30] Luca Cardelli. Basic Polymorphic Typechecking.Science of Computer Programming, 8,

1987.

[31] Alejandro Caro.Generating Multithreaded Code from Parallel Haskell for Symmetric Multi-

processors. PhD thesis, MIT, January 1999.

[32] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise modeling of excep-

tions for the analysis of Java programs. InACM SIGPLAN-SIGSOFTWorkshop on Program

Analysis for Software Tools and Engineering, pages 21–31, September 1999.

[33] Satyan Coorg. Partitioning non-strict languages for multi-threaded code generation. Master’s

thesis, MIT, May 1994.

[34] Satyan Coorg. Partitioning non-strict languages for multi-threaded code generation. InStatic

Analysis Symposium, Sept 1995.

[35] Fax́en, Karl-Filip. Optimizing lazy functional programs using flow-inference. InStatic Anal-

ysis Symposium, Sept 1995.

[36] Fax́en, Karl-Filip. Cheap eagerness: speculative evaluation in a lazy functional language. In

Proceedings of the fifth ACM SIGPLAN ACM SIGPLAN International Conference on Func-

tional Programming, pages 150–161, Montreal, September 2000. ACM.

[37] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5

multithreaded language. InProceedings of the ACM Conference on Programming Language

Design and Implementation, pages 212–223, Montreal, Canada, 17–19 June 1998. ACM,

SIGPLAN Notices.

[38] Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In

Proceedings of the 7th ACM Conference on Functional Programming Languages and Com-

puter Architecture, pages 223–232, La Jolla, CA, June 1995. ACM.

[39] Andrew Gill and Simon L Peyton Jones. Cheap deforestation in practice: An optimiser for

Haskell. InProceedings of the Glasgow Functional Programming Workshop, 1995.

211

[40] Andrew J. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis,

University of Glasgow, January 1996.

[41] Seth C. Goldstein, Klaus E. Schauser, and Dave E. Culler. Lazy Threads: Implementing a

Fast Parallel Call.Journal of Parallel and Distributed Computing, 37(1), August 1996.

[42] Seth Copen Goldstein. The Implementation of a Threaded Abstract Machine. Report

UCB/CSD 94-818, Computer Science Division (EECS), University of California, Berkeley,

May 1994.

[43] Andrew Gordon, Kevin Hammond, and Andy Gill, et al. The definition of monadic I/O for

Haskell 1.3. Incorporated into [46]., 1994.

[44] William G. Griswold and David Notkin. Automated assistance for program restructuring.

ACM Transactions on Software Engineering and Methodology, 2(3):228–269, 1993.

[45] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type

classes in Haskell.ACM Transactions on Programming Languages and Systems, 18(2):109–

138, March 1996.

[46] Kevin Hammond, et al. Report on the programming language Haskell, version 1.3. Released

at FPCA ’95. Supersedes [51], superseded by [95]., 1995.

[47] John Hannan and Patrick Hicks. Higher-order UnCurrying. InProceedings of the Symposium

on Principles of Programming Languages, San Diego, CA, January 1998.

[48] Fergus Henderson, Zoltan Somogyi, and Thomas Conway. Compiling Logic Programs to C

Using GNU C as a Portable Assembler. InILPS’95 Postconference Workshop on Sequential

Implementation Technologies for Programming Languages, December 1995.

[49] James Hicks, Derek Chiou, Boon Seong Ang, and Arvind. Performance Studies of Id on the

Monsoon Dataflow System.Journal of Parallel and Distributed Computing, 18(3):273–300,

July 1993.

[50] Paul Hudak.The Haskell School of Expression: Learning Functional Programming Through

Multimedia. Cambridge University Press, New York, 2000.

212

[51] Paul Hudak, Simon L Peyton Jones, and Philip Wadler, eds., et al. Report on the Program-

ming Language Haskell, A Non-strict, Purely Functional Language, Version 1.2.SIGPLAN

Notices, 27(5), May 1992. Superseded by [46].

[52] C. Barry Jay and N. Ghani. The virtues ofη-expansion.Journal of Functional Programming,

5(2):135–154, April 1995.

[53] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. InPro-

ceedings of the 2nd Conference on Functional Programming Languages and Computer Ar-

chitecture, 1985.

[54] Thomas Johnsson.Compiling Lazy Functional Languages. PhD thesis, Chalmers University

of Technology, G̈oteborg, 1987.

[55] Thomas Johnsson. Analysing heap contents in a graph reduction intermediate language.

In Proceedings of the Glasgow Functional Programming Workshop, Ullapool 1990, August

1991.

[56] Thomas Johnsson. Efficient graph algorithms using lazy monolithic arrays.Journal of Func-

tional Programming, 8(4):323–333, July 1998.

[57] Mark P. Jones. Partial evaluation for dictionary-free overloading. Technical Report RR-959,

Yale University Department of Computer Science, New Haven, CT, 1993.

[58] Mark P. Jones. The implementation of the Gofer functional programming system. Technical

Report RR-1030, Yale University Department of Computer Science, New Haven, CT, May

1994.

[59] Mark P. Jones, Alastair Reid, the Yale Haskell Group, and the OGI School of Science &

Engineering.The Hugs 98 User Manual.

[60] Richard Jones and Rafael Lins.Garbage Collection. John Wiley & Sons, 1996.

[61] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation.Lisp and

Symbolic Computation, 7(4):315–335, 1994.

[62] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Norman

Adams. ORBIT: An Optimizing Compiler for Scheme. InSIGPLAN Notices (Proceedings

of the SIGPLAN ’86 Symposium on Compiler Construction), July 1986.

213

[63] John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. InProceedings

of the ACM Conference on Programming Language Design and Implementation, pages 24–

35, Orlando, FL, June 1994. ACM, SIGPLAN Notices. Superseded by [98].

[64] Xavier Leroy. Efficient Data Representation in Polymorphic Languages. Rapports de

Recherche 1264, INRIA-Rocquencourt, August 1990.

[65] Xavier Leroy. The ZINC Experiment: An Economical Implementation of the ML Language.

Rapports Techniques 117, INRIA-Rocquencourt, February 1990.

[66] Xavier Leroy. The Objective Caml system release 3.00, documentation and user’s manual.

http://caml.inria.fr/ocaml/htmlman/index.html, 2000.

[67] John R. Levine.Linkers and Loaders. Morgan Kaufman, Inc., Oct 1999.

[68] Bil Lewis, Don LaLiberte, Richard Stallman, and the GNU Manual Group.GNU Emacs Lisp

Reference Manual. Free Software Foundation, 2.5 edition, Nov 1998.

[69] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters.

In Proceedings of the ACM Symposium on Principles of Programming Languages, pages

333–343. ACM, 1995.

[70] Jan-Willem Maessen. Eliminating intermediate lists in pH using local transformations. Mas-

ter’s thesis, MIT, May 1994.

[71] Jan-Willem Maessen. Simplifying parallel list traversal. Technical Report 370, MIT Com-

putation Structures Group Memo, January 1995.

[72] Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving the Java memory model us-

ing CRF. InProceedings of the 15th AnnualConference on Object-Oriented Programming

Systems, Languages and Applications, pages 1–12, Minneapolis, MN, Oct 2000. ACM SIG-

PLAN. Also available as MIT LCS Computation Structures Group Memo 428.

[73] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. Tech-

nical report, Fakultat fur Informatik, Universitat Karlsruhe, and Department of Computing

Science, University of Glasgow, October 1994. Superseded by [74].

[74] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus.Journal

of Functional Programming, 8(3):275–317, 1998. Revision of [73]; see also [11].

214

[75] Simon Marlow and Simon L. Peyton Jones. The new GHC/Hugs runtime system. Available

from http://research.microsoft.com/Users/simonpj/Papers/new-rts.htm, Aug 1998.

[76] Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John H. Reppy. Asynchronous

exceptions in Haskell. InProceedings of the ACM Conference on Programming Language

Design and Implementation, pages 274–285, 2001.

[77] James S. Miller and Guillermo J. Rozas. Garbage collection is fast, but a stack is faster.

Technical Report AIM-1462, Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, 1994.

[78] Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press,

Cambridge MA, USA, 990. Superseded by [79].

[79] Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen.The Definition of Standard

ML. MIT Press, revised edition, 1997. Revises [78].

[80] J. C. Mitchell.Foundations for Programming Languages. The MIT Press, 1996.

[81] Andrew Moran, Søren B. Lassen, and Simon L. Peyton Jones. Imprecise exceptions, co-

inductively. In Andrew Gordon and Andrew Pitts, editors,Electronic Notes in Theoretical

Computer Science, volume 26. Elsevier Science Publishers, 2000.

[82] Greg Morrisett.Compiling with Types. PhD thesis, School of Computer Science, Carnegie

Mellon University, December 1995.

[83] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of Program Analysis.

Springer, 1999.

[84] Rishiyur S. Nikhil. A Multithreaded Implementation of Id using P-RISC Graphs. InPro-

ceedings of the Workshop on Languages and Compilers for Parallel Computing, number 768

in Lectures Notes in Computer Science, Portland, OR, August 1993. Springer Verlag.

[85] Rishiyur S. Nikhil and Arvind. Implicit Parallel Programming inpH. Morgan Kaufman,

Inc., 2001.

[86] Rishiyur S Nikhil, Arvind, and James Hicks, et al. pH language reference manual, version

1.0—preliminary. Technical Report 369, MIT Computation Structures Group Memo, January

1995. Working document describing pH extensions to Haskell.

215

[87] Rishiyur Sivaswami Nikhil. Id (Version 90.1) Language Reference Manual. Technical Report

CSG Memo 284-2, MIT Computation Structures Group Memo, 545 Technology Square,

Cambridge MA 02139, USA, July 1991.

[88] Rishiyur Sivaswami Nikhil. An Overview of the Parallel Language Id (a foundation for pH,

a parallel dialect of Haskell). Technical Report Draft, Digital Equipment Corp., Cambridge

Research Laboratory, September 1993.

[89] Will Partain. The nofib benchmark suite of Haskell programs. In J Launchbury and PM San-

som, editors,Functional Programming, Glasgow 1992, pages 195–202. Springer-Verlag,

1992.

[90] John Peterson and Mark P. Jones. Implementing type classes. InSIGPLAN Conference on

Programming Language Design and Implementation, pages 227–236, 1993.

[91] Simon L. Peyton Jones. Tackling the Awkward Squad: monadic input/output, concurrency,

exceptions, and foreign-language calls in Haskell. presented at the 2000 Marktoberdorf Sum-

mer School.

[92] Simon L Peyton Jones.The Implementation of Functional Programming Languages. Prentice

Hall, 1987.

[93] Simon L. Peyton Jones. Implementing Lazy Functional Languages on Stock Hardware: the

Spineless Tagless G-machine.Journal of Functional Programming, 2(2), April 1992.

[94] Simon L. Peyton Jones, C. A. R. Hoare, and Andrew Tolmach. Playing by the rules: rewriting

as a practical optimisation technique. InProceedings of the Haskell Workshop, 2001.

[95] Simon L Peyton Jones and John Hughes. Haskell 98, a non-strict, purely functional language.

http://www.haskell.org/definition/, February 1999.

[96] Simon L Peyton Jones and John Hughes. Standard libraries for Haskell 98.

http://www.haskell.org/definition/, February 1999.

[97] Simon L. Peyton Jones and John Launchbury. Unboxed Values as First Class Citizens in

a Non-strict Functional Language. InProceedings of the 1991 Conference on Functional

Programming Languages and Computer Architecture, Cambridge, MA, September 1991.

216

[98] Simon L. Peyton Jones and John Launchbury. State in Haskell.Journal of LISP and Symbolic

Computation, 8(4):293–341, December 1995. Elaboration of [63].

[99] Simon L. Peyton Jones and David Lester.Implementing Functional Languages: A Tutorial.

Prentice-Hall, Englewood Cliffs, N.J., 1992.

[100] Simon L. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell compiler inliner.

Journal of Functional Programming, to appear.

[101] Simon L. Peyton Jones and Will Partain. Measuring the Effectiveness of a Simple Strict-

ness Analyser. In K. Hammond and J.T. O’Donnell, editors,Proceedings of the Glasgow

Workshop on Functional Programming, Workshops in Computing. Springer Verlag, 1993.

[102] Simon L. Peyton Jones, Alastair Reid, Fergus Henderson, C. A. R. Hoare, and Simon Marlow.

A semantics for imprecise exceptions. InProceedings of the ACM Conference on Program-

ming Language Design and Implementation, pages 25–36. ACM, SIGPLAN Notices, May

1999.

[103] Simon L. Peyton Jones and André L. M. Santos. A transformation-based optimiser for

Haskell.Science of Computer Programming, 32(1–3):3–47, 1998.

[104] Rinus Plasmeijer and Marko van Eekelen.Functional Programming and Parallel Graph

Rewriting. Addison-Wesley, 1993.

[105] William Pugh. Fixing the Java memory model. InProceedings of the ACM Java Grande

Conference, June 1999.

[106] Niklas R̈ojemo. Garbage Collection and Memory Efficiency in Lazy Functional Languages.

PhD thesis, Chalmers University of Technology, Göteborg, Sweden, 1995. Full version of

[107] and other papers.

[107] Niklas R̈ojemo. Highlights from nhc—a space-efficient Haskell compiler. InProceedings

of the 7th ACM Conference on Functional Programming Languages and Computer Architec-

ture, La Jolla, CA, June 1995. ACM. Expanded in [106].

[108] Amr Sabry. What is a purely functional language?Journal of Functional Programming,

8(1):1–22, January 1998.

217

[109] Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage collection for Haskell.

In Functional Programming Languages and Computer Architecture, pages 106–116, 1993.

[110] Andŕe Santos.Compilation by Transformation in Non-Strict Functional Languages. PhD

thesis, University of Glasgow, 1995.

[111] Vivek Sarkar.Partitioning and Scheduling Parallel Programs for Multiprocessors. Pitman,

London and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research Mono-

graphs in Parallel and Distributed Computing.

[112] K.E. Schauser, D.E. Culler, and S.C. Goldstein. Separation constraint partitioning: A new

algorithm for partitioning non-strict programs into sequential threads. InProceedings of the

ACM Symposium on Principles of Programming Languages. ACM, 1995.

[113] Klaus Schauser. Personal communication, June 1995.

[114] Klaus E. Schauser.Compiling Lenient Languages for Parallel Asynchronous Execution. PhD

thesis, University of California, Berkeley, May 1994.

[115] Klaus E. Schauser, David E. Culler, and Thorsten von Eicken. Compiler-controlled Multi-

threading for Lenient Parallel Languages. InProceedings of the Conference on Functional

Programming Languages and Computer Architecture, volume 523 ofLecture Notes in Com-

puter Science. Springer Verlag, August 1991.

[116] Klaus E. Schauser and Seth C. Goldstein. How Much Non-strictness do Lenient Programs

Require? InFunctional Programming and Computer Architecture, San Diego, CA, June

1995.

[117] Jacob B. Schwartz. Eliminating intermediate lists in pH. Master’s thesis, MIT, 2000.

[118] Peter Sestoft. The garbage collector used in caml light. archived email message, October

1994.

[119] Zhong Shao and Andrew W. Appel. Space-Efficient Closure Representation. InProceedings

of the ACM Conference on Lisp and Functioanl Programming, June 1994.

[120] Andrew Shaw.Compiling for Parallel Multithreaded Computation on Symmetric Multipro-

cessors. PhD thesis, MIT, October 1997.

218

[121] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reconcile & Fences (CRF): A New

Memory Model for Architects and Compiler Writers. InProceedings of the 26th Interna-

tional Symposium on Computer Architecture, Atlanta, GA, May 1999. ACM.

[122] Olin Shivers.The semantics of scheme control-flow analysis. PhD thesis, Carnegie Mellon

University, May 1991. Technical Report CMU-CS-91-145, School of Computer Science.

[123] Jan Sparud. Fixing some space leaks without a garbage collector. InFunctional Programming

Languages and Computer Architecture, pages 117–124, 1993.

[124] Guy L. Steele. RABBIT: a Compiler for Scheme. Technical Report MIT/AI/TR 474, Artifi-

cial Intelligence Laboratory, Massachusetts Institute of Technology, May 1978.

[125] Guy L Steele Jr. Building interpreters by composing monads. InProceedings of the ACM

Symposium on Principles of Programming Languages, pages 472–492. ACM, 1994.

[126] Joseph E. Stoy. The Semantics of Id. InA Classical Mind: Essays in Honor of C.A.R.Hoare

(A.W.Roscoe, ed.), pages 379–404. Prentice Hall, New York, 1994.

[127] Volker Strumpen. Indolent closure creation. Technical Report 580, MIT Laboratory for

Computer Science Technical Memo, June 1998.

[128] Xinan Tang, Jian Wang, Kevin B. Theobald, and Guang R. Gao. Thread Partitioning and

Scheduling Based On Cost Model. InProceedings of the 9th Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA’97), Newport, Rhode Island, June 1997.

[129] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. Til: a type-directed opti-

mizing compiler for ml. InProceedings of the ACM Conference on Programming Language

Design and Implementation, pages 181–192. ACM, SIGPLAN Notices, May 1996.

[130] The GHC Team.The Glasgow Haskell Compiler User’s Guide, Version 5.02.

[131] Frank Tip. A survey of program slicing techniques.Journal of Programming Languages,

3(3):121–189, September 1995.

[132] Christiana V. Toutet. An analysis for partitioning multithreaded programs into sequential

threads. Master’s thesis, MIT, May 1998.

219

[133] Ken R. Traub.Sequential Implementation of Lenient Programming Languages. PhD thesis,

MIT, September 1988.

[134] Guy Tremblay and Guang R. Gao. The Impact of Laziness on Parallelism and the Limits

of Strictness Analysis. In A. P. Wim Bohm and John T. Feo, editors,High Performance

Functional Computing, April 1995.

[135] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection at

compile-time. InProceedings of the ACM Symposium on LISP and Functional Programming,

pages 45–52. ACM, 1984.

[136] Philip Wadler. Theorems for free! InProceedings of the 4th Conference on Functional

Programming Languages and Computer Architecture, September 1989.

[137] Philip Wadler. Deforestation: Transforming programs to eliminate trees.Theoretical Com-

puter Science, 73:231–248, 1991.

[138] Philip Wadler. The essence of functional programming. InProceedings of the ACM Sympo-

sium on Principles of Programming Languages, pages 1–14. ACM, 1992.

[139] Philip Wadler. A HOT opportunity.Journal of Functional Programming, 7(2):127–128,

March 1997.

[140] Philip L. Wadler. Fixing some space leaks with a garbage collector.Software Practice and

Experience, 17(9):595–609, 1987.

[141] M. Weiser. Program slicing.IEEE Transactions on Software Engineering, 10(4), July 1984.

[142] Paul R. Wilson. Uniprocessor garbage collection techniques. InProc. Int. Workshop on

Memory Management, number 637 in LNCS, Saint-Malo (France), 1992. Springer-Verlag.

[143] Paul R. Wilson. Uniprocessor garbage collection techniques.ACM Computing Surveys, to

appear. Revised version of [142].

[144] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage

allocation: A survey and critical review. In1995 International Workshop on Memory Man-

agement, Kinross, Scotland, UK, 1995. Springer Verlag LNCS.

220

Appendix A

The Defer List Strategy for λC

Section 4.6 briefly sketched the defer list strategy used in implementing Id andpH. In Figure A-1 we

formalize the defer list strategy in the context ofλC . In practice, creating and destroying threads of

execution can be expensive, even when they are extremely lightweight as in the fully eager strategy

of Section 4.4.1. In addition, it is possible to flood the system with vast amounts of blocked work.

Finally, the amount of parallelism that can actually be exploited in a real system is usually bounded

by the number of available processors.

The most notable feature of the strategy is that every binding in a thread is accompanied by an

initially empty binding group known as itsdefer list. We refer to a binding and its accompanying de-

fer list aswork. The defer list itself contains work—all of itpendinguntil the binding has completed

execution. The rules IStore and indirect behave much as the analogous store and indirect rules in

the fully eager strategy (Figure 4-5). In addition, however, they take the work on the defer list and

resumeit, i.e. schedule it for execution.1 The defer rule tells us that if the active termx = S[y]

requires a variabley which is still being computed—that is, it is sitting on the stack of any thread or

on any defer list—then the current work(x = S[y] ; b0) should be added to the defer listb1 for y.

The rules also describe thepH approach towork stealing. Evaluation begins with a fixed number

of threads (which correspond in this strategy to the processors of a multiprocessor). All but one

of these threads is initially empty. When a thread is empty, it muststeal: a victim is chosen at

random from the threads with non-empty stacks, and the bottommost piece of work is removed.

This work becomes the new stack for thethief. Thus, threads do not maintain a stack, but rather

1Note that there is a policy decision here: the work is added to thetop of the work stack. Other placements of the
work are possible, including auxiliary structures to hold pending resumptions. The strategy given here is the one used in
the originalpH implementation.

221

h • 〈(x = v ; b) ; k〉 r ‖ t ≡ x = v, h • 〈b〉 〈k〉 r ‖ t (IStore)
h • 〈(x = y ; b) ; k〉 r ‖ t ≡ x = y, h • 〈b〉 〈k〉 r ‖ t (indirect)

〈(x = letrec b0 in e1 ; b1) ; k〉 −→ 〈b0 ; (x = e1 ; b1) ; k〉 τf (spawn)

h • 〈(x = S[y] ; b0) ; B[y = e; b1]〉 r ‖ t
≡ h • 〈B[y = e; (x = S[y] ; b0), b1]〉 r ‖ t (defer)

h • 〈(x = S[y] ; b0) ; k〉 B[y = e; b1] ‖ t
≡ h • 〈k〉 B[y = e; (x = S[y] ; b0), b1] ‖ t (defer)

h • 〈(x = S[y] ; b0) ; k〉 r ‖ B[y = e; b1]
≡ h • 〈k〉 r ‖ B[y = e; (x = S[y] ; b0), b1] (defer)

h • ε ‖ r〈k〉 ‖ t ≡ h • 〈k〉 ‖ r ‖ t (steal)

Figure A-1: Eagerness using defer lists and work stealing

a dequeue: local work is handled stack-fashion, but steals are handled queue-fashion. This work-

stealing strategy is borrowed from the multithreaded language Cilk [27].

Note also that the spawn rule in Figure A-1 is virtually identical to the enter block rule in the

strict strategy (Figure 4-4). This highlights the similarity of the two strategies: by default, bindings

are evaluated immediately in program order. If that is not possible, the strict strategy fails; the eager

strategy suspends.

The indirect rule is optional in an eager calculus. Given a bindingx = y we can instead attempt

to instantiatey and suspend if the attempt fails. This was the approach used in the implementation

of Id. Its advantage is that no indirection mechanism is necessary. The disadvantage (beyond

the cost of keeping two copies ofy) is that trivial computationsx = y find their way onto defer

lists that would otherwise have been empty. In effect, instead of creating indirections the system

creates deferred “copying work”. This subtly alters the termination semantics of the language in the

presence of barriers [18].

222

